1
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
2
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Antiviral Mechanism of Virucidal Sialic Acid Modified Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15020582. [PMID: 36839904 PMCID: PMC9965221 DOI: 10.3390/pharmaceutics15020582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
We have reported that CD-6'SLN [6-sialyllactosamine (6'SLN)-modified β-cyclodextrin (CD)] can be a potential anti-influenza drug because it irreversibly deactivates virions. Indeed, in vivo, CD-6'SLN improved mice survival in an H1N1 infection model even when administered 24 h post-infection. Although CD-6'SLN was designed to target the viral envelope protein hemagglutinin (HA), a natural receptor of 6'SLN, it remains unclear whether other targets exist. In this study, we confirm that CD-6'SLN inhibits the influenza virus through an extracellular mechanism by interacting with HA, but not with neuraminidase (NA), despite the latter also having a binding pocket for the sialyl group. We find that CD-6'SLN interacts with the viral envelope as it elicits the release of a fluorophore embedded in the membrane. Two similar compounds were designed to test separately the effect of 6'SLN and of the undecyl moiety that links the CD to 6'SLN. Neither showed any interaction with the membrane nor the irreversible viral inhibition (virucidal), confirming that both components are essential to membrane interaction and virucidal action. Unlike similar antiviral cyclodextrins developed against other viruses, CD-6'SLN was not able to decapsulate viral RNA. Our findings support that combining viral protein-specific epitopes with hydrophobic linkers provides a strategy for developing antiviral drugs with a virucidal mechanism.
Collapse
|
4
|
Jeyaram RA, Anu Radha C. N1 neuraminidase of H5N1 avian influenza A virus complexed with sialic acid and zanamivir - A study by molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2022; 40:11434-11447. [PMID: 34369311 DOI: 10.1080/07391102.2021.1962407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of antiviral drugs is an urgent need to control and prevent the presently circulating H5N1 avian influenza virus which is affects the human respiratory tract. The complex crystal structure of N1-N-acetylneuranamic acid (sialic acid, SIA) is not available as complex and hence SIA and zanamivir (ZMR) are docked into the binding site of N1 neuraminidase. Based on the analysis, the initial complex structures have been simulated for 120 ns to get insight into the binding modes and interaction between protein-ligand complex systems. NAMD pair interaction energy and MM-PBSA binding free energy are calculated and show that there are two possible binding modes (BM1 and BM2) for N1-SIA and a single binding mode (BM1) for and N1-ZMR complex structures respectively. BM1 of N1-SIA is the most preferred binding mode. On contrary to the currently available drugs in which the chair conformation is distorted, in both the binding modes of N1-SIA, the binding pocket of N1 neuraminidase is able to accommodate SIA in 2C5 chair conformation which is the preferred conformation of SIA in solution state. In N1-ZMR complex, ZMR is bind in a distorted chair conformation. The neuraminidase binding pocket is also able to accommodate galactose of SIAα(2→3)GAL and SIAα(2→6)GAL. RMSD, RMSF and hydrogen bonding analyses have been carried out to identify the conformational flexibility and structural stability of each complex system. All the analyses show that SIA can be used as an inhibitor for N1 neuraminidase of H5N1 influenza viral infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R A Jeyaram
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - C Anu Radha
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
5
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
6
|
López-Valiñas Á, Baioni L, Córdoba L, Darji A, Chiapponi C, Segalés J, Ganges L, Núñez JI. Evolution of Swine Influenza Virus H3N2 in Vaccinated and Nonvaccinated Pigs after Previous Natural H1N1 Infection. Viruses 2022; 14:v14092008. [PMID: 36146814 PMCID: PMC9505157 DOI: 10.3390/v14092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Swine influenza viruses (SIV) produce a highly contagious and worldwide distributed disease that can cause important economic losses to the pig industry. Currently, this virus is endemic in farms and, although used limitedly, trivalent vaccine application is the most extended strategy to control SIV. The presence of pre-existing immunity against SIV may modulate the evolutionary dynamic of this virus. To better understand these dynamics, the viral variants generated in vaccinated and nonvaccinated H3N2 challenged pigs after recovery from a natural A(H1N1) pdm09 infection were determined and analyzed. In total, seventeen whole SIV genomes were determined, 6 from vaccinated, and 10 from nonvaccinated animals and their inoculum, by NGS. Herein, 214 de novo substitutions were found along all SIV segments, 44 of them being nonsynonymous ones with an allele frequency greater than 5%. Nonsynonymous substitutions were not found in NP; meanwhile, many of these were allocated in PB2, PB1, and NS1 proteins. Regarding HA and NA proteins, higher nucleotide diversity, proportionally more nonsynonymous substitutions with an allele frequency greater than 5%, and different domain allocations of mutants, were observed in vaccinated animals, indicating different evolutionary dynamics. This study highlights the rapid adaptability of SIV in different environments.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Laura Baioni
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, 25124 Brescia, Italy
| | - Lorena Córdoba
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, 25124 Brescia, Italy
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Claus-Desbonnet H, Nikly E, Nalbantova V, Karcheva-Bahchevanska D, Ivanova S, Pierre G, Benbassat N, Katsarov P, Michaud P, Lukova P, Delattre C. Polysaccharides and Their Derivatives as Potential Antiviral Molecules. Viruses 2022; 14:426. [PMID: 35216019 PMCID: PMC8879384 DOI: 10.3390/v14020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.
Collapse
Affiliation(s)
- Hadrien Claus-Desbonnet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Elsa Nikly
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Vanya Nalbantova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Medical University Sofia, 1000 Sofia, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (V.N.); (D.K.-B.); (N.B.); (P.L.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; (H.C.-D.); (E.N.); (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
8
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
9
|
Tembely D, Henry A, Vanalderwiert L, Toussaint K, Bennasroune A, Blaise S, Sartelet H, Jaisson S, Galés C, Martiny L, Duca L, Romier-Crouzet B, Maurice P. The Elastin Receptor Complex: An Emerging Therapeutic Target Against Age-Related Vascular Diseases. Front Endocrinol (Lausanne) 2022; 13:815356. [PMID: 35222273 PMCID: PMC8873114 DOI: 10.3389/fendo.2022.815356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.
Collapse
Affiliation(s)
- Dignê Tembely
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Aubéri Henry
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laetitia Vanalderwiert
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Kevin Toussaint
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Toulouse, France
| | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- *Correspondence: Pascal Maurice, ; orcid.org0000-0003-2167-4808
| |
Collapse
|
10
|
Abstract
Depending on the strain, influenza A virus causes animal, zoonotic, pandemic, or seasonal influenza with varying degrees of severity. Two surface glycoprotein spikes, hemagglutinin (HA) and neuraminidase (NA), are the most important influenza A virus antigens. NA plays an important role in the propagation of influenza virus by removing terminal sialic acid from sialyl decoy receptors and thereby facilitating the release of viruses from traps such as in mucus and on infected cells. Some NA inhibitors have become widely used drugs for treatment of influenza. However, attempts to develop effective and safe NA inhibitors that can be used for treatment of anti-NA drugs-resistant influenza viruses have continued. In this chapter, we describe the following updates on influenza A NA inhibitor development: (i) N-acetylneuraminic acid (Neu5Ac)-based derivatives, (ii) covalent NA inhibitors, (iii) sulfo-sialic acid analogs, (iv) N-acetyl-6-sulfo-β-D-glucosaminide-based inhibitors, (v) inhibitors targeting the 150-loop of group 1 NAs, (vi) conjugation inhibitors, (vii) acylhydrazone derivatives, (viii) monoclonal antibodies, (ix) PVP-I, and (x) natural products. Finally, we provide future perspectives on the next-generation anti-NA drugs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
11
|
Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021; 22:ijms222313112. [PMID: 34884917 PMCID: PMC8657994 DOI: 10.3390/ijms222313112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.
Collapse
|
12
|
Campbell AC, Tanner JJ, Krause KL. Optimisation of Neuraminidase Expression for Use in Drug Discovery by Using HEK293-6E Cells. Viruses 2021; 13:v13101893. [PMID: 34696326 PMCID: PMC8538103 DOI: 10.3390/v13101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
13
|
Bowles WHD, Gloster TM. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 2021; 8:705133. [PMID: 34395532 PMCID: PMC8358268 DOI: 10.3389/fmolb.2021.705133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Sialidases (SAs) and sialyltransferases (STs), the enzymes responsible for removing and adding sialic acid to other glycans, play essential roles in viruses, bacteria, parasites, and humans. Sialic acid is often the terminal sugar on glycans protruding from the cell surface in humans and is an important component for recognition and cell function. Pathogens have evolved to exploit this and use sialic acid to either “cloak” themselves, ensuring they remain undetected, or as a mechanism to enable release of virus progeny. The development of inhibitors against SAs and STs therefore provides the opportunity to target a range of diseases. Inhibitors targeting viral, bacterial, or parasitic enzymes can directly target their pathogenicity in humans. Excellent examples of this can be found with the anti-influenza drugs Zanamivir (Relenza™, GlaxoSmithKline) and Oseltamivir (Tamiflu™, Roche and Gilead), which have been used in the clinic for over two decades. However, the development of resistance against these drugs means there is an ongoing need for novel potent and specific inhibitors. Humans possess 20 STs and four SAs that play essential roles in cellular function, but have also been implicated in cancer progression, as glycans on many cancer cells are found to be hyper-sialylated. Whilst much remains unknown about how STs function in relation to disease, it is clear that specific inhibitors of them can serve both as tools to gain a better understanding of their activity and form the basis for development of anti-cancer drugs. Here we review the recent developments in the design of SA and ST inhibitors against pathogens and humans.
Collapse
Affiliation(s)
- William H D Bowles
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
14
|
Tiwari VK, Powell DR, Broussy S, Berkowitz DB. Rapid Enantioselective and Diastereoconvergent Hybrid Organic/Biocatalytic Entry into the Oseltamivir Core. J Org Chem 2021; 86:6494-6503. [PMID: 33857378 DOI: 10.1021/acs.joc.1c00326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formal synthesis of the antiviral drug (-)-oseltamivir (Tamiflu) has been accomplished starting from m-anisic acid via a dissolving metal or electrochemical Birch reduction. The correct absolute stereochemistry is efficiently set through enzyme-catalyzed carbonyl reduction on the resultant racemic α,β-unsaturated ketone. A screen of a broad ketoreductase (KRED) library identified several that deliver the desired allylic alcohol with nearly perfect facial selectivity at the new center for each antipodal substrate, indicating that the enzyme also is able to completely override inherent diastereomeric bias in the substrate. Conversion is complete, with d-glucose serving as the terminal hydride donor (glucose dehydrogenase). For each resulting diastereomeric secondary alcohol, O/N-interconversion is then efficiently effected either by synfacial [3,3]-sigmatropic allylic imidate rearrangement or by direct, stereoinverting N-Mitsunobu chemistry. Both stereochemical outcomes have been confirmed crystallographically. The α,β-unsaturation is then introduced via an α-phenylselenylation/oxidation/pyrolysis sequence to yield the targeted (S)-N-acyl-protected 5-amino-1,3-cyclohexadiene carboxylates, key advanced intermediates for oseltamivir pioneered by Corey (N-Boc) and Trost (N-phthalamido), respectively.
Collapse
Affiliation(s)
- Virendra K Tiwari
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sylvain Broussy
- University of Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, F-75006 Paris, France
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes. J Virol 2020; 94:JVI.00408-20. [PMID: 32269119 DOI: 10.1128/jvi.00408-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/28/2020] [Indexed: 11/20/2022] Open
Abstract
IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.
Collapse
|
16
|
Assessing sialic acid content in food by hydrophilic chromatography-high performance liquid chromatography. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Computational analysis of drug like candidates against Neuraminidase of Human Influenza A virus subtypes. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Abed Y, Fage C, Lagüe P, Carbonneau J, Papenburg J, Vinh DC, Boivin G. Reduced Susceptibility to Neuraminidase Inhibitors in Influenza B Isolate, Canada. Emerg Infect Dis 2019; 25:838-840. [PMID: 30882323 PMCID: PMC6433030 DOI: 10.3201/eid2504.181554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified an influenza B isolate harboring a Gly407Ser neuraminidase substitution in an immunocompromised patient in Canada before antiviral therapy. This mutation mediated reduced susceptibility to oseltamivir, zanamivir, and peramivir, most likely by preventing interaction with the catalytic Arg374 residue. The potential emergence of such variants emphasizes the need for new antivirals.
Collapse
|
19
|
Tran-Nguyen VK, Le MT, Tran TD, Truong VD, Thai KM. Peramivir binding affinity with influenza A neuraminidase and research on its mutations using an induced-fit docking approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:899-917. [PMID: 31645133 DOI: 10.1080/1062936x.2019.1679248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Influenza A virus (IAV) has caused epidemic infections worldwide, with many strains resistant to inhibitors of a surface protein, neuraminidase (NA), due to point mutations on its structure. A novel NA inhibitor named peramivir was recently approved, but no exhaustive computational research regarding its binding affinity with wild-type and mutant NA has been conducted. In this study, a thorough investigation of IAV-NA PDB entries of 9 subtypes is described, providing a list of residues constituting the protein-ligand binding sites. The results of induced-fit docking approach point out key residues of wild-type NA participating in hydrogen bonds and/or ionic interactions with peramivir, among which Arg 368 is responsible for a peramivir-NA ionic interaction. Mutations on this residue greatly reduced the binding affinity of peramivir with NA, with 3 mutations R378Q, R378K and R378L (NA6) capable of deteriorating the docking performance of peramivir by over 50%. 200 compounds from 6-scaffolds were docked into these 3 mutant versions, revealing 18 compounds giving the most promising results. Among them, CMC-2012-7-1527-56 (benzoic acid scaffold, IC50 = 32 nM in inhibitory assays with IAV) is deemed the most potential inhibitor of mutant NA resisting both peramivir and zanamivir, and should be further investigated.
Collapse
Affiliation(s)
- V K Tran-Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - M T Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - T D Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - V D Truong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - K M Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
McKimm-Breschkin JL, Barrett S, McKenzie-Kludas C, McAuley J, Streltsov VA, Withers SG. Passaging of an influenza A(H1N1)pdm09 virus in a difluoro sialic acid inhibitor selects for a novel, but unfit I106M neuraminidase mutant. Antiviral Res 2019; 169:104542. [PMID: 31233807 DOI: 10.1016/j.antiviral.2019.104542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023]
Abstract
An influenza A(H1N1)pdm09 and an influenza B virus were passaged in 3-fluoro(eq)-4-guanidino difluoro sialic acid (3Feq4Gu DFSA), an inhibitor of the influenza neuraminidase (NA) to determine whether resistant variants could be selected. 3Feq4Gu DFSA is a mechanism-based inhibitor, forming a covalent link to Y406 in the NA active site. Given its similarity to the natural substrate, sialic acid, we predicted resistant variants would be difficult to select. Yields of both viruses decreased with passaging, so that after 12 passages both viruses were only growing to low titers. Drug concentrations were decreased for another three passages. There was no difference in NA sensitivity in the MUNANA fluorescence-based assay, nor in plaque assays for the passaged virus stocks. All influenza B plaques were still wild type in all assays. There were isolated small diffuse plaques in the P15 pdm09 stock, which after purification had barely detectable NA or hemagglutinin (HA) activity. These had a novel non-active site I106M substitution in the NA gene, but unexpectedly no HA changes. The I106M may impact NA function through steric effects on the movement of the 150 and 430-loops. The I106M viruses had similar replication kinetics in MDCK cells as wild type viruses, but their ability to bind to and infect CHO-K1 cells expressing high levels of cell-bound mucin was compromised. The I106M substitution was unstable, with progeny rapidly reverting to wild type by three different mechanisms. Some had reverted to I106, some had V106, both with wild type NA and HA properties. A third group retained the I106M, but had a compensating R363K substitution, which regained almost wild type NA properties. These viruses now agglutinated chicken red blood cells (CRBCs) but unlike the I/V106, they rebound after elution at 37 °C. There were no mutations in the HA, but each phenotype correlated with the NA sequence. We propose that the activity in the I106M mutant is insufficient to remove carbohydrates from the virion HA and NA, sterically limiting HA access to CRBC receptors, thus resulting in poor HA binding.
Collapse
Affiliation(s)
- Jennifer L McKimm-Breschkin
- CSIRO Manufacturing, 343 Royal Parade, Parkville, 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Australia.
| | - Susan Barrett
- CSIRO Manufacturing, 343 Royal Parade, Parkville, 3052, Australia.
| | - Charley McKenzie-Kludas
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Australia.
| | - Julie McAuley
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Australia.
| | - Victor A Streltsov
- CSIRO Manufacturing, 343 Royal Parade, Parkville, 3052, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052, Australia.
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
21
|
Streltsov VA, Schmidt PM, McKimm-Breschkin JL. Structure of an Influenza A virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallogr F Struct Biol Commun 2019; 75:89-97. [PMID: 30713159 PMCID: PMC6360442 DOI: 10.1107/s2053230x18017892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
The influenza neuraminidase (NA) is a homotetramer with head, stalk, transmembrane and cytoplasmic regions. The structure of the NA head with a stalk has never been determined. The NA head from an N9 subtype influenza A virus, A/tern/Australia/G70C/1975 (H1N9), was expressed with an artificial stalk derived from the tetrabrachion (TB) tetramerization domain from Staphylothermus marinus. The NA was successfully crystallized both with and without the TB stalk, and the structures were determined to 2.6 and 2.3 Å resolution, respectively. Comparisons of the two NAs with the native N9 NA structure from egg-grown virus showed that the artificial TB stalk maintained the native NA head structure, supporting previous biological observations.
Collapse
Affiliation(s)
- Victor A. Streltsov
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Peter M. Schmidt
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- R&D, CSL Behring GmbH, Emil-von-Behring Strasse 76, 35041 Marburg, Germany
| | - Jennifer L. McKimm-Breschkin
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Athanasiou C, Cournia Z. From Computers to Bedside: Computational Chemistry Contributing to FDA Approval. BIOMOLECULAR SIMULATIONS IN STRUCTURE-BASED DRUG DISCOVERY 2018. [DOI: 10.1002/9783527806836.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christina Athanasiou
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| |
Collapse
|
24
|
Das A, Cui X, Chivukula V, Iyer SS. Detection of Enzymes, Viruses, and Bacteria Using Glucose Meters. Anal Chem 2018; 90:11589-11598. [DOI: 10.1021/acs.analchem.8b02960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amrita Das
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xikai Cui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Vasanta Chivukula
- Atlanta Metropolitan State College, 1630 Metropolitan Parkway, Atlanta, Georgia 30310, United States
| | - Suri S. Iyer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
25
|
Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses 2018; 10:v10070339. [PMID: 29933553 PMCID: PMC6071225 DOI: 10.3390/v10070339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase is the main target for current influenza drugs. Reduced susceptibility to oseltamivir, the most widely prescribed neuraminidase inhibitor, has been repeatedly reported. The resistance substitutions I223V and S247N, alone or in combination with the major oseltamivir-resistance mutation H275Y, have been observed in 2009 pandemic H1N1 viruses. We overexpressed and purified the ectodomain of wild-type neuraminidase from the A/California/07/2009 (H1N1) influenza virus, as well as variants containing H275Y, I223V, and S247N single mutations and H275Y/I223V and H275Y/S247N double mutations. We performed enzymological and thermodynamic analyses and structurally examined the resistance mechanism. Our results reveal that the I223V or S247N substitution alone confers only a moderate reduction in oseltamivir affinity. In contrast, the major oseltamivir resistance mutation H275Y causes a significant decrease in the enzyme’s ability to bind this drug. Combination of H275Y with an I223V or S247N mutation results in extreme impairment of oseltamivir’s inhibition potency. Our structural analyses revealed that the H275Y substitution has a major effect on the oseltamivir binding pose within the active site while the influence of other studied mutations is much less prominent. Our crystal structures also helped explain the augmenting effect on resistance of combining H275Y with both substitutions.
Collapse
|
26
|
Filip R, Leluk J. Comparative studies on variability, phylogenesis, and correlated mutations of neuraminidases from influenza virus type A. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2017-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuraminidase (NA) is an important protein for the replication cycle of influenza A viruses. NA is an enzyme that cleaves the sialic acid receptors; this process plays a significant role in viral life cycle. Blocking NA with a specific inhibitor is an effective way to treat the flu. However, some strains show resistance to current drugs. Therefore, NA is the focus for the intense research for new antiviral drugs and also for the explanation of the functions of new mutations. This research focuses on determining the profile of variability and phylogenetic analysis and finding the correlated mutations within a set of 149 sequences of NA belonging to various strains of influenza A virus. In this study, we have used the original programs (Corm, Consensus Constructor, and SSSSg) and also other bioinformatics software. NA proteins are characterized by various levels of variability in different regions, which was presented in detail with the aid of ConSurf. The use of four independent methods to create the phylogenetic trees gave some new data on the evolutionary relationship within the NA family proteins. The search for correlated mutations shows several potentially important correlated positions that were not reported previously to be significant. The use of such an approach can be potentially important and gives new information regarding NA proteins of influenza A virus.
Collapse
|
27
|
Hadházi Á, Pascolutti M, Bailly B, Dyason JC, Borbás A, Thomson RJ, von Itzstein M. A sialosyl sulfonate as a potent inhibitor of influenza virus replication. Org Biomol Chem 2018; 15:5249-5253. [PMID: 28540971 DOI: 10.1039/c7ob00947j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new direction for influenza virus sialidase inhibitor development was identified using a sulfonate congener of 2-deoxy-2-β-H N-acetylneuraminic acid. Sialosyl sulfonates can be synthesised efficiently in four steps from N-acetylneuraminic acid via a microwave assisted decarboxylation. The presence of the sulfonate group significantly increases inhibition of influenza virus sialidase and viral infection when compared to the carboxylate congener, and also to the benchmark sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, Neu5Ac2en.
Collapse
Affiliation(s)
- Ádám Hadházi
- Institute for Glycomics, Griffith University - Gold Coast Campus, Queensland 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Jin J, Chen Y, Wang D, Ma L, Guo M, Zhou C, Dou J. The inhibitory effect of sodium baicalin on oseltamivir-resistant influenza A virus via reduction of neuraminidase activity. Arch Pharm Res 2018; 41:664-676. [PMID: 29572682 DOI: 10.1007/s12272-018-1022-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/11/2018] [Indexed: 01/01/2023]
Abstract
Baicalin was identified as a neuraminidase (NA) inhibitor displaying anti-influenza A virus (IAV) activity. However, its poor solubility in saline has limited its use in the clinic. We generated sodium baicalin and showed that it exhibited greatly increased solubility in saline. Its efficacy against oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) was evaluated in vitro and in vivo. Results showed that 10 μM of sodium baicalin inhibited A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and H1N1-H275Y in MDCK cells in a dose-dependent manner, with inhibitory rates of 83.9, 75.9 and 47.7%, respectively. Intravenous administration of sodium baicalin at 100 mg/kg/d enabled the survival of 20% of H1N1-H275Y-infected mice. The treatment alleviated body weight loss and lung injury. Moreover, sodium baicalin exerted a clear inhibitory effect on NAs. The IC50 values of sodium baicalin against H1N1-H275Y and cells-expressing A/Anhui/1/2013-R294K (H7N9-R294K) NA protein (N9-R294K) were 214.4 μM and 216.3 μM. Direct interactions between sodium baicalin and NA were observed, and we simulated the interactions of sodium baicalin with N9-R294K and N9 near the active sites of OC-N9-R294K and OC-N9. The residues responsible for the sodium baicalin-N9-R294K and sodium baicalin-N9 interactions were the same, confirming that sodium baicalin exerts effects on wild-type and oseltamivir-resistant viral strains.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China
| | - Yuanjin Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China
| | - Dechuan Wang
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China
| | - Lingman Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China.
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Hadházi Á, Li L, Bailly B, Maggioni A, Martin G, Dirr L, Dyason JC, Thomson RJ, Gao GF, Borbás A, Ve T, Pascolutti M, von Itzstein M. A Sulfonozanamivir Analogue Has Potent Anti-influenza Virus Activity. ChemMedChem 2018; 13:785-789. [DOI: 10.1002/cmdc.201800092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Ádám Hadházi
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
- Department of Pharmaceutical Chemistry; University of Debrecen; 4032 Debrecen Hungary
| | - Linghui Li
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
- University of Chinese Academy of Sciences; Beijing 101408 China
| | - Benjamin Bailly
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Andrea Maggioni
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Gael Martin
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Larissa Dirr
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Jeffrey C. Dyason
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Robin J. Thomson
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - George F. Gao
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing 101408 China
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; 4032 Debrecen Hungary
| | - Thomas Ve
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Mauro Pascolutti
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus; Griffith University; Queensland 4222 Australia
| |
Collapse
|
30
|
McKimm-Breschkin JL, Barrett S, Pilling PA, Hader S, Watts AG, Streltsov VA. Structural and Functional Analysis of Anti-Influenza Activity of 4-, 7-, 8- and 9-Deoxygenated 2,3-Difluoro- N-acetylneuraminic Acid Derivatives. J Med Chem 2018; 61:1921-1933. [PMID: 29397718 DOI: 10.1021/acs.jmedchem.7b01467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Competitive inhibitors of the influenza neuraminidase (NA) were discovered almost 20 years ago, with zanamivir and oseltamivir licensed globally. These compounds are based on a transition state analogue of the sialic acid substrate. We recently showed that 5- N-(acetylamino)-2,3,5-trideoxy-2,3-difluoro-d-erythro-β-l-manno-2-nonulopyranosonic acid (DFSA) and its derivatives are also potent inhibitors of the influenza NA. They are mechanism based inhibitors, forming a covalent bond between the C2 of the sugar ring and Y406 in the NA active site, thus inactivating the enzyme. We have now synthesized a series of deoxygenated DFSA derivatives in order to understand the contribution of each hydroxyl in DFSA to binding and inhibition of the influenza NA. We have investigated their relative efficacy in enzyme assays in vitro, in cell culture, and by X-ray crystallography. We found loss of the 8- and 9-OH had the biggest impact on the affinity of binding and antiviral potency.
Collapse
Affiliation(s)
| | - Susan Barrett
- CSIRO Manufacturing , 343 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Patricia A Pilling
- CSIRO Manufacturing , 343 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Stefan Hader
- Department of Pharmacy and Pharmacology , University of Bath , Claverton Down, Bath BA2 7AY , United Kingdom
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology , University of Bath , Claverton Down, Bath BA2 7AY , United Kingdom
| | - Victor A Streltsov
- The Florey Institute of Neuroscience and Mental Health , 30 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
31
|
Xiao A, Li Y, Li X, Santra A, Yu H, Li W, Chen X. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal 2018; 8:43-47. [PMID: 29713561 PMCID: PMC5920526 DOI: 10.1021/acscatal.7b03257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialidase transition state analog inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en, DANA) has played a leading role in developing clinically used anti-influenza virus drugs. Taking advantage of the Neu5Ac2en-forming catalytic property of Streptococcus pneumoniae sialidase SpNanC, an effective one-pot multienzyme (OPME) strategy has been developed to directly access Neu5Ac2en and its C-5, C-9, and C-7-analogs from N-acetylmannosamine (ManNAc) and analogs. The obtained Neu5Ac2en analogs can be further derivatized at various positions to generate a larger inhibitor library. Inhibition studies demonstrated improved selectivity of several C-5- or C-9-modified Neu5Ac2en derivatives against several bacterial sialidases. The study provides an efficient enzymatic method to access sialidase inhibitors with improved selectivity.
Collapse
Affiliation(s)
- An Xiao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xixuan Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
32
|
Yang S, Jankowska E, Kosikova M, Xie H, Cipollo J. Solid-Phase Chemical Modification for Sialic Acid Linkage Analysis: Application to Glycoproteins of Host Cells Used in Influenza Virus Propagation. Anal Chem 2017; 89:9508-9517. [PMID: 28792205 DOI: 10.1021/acs.analchem.7b02514] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Differentiation between the sialyl linkages is often critical to understanding biological consequence. Here we present a facile method for determining these linkages in glycans. Analysis of sialic acids is challenging due to their labile nature during sample preparation and ionization. Derivatization is often required via chemical reaction. Amidation derivatizes all sialic acids regardless of linkage, while esterification enables differentiation between α2,3-linked and α2,6-linked sialic acids. Reactions have been primarily performed on free glycans in solution but have been recently adapted to solid-phase providing unique advantages such as simplified sample preparation, improved yield, and high throughput applications. Here, we immobilized glycoproteins on resin via reductive amination, modified α2,6-linked sialic acids through ethyl esterification, and α2,3-linked sialic acids via amidation. N-glycans and O-glycans were released via enzyme and chemical reactions. The method was applied for analysis of three different MDCK cell lines used for influenza propagation and where distributions of α2,3 and α2,6 sialic acids are critical for cell performance. Linkage specific distribution of these sialic acids was quantitatively determined and unique for each cell line. Our study demonstrates that protein sialylation can be reliably and quantitatively characterized in terms of sialic acid linkage of each glycan using the solid-phase esterification/amidation strategy.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Martina Kosikova
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Hang Xie
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| |
Collapse
|
33
|
Dirr L, El-Deeb IM, Chavas LMG, Guillon P, Itzstein MV. The impact of the butterfly effect on human parainfluenza virus haemagglutinin-neuraminidase inhibitor design. Sci Rep 2017; 7:4507. [PMID: 28674426 PMCID: PMC5495814 DOI: 10.1038/s41598-017-04656-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 01/20/2023] Open
Abstract
Human parainfluenza viruses represent a leading cause of lower respiratory tract disease in children, with currently no available approved drug or vaccine. The viral surface glycoprotein haemagglutinin-neuraminidase (HN) represents an ideal antiviral target. Herein, we describe the first structure-based study on the rearrangement of key active site amino acid residues by an induced opening of the 216-loop, through the accommodation of appropriately functionalised neuraminic acid-based inhibitors. We discovered that the rearrangement is influenced by the degree of loop opening and is controlled by the neuraminic acid’s C-4 substituent’s size (large or small). In this study, we found that these rearrangements induce a butterfly effect of paramount importance in HN inhibitor design and define criteria for the ideal substituent size in two different categories of HN inhibitors and provide novel structural insight into the druggable viral HN protein.
Collapse
Affiliation(s)
- Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | | | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| |
Collapse
|
34
|
Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, Bloom JD. Parallel evolution of influenza across multiple spatiotemporal scales. eLife 2017; 6:e26875. [PMID: 28653624 PMCID: PMC5487208 DOI: 10.7554/elife.26875] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/28/2017] [Indexed: 01/13/2023] Open
Abstract
Viral variants that arise in the global influenza population begin as de novo mutations in single infected hosts, but the evolutionary dynamics that transform within-host variation to global genetic diversity are poorly understood. Here, we demonstrate that influenza evolution within infected humans recapitulates many evolutionary dynamics observed at the global scale. We deep-sequence longitudinal samples from four immunocompromised patients with long-term H3N2 influenza infections. We find parallel evolution across three scales: within individual patients, in different patients in our study, and in the global influenza population. In hemagglutinin, a small set of mutations arises independently in multiple patients. These same mutations emerge repeatedly within single patients and compete with one another, providing a vivid clinical example of clonal interference. Many of these recurrent within-host mutations also reach a high global frequency in the decade following the patient infections. Our results demonstrate surprising concordance in evolutionary dynamics across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Katherine S Xue
- Department of Genome Sciences, University of Washington, Seattle, United States
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Angela P Campbell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Janet A Englund
- Seattle Children’s Research Institute, Seattle, United States
- Department of Pediatrics, University of Washington, Seattle, United States
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington, Seattle, United States
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
35
|
Mouse Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently Blocking Influenza Virus Neuraminidase Activity. J Virol 2017; 91:JVI.00145-17. [PMID: 28446666 PMCID: PMC5487565 DOI: 10.1128/jvi.00145-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/15/2017] [Indexed: 11/23/2022] Open
Abstract
We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro. This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a possible mechanism through which the species may not experience severe influenza virus infection in the wild. We show that the murine salivary inhibitor targets the outer surface of the influenza virus neuraminidase, possibly occluding entry to the enzymatic site rather than binding within the active site like commercially available neuraminidase inhibitors. This knowledge sheds light on how the natural inhibitors of particular species combat infection.
Collapse
|
36
|
Cui X, Das A, Dhawane AN, Sweeney J, Zhang X, Chivukula V, Iyer SS. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chem Sci 2017; 8:3628-3634. [PMID: 28580101 PMCID: PMC5437373 DOI: 10.1039/c6sc03720h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Rapid and precise detection of influenza viruses in a point of care setting is critical for applying appropriate countermeasures. Current methods such as nucleic acid or antibody based techniques are expensive or suffer from low sensitivity, respectively. We have developed an assay that uses glucose test strips and a handheld potentiostat to detect the influenza virus with high specificity. Influenza surface glycoprotein neuraminidase (NA), but not bacterial NA, cleaved galactose bearing substrates, 4,7di-OMe N-acetylneuraminic acid attached to the 3 or 6 position of galactose, to release galactose. In contrast, viral and bacterial NA cleaved the natural substrate, N-acetylneuraminic acid attached to the 3 or 6 position of galactose. The released galactose was detected amperometrically using a handheld potentiostat and dehydrogenase bearing glucose test strips. The specificity for influenza was confirmed using influenza strains and different respiratory pathogens that include Streptococcus pneumoniae and Haemophilus influenzae; bacteria do not cleave these molecules. The assay was also used to detect co-infections caused by influenza and bacterial NA. Viral drug susceptibility and testing with human clinical samples was successful in 15 minutes, indicating that this assay could be used to rapidly detect influenza viruses at primary care or resource poor settings using ubiquitous glucose meters.
Collapse
Affiliation(s)
- Xikai Cui
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Amrita Das
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Abasaheb N Dhawane
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Joyce Sweeney
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Xiaohu Zhang
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| | - Vasanta Chivukula
- Atlanta Metropolitan State College , 1630 Metropolitan Parkway , Atlanta , GA 30310 , USA
| | - Suri S Iyer
- 788 Petit Science Center , Department of Chemistry , Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , GA 30302 , USA .
| |
Collapse
|
37
|
Lee J, Kim J, Son K, d'Alexandry d'Orengiani ALPH, Min JY. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry. Sci Rep 2017; 7:43893. [PMID: 28272419 PMCID: PMC5341025 DOI: 10.1038/srep43893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry.
Collapse
Affiliation(s)
- Jihye Lee
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | - Jinhee Kim
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | - Kidong Son
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| | | | - Ji-Young Min
- Respiratory Viruses Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
38
|
Molecular characterization of neuraminidase genes of influenza A(H3N2) viruses circulating in Southwest India from 2009 to 2013. Arch Virol 2017; 162:1887-1902. [DOI: 10.1007/s00705-017-3306-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
|
39
|
Hebert KS, Seidman D, Oki AT, Izac J, Emani S, Oliver LD, Miller DP, Tegels BK, Kannagi R, Marconi RT, Carlyon JA. Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain. Infect Immun 2017; 85:e00968-16. [PMID: 27993973 PMCID: PMC5328490 DOI: 10.1128/iai.00968-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLex). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLex fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.
Collapse
Affiliation(s)
- Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Sarvani Emani
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Reiji Kannagi
- Research Complex for Medical Frontiers, Aichi Medical University, Yazako, Nagakute, Japan
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
40
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
41
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
42
|
Zwitterionic structures: from physicochemical properties toward computer-aided drug designs. Future Med Chem 2016; 8:2245-2262. [DOI: 10.4155/fmc-2016-0176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Zwitterions, used widely in chemical, biological and medicinal fields, show distinct physicochemical properties relative to ordinary ampholytes, which largely decide their bioavailability and biological activities. In the present manuscript, these properties are discussed in order to facilitate our understanding of zwitterionic structures, followed by various examples of zwitterionic drugs and the critical role these properties play. We specifically focus our discussions on neuraminidase inhibitors (NAIs), which are used in the treatment and prevention of influenza, covering their computer-assisted design, transformation to zwitterionic isomers and interaction mechanisms of NAIs with proteins. The discovery and development of NAIs provide useful insights that may assist in the exploration of new zwitterionic drugs.
Collapse
|
43
|
Laborda P, Wang SY, Voglmeir J. Influenza Neuraminidase Inhibitors: Synthetic Approaches, Derivatives and Biological Activity. Molecules 2016; 21:E1513. [PMID: 27845731 PMCID: PMC6274581 DOI: 10.3390/molecules21111513] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022] Open
Abstract
Despite being a common viral disease, influenza has very negative consequences, causing the death of around half a million people each year. A neuraminidase located on the surface of the virus plays an important role in viral reproduction by contributing to the release of viruses from infected host cells. The treatment of influenza is mainly based on the administration of neuraminidase inhibitors. The neuraminidase inhibitors zanamivir, laninamivir, oseltamivir and peramivir have been commercialized and have been demonstrated to be potent influenza viral neuraminidase inhibitors against most influenza strains. In order to create more potent neuraminidase inhibitors and fight against the surge in resistance resulting from naturally-occurring mutations, these anti-influenza drugs have been used as templates for the development of new neuraminidase inhibitors through structure-activity relationship studies. Here, we review the synthetic routes to these commercial drugs, the modifications which have been performed on these structures and the effects of these modifications on their inhibitory activity.
Collapse
Affiliation(s)
- Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Su-Yan Wang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
44
|
Tu V, Abed Y, Barbeau X, Carbonneau J, Fage C, Lagüe P, Boivin G. The I427T neuraminidase (NA) substitution, located outside the NA active site of an influenza A(H1N1)pdm09 variant with reduced susceptibility to NA inhibitors, alters NA properties and impairs viral fitness. Antiviral Res 2016; 137:6-13. [PMID: 27838351 DOI: 10.1016/j.antiviral.2016.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 01/16/2023]
Abstract
Emergence of pan neuraminidase inhibitor (NAI)-resistant variants constitutes a serious clinical concern. An influenza A(H1N1)pdm09 variant containing the I427T/Q313R neuraminidase (NA) substitutions was previously identified in a surveillance study. Although these changes are not part of the NA active site, the variant showed reduced susceptibility to many NAIs. In this study, we investigated the mechanism of resistance for the I427T/Q313R substitution and its impact on the NA enzyme and viral fitness. Recombinant wild-type (WT), I427T/Q313R and I427T A(H1N1)pdm09 viruses were generated by reverse genetics and tested for their drug susceptibilities, enzymatic properties and replication kinetics in vitro as well as their virulence in mice. Molecular dynamics (MD) simulations were performed for NA structural analysis. The I427T substitution, which was responsible for the resistance phenotype observed in the double (I427T/Q313R) mutant, induced 17-, 56-, 7-, and 14-fold increases in IC50 values against oseltamivir, zanamivir, peramivir and laninamivir, respectively. The I427T substitution alone or combined to Q313R significantly reduced NA affinity. The I427T/Q313R and to a lesser extent I427T recombinant viruses displayed reduced viral titers vs WT in vitro. In experimentally-infected mice, the mortality rates were 62.5%, 0% and 14.3% for the WT, I417T/Q313R and I427T viruses, respectively. There were about 2.5- and 2-Log reductions in mean lung viral titers on day 5 post-infection for the I427T/Q313R and I427T mutants, respectively, compared to WT. Results from simulations revealed that the I427T change indirectly altered the stability of the catalytic R368 residue of the NA enzyme causing its reduced binding to the substrate/inhibitor. This study demonstrates that the I427T/Q313R mutant, not only alters NAI susceptibility but also compromises NA properties and viral fitness, which could explain its infrequent detection in clinic.
Collapse
Affiliation(s)
- Véronique Tu
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Xavier Barbeau
- Proteo and IBIS, Department of Chemistry, Faculty of Science and Engineering, Laval University, Québec City, QC, Canada
| | - Julie Carbonneau
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Clément Fage
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Patrick Lagüe
- Proteo and IBIS, Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Québec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada.
| |
Collapse
|
45
|
Romero-Beltran L, Baker SF, Puerto-Solís M, González-Losa R, Conde-Ferraez L, Alvarez-Sánchez LC, Martínez-Sobrido L, Ayora-Talavera G. Mutations at highly conserved residues in influenza A(H1N1)pdm09 virus affect neuraminidase activity. Virus Res 2016; 225:1-9. [PMID: 27596738 DOI: 10.1016/j.virusres.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/17/2016] [Accepted: 09/02/2016] [Indexed: 01/16/2023]
Abstract
Influenza virus neuraminidase (NA) plays a pivotal role during viral growth since its sialidase activity allows the efficient release of nascent virions from infected cells. Consequently, mutations in the NA catalytic site affecting sialic acid (SA) cleavage may influence the biological properties of influenza viruses. This study reports two amino acid substitutions (N386K and P431S) in the NA of the influenza A(H1N1)pdm09 virus that emerged in 2009 in Mexico. The NA sialidase activity to cleave SA-like substrates, and viral growth were examined and the mutant viruses had various deficiencies. NA mutations N386K and P431S together or separately, and in the presence or absence of H275Y were further evaluated using recombinant influenza A/California/04/2009 (pH1N1) viruses containing single, double, or triple mutations. Viral growth was reduced in the presence of mutation P431S alone or combined with N386K and/or H275Y. Substrates hydrolysis was reduced when recombinant pH1N1 viruses were analyzed by NA inhibitory assays. Moreover, elution assays with guinea pig red blood cells indicated an unbalanced hemagglutinin (HA):NA functionality. Altogether, our data underline the functional significance of mutations at highly conserved sites in influenza virus NA glycoprotein and the occurrence of permissive mutations to compensate virus viability in vitro.
Collapse
Affiliation(s)
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | | | | | - Leidi C Alvarez-Sánchez
- Laboratorio de Virología, Universidad Autonoma de Yucatan, Mexico; Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
46
|
Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method. J Mol Graph Model 2016; 69:144-53. [DOI: 10.1016/j.jmgm.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
|
47
|
Breen M, Nogales A, Baker SF, Martínez-Sobrido L. Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses 2016; 8:v8070179. [PMID: 27347991 PMCID: PMC4974514 DOI: 10.3390/v8070179] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Breen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
48
|
Nogales A, Baker SF, Domm W, Martínez-Sobrido L. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 2016; 216:26-40. [PMID: 26220478 PMCID: PMC4728073 DOI: 10.1016/j.virusres.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William Domm
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
49
|
Anuwongcharoen N, Shoombuatong W, Tantimongcolwat T, Prachayasittikul V, Nantasenamat C. Exploring the chemical space of influenza neuraminidase inhibitors. PeerJ 2016; 4:e1958. [PMID: 27114890 PMCID: PMC4841240 DOI: 10.7717/peerj.1958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/31/2016] [Indexed: 12/01/2022] Open
Abstract
The fight against the emergence of mutant influenza strains has led to the screening of an increasing number of compounds for inhibitory activity against influenza neuraminidase. This study explores the chemical space of neuraminidase inhibitors (NAIs), which provides an opportunity to obtain further molecular insights regarding the underlying basis of their bioactivity. In particular, a large set of 347 and 175 NAIs against influenza A and B, respectively, was compiled from the literature. Molecular and quantum chemical descriptors were obtained from low-energy conformational structures geometrically optimized at the PM6 level. The bioactivities of NAIs were classified as active or inactive according to their half maximum inhibitory concentration (IC50) value in which IC50 < 1µM and ≥ 10µM were defined as active and inactive compounds, respectively. Interpretable decision rules were derived from a quantitative structure–activity relationship (QSAR) model established using a set of substructure descriptors via decision tree analysis. Univariate analysis, feature importance analysis from decision tree modeling and molecular scaffold analysis were performed on both data sets for discriminating important structural features amongst active and inactive NAIs. Good predictive performance was achieved as deduced from accuracy and Matthews correlation coefficient values in excess of 81% and 0.58, respectively, for both influenza A and B NAIs. Furthermore, molecular docking was employed to investigate the binding modes and their moiety preferences of active NAIs against both influenza A and B neuraminidases. Moreover, novel NAIs with robust binding fitness towards influenza A and B neuraminidase were generated via combinatorial library enumeration and their binding fitness was on par or better than FDA-approved drugs. The results from this study are anticipated to be beneficial for guiding the rational drug design of novel NAIs for treating influenza infections.
Collapse
Affiliation(s)
- Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| |
Collapse
|
50
|
Yang J, Liu S, Du L, Jiang S. A new role of neuraminidase (NA) in the influenza virus life cycle: implication for developing NA inhibitors with novel mechanism of action. Rev Med Virol 2016; 26:242-50. [PMID: 27061123 PMCID: PMC7169148 DOI: 10.1002/rmv.1879] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 11/17/2022]
Abstract
The entire life cycle of influenza virus involves viral attachment, entry, replication, and release. Previous studies have demonstrated that neuraminidase (NA) is an essential glycoprotein on the surface of influenza virus and that it is responsible for release of progeny virions from the host cell to infect new cells. However, recent studies have also suggested that NA may play other roles in the early stages of the viral life cycle, that is, viral attachment and entry. This review focuses on the new role of NA in the early stages of influenza life cycle and the corresponding development of novel NA inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jie Yang
- Key Lab of New Drug Screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shuwen Liu
- Key Lab of New Drug Screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|