1
|
Kshirsagar SJ, Adhav PS, Laddha UD, Ganore JS, Pagar CS, Bambal VR. Navigating psoriasis: From immune mechanisms to natural healing approaches. Int Immunopharmacol 2025; 144:113626. [PMID: 39608171 DOI: 10.1016/j.intimp.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Psoriasis is a multifunctional autoimmune skin disease with inflammatory and vascular changes. Recent developments show potential for herbal therapies and novel drug delivery systems. A chronic inflammatory skin illness, psoriasis affects 2-5 % of the world's population. It usually manifests itself among individuals of various ages. Redness, swelling, and itching are the hallmarks of psoriasis. Activation of T cells, release of cytokines, abnormal keratinocyte proliferation, altered local vascular structure, neutrophil activation, and inflammation all contribute to psoriasis. The epidermis, dermis, and hypodermis are the skin's surface membranes that are damage by psoriasis. Common therapies include topical, systemic, phototherapy, herbal, and natural agents. There are several subtypes of psoriasis, such as psoriasis arthritis, guttate psoriasis, nail psoriasis, and plaque psoriasis. Natural remedies for psoriasis include neem, turmeric, aloe Vera, turmeric, ginger, and tea tree oil, which have antibacterial and anti-inflammatory qualities. This review will provide details on the use of herbs for management in psoriasis.
Collapse
Affiliation(s)
- Sanjay J Kshirsagar
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India
| | - Prashant S Adhav
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India
| | - Umesh D Laddha
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India.
| | - Janhavi S Ganore
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India
| | - Chanchal S Pagar
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India
| | - Vikhil R Bambal
- MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, BKC, Adgaon, Nashik 422003, MS, India
| |
Collapse
|
2
|
Sim KH, Lee E, Shrestha P, Choi BH, Hong J, Lee YJ. Isobavachin attenuates FcεRI-mediated inflammatory allergic responses by regulating SHP-1-dependent Fyn/Lyn/Syk/Lck signaling. Biochem Pharmacol 2024; 232:116698. [PMID: 39643121 DOI: 10.1016/j.bcp.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Isobavachin, isolated from Psoralea corylifolia L. exhibits therapeutic potential for osteoporosis or skin disease. Here, we evaluated the pharmacological effects of isobavachin on IgE-dependent inflammatory allergic reactions, as well as the underlying mechanisms, in bone marrow-derived mast cells and a mouse model of passive cutaneous anaphylaxis (PCA). Isobavachin reduced IgE/Ag-stimulated degranulation, eicosanoid (leukotriene C4 and prostaglandin D2) generation, and release of pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin (IL)-6). Mechanistic studies revealed that isobavachin suppressed activation of Fyn, Lyn, spleen tyrosine kinase (Syk), and lymphocyte-specific-protein-kinase (Lck), receptor-proximal tyrosine kinases that initiate and play a central role in FcɛRI-mediated mast cell activation, as well as their common downstream signaling molecules including linker for activation of T cells, phospholipase Cγ1, AKT, mitogen-activated protein kinases (MAPKs), and intracellular Ca2+. Additionally, isobavachin increased phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), thereby strengthening its interaction with Syk and Lck as well as Fyn and Lyn, resulting in de-phosphorylation of these proximal tyrosine kinases. Genetic knockdown of SHP-1 reversed the inhibitory effects of isobavachin on mast cell activation, as well as the related signaling pathways, indicating that the inhibitory effects of isobavachin are mediated by negative regulation of SHP-1-dependent Fyn, Lyn, Syk and Lck. The anti-inflammatory properties of isobavachin were also examined in macrophages. Isobavachin suppressed production of lipopolysaccharide-stimulated production of pro-inflammatory cytokines and nitric oxide. Furthermore, oral administration of isobavachin attenuated mast cell-mediated PCA reactions in mice. These results suggest that isobavachin is a potential treatment for mast cell-mediated allergic inflammatory diseases.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Eunkyung Lee
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea
| | - Prafulla Shrestha
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea
| | - Jaewoo Hong
- Department of Physiology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; Department of Companion Animal Health, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea; Eversummer Lab, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea; Department of Research and Development, CaniCatiCare Inc., Daegu 42078, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Daegu Catholic University, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.
| |
Collapse
|
3
|
Zhang ML, Li WX, Wang XY, Chen XF, Zhang H, Meng GQ, Chen YL, Wu YL, Yang LQ, Zhang SQ, Feng KR, Niu L, Tang JF. Characterizing metabolomic and transcriptomic changes, and investigating the therapeutic mechanism of Psoralea corylifolia linn. In the treatment of kidney-yang deficiency syndrome in rats. Heliyon 2024; 10:e39006. [PMID: 39524713 PMCID: PMC11550036 DOI: 10.1016/j.heliyon.2024.e39006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney-yang deficiency syndrome (KYDS) is characterized by a metabolic disorder stemming from neuroendocrine dysregulation, often associated with hepatic dysfunction. In traditional Chinese medicine, Psoralea corylifolia Linn. (BGZ) is commonly utilized for treating KYDS. However, the specific therapeutic effects of BGZ on liver function regulation remain unclear. To evaluate the protective effects of BGZ against KYDS in rats, organ index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and other biochemical indices were analyzed. Hematoxylin and eosin (HE) staining was utilized to assess liver histopathology. Additionally, transcriptomic and metabolomic analyses were conducted to identify potential biomarkers. BGZ treatment led to a significant reduction in ALT and AST levels, accompanied by improvements in liver histopathology in rats with KYDS. Moreover, BGZ induced significant alterations in 92 differentially expressed genes (DEGs) and 20 metabolites in the KYDS rat model. The comprehensive examination of metabolites and DEGs identified potential mechanisms underlying the therapeutic effects of BGZ, highlighting the neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway, and cytokine-cytokine receptor interaction as key mechanisms. Validation of key targets within the cAMP pathway was substantiated through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. The cAMP pathway emerges as a plausible mechanism through which BGZ exerts protective effects against KYDS. The findings of this study contribute to an improved understanding of the therapeutic actions of BGZ and establish a groundwork for further research into the complex pathways involved, as well as the potential for drug-targeted therapies for KYDS.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Xiao-Fei Chen
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Hui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Gao-Quan Meng
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Liu-Qing Yang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Shu-Qi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Ke-Ran Feng
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Lu Niu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, 450000, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Saini K, Chauhan S, Dar MO, Gupta S, Singh IP, Rawal RK, Gupta N. In Silico and In Vivo Evaluation of Anti-Arthritic Effects of Bakuchiol from Psoralea corylifolia Seeds in Experimental Rat Model. Chem Biodivers 2024:e202401606. [PMID: 39262119 DOI: 10.1002/cbdv.202401606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Rheumatoid arthritis is an autoimmune disease mainly affecting the joints categorized by inflammation, swelling of the synovium and decrease in the joint movement. Bakuchiol, a meroterpene class of natural product present in Psoralea corylifolia known to possess anti-inflammatory effects by a variety of mechanisms. However, its effects in rheumatoid arthritis still remain unclear. In the present investigation, we studied the anti-arthritic effects of bakuchiol via in silico and in vivo experiments. It also showed antioxidant effects measured using DPPH assay where it showed free radical scavenging activity with IC50 value 468.26 μg/ml. Molecular Docking studies carried out on COX-1 (PDB ID: 3 N8Z), COX-2 (PDB ID: 4PH9) and TNF-α (PDB ID: 7JRA), proteins involved in inflammation in arthritis. Bakuchiol showed the maximum binding affinity for TNF-α with binding affinity score is -7.29 kcal/moland less affinity was observed for COX-1 and 2. In vivo antiarthritic effects were studied in arthritic female wistar rats model prepared by intradermal injection of freund's complete adjuvant. Bakuchiol was administered orally at dose of 10,20 and 40 mg/kg for 21 days. Our treatment showed that bakuchiol at 20 and 40 mg/kg exhibited significant anti-inflammatory effects (p<0.001) showed by significant decrease in paw volume, paw diameter, spleen and thymus weight and increase in pain threshold and body weight in arthritic rat model. A significant decrease in hematological parameters such as total leukocyte count (TLC), platelet count, CRP and rheumatoid arthritis factor (RF) and increase in red blood cells count, ESR and hemoglobin further demonstrated that bakuchiol treatment suppresses the progression of adjuvant induced arthritis (AIA) in arthritic rat model. Histological analysis further revealed that bakuchiol ameliorates the pathological manifestations of AIA and reverse the abnormality induced by AIA in rats shown by protection against bone necrosis involved with low influx of inflammatory cells. Therefore, in silico and in vivo results revealed that bakuchiol has the potential to be developed as potent antiarthritic agent.
Collapse
Affiliation(s)
- Kamal Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India, 140401
| | - Mohammad Ovais Dar
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Sumeet Gupta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India, 160062
| | - Ravindra K Rawal
- Natural Product Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Techno logy, Jorhat, Assam, 785006, India
| | - Nidhi Gupta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India, 133207
| |
Collapse
|
5
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
6
|
Le S, Wu X, Dou Y, Song T, Fu H, Luo H, Zhang F, Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne) 2024; 11:1386783. [PMID: 39296901 PMCID: PMC11408484 DOI: 10.3389/fmed.2024.1386783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease and has been increasing year by year. It is linked to other serious illnesses, such as psoriatic arthritis, cardiometabolic syndrome, and depression, resulting in a notable decrease in the quality of life for patients. Existing therapies merely alleviate symptoms, rather than providing a cure. An in-depth under-standing of the pathogenesis of psoriasis is helpful to discover new therapeutic targets and develop effective novel therapeutic agents, so it has important clinical significance. This article reviews the new progress in the study of pathogenesis and natural products of psoriasis in recent years. These natural products were summarized, mainly classified as terpenoids, polyphenols and alkaloids. However, the translation of experimental results to the clinic takes a long way to go.
Collapse
Affiliation(s)
- Sihua Le
- Ningbo Medical Center LiHuiLi Hosptial, Ningbo, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Dou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
7
|
Chakraborty D, Malik S, Mann S, Agnihotri P, Joshi L, Biswas S. Chronic disease management via modulation of cellular signaling by phytoestrogen Bavachin. Mol Biol Rep 2024; 51:921. [PMID: 39158613 DOI: 10.1007/s11033-024-09849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Malik
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Mann
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lovely Joshi
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Cao D, Zhang Z, Jiang X, Wu T, Xiang Y, Ji Z, Guo J, Zhang X, Xu K, Liu Z, Zhang Y. Psoralea corylifolia L. and its active component isobavachalcone demonstrate antibacterial activity against Mycobacterium abscessus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118142. [PMID: 38583730 DOI: 10.1016/j.jep.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 μg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 μg/mL, with an average MIC of 8 μg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zunjing Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiaoqin Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongda Liu
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
9
|
Tang X, Han JY, Pan C, Li CY, Zhao Y, Yi Y, Zhang YS, Zheng BX, Yue XN, Liang AH. Angelicin: A leading culprit involved in fructus Psoraleae liver injury via inhibition of VKORC1. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117917. [PMID: 38442807 DOI: 10.1016/j.jep.2024.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.
Collapse
Affiliation(s)
- Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jia-Yin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chun-Ying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yu-Shi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bao-Xin Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xing-Nan Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ai-Hua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Li C, Hou D, Huang Y, Liu Y, Li Y, Wang C. Corylin alleviated sepsis-associated cardiac dysfunction via attenuating inflammation through downregulation of microRNA-214-5p. Toxicol Res (Camb) 2024; 13:tfae081. [PMID: 38855635 PMCID: PMC11161260 DOI: 10.1093/toxres/tfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Background Corylin, a natural flavonoid, is isolated from the fruit of Psoralea corylifolia L. Nevertheless, the effect of corylin on sepsis-associated cardiac dysfunction is still unclear. The purpose of this study is to determine the role and mechanism of corylin in sepsis related cardiac dysfunction. Methods Experiments were carried out on mice with lipopolysaccharide (LPS) or sepsis induced by cecal ligation and puncture (CLP) or myocardial cell sepsis induced by LPS. Results Administration of corylin improved cardiac dysfunction induced by LPS or CLP in mice. Corylin inhibited the increases of interleukin-1 (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in the heart of mice with LPS or CLP. LPS elevated the levels of IL-1β, IL-6 and TNF-α in cardiomyocytes, which were inhibited by corylin treatment. Corylin attenuated the increases of microRNA (miRNA)-214-5p in the heart of mice with LPS, CLP, LPS-treated NRCMs, H9c2 and AC16 cells. Administration of miRNA-214-5p agomiR reversed the improving effects of corylin on the damaged cardiac function and the increases of IL-1β, IL-6 and TNF-α in mice treated with LPS. Conclusion These outcomes indicated that corylin improved sepsis-associated cardiac dysfunction by inhibiting inflammation. And corylin inhibited inflammation of sepsis by decreasing miRNA-214-5p. Downregulation of miRNA-214-5p improved sepsis-associated cardiac dysfunction and inhibited inflammatory factors.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Noninvasive Electrocardiology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Haishu District, Ningbo 315000, China
| | - Daorong Hou
- Key Laboratory of Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Yanhong Huang
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yifan Liu
- Department of Clinical Medicine, The First Clinical Medical College of Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| | - Cheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gulou District, Nanjing 210029, China
| |
Collapse
|
11
|
Shin J, Lee Y, Ju SH, Jung YJ, Sim D, Lee SJ. Unveiling the Potential of Natural Compounds: A Comprehensive Review on Adipose Thermogenesis Modulation. Int J Mol Sci 2024; 25:4915. [PMID: 38732127 PMCID: PMC11084502 DOI: 10.3390/ijms25094915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Collapse
Affiliation(s)
- Jaeeun Shin
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Yeonho Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Seong Hun Ju
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Young Jae Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Daehyeon Sim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
12
|
Philips CA, Theruvath AH. A comprehensive review on the hepatotoxicity of herbs used in the Indian (Ayush) systems of alternative medicine. Medicine (Baltimore) 2024; 103:e37903. [PMID: 38640296 PMCID: PMC11029936 DOI: 10.1097/md.0000000000037903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
Complementary and alternative medicine-related liver injuries are increasing globally. Alternative medicine, as an inclusive healthcare practice, is widely accepted in developing and underdeveloped countries. In this context, the traditional systems of medicine in India have been at the forefront, catering to the preventive and therapeutic spectrum in the absence of conclusive evidence for benefits and lack of data on safety. Contrary to popular belief, it is evident that apart from adverse events caused by contamination and adulteration of alternative medicines, certain commonly used herbal components have inherent hepatotoxicity. This narrative review updates our current understanding and increasing publications on the liver toxicity potential of commonly used herbs in traditional Indian systems of medicine (Ayush), such as Tinospora cordifolia (Willd.) Hook.f. & Thomson (Giloy/Guduchi), Withania somnifera (L.) Dunal (Ashwagandha), Curcuma longa L. (Turmeric), and Psoralea corylifolia L. (Bakuchi/Babchi). This review also highlights the importance of the upcoming liver toxicity profiles associated with other traditional herbs used as dietary supplements, such as Centella asiatica (L.) Urb., Garcinia cambogia Desr., Cassia angustifolia Vahl (Indian senna), and Morinda citrofolia L. (Noni fruit). Fortunately, most reported liver injuries due to these herbs are self-limiting, but can lead to progressive liver dysfunction, leading to acute liver failure or acute chronic liver failure with a high mortality rate. This review also aims to provide adequate knowledge regarding herbalism in traditional practices, pertinent for medical doctors to diagnose, treat, and prevent avoidable liver disease burdens within communities, and improve public health and education.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
- Department of Clinical Research, Division of Complementary and Alternative Medicine and the Liver, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
| | - Arif Hussain Theruvath
- Department of Clinical Research, Division of Complementary and Alternative Medicine and the Liver, The Liver Institute, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, India
| |
Collapse
|
13
|
Wang Y, Zhou Q, Wang H, Song W, Wang J, Mamun AA, Geng P, Zhou Y, Wang S. Effect of P. corylifolia on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Front Pharmacol 2024; 15:1351882. [PMID: 38650629 PMCID: PMC11033359 DOI: 10.3389/fphar.2024.1351882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
This work aimed to explore the mechanisms underlying the interaction of the active furanocoumarins in P. corylifolia on tofacitinib both in vivo and in vitro. The concentration of tofacitinib and its metabolite M8 was determined using UPLC-MS/MS. The peak area ratio of M8 to tofacitinib was calculated to compare the inhibitory ability of furanocoumarin contained in the traditional Chinese medicine P. corylifolia in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP3A4 (rCYP3A4). We found that bergapten and isopsoralen exhibited more significant inhibitory activity in RLMs than other furanocoumarins. Bergapten and isopsoralen were selected to investigate tofacitinib drug interactions in vitro and in vivo. Thirty rats were randomly allocated into 5 groups (n = 6): control (0.5% CMC-Na), low-dose bergapten (20 mg/kg), high-dose bergapten (50 mg/kg), low-dose isopsoralen (20 mg/kg) and ketoconazole. 10 mg/kg of tofacitinib was orally intervented to each rat and the concentration level of tofacitinib in the rats were determined by UPLC-MS/MS. More imporrantly, the results showed that bergapten and isopsoralen significantly inhibited the metabolism of tofacitinib metabolism. The AUC(0-t), AUC(0-∞), MRT(0-t), MRT(0-∞) and Cmax of tofacitinib increased in varying degrees compared with the control group (all p < 0.05), but CLz/F decreased in varying degrees (p < 0.05) in the different dose bergapten group and isopsoralen group. Bergapten, isopsoralen and tofacitinib exhibit similar binding capacities with CYP3A4 by AutoDock 4.2 software, confirming that they compete for tofacitinib metabolism. P. corylifolia may considerably impact the metabolism of tofacitinib, which can provide essential information for the accurate therapeutic application of tofacitinib.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunfang Zhou
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Wenzhou Medical University Lishui Hospital, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Wenzhou Medical University Lishui Hospital, Lishui People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
14
|
Tang Z, Lin F, Chen Z, Yu B, Liu JH, Liu X. 4'- O-MethylbavachalconeB Targeted 14-3-3ζ Blocking the Integrin β3 Early Outside-In Signal to Inhibit Platelet Aggregation and Thrombosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7043-7054. [PMID: 38509000 DOI: 10.1021/acs.jafc.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
14-3-3ζ protein, the key target in the regulation and control of integrin β3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin β3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 μM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin β3 interaction. Besides, 4-O-MB affected the integrin β3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.
Collapse
Affiliation(s)
- Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Fanqi Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhiwen Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
15
|
Gao SY, Zhao JC, Xia Q, Sun C, Aili M, Talifu A, Huo SX, Zhang Y, Li ZJ. Evaluation of the hepatotoxicity of Psoralea corylifolia L. based on a zebrafish model. Front Pharmacol 2024; 15:1308655. [PMID: 38449808 PMCID: PMC10914953 DOI: 10.3389/fphar.2024.1308655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Objective: Psoralea corylifolia L. (FP) has received increasing attention due to its potential hepatotoxicity. Methods: In this study, zebrafish were treated with different concentrations of an aqueous extract of FP (AEFP; 40, 50, or 60 μg/mL), and the hepatotoxic effects of tonicity were determined by the mortality rate, liver morphology, fluorescence area and intensity of the liver, biochemical indices, and pathological tissue staining. The mRNA expression of target genes in the bile acid metabolic signaling pathway and lipid metabolic pathway was detected by qPCR, and the mechanism of toxicity was initially investigated. AEFP (50 μg/mL) was administered in combination with FXR or a peroxisome proliferator-activated receptor α (PPARα) agonist/inhibitor to further define the target of toxicity. Results: Experiments on toxic effects showed that, compared with no treatment, AEFP administration resulted in liver atrophy, a smaller fluorescence area in the liver, and a lower fluorescence intensity (p < 0.05); alanine transaminase (ALT), aspartate transaminase (AST), and γ-GT levels were significantly elevated in zebrafish (p < 0.01), and TBA, TBIL, total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were elevated to different degrees (p < 0.05); and increased lipid droplets in the liver appeared as fatty deposits. Molecular biological validation revealed that AEFP inhibited the expression of the FXR gene, causing an increase in the expression of the downstream genes SHP, CYP7A1, CYP8B1, BSEP, MRP2, NTCP, peroxisome proliferator-activated receptor γ (PPARγ), ME-1, SCD-1, lipoprotein lipase (LPL), CPT-1, and CPT-2 and a decrease in the expression of PPARα (p < 0.05). Conclusion: This study demonstrated that tonic acid extracts are hepatotoxic to zebrafish through the inhibition of FXR and PPARα expression, thereby causing bile acid and lipid metabolism disorders.
Collapse
Affiliation(s)
- Shu-Yan Gao
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Jing-Cheng Zhao
- College of Pharmacy, Xinjiang Medical University, Ürümqi, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Maimaiti Aili
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Ainiwaer Talifu
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Shi-Xia Huo
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhi-Jian Li
- Uyghur Medical Hospital of Xinjiang Uyghur Autonomous Region, Ürümqi, China
- Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, Ürümqi, China
| |
Collapse
|
16
|
Tripathi N, Parmar A, Pandey N, Bhardwaj N, Chakrabarty S, Sarkar R, Kumar H, Jain SK. Isolation, Cytotoxicity, and In-silico Screening of Coumarins from Psoralea corylifolia Linn. Chem Biodivers 2024; 21:e202301841. [PMID: 38226737 DOI: 10.1002/cbdv.202301841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Psoralea corylifolia (syn. Cullen corylifolium), commonly called bawachi, is a medicinal plant extensively used for skin conditions like leukoderma, vitiligo, and psoriasis. It is notably rich in valuable bioactive compounds, particularly coumarins and furanocoumarins. This study isolated fourteen coumarins from P. corylifolia which were tested for cytotoxicity using the MTT assay, with compound 10 showing good cytotoxicity against A549 cells (IC50 0.9 μM), while compound 1, compound 2, and compound 3 displaying potential cytotoxicity against MDA-MB-231 cells (IC50 0.49 μM, 0.56 μM, and 0.84 μM respectively). Additionally, the compounds' interaction with Epidermal Growth Factor Receptor (EGFR) protein, highly expressed in both cell lines, was investigated through molecular modeling studies, that aligned well with cytotoxicity results. The findings revealed the remarkable cytotoxic potential of four coumarins 1, 2, 3, and 10 against A549 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Aarati Parmar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nilesh Pandey
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Sanheeta Chakrabarty
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| | - Ruma Sarkar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Hemant Kumar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science & Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
17
|
Balkrishna A, Lochab S, Verma S, Srivastava J, Dev R, Varshney A. Melanogrit potentiates melanogenesis by escalating cellular tyrosinase activity and MITF levels via pERK inhibition. Biosci Rep 2024; 44:BSR20231324. [PMID: 38054639 PMCID: PMC10776901 DOI: 10.1042/bsr20231324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Vitiligo is characterized by the development of white patches on the skin either due to the loss of functional melanocytes or perturbations in the melanogenesis pathway. In the present study, we investigated the therapeutic potential of herbo-mineral formulation, Melanogrit in neutralizing the white patches in the skin. The study utilized UPLC/MS-QToF technique to determine the diversified phytochemical profile in Melanogrit. The murine B16F10 cells when treated with Melanogrit underwent morphological changes, including increased angularity, enlarged cell size, and greater dendritic protrusions. To establish an equivalent model to study melanogenesis, we carefully optimized the dosage of α-melanocyte stimulating hormone (αMSH) in B16F10 cells as an alternative to using melanocyte-keratinocyte cocultures. The study determined a sub-optimal dose of αMSH (0.2 nM) in B16F10 cells that does not manifest any measurable effects on melanogenesis. In contrast, Melanogrit when used in conjunction with 0.2 nM αMSH, induced a dose-dependent increase in extracellular and intracellular melanin levels. Melanogrit transcriptionally up-regulated the decisive genes of the melanogenesis pathway, MITF, TYR, and TRP1, which was evident from the increased cellular tyrosine activity. Our findings also demonstrated that Melanogrit ameliorated the MITF protein levels by inhibiting pERK; notably without involving GSK3β in the process. Taken together, our findings strongly suggest that Melanogrit has the potential to stimulate melanogenesis, making it a promising candidate for clinical applications in the treatment of white skin patches that develop in vitiligo patients.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G41 1AU, U.K
- Vedic Acharya Samaj Foundation, Inc. NFP, 21725 CR 33, Groveland, FL 34736, U.S.A
| | - Savita Lochab
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Shang H, Liu X, Pan J, Cheng H, Ma Z, Xiao C, Gao Y. Exploring the mechanism and phytochemicals in Psoraleae Fructus-induced hepatotoxicity based on RNA-seq, in vitro screening and molecular docking. Sci Rep 2024; 14:1696. [PMID: 38242895 PMCID: PMC10799058 DOI: 10.1038/s41598-023-50454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Psoraleae Fructus (PF) is a widely-used herb with diverse pharmacological activities, while its related hepatic injuries have aroused public concerns. In this work, a systematic approach based on RNA sequencing (RNA-seq), high-content screening (HCS) and molecular docking was developed to investigate the potential mechanism and identify major phytochemicals contributed to PF-induced hepatotoxicity. Animal experiments proved oral administration of PF water extracts disturbed lipid metabolism and promoted hepatic injuries by suppressing fatty acid and cholesterol catabolism. RNA-seq combined with KEGG enrichment analysis identified mitochondrial oxidative phosphorylation (OXPHOS) as the potential key pathway. Further experiments validated PF caused mitochondrial structure damage, mtDNA depletion and inhibited expressions of genes engaged in OXPHOS. By detecting mitochondrial membrane potential and mitochondrial superoxide, HCS identified bavachin, isobavachalcone, bakuchiol and psoralidin as most potent mitotoxic compounds in PF. Moreover, molecular docking confirmed the potential binding patterns and strong binding affinity of the critical compounds with mitochondrial respiratory complex. This study unveiled the underlying mechanism and phytochemicals in PF-induced liver injuries from the view of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Huiying Shang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xian Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Jinchao Pan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Hongbo Cheng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
19
|
Feng Y, Han Z, Chen C, Wang X, Liu J, Khan Y, Xie M, Chen Y, Zhang Y, Li G. Psoralea corylifolia formula extract-loaded silk fibroin/polycaprolactone fibrous membrane for the treatment of colorectal cancer. Colloids Surf B Biointerfaces 2024; 233:113635. [PMID: 37976725 DOI: 10.1016/j.colsurfb.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Intestinal obstructions caused by intestinal tumors pose life-threatening risks to patients. Adjuvant treatment using intestinal stents carrying drug loaded membranes has the advantages of timely relief of intestinal obstruction, as well as effective inhibition of tumor progression. The present work is to develop an intestinal stent loaded with a combination of traditional Chinese medicines capable of good biocompatibility, degradability, sustained drug release and anti-tumor properties. The drug combination extract was obtained from Psoralea corylifolia formula (PCF) and then was loaded into silk fibroin (SF)/polycaprolactone (PCL) fibrous membranes using emulsion electrospinning technology. Results showed that the membrane prepared by emulsion electrospinning technology has apparent core-shell structure, and the mechanical property and hydrophilicity of the membrane are gradually improved with the addition of PCF. Drug sustained release results demonstrated that there were no bursting phenomena, and showed a gradual sustained release up to 400 h. The antitumor efficacy was assessed in vitro using a human colorectal cancer cell line HCT-116 and an epithelial cell line NCM-460. Results showed that this drug-loaded membrane sustained antitumor cell growth performance, indicating its great potential for clinical treatment for intestinal cancer in the near future.
Collapse
Affiliation(s)
- Yusheng Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhifen Han
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai 201203, China
| | - Chong Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yousef Khan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, MA 02155, USA
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yufeng Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China.
| | - Yue Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai 201203, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
20
|
Nizam NN, Mahmud S, Ark SMA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent and its pharmacological benefits. F1000Res 2023; 12:29. [PMID: 38021404 PMCID: PMC10683784 DOI: 10.12688/f1000research.129072.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.
Collapse
Affiliation(s)
- Nuder Nower Nizam
- Department of Public Health, American International University Bangladesh, Dhaka, 1229, Bangladesh
| | - Sohel Mahmud
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - S M Albar Ark
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - Mohammad Kamruzzaman
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
21
|
Tripathi N, Bhardwaj N, Kumar S, Jain SK. Phytochemical and Pharmacological Aspects of Psoralen - A Bioactive Furanocoumarin from Psoralea corylifolia Linn. Chem Biodivers 2023; 20:e202300867. [PMID: 37752710 DOI: 10.1002/cbdv.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since long ago, medicinal plants have played a vital role in drug discovery. Being blessed and rich in chemovars with diverse scaffolds, they have unique characteristics of evolving based on the need. The World Health Organization also mentions that medicinal plants remain at the center for meeting primary healthcare needs as the population relies on them. The plant-derived natural products have remained an attractive choice for drug development owing to their specific biological functions relevant to human health and also the high degree of potency and specificity they offer. In this context, one such esteemed phytoconstituent with inexplicable biological potential is psoralen, a furanocoumarin. Psoralen was the first constituent isolated from the plant Psoralea corylifolia, commonly known as Bauchi. Despite being a life-saver for psoriasis, vitiligo, and leukoderma, it also showed immense anticancer, anti-inflammatory, and anti-osteoporotic potential. This review brings attention to the possible application of psoralen as an attractive target for rational drug design and medicinal chemistry. It discusses the various methods for the total synthesis of psoralen, its extraction, the pharmacological spectrum of psoralen, and the derivatization done on psoralen.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Sanjay Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| |
Collapse
|
22
|
Kumari S, Singh M, Nupur, Jain S, Verma N, Malik S, Rustagi S, Priya K. A review on therapeutic mechanism of medicinal plants against osteoporosis: effects of phytoconstituents. Mol Biol Rep 2023; 50:9453-9468. [PMID: 37676432 DOI: 10.1007/s11033-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Mohini Singh
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Nupur
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Smita Jain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Neha Verma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, 834002, Jharkhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India.
| |
Collapse
|
23
|
Zhu Z, Wang Z, Ma C, Zhou J, Zhang W. Isopsoralen promotes osteogenic differentiation of human jawbone marrow mesenchymal cells through Notch signaling pathway. Ann Anat 2023; 250:152156. [PMID: 37678499 DOI: 10.1016/j.aanat.2023.152156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effect of isopsoralen on osteogenic differentiation of human jawbone marrow mesenchymal cells and its possible mechanism. METHOD The cytotoxicity and proliferation of cells were measured by a cell counting kit 8. Alkaline phosphatase activity analysis was then used to determine the optimal concentration of isopsoralen to promote the differentiation. Western blot, qRT-PCR and Alizarin Red S staining were used to evaluate the role of Notch signaling pathway in isopsoralen-induced osteogenic differentiation. This study also investigated the anti-osteoporotic effects of ISO using in vivo osteoporosis models. RESULTS Our results showed that 1 × 10-6 mol / L isopsoralen can effectively promote the proliferation and osteogenic differentiation of cells. Moreover, we found that activation of notch signaling pathway inhibited isopsoralen-induced osteogenesis and inhibition of Notch signal promoted the differentiation of osteoblasts induced by isopsoralen. In vivo experiments revealed that ISO significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. CONCLUSION Our findings demonstrated that isopsoralen induced osteogenic differentiation by inhibiting Notch signaling and it might be a potential therapeutic agent for treating or preventing osteoporosis.
Collapse
Affiliation(s)
- Zhu Zhu
- Stomatology outpatient of the Air Force From Eastern Theater of PLA, Nanjing, Jiangsu, China
| | - Zitian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyan Ma
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Chen S, Guo W, Liu H, Zheng J, Lu D, Sun J, Li C, Liu C, Wang Y, Huang Y, Liu W, Li Y, Liu T. Mechanistic study of cytochrome P450 enzyme-mediated cytotoxicity of psoralen and isopsoralen. Food Chem Toxicol 2023; 180:114011. [PMID: 37660943 DOI: 10.1016/j.fct.2023.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Psoralen and isopsoralen are the major components responsible for Psoraleae Fructus-induced hepatotoxicity. This study explored the role of metabolic activation by cytochrome P450 (CYP) enzymes in psoralen- and isopsoralen-induced cytotoxicity and its potential mechanisms. Inhibitors of CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 were used to screen specific CYP enzymes responsible for the metabolic activation of psoralen and isopsoralen in mouse primary hepatocytes, which was verified using the corresponding transfected cell lines. Network toxicology and transcriptome analyses were performed to explore the mechanisms underlying toxicity. Psoralen and isopsoralen decreased the viability of mouse primary hepatocytes, whereas the inhibition of CYP2C9, 2C19, 2D6, and 2E1 significantly increased their viability. Psoralen-induced cytotoxicity was significantly enhanced by the overexpression of CYP2C19 in Chinese hamster ovary cells, whereas the overexpression of the above CYP enzymes did not affect the cytotoxicity of isopsoralen. Psoralen- and isopsoralen-induced cytotoxic effects were associated with putative core targets (i.e., Fn1, Thbs1, and Tlr2) and multiple signaling pathways (e.g., PI3K-Akt, MAPK, and TNF pathways). Our results demonstrate that the metabolic activation of psoralen and isopsoralen is mediated by CYP enzymes, thereby regulating multiple core targets and signaling pathways and resulting in cytotoxicity.
Collapse
Affiliation(s)
- Shuaishuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Weiyu Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Huan Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Dingyan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wen Liu
- School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
26
|
Ouyang L, Fan Z, He Y, Tan L, Deng G, He Q, He Y, Ouyang T, Li C, Zhang Q, Liu H, Zuo Y. 4-hydroxylonchocarpin and corylifol A: The potential hepatotoxic components of Psoralea corylifolia L. Toxicol Lett 2023; 385:31-41. [PMID: 37598872 DOI: 10.1016/j.toxlet.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Psoralea corylifolia L. (P. corylifolia) has attracted increasing attention because of its potential hepatotoxicity. In this study, we used network analysis (toxic component and hepatotoxic target prediction, proteinprotein interaction, GO enrichment analysis, KEGG pathway analysis, and molecular docking) to predict the components and mechanism of P. corylifolia-induced hepatotoxicity and then selected 4-hydroxylonchocarpin and corylifol A for experimental verification. HepG2 cells were treated with low, medium, and high concentrations of 4-hydroxylonchocarpin or corylifol A. The activities of ALT, AST, and LDH in cell culture media and the MDA level, SOD activity, and GSH level in cell extracts were measured. Moreover, apoptosis, ROS levels, and mitochondrial membrane potential were evaluated. The results showed that the activities of ALT, AST, and LDH in the culture medium increased, and hepatocyte apoptosis increased. The level of MDA increased, and the activity of SOD and level of GSH decreased, and the ROS level increased with 4-hydroxylonchocarpin and corylifol A intervention. Furthermore, the mitochondrial membrane potential decreased in the 4-hydroxylonchocarpin and corylifol A groups. This study suggests that 4-hydroxylonchocarpin and corylifol A cause hepatocyte injury and apoptosis by inducing oxidative stress and mitochondrial dysfunction, suggesting that these compounds may be the potential hepatotoxic components of P. corylifolia.
Collapse
Affiliation(s)
- Linqi Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiqiang Fan
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Long Tan
- Department of Pharmacy, People's Hospital of Yizhang County, Chenzhou, China
| | - Guoyan Deng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yiran He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ting Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Congjie Li
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin Zhang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongyu Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| | - Yajie Zuo
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
27
|
Lu Y, Zhang M, Zhang J, Jiang M, Bai G. Psoralen prevents the inactivation of estradiol and treats osteoporosis via covalently targeting HSD17B2. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116426. [PMID: 36997132 DOI: 10.1016/j.jep.2023.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. seeds (P. corylifolia), popularly known as Buguzhi in traditional Chinese medicine, are often used to treat osteoporosis in China. Psoralen (Pso) is the key anti-osteoporosis constituent in P. corylifolia, however, its targets and mechanism of action are still unclear. AIM OF THE STUDY The purpose of this study was to explore the interaction between Pso and 17-β hydroxysteroid dehydrogenase type 2 (HSD17B2), an estrogen synthesis-related protein that inhibits the inactivation of estradiol (E2) to treat osteoporosis. MATERIALS AND METHODS Tissue distribution of Pso was analyzed by in-gel imaging after oral administration of an alkynyl-modified Pso probe (aPso) in mice. The target of Pso in the liver was identified and analyzed using chemical proteomics. Co-localization and cellular thermal shift assays (CETSA) were used to verify the key action targets. To detect the key pharmacophore of Pso, the interaction of Pso and its structural analogs with HSD17B2 was investigated by CETSA, HSD17B2 activity assay, and in-gel imaging determination. Target competitive test, virtual docking, mutated HSD17B2 activity, and CETSA assay were used to identify the binding site of Pso with HSD17B2. A mouse model of osteoporosis was established by ovariectomies, and the efficacy of Pso in vivo was confirmed by micro-CT, H&E staining, HSD17B2 activity, and bone-related biochemical assays. RESULTS Pso regulated estrogen metabolism by targeting HSD17B2 in the liver, with the α, β-unsaturated ester in Pso being the key pharmacophore. Pso significantly suppressed HSD17B2 activity by irreversibly binding to Lys236 of HSD17B2 and preventing NAD+ from entering the binding pocket. In vivo studies in ovariectomized mice revealed that Pso could inhibit HSD17B2 activity, prevent the inactivation of E2, increase levels of endogenous estrogen, improve bone metabolism-related indices, and play a role in anti-osteoporosis. CONCLUSIONS Pso covalently binds to Lys236 of HSD17B2 in hepatocytes to prevent the inactivation of E2, thereby aiding in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
28
|
Shen P, Bai ZJ, Zhou L, Wang NN, Ni ZX, Sun DZ, Huang CS, Hu YY, Xiao CR, Zhou W, Zhang BL, Gao Y. A Scd1-mediated metabolic alteration participates in liver responses to low-dose bavachin. J Pharm Anal 2023; 13:806-816. [PMID: 37577386 PMCID: PMC10422113 DOI: 10.1016/j.jpha.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.
Collapse
Affiliation(s)
- Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Jie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhe-Xin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - De-Zhi Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cong-Shu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yang-Yi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cheng-Rong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
29
|
Yang X, Cao K, Ren X, Cao G, Xun W, Qin J, Zhou X, Jin L. Field Control Effect and Initial Mechanism: A Study of Isobavachalcone against Blister Blight Disease. Int J Mol Sci 2023; 24:10225. [PMID: 37373374 DOI: 10.3390/ijms241210225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), β-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species' richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease.
Collapse
Affiliation(s)
- Xiuju Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Kunqian Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaoli Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guangyun Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weizhi Xun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiayong Qin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Ma ZT, Shi Z, Xiao XH, Wang JB. New Insights into Herb-Induced Liver Injury. Antioxid Redox Signal 2023; 38:1138-1149. [PMID: 36401515 PMCID: PMC10259609 DOI: 10.1089/ars.2022.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Significance: Herbs are widely used worldwide. However, inappropriate use of some of the herbs can lead to herb-induced liver injury (HILI). Intriguingly, HILI incidents are on the rise, and our understanding of the underlying etiologies is in progress, and hence, an update on the current status of incidents as well as our understanding on the etiologies of HILI is appropriate. Recent Advances: HILI reports due to the use of some herbs that are traditionally considered to be safe are also on the rise. Furthermore, HILI due to the use of certain herbs in combination with other herbs (herb-herb interaction [HHI]) or non-herb components (herb-drug interaction [HDI]) has also been reported, suggesting a potentially important new type of inappropriate use of herbs. Critical Issues: Updated overviews focus on the epidemiology, etiology, phenotypes, and risk factors of HILI, as well as HDI and HHI, and analysis on several types of newly reported "toxic" effects of herbs based on types of hepatotoxicity and the HILI mechanisms. Future Directions: HILI will continue to be a significant public health challenge in the near future. In the light of the lack of broadly available guidelines and regulations for proper and safe uses of herbs worldwide, raising the public awareness of HILI will remain one of the most effective measures. In particular, it should include a better understanding of the contributing factors; a more detail subclassification and description of HILI, better characterization of the components/substances that could induce HILI; and development of HILI diagnosis based on the Roussel Uclaf Causality Assessment Method (RUCAM). Antioxid. Redox Signal. 38, 1138-1149.
Collapse
Affiliation(s)
- Zhi-Tao Ma
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Chen XW, Hou ZC, Chen C, Zhang LH, Chen ME, Zhang FM. Enantioselective total syntheses of six natural and two proposed meroterpenoids from Psoralea corylifolia. Chem Sci 2023; 14:5699-5704. [PMID: 37265714 PMCID: PMC10231314 DOI: 10.1039/d3sc00582h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
The first enantioselective total syntheses of six natural and two proposed meroterpenoids isolated from Psoralea corylifolia have been achieved in 7-9 steps from 2-methylcyclohexanone. The current synthetic approaches feature a high level of synthetic flexibility, stereodivergent fashion and short synthetic route, thereby providing a potential platform for the preparation of numerous this-type meroterpenoids and their pseudo-natural products.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zi-Chao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
32
|
Xiu Y, Su Y, Gao L, Yuan H, Xu S, Liu Y, Qiu Y, Liu Z, Li Y. Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non-healing wounds. Front Pharmacol 2023; 14:1153810. [PMID: 37266148 PMCID: PMC10229780 DOI: 10.3389/fphar.2023.1153810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Chronic non-healing wound is a considerable clinical challenge and research into the discovery of novel pro-healing agents is underway as existing therapeutic approaches cannot sufficiently meet current needs. Method: We studied the effects of corylin in cell line fibroblasts and macrophages by Western blots, PCR, Flow cytometry assay, Immunofluorescence. Results: We showed that corylin, a main flavonoid extracted from Psoralea corylifolia L, reduced inflammatory responses, promoted collagen deposition, and accelerated the healing of full-thickness skin wounds in mice. Exploration of the underlying mechanisms showed that corylin activated the PI3K/AKT signaling, leading to fibroblasts' migration, proliferation, and scratch healing. Corylin also activated sirtuin 1 (SIRT1) signaling, enhanced the deacetylation and cytoplasmic translocation of NF-κB p65, and therefore reduced lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Furthermore, inhibition of PI3K/AKT and sirtuin 1 pathway with LY294002 and EX527 prevent the therapeutic potency of corylin against chronic wounds. Conclusion: In summary, our results suggested that corylin may be a candidate for the development of novel pro-healing agents.
Collapse
Affiliation(s)
- Yanghui Xiu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yu Su
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Lihua Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Hui Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| | - Sennan Xu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Ying Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yan Qiu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Zhen Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
33
|
Lee A, Chung YC, Song KH, Ryuk JA, Ha H, Hwang YH. Network pharmacology-based identification of bioavailable anti-inflammatory agents from Psoralea corylifolia L. in an experimental colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116534. [PMID: 37127140 DOI: 10.1016/j.jep.2023.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional oriental medicine, the dried seeds of Psoralea corylifolia L. (PC) have been used to treat various diseases, including gastrointestinal, urinary, orthopedic, diarrheal, ulcer, and inflammatory disorders. AIM OF THE STUDY Although its various biological properties are well-known, there is no information on the therapeutic effects and bioavailable components of PC against inflammatory bowel disease. Therefore, we focused on the relationship between hydroethanolic extract of PC (EPC) that ameliorates colitis in mice and bioactive constituents of EPC that suppress pro-inflammatory cytokines in macrophages. MATERIALS AND METHODS We investigated the therapeutic effects of EPC in a dextran sulfate sodium-induced colitis mouse model and identified the orally absorbed components of EPC using UPLC-MS/MS analysis. In addition, we evaluated and validated the mechanism of action of the bioavailable constituents of EPC using network pharmacology analysis. The effects on nitric oxide (NO) and inflammatory cytokines were measured by Griess reagent and enzyme linked immunosorbent assay in lipopolysaccharide (LPS)-induced macrophages. RESULTS In experimental colitis, EPC improved body weight loss, colon length shortening, and disease activity index. Moreover, EPC reduced the serum levels of pro-inflammatory cytokines and histopathological damage to the colon. Network pharmacological analysis identified 13 phytochemicals that were bioavailable following oral administration of EPC, as well as their potential anti-inflammatory effects. 11 identified EPC constituents markedly reduced the overproduction of NO, tumor necrosis factor-α, and/or interleukin-6 in macrophages induced by LPS. The LPS-induced expression of the nuclear factor kappa-light-chain-enhancer of activated B cells reporter gene was reduced by the 4 EPC constituents. CONCLUSIONS The results indicate that the protective activity of EPC against colitis is a result of the additive effects of each constituent on the expression of inflammatory cytokines. Therefore, it suggests that 11 bioavailable phytochemicals of EPC could aid in the management of intestinal inflammation, and also provides useful insights into the clinical application of PC for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Jin Ah Ryuk
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
34
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
35
|
Wang M, Tian B, Shen J, Xu S, Liu C, Guan L, Guo M, Dou J. Bavachin induces apoptosis in colorectal cancer cells through Gadd45a via the MAPK signaling pathway. Chin J Nat Med 2023; 21:36-46. [PMID: 36641231 DOI: 10.1016/s1875-5364(23)60383-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Bavachin is a dihydroflavonoid compound isolated from Psoralea corylifolia, and exhibits anti-bacterial, anti-inflammatory, anti-tumor and lipid-lowering activities. Recent attention has gradually drawn on bavachin-induced apoptosis in many human cancer cell lines. However, the anti-cancer effects and related mechanisms in colorectal cancer remain unknown. Here, we investigated the effects of bavachin on colorectal cancer in vivo and in vitro. The results showed that bavachin inhibited the proliferation of human colorectal cancer cells and induce apoptosis. These changes were mediated by activating the MAPK signaling pathway, which significantly up-regulated the expression of Gadd45a. Furthermore, Gadd45a silencing obviously attenuated bavachin-mediated cell apoptosis. Inhibition of the MAPK signaling pathway by JNK/ERK/p38 inhibitors also weakened the up-regulation of Gadd45a by bavachin. The anticancer effect of bavachin was also validated using a mouse xenograft model of human colorectal cancer. In conclusion, these findings suggest that bavachin induces the apoptosis of colorectal cancer cells through activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengru Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Baopeng Tian
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shilin Xu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Cong Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Guan
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Min Guo
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
36
|
Li H, Wang C, Jin Y, Cai Y, Yao J, Meng Q, Wu J, Wang H, Sun H, Liu M. Anti-Postmenopausal osteoporosis effects of Isopsoralen: A bioinformatics-integrated experimental study. Phytother Res 2023; 37:231-251. [PMID: 36123318 DOI: 10.1002/ptr.7609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Isopsoralen (IPRN), which comes from the fruit of Psoralea corylifolia, has been identified as a kind of phytoestrogen and has been proven to be effective for the treatment of osteoporosis (OP). However, the mechanisms underlying IPRN's anti-OP effects, especially the anti-postmenopausal osteoporosis (PMOP) effects, remain indistinct. Thus, this study aimed to investigate the effects and mechanisms of IPRN's anti-PMOP activity. In this study, the bioinformatics results predicted that IPRN could resist PMOP by targeting EGFR, AKT1, SRC, CCND1, ESR1 (ER-α), AR, PGR, BRCA1, PTGS2, and IGF1R. An ovariectomized (OVX) mice model and a H2 O2 -induced bone marrow mesenchyml stem cells (BMSCs) model confirmed that IPRN could inhibit the bone loss induced by OVX in mice and promote the osteogenic differentiation in H2 O2 -induced BMSCs by inhibiting oxidative stress and apoptosis. Moreover, IPRN could significantly produce the above effects by upregulating ESR1. IPRN might be a therapeutic agent for PMOP by acting as an estrogen replacement agent and a natural antioxidant.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Men WJ, Meng ZJ, Wang Q, Chen MY, Zhai YX, Shi H, Wang AH, Zhou K. The changes of hepatic bile acid synthesis and transport and bile acids profiles in isopsoralen-induced liver injury C57BL/6J mice. PHARMACEUTICAL BIOLOGY 2022; 60:1701-1709. [PMID: 36066106 PMCID: PMC9467544 DOI: 10.1080/13880209.2022.2116057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
CONTEST Isopsoralen, one of the main active and quality-control compounds in Psoralea corylifolia L. (Fabaceae), has antitumor and oestrogen-like effects. Previous studies demonstrated that isopsoralen induced hepatotoxicity and its long-term exposure led to cholestatic liver injury. OBJECTIVE This study investigates the effect of three- or seven-day exposure of low dose isopsoralen (80 mg/kg) on bile acid homeostasis in C57BL/6J mice. MATERIALS AND METHODS Forty-two C57BL/6J mice were randomly divided into control, three- and seven-day groups (n = 14 per group, half female and half male). Isopsoralen suspension was administrated intragastrically at 80 mg/kg once a day. Blood and liver samples were collected to measure biochemical indices and transport of BAs. The histopathology of the liver was also observed. HPLC-MS/MS was also used to measure the BAs profiles and transport activity. RESULTS In the study, isopsoralen increased the levels of serum AST, ALT in three- and seven-day groups, and caused vacuolar degeneration and swelling in the liver. Canalicular efflux transporters BSEP, OSTα, MRP2, MRP3, and basolateral uptake transporters NTCP, OATP4 were inhibited after seven-day-administration. Moreover, amino acid binding enzymes (BAAT and BACS) were also inhibited after seven-day-administration. The composition of BAs changed greatly and the concentration of some unconjugated-BAs which have stronger hydrophobicity, such as CA, CDCA, was significantly increased. CONCLUSIONS Isopsoralen (80 mg/kg) caused hepatotoxicity after short-term exposure by inhibiting the expression of efflux transporters, amino acid binding enzymes, and disrupting BAs spectrum.
Collapse
Affiliation(s)
- Wei-jie Men
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin, China
| | - Zhao-jun Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng-ying Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-xia Zhai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Shi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| | - An-hong Wang
- Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Li L, Dong F, Wang B, Song J, Zhang H, Wang P, Wang F, Yan Y, Zhang X. Metabolites Identification and Mechanism Prediction of Neobavaisoflavone In Vitro and In Vivo of Rats through UHPLC-Q-Exactive Plus Orbitrap MS Integrated Network Pharmacology. Molecules 2022; 27:molecules27238413. [PMID: 36500506 PMCID: PMC9736981 DOI: 10.3390/molecules27238413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Neobavaisoflavone is an important isoflavone component isolated from Psoraleae Fructus. It is used extensively worldwide because of its antibacterial, antioxidant, anti-inflammatory, anticancer, and anti-osteoporotic activities. However, there is no systematic and comprehensive research on the metabolism of neobavaisoflavone in vivo and in vitro. The study aimed to analyze the metabolic characteristics and mechanism of neobavaisoflavone for the first time. Firstly, biological samples were pretreated by the solid-phase extraction (SPE) method, methanol precipitation, and acetonitrile precipitation. Secondly, the samples were analyzed on UHPLC-Q-Exactive Plus Orbitrap MS. Thirdly, metabolites were tentatively identified based on retention time, parallel reaction monitoring strategy, diagnostic product ions, and neutral loss fragments. A total of 72 metabolites of neobavaisoflavone were tentatively identified, including 28 in plasma, 43 in urine, 18 in feces, six in the liver, and four in the liver microsome. The results suggested that neobavaisoflavone mainly underwent glucuronidation, sulfation, hydroxylation, methylation, cyclization, hydration, and their composite reactions in vivo and in vitro. In addition, nine active components with high bioavailability and 191 corresponding targets were predicted by the Swiss Drug Design database. The 1806 items of GO and 183 KEGG signaling pathways were enriched. These results showed that metabolites expanded the potential effects of neobavaisoflavone. The present study would provide the scientific basis for the further exploitation and application of neobavaisoflavone.
Collapse
Affiliation(s)
- Linlin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Fan Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Bianli Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Jian Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (J.S.); (H.Z.)
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
- Correspondence: (J.S.); (H.Z.)
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Feiran Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingying Yan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
39
|
Mu L, Dai H, Fei C, Li W, Xue Q, Xu Y, Li L, Li W, Yin W, Yin F. Study on the processing chemistry of Fructus Psoraleae by a combination of untargeted and targeted metabolomics. J Sep Sci 2022; 45:4280-4291. [PMID: 36168848 DOI: 10.1002/jssc.202200504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022]
Abstract
Fructus Psoralea is widely used to treat osteoporosis and skin inflammatory diseases. Because of the side effects on the liver, renal and cardiovascular systems, it is processed to salt-processed Fructus Psoraleae to meet the requirements of clinical use. However, the mechanisms involved in the transformation of the chemical components are unclear. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the chemical profiles of this herbal medicine and the chemical transformation mechanism involved during the salt processing was studied. A total of 83 compounds were identified. Principal component analysis and orthogonal partial least squares discriminate analysis were used to observe the distribution trend of all samples and visualize the difference. Raw and processed Fructus Psoraleae were clearly clustered into two groups. Furthermore, 17 marker compounds were identified as primary contributors to their differences based on t-test analysis (p < 0.01) and orthogonal partial least squares discriminate analysis (variable importance for the projection > 1). Finally, ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was used to evaluate the quality of Fructus Psoraleae by simultaneous analysis of 13 components highly related to efficacy. There were variations in the contents of 13 chemicals of Fructus Psoraleae and salt-processed products. The results of untargeted and targeted metabolomics revealed that salt processing affected the chemical composition of Fructus Psoraleae.
Collapse
Affiliation(s)
- Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Dai
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,The Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
40
|
Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants. Gels 2022; 8:gels8120761. [PMID: 36547285 PMCID: PMC9777791 DOI: 10.3390/gels8120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The current research aimed to assess the Babchi oil nanoemulsion-based hydrogel prepared using biosurfactants through a low-energy emulsification process for the topical management of psoriasis. The emulsification capacity and solubilities of many nanoemulsion constituents such as surfactants, co-surfactants, and oil were considered to determine the range of concentration of the constituents. Pseudoternary phase diagrams were created using the method of titration. Nanoemulgel structure, morphology, micromeritics, conductivity, and viscosity were all optimized. The assessment of the Babchi oil nanoemulgel included particle size, polydispersity index (PDI), drug content, pH, spreadability, rheological management, ex vivo drug study, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability, in vitro drug release, release kinetics, and dermatokinetics. The selected ratios of the surfactant mixture (Smix) taken were 3:1. The entrapment efficiency estimated was 91.298%. The zeta potential of Babchi oil was observed to be -24.93 mV at 25 °C with water as a dispersant, viscosity as 0.887 cP, and material absorption as 0.01 nm. The size distribution of the particle was 108 nm by the intensity and the conductivity observed was 0.03359 mS/cm. The cumulative amount of Babchi oil penetrated and fluxed by nanoemulgel was considered larger (p ≤ 0.05) than the conventional formulations. Skin retention was observed to be good with decreased lag time. The formulation followed the Higuchi Korsmeyer for Fickian Peppas model for in vitro drug release studies. The oil was most effective on the epidermal layer of the skin for treatment. It was established that the Babchi oil nanoemulgel formulation had superior permeability capabilities for topical and transdermal administration and is a viable alternative to traditional formulations.
Collapse
|
41
|
Cariola A, El Chami M, Granatieri J, Valgimigli L. Anti-Tyrosinase and Antioxidant Activity of Meroterpene Bakuchiol from Psoralea corylifolia (L.). Food Chem 2022; 405:134953. [DOI: 10.1016/j.foodchem.2022.134953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
42
|
Zhang C, Zhao JQ, Sun JX, Li HJ. Psoralen and isopsoralen from Psoraleae Fructus aroused hepatotoxicity via induction of aryl hydrocarbon receptor-mediated CYP1A2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115577. [PMID: 35872289 DOI: 10.1016/j.jep.2022.115577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoraleae Fructus (PF), a traditional Chinese medicine, has long been used to treat diseases such as cancer, osteoporosis and leukoderma. Psoralen and isopsoralen are main bioactive ingredients of PF with anti-tumor, anti-inflammatory, estrogen-like neuroprotection, etc., meanwhile they are also representative hepatotoxic components of PF. Hepatic CYP1A2 has been reported to be the important metabolic enzymes involved in psoralen and isopsoralen-induced hepatotoxicity. However, the relationship between the hepatotoxicity and CYP1A2 expression, and the underlying mechanism of regulating CYP1A2 expression remain unclear. AIM OF STUDY The aim of this study was to explore the associated mechanism between psoralen or isopsoralen induced hepatotoxicity and activated aryl hydrocarbon receptor (AhR)-mediated transcriptional induction of CYP1A2 in vitro and in vivo. MATERIALS AND METHODS Psoralen and isopsoralen at different doses were treated on HepG2 cells (10, 25, 50, 100, 200 μM for 2, 12, 24, 36, 48 h) and mice (20, 80, 160 mg/kg for 3, 7, 14 days) for different time, to assess the correlation of induced hepatotoxicity and CYP1A2 mRNA and protein expression in vivo and in vitro, as well as the effect on CYP1A2 enzyme activity evaluated by phenacetin metabolism. In addition, the potential mechanism of the regulation of CYP1A2 expression mediated by AhR was explored through nucleocytoplasmic shuttling, immunofluorescence, cellular thermal shift assay and molecular docking, etc. RESULTS: Psoralen and isopsoralen induced cytotoxicity in HepG2 cells, and hepatomegaly, biochemicals disorder and tissue pathological impairment in mice, respectively in dose- and time-dependent manners. Simultaneously accompanied with elevated levels of CYP1A2 mRNA and protein in the same trend, and the CYP1A2 activity was remarkably inhibited in vitro but significantly elevated overall in vivo. Besides, psoralen and isopsoralen bound to AhR and activated translocation of AhR from the cytoplasm to the nucleus, leading to the transcriptional induction of target gene CYP1A2. CONCLUSIONS Hepatotoxicities in HepG2 cells and mice aroused by psoralen and isopsoralen were related to the induction of CYP1A2 expression and activity, whose underlying mechanism might be psoralen or isopsoralen activated AhR translocation and induced increase of CYP1A2 transcriptional expression. Hopefully, these finding are conductive to propose an alert about the combined usage of psoralen or isopsoralen and AhR ligands or CYP1A2 substrates in clinical practice.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
43
|
Ban KY, Nam GY, Kim D, Oh YS, Jun HS. Prevention of LPS-Induced Acute Kidney Injury in Mice by Bavachin and Its Potential Mechanisms. Antioxidants (Basel) 2022; 11:2096. [PMID: 36358467 PMCID: PMC9686515 DOI: 10.3390/antiox11112096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis with a rapid onset and high mortality rate. Bavachin, an active component of Psoralea corylifolia L., reportedly has antioxidant, anti-apoptotic, and anti-inflammatory effects; however, its beneficial effects on AKI remain undetermined. We investigated the protective effect of bavachin on lipopolysaccharide (LPS)-induced AKI in mice and elucidated the underlying mechanism in human renal tubular epithelial HK-2 cells. Increased serum creatinine and blood urea nitrogen levels were observed in LPS-injected mice; however, bavachin pretreatment significantly inhibited this increase. Bavachin improved the kidney injury score and decreased the expression level of tubular injury markers, such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), in both LPS-injected mice and LPS-treated HK-2 cells. LPS-induced oxidative stress via phosphorylated protein kinase C (PKC) β and upregulation of the NADPH oxidase (NOX) 4 pathway was also significantly decreased by treatment with bavachin. Moreover, bavachin treatment inhibited the phosphorylation of MAPKs (P38, ERK, and JNK) and nuclear factor (NF)-κB, as well as the increase in inflammatory cytokine levels in LPS-injected mice. Krüppel-like factor 5 (KLF5) expression was upregulated in the LPS-treated HK-2 cells and kidneys of LPS-injected mice. However, RNAi-mediated silencing of KLF5 inhibited the phosphorylation of NF-kB, consequently reversing LPS-induced KIM-1 and NGAL expression in HK-2 cells. Therefore, bavachin may ameliorate LPS-induced AKI by inhibiting oxidative stress and inflammation via the downregulation of the PKCβ/MAPK/KLF5 axis.
Collapse
Affiliation(s)
- Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Ga-Young Nam
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
| |
Collapse
|
44
|
Liu X, Zhang H, Cao J, Zhuo Y, Jin J, Gao Q, Yuan X, Yang L, Li D, Wang Y. Isobavachalcone Activates Antitumor Immunity on Orthotopic Pancreatic Cancer Model: A Screening and Validation. Front Pharmacol 2022; 13:919035. [PMID: 36091768 PMCID: PMC9452641 DOI: 10.3389/fphar.2022.919035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic cancer is accompanied by poor prognosis and accounts for a significant number of deaths every year. Since Psoralea corylifolia L. (PCL) possesses a broad spectrum of bioactivities, it is commonly used in traditional Chinese medicine. The study explored potential antitumor agents of PCL and underlying mechanisms in vitro and vivo. Based on network pharmacology, bioinformatics, and molecular docking, we considered isobavachalcone (IBC) as a valuable compound. The activity and potential mechanisms of IBC were investigated by RT-qPCR, immunohistochemistry, immunofluorescence, and flow cytometry. It was confirmed that IBC could inhibit Panc 02 cell proliferation and induce apoptosis via increasing the production of reactive oxygen species. IBC could attenuate the weight of solid tumors, increase CD8+ T cells, and reduce M2 macrophages in the tumor tissue and spleen. Another promising finding was that IBC alleviated the proportion of myeloid-derived suppressor cells (MDSCs) in the tumor tissue but had no change in the spleen. The study of pharmacological effects of IBC was carried out and suggested IBC restrained M2-like polarization of RAW 264.7 cells by inhibiting the expression of ARG1 and MRC1 and suppressed the expression of ARG1 and TGF-β in bone marrow-derived MDSC. In summary, this research screened IBC as an antineoplastic agent, which could attenuate the growth of pancreatic cancer via activating the immune activity and inducing cell apoptosis. It might be a reference for the antitumor ability of IBC and the treatment of the tumor microenvironment in pancreatic cancer.
Collapse
Affiliation(s)
- Xuanming Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongbo Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Jianlin Cao
- Department of Gynaecology and Obstetrics, Shanxi Provincial People’s Hospital, Shanxi, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Jiahui Jin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiaoying Gao
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangfei Yuan
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
- *Correspondence: Lei Yang, @126.com; Dihua Li, ; Yan Wang,
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
- *Correspondence: Lei Yang, @126.com; Dihua Li, ; Yan Wang,
| | - Yan Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- *Correspondence: Lei Yang, @126.com; Dihua Li, ; Yan Wang,
| |
Collapse
|
45
|
Mahajan N, Koul B, Kaur J, Bishnoi M, Gupta P, Kumar A, Shah BA, Mubeen I, Rai AK, Prasad R, Singh J. Antiobesity Potential of Bioactive Constituents from Dichloromethane Extract of Psoralea corylifolia L. Seeds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9504787. [PMID: 36060144 PMCID: PMC9436577 DOI: 10.1155/2022/9504787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Purpose Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 μg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 μg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 μg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 μM dose. Conclusion The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
- Department of Biotechnology, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Jasleen Kaur
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Pankaj Gupta
- Department of Chemistry, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Iqra Mubeen
- College of Plant Health and Medicine, Key Lab of Integrated Crop Disease and Pest Management, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| |
Collapse
|
46
|
Yuan Q, Wang J, Guo L, Xu Y, Hu L, Mao H, Miao L, Zhang H, Chai L. Neobavaisoflavone ameliorates LPS-induced RAW264.7 cell inflammations by suppressing the activation of NF-κB and MAPKs signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1021-1027. [PMID: 36159335 PMCID: PMC9464334 DOI: 10.22038/ijbms.2022.65372.14389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/30/2022] [Indexed: 11/06/2022]
Abstract
Objectives Neobavaisoflavone (NBIF) is an isoflavone isolated from Psoralea corylifolia L. It can effectively regulate the redox state as a natural anti-oxidant and show some anti-inflammatory activity. However, its molecular mechanism is poorly studied. In this study, RAW264.7 cells were treated with lipopolysaccharide (LPS) to investigate the anti-inflammatory activity and potential NBIF mechanism. Materials and Methods RAW264.7 cells were treated with LPS (62.5 ng/ml) and exposed to different concentrations of NBIF (0.01, 0.1, and 1 μM) for 24 hr. Inflammatory cytokines of RAW264.7 cells were measured by the Griess method, ELISA, and western blot. Phagocytosis of RAW264.7 macrophages was measured by FITC-dextran uptake assay. The phosphorylation protein expression levels of MAPKs (JNK, p38, and ERK), NF-κB p65, IκBα, and IκB kinase were analyzed by western blot. The results were analyzed using one-way ANOVA with Tukey's multiple comparison test. Results NBIF significantly inhibited NO and ROS production by down-regulation of iNOS and COX-2 protein expression. Additionally, the amount of release and protein levels of inflammation cytokines IL-6, IL-1β, and TNF-α were significantly decreased by NBIF. Moreover, FITC-dextran uptake assay by flow cytometry presented that NBIF significantly enhanced the phagocytic capacity of RAW264.7. Mechanistically, NBIF significantly down-regulated MAPK activation and inhibited the nuclear translocation of NF-κB p65. Conclusion The present study demonstrates that NBIF inhibited inflammation and enhanced the phagocytic capacity of RAW264.7 cell-related MAPKs and NF-κB signaling pathways induced by LPS. These findings suggest that NBIF may have clinical utility as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Qing Yuan
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China,These authors contributed eqully to this work
| | - Jing Wang
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China,These authors contributed eqully to this work
| | - Lichen Guo
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Xu
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Hu
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoping Mao
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Corresponding authors: Lijuan Chai. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171; , Han Zhang. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171;
| | - Lijuan Chai
- State Key Laboratory of Component-based Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Tianjin Key Laboratory of Traditional Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Corresponding authors: Lijuan Chai. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171; , Han Zhang. Tianjin University of Traditional Chinese Medicine, North China South Road, Jinghai District, Tianjin, 301617, People’s Republic of China. Tel: +86-22- 59596171;
| |
Collapse
|
47
|
Ni YH, Deng HF, Zhou L, Huang CS, Wang NN, Yue LX, Li GF, Yu HJ, Zhou W, Gao Y. Ginsenoside Rb1 Ameliorated Bavachin-Induced Renal Fibrosis via Suppressing Bip/eIF2α/CHOP Signaling-Mediated EMT. Front Pharmacol 2022; 13:872474. [PMID: 35873571 PMCID: PMC9304982 DOI: 10.3389/fphar.2022.872474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The nephrotoxicity of Fructus Psoraleae, an effective traditional Chinese medicine for vitiligo treatment, has been reported. As one of the main toxic components in Fructus Psoraleae, bavachin (BV) was considered to be related to Fructus Psoraleae-caused adverse outcomes, but the direct evidence and molecular mechanism underlying BV-induced nephrotoxicity are not well elucidated. Therefore, this study was designed to confirm whether BV would cause toxic effects on the kidney and explore the possible mode of action. Our results demonstrated that days’ treatment with 0.5 μM BV indeed caused obvious renal fibrosis in the zebrafish kidney. The obvious E- to N-cadherin switch and the expressions of proteins promoting epithelial–mesenchymal transition (EMT) were observed in BV-treated human renal tubular epithelial and zebrafish kidneys. In addition, elevated reactive oxygen species (ROS) levels and Bip/eIF2α/CHOP-mediated endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were caused by BV, both of which could be reversed by ROS scavenger N-acetyl-L-cysteine (NAC). Also, blocking ER stress-caused cytoplasmic Ca2+ overload with 4-PBA notably alleviated BV-induced alterations in key molecular events related to EMT and renal fibrosis. Furthermore, of the natural compounds subjected to screening, ginsenoside Rb1 significantly downregulated BV-induced ER stress by inhibiting ROS generation and following the activation of Bip/eIF2α/CHOP signaling in HK2 cells. Subsequently, BV-triggered EMT and renal fibrosis were both ameliorated by ginsenoside Rb1. In summary, our findings suggested that BV-induced ROS promoted the appearance of EMT and renal fibrosis mainly via Bip/eIF2α/CHOP-mediated ER stress. This ER stress-related toxic pathway might be a potential intervention target for BV-caused renal fibrosis, and ginsenoside Rb1 would be a promising drug against BV- or Fructus Psoraleae-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gao-Fu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Jing Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Wei Zhou, ; Yue Gao,
| |
Collapse
|
48
|
Tian T, Li M, Feng W, Ding Y, Li Z, Shi Z, Shen T. Total Syntheses and Cytotoxicity Evaluation of Coryaurone A and Representative Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:1634-1640. [PMID: 35671109 DOI: 10.1021/acs.jnatprod.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first total synthesis of coryaurone A, which was originally obtained from Psoralea corylifolia L., was achieved via an efficient route with the longest linear sequence of six steps from the commercially available 6-hydroxy-2H-benzofuran-3-one in 37% overall yield. A series of representative analogues were synthesized from the same starting material in 4-7 steps with overall yields of 27-56%. The cytotoxicities of these compounds against the leukemia cell line HL-60 and the colon cancer cell line SW480 were determined. Among them, compounds 12, 14, 21, and 27 exhibited different levels of cytotoxic activity, which were greater than the positive control cisplatin.
Collapse
Affiliation(s)
- Tian Tian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Minghan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Wei Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Yalong Ding
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Zhaoyu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Zheng Shi
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| | - Tong Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, People's Republic of China
| |
Collapse
|
49
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
50
|
Liu J, Zhang W, Li Y, Li X, Li Y, Guo F. Flavonoids extract from the seeds of Psoralea corylifolia L. (PFE) alleviates atherosclerosis in high-fat diet-induced LDLR -/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153983. [PMID: 35152088 DOI: 10.1016/j.phymed.2022.153983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The seeds of Psoralea corylifolia L., a traditional medicine popular used in China and India, have been recommended in the treatment of leucoderma, psoriasis, osteoporosis, and gynecological bleeding. Our previous studies have found that flavonoid extract from the seeds of Psoralea corylifolia L. could activate fat browning and correct the disorder of glucose and lipid metabolism in obese mice. PURPOSE The present study aimed to investigate the anti-atherosclerosis of flavonoids extract from the seeds of Psoralea corylifolia L. METHODS Leukocyte adhesion assay, RT-PCR, Western blot analysis, and immunofluorescent assay were carried out in ox-LDL induced endothelium injury and foam cells formation in vitro. Flavonoids from the seeds of P. corylifolia L. (PFE) was administrated 150 and 300 mg/kg/day in HFD-induced LDLR-/- mice for 12 weeks. RESULTS Flavonoids from the seeds of P. corylifolia L. (PFE) could prevent leukocyte adhesion to the endothelium by inhibiting mRNA and protein expression of these adhesion molecules (VCAM-1, ICAM-1, and E-selectin). PFE could also prevent ox-LDL stimulated inflammation in HUVECs by inhibiting the NF-κB pathway. In addition, PFE significantly ameliorated ox-LDL induced macrophages-oriented foam cells formation through inducing cholesterol efflux via PPARγ-ABCA1/ABCG1. In HFD-induced LDLR-/- mice, PFE reversed the serum profile and circulated inflammation level. Meanwhile, PFE could remarkably alleviate atherosclerotic lesion sizes and intraplaque macrophage infiltration in aortic roots. CONCLUSION Flavonoids from the seeds of P. corylifolia L. could alleviate atherosclerosis by preventing endothelium injury, attenuating vascular inflammation, and alleviating the formation of foam cells.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Wen Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yahui Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|