1
|
Yang Y, Gong Z, Yang J, Cai Y, Hong S, Mao W, Guo Z, Qiu M, Fan Z, Cui B. Exploring shared mechanisms between ulcerative colitis and psoriasis and predicting therapeutic natural compounds through bioinformatics and molecular docking. Heliyon 2024; 10:e37624. [PMID: 39309918 PMCID: PMC11416260 DOI: 10.1016/j.heliyon.2024.e37624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Previous studies have suggested a potential correlation between psoriasis (PS) and ulcerative colitis (UC). However, studies exploring the shared mechanisms of both diseases remain limited. Current treatments primarily involve using immunosuppressive drugs, which can lead to potential side effects and drug resistance. Traditional Chinese medicine has demonstrated favorable efficacy in treating UC and PS with fewer side effects. This study aims to elucidate the shared biological mechanisms underlying UC and PS and to predict natural compounds effective for treating both disorders. Method We collected and validated differentially expressed genes associated with UC and PS from the Gene Expression Omnibus database. A protein-protein interaction network was constructed using the STRING database, aiding in identifying core targets. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were utilized to analyze the functions and genomic enrichment of the identified core targets. The CIBERSORT method was employed to assess the correlation of core targets with immune cells. Compounds with potential therapeutic values were selected from the Coremine and TCMSP databases, and their therapeutic efficacy was predicted via molecular docking. Results In UC and PS, 20 common core targets were identified, with matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 1 (MMP1), cluster of differentiation 274 (CD274), C-X-C motif chemokine ligand 10 (CXCL10), and topoisomerase II alpha (TOP2A) emerging as the most relevant targets shared between both conditions. Elevated levels of macrophages and dendritic cells were observed in UC and PS, with CXCL10 exhibiting the closest association with macrophages. UC and PS shared common signaling pathways, including IL-17, TNF, and chemokine signaling pathways, among others. Molecular docking revealed that quercetin, baicalen, irisolidone, rutaecarpine, epigallocatechin-3-gallate, and others held potential as natural compounds for treating both disorders. Conclusion MMP9, MMP1, and CXCL10, central mediators in the inflammatory pathways of UC and PS, establish a shared mechanism by triggering cytokine and chemokine activation, leading to tissue damage and positioning them as promising therapeutic targets for both conditions. Compounds such as quercetin, luteolin, irisolidone, rutaecarpine, and so on may be key drugs for treating both conditions. These findings suggest the potential advancement of therapeutic strategies and the enhancement of patient care by exploring shared mechanisms and predicting promising natural compounds for treating UC and PS.
Collapse
Affiliation(s)
- Yixuan Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhuozhi Gong
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Jiao Yang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Cai
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengwei Hong
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjun Mao
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijian Guo
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengting Qiu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhu Fan
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Xu X, Fan Y, Yang X, Liu Y, Wang Y, Zhang J, Hou X, Fan Y, Zhang M. Anji white tea relaxes precontracted arteries, represses voltage-gated Ca 2+ channels and voltage-gated K + channels in the arterial smooth muscle cells: Comparison with green tea main component (-)-epigallocatechin gallate. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117855. [PMID: 38346524 DOI: 10.1016/j.jep.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
3
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Yao Q, Qiao H, Cheng Y, Du H, Zhang Y, Luo Y, Wang H, Liu S, Xu M, Xiong W. The role of green tea intake in thromboprophylaxis of venous thromboembolism in patients with cancer. Front Nutr 2024; 11:1296774. [PMID: 38757129 PMCID: PMC11096554 DOI: 10.3389/fnut.2024.1296774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Green tea intake has been reported to improve the clinical outcomes of patients with cardiovascular diseases or cancer. It may have a certain role in the development of venous thromboembolism (VTE) among cancer patients. The current study aimed to address this issue, which has been understudied. Methods We carried out a retrospective study to explore the role of green tea intake in cancer patients. Patients with and without green tea intake were enrolled in a 1:1 ratio by using propensity scoring matching. The primary and secondary outcomes were VTE development and mortality 1 year after cancer diagnosis, respectively. Results The cancer patients with green tea intake (n = 425) had less VTE development (10 [2.4%] vs. 23 [5.4%], p = 0.021), VTE-related death (7 [1.6%] vs. 18 [4.2%], p = 0.026), and fatal pulmonary embolism (PE) (3 [0.7%] vs. 12 [2.8%], p = 0.019), compared with those without green tea intake (n = 425). No intake of green tea was correlated with an increase in VTE development (multivariate hazard ratio (HR) 1.758 [1.476-2.040], p < 0.001) and VTE-related mortality (HR 1.618 [1.242-1.994], p = 0.001), compared with green tea intake. Patients with green tea intake less than 525 mL per day had increased VTE development (area under the curve (AUC) 0.888 [0.829-0.947], p < 0.001; HR1.737 [1.286-2.188], p = 0.001) and VTE-related mortality (AUC 0.887 [0.819-0.954], p < 0.001; HR 1.561 [1.232-1.890], p = 0.016) than those with green tea intake more than 525 mL per day. Green tea intake caused a decrease in platelet (p < 0.001) instead of D-dimer (p = 0.297). The all-cause mortality rates were similar between green tea (39 [9.2%]) and non-green tea (48 [11.3%]) intake groups (p = 0.308), whereas the VTE-related mortality rate in the green tea intake group (7 [1.6%]) was lower than that of the non-green tea intake group (18 [4.2%]) (p = 0.026). The incidences of adverse events were similar between the green tea and non-green tea intake groups. Conclusion In conclusion, the current study suggests that green tea intake reduces VTE development and VTE-related mortality in cancer patients, most likely through antiplatelet mechanisms. Drinking green tea provides the efficacy of thromboprophylaxis for cancer patients.
Collapse
Affiliation(s)
- Qihuan Yao
- Department of Traditional Chinese Medicine, Kongjiang Hospital, Shanghai, China
| | - Hongwei Qiao
- Department of Medical Oncology, Kongjiang Hospital, Shanghai, China
| | - Yi Cheng
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - He Du
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji, University School of Medicine, Shanghai, China
| | - Yanbin Zhang
- Department of TCM Dermatology, Kongjiang Hospital, Shanghai, China
| | - Yong Luo
- Department of Pulmonary and Critical Care Medicine, Chongming Hospital, Shanghai University of Medicine and Health Science, Shanghai, China
| | - Hongwei Wang
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Song Liu
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mei Xu
- Department of General Practice, North Bund Community Health Service Center, Shanghai, China
| | - Wei Xiong
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Zhu K, Zeng H, Yue L, Huang J, Ouyang J, Liu Z. The Protective Effects of L-Theanine against Epigallocatechin Gallate-Induced Acute Liver Injury in Mice. Foods 2024; 13:1121. [PMID: 38611425 PMCID: PMC11011850 DOI: 10.3390/foods13071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a main bioactive constituent in green tea. Being a redox-active polyphenol, high-dose EGCG exhibits pro-oxidative activity and could cause liver injury. L-theanine is a unique non-protein amino acid in green tea and could provide liver-protective effects. The purpose of this study was to investigate the hepatoprotective effects of L-theanine on EGCG-induced liver injury and the underlying mechanisms. A total of 300 mg/kg L-theanine was administrated to ICR mice for 7 days. Then, the acute liver injury model was established through intragastric administration of 1000 mg/kg EGCG. Pretreatment with L-theanine significantly alleviated the oxidative stress and inflammatory response caused by high-dose EGCG through modulation of Nrf2 signaling and glutathione homeostasis. Furthermore, metabolomic results revealed that L-theanine protects mice from EGCG-induced liver injury mainly through the regulation of amino acid metabolism, especially tryptophan metabolism. These findings could provide valuable insights into the potential therapeutic applications of L-theanine and highlight the importance of the interactions between dietary components.
Collapse
Affiliation(s)
- Kun Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Lin Yue
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jie Ouyang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| |
Collapse
|
6
|
Azami S, Forouzanfar F. Therapeutic potentialities of green tea (Camellia sinensis) in ischemic stroke: biochemical and molecular evidence. Metab Brain Dis 2024; 39:347-357. [PMID: 37721652 DOI: 10.1007/s11011-023-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Ischemic stroke is a leading cause of disability and death in patients. Despite considerable recent advances in the treatment of ischemic stroke, only a limited number of effective neuroprotective agents are available for stroke. Green tea (Camellia sinensis) is a popular herbal plant, and numerous studies have indicated its health benefits for several diseases. Green tea is of interest due to its high content of catechin derivatives, including epicatechin, gallocatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate. This review tried to develop a feasible background for the potential effects of green tea and its bioactive derivatives concerning protection against ischemic stroke. Green tea's antioxidants, anti-inflammatory, anti-apoptotic, and neuroprotective effects are believed to be efficacious in stroke treatment. Evidence supports the idea that green tea can be used to assist in treating ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Kwentoh I, Adelodun A, Bortier T, Ogbovoh D, Scott E. Positive Outcome in Catastrophic Momordica charantia-Associated Herb-Induced Liver Injury: A Tale of Two Cities - From Gonaives, Haiti to New York City. Cureus 2023; 15:e46597. [PMID: 37808602 PMCID: PMC10558137 DOI: 10.7759/cureus.46597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
Herb-induced liver injury (HILI) is a global concern due to the uptrend in Complementary and Alternative Medicine (CAM). The authors add to the current literature by reporting a case of a 61-year-old man with recent travel to Haiti. His past medical history include hepatitis C virus treated in 2021 with a sustained virologic response (SVR). He presented with profound weakness and abnormal liver transaminases in the thousands. It was initially unclear what the etiology of the patient's hepatocellular necrosis was, however, the level of abnormality was most consistent with either toxic metabolic injury or vascular ischemic injury. We initiated N-acetylcysteine and vitamin K and had a positive outcome. Upon further questioning, he admitted to consuming an herbal product cleansing tea called "asowosi" in large quantities. We searched the botanical name of the extract and found the active ingredient was Momordica charantia. The team utilized the updated Roussel Uclaf Causality Assessment Method (RUCAM), and the results demonstrated a highly probable relationship with M. charantia.
Collapse
Affiliation(s)
- Ifeoma Kwentoh
- Internal Medicine, Columbia University College of Physicians and Surgeons, Harlem Hospital Center, New York, USA
| | - Anuoluwapo Adelodun
- Internal Medicine, Columbia University College of Physicians and Surgeons, Harlem Hospital Center, New york, USA
| | - Theophilus Bortier
- Internal Medicine, Columbia University College of Physicians and Surgeons, Harlem Hospital Center, New York, USA
| | - Daniel Ogbovoh
- Psychiatry and Behavioral Sciences, Harlem Hospital Center, New York, USA
| | - Earl Scott
- Emergency Medicine, Harlem Hospital Center, New York, USA
| |
Collapse
|
8
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
10
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
11
|
Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr 2023; 10:1202378. [PMID: 37448666 PMCID: PMC10336229 DOI: 10.3389/fnut.2023.1202378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is the most important factor contributing to cardiovascular diseases (CVDs), and the incidence and severity of cardiovascular events tend to increase with age. Currently, CVD is the leading cause of death in the global population. In-depth analysis of the mechanisms and interventions of cardiovascular aging and related diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) are the general term for the polyhydroxy compounds contained in tea leaves, whose main components are catechins, flavonoids, flavonols, anthocyanins, phenolic acids, condensed phenolic acids and polymeric phenols. Among them, catechins are the main components of TPs. In this article, we provide a detailed review of the classification and composition of teas, as well as an overview of the causes of aging-related CVDs. Then, we focus on ten aspects of the effects of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery of endothelial function, anti-thrombosis, myocardial protective effect, to improve CVDs and the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kai Li
- General Surgery Department, The First People’s Hospital of Tai’an City, Tai’an, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Kim J, Lee JY, Kim CY. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023; 15:nu15112625. [PMID: 37299588 DOI: 10.3390/nu15112625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is characterized by an age-related loss of skeletal muscle mass and function and has been recognized as a clinical disease by the World Health Organization since 2016. Substantial evidence has suggested that dietary modification can be a feasible tool to combat sarcopenia. Among various natural dietary ingredients, the present study focused on botanical and marine extracts, phytochemicals, and probiotics. Aims of this review were (1) to provide basic concepts including the definition, diagnosis, prevalence, and adverse effects of sarcopenia, (2) to describe possible pathological mechanisms including protein homeostasis imbalance, inflammation, mitochondrial dysfunction, and satellite cells dysfunction, and (3) to analyze recent experimental studies reporting potential biological functions against sarcopenia. A recent literature review for dietary ingredients demonstrated that protein homeostasis is maintained via an increase in the PI3K/Akt pathway and/or a decrease in the ubiquitin-proteasome system. Regulation of inflammation has primarily targeted inhibition of NF-κB signaling. Elevated Pgc-1α or Pax7 expression reverses mitochondrial or satellite cell dysfunction. This review provides the current knowledge on dietary components with the potential to assist sarcopenia prevention and/or treatment. Further in-depth studies are required to elucidate the role of and develop various dietary materials for healthier aging, particularly concerning muscle health.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
13
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
14
|
Attar A, Altikatoglu Yapaoz M. The analysis of methylxanthine fractions obtained from Camellia sinensis cultivated in Turkey and effects on the in vitro inhibition of CYP2D6 enzyme. Biotechnol Appl Biochem 2023; 70:22-27. [PMID: 35196743 DOI: 10.1002/bab.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Tea is a worldwide consumed herbal beverage and it was aimed in this study to reveal the major fractions of green and black tea in order to enlighten the in vitro inhibition potency on the well-known drug metabolizing enzyme CYP2D6 activity. Methylxanthine fractions were extracted from green and black tea and a yield of 0.265 g (1.06%) for 25 g of dried black tea and 0.302 g (1.2%) for 25 g of green tea was calculated. High-performance liquid chromatography analysis represented that the major components of the methylxanthine fractions were caffeine, theobromine, and theophylline. Methylxanthine content of black tea was 368.25 ± 4.6 μg/ml caffeine, 89.30 ± 2.3 μg/ml theobromine, and 3.40 ± 0.5 μg/ml theophylline, whereas that of green tea was 176.50 ± 3.7 μg/ml caffeine, 53.85 ± 1.4 μg/ml theobromine, and 2.06 ± 0.7 μg/ml theophylline. The results of concentration-dependent inhibition studies were 76% green tea, 75% black tea, and 55% caffeine at concentration of 10 mg/ml. The inhibition rates of green and black tea on CYP2D6 activity were 76% and 75%, respectively, where that of quinidine, the well-known inhibitor of CYP2D6, was 82%. Our results indicate that green and black tea is very likely to modify the CYP2D6 enzyme activity.
Collapse
Affiliation(s)
- Azade Attar
- Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Faculty of Science and Letters, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Wiese F, Kutschan S, Doerfler J, Mathies V, Buentzel J, Buentzel J, Huebner J. Green tea and green tea extract in oncological treatment: A systematic review. INT J VITAM NUTR RES 2023; 93:72-84. [PMID: 33593083 DOI: 10.1024/0300-9831/a000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: Teas are an essential part of traditional phytotherapy. The aim of this systematic review is to assess the clinical evidence using green tea catechins in cancer care. Methods: A systematic search was conducted searching five electronic databases concerning the effectiveness and risks of epigallocatechin gallate (EGCG) on cancer patients. Results: Seven studies with 371 patients were included. Patients were mainly suffering from breast and prostate cancer. Dosing ranged from 28 mg to 1600 mg EGCG, intervention time from 7 days to 6 months with different applications (topical 2 studies; oral 5 studies). The studies showed heterogeneous methodological quality and results leading not to conduct a meta-analysis. There was a small decrease in prostate-specific-antigen levels in one study (N=60; T0:(mean±SD) 9.6±5.2 ng/ml, T1: 8.4±4.3 ng/ml vs. T0: 9.9±8.5 ng/ml, T1: 10.0±9.0 ng/ml; p=0.04), whereas in a second study only a trend was seen. Topical green tea was as effective as metronidazole powder in reducing the odor of fungating malignant wounds (1 study; N=30) with a consequent increase in quality of life (QoL) (p<0.001), improvement of appetite (p<0.001), malodorous control (p<0.001), social activities (p<0.001). Radiotherapy-induced diarrhea was lower in the green tea intervention group compared to placebo (1 study; N=42; week 4+5: without diarrhea p=0.002). Conclusions: The studies suggest that EGCG is as effective as a local antibiotic in malodorous control and improvement of QoL of fungating malignant wounds. Green tea could be a possible complementary method for treating acute radiation-induced diarrhea. Due to limitations, further studies with higher methodological quality and larger sample sizes are needed.
Collapse
Affiliation(s)
- Fanny Wiese
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | - Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | - Jennifer Doerfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| | | | - Jens Buentzel
- Klinik für HNO-Erkrankungen, Kopf-Hals-Chirurgie, Südharz-Klinikum Nordhausen, Germany
| | - Judith Buentzel
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Germany
| |
Collapse
|
16
|
Rago V, Di Agostino S. Novel Insights into the Role of the Antioxidants in Prostate Pathology. Antioxidants (Basel) 2023; 12:antiox12020289. [PMID: 36829848 PMCID: PMC9951863 DOI: 10.3390/antiox12020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
To date, it is known that antioxidants protect cells from damage caused by oxidative stress and associated with pathological conditions. Several studies have established that inflammation is a state that anticipates the neoplastic transformation of the prostate. Although many experimental and clinical data have indicated the efficacy of antioxidants in preventing this form of cancer, the discrepant results, especially from recent large-scale randomized clinical trials, make it difficult to establish a real role for antioxidants in prostate tumor. Despite these concerns, clinical efficacy and safety data show that some antioxidants still hold promise for prostate cancer chemoprevention. Although more studies are needed, in this review, we briefly describe the most common antioxidants that have shown benefits in preclinical and clinical settings, focusing our attention on synthesizing the advances made so far in prostate cancer chemoprevention using antioxidants as interesting molecules for the challenges of future therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (V.R.); (S.D.A.); Tel.: +39-0984-493005 (V.R.); Fax: +39-0984-493271 (V.R.)
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (V.R.); (S.D.A.); Tel.: +39-0984-493005 (V.R.); Fax: +39-0984-493271 (V.R.)
| |
Collapse
|
17
|
Silva TM, Fracasso DS, Vargas Visentin AP, Cassini C, Scariot FJ, Danetti S, Echeverrigaray S, Moura S, Touguinha LB, Branco CS, Salvador M. Dual effect of the herbal matcha green tea (Camellia sinensis L. kuntze) supplement in EA.hy926 endothelial cells and Artemia salina. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115564. [PMID: 35940467 DOI: 10.1016/j.jep.2022.115564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Matcha green tea (Camellia sinensis) based-supplements have been widely used since they present a greater content of phenolic compounds than traditional green tea, which is popularly used in the treatment of diabetes. However, there are few studies on the effectiveness and safety of matcha supplements. AIM OF THE STUDY This work aimed to evaluate the efficacy and safety of this supplement in endothelial cells (EA.hy926) in the hyperglycemic model and in vivo Artemia salina. MATERIALS AND METHODS To assess the effect of Matcha herbal supplement (MHS), EA. hy926 endothelial cells were treated with 20 μg/mL of MHS for 24 h, in a hyperglycemic medium with 35 mM glucose. After treatment, cells were trypsinized and centrifuged at 4 °C and 47×g for 5 min. The pellet was used to determine the reaction products to thiobarbituric acid and the levels of nitric oxide. Electron transport chain activity and ATP levels were also evaluated. Intracellular pH, apoptosis, and mitochondrial membrane depolarization were evaluated by flow cytometry. MHS chemical characterization was performed by HPLC-UV and total phenolic content analysis. The evaluation of the antioxidant capacity of MHS was performed by 2,2-diphenyl-1-picrylhydrazyl radical scavenger assay. To determine the in vivo acute toxicity of MHS, an A. salina assay was conducted, using 0,2 mL of different concentrations of MHS (10, 50, 100, 250, 500, 750 and 1000 μg/mL). The LD50 values were obtained by interpolation of 50% (y = 50) of the dead individuals in the trend curves. RESULTS Our data showed that MHS was able to avoid oxidative and nitrosative stress induced by hyperglycemia, demonstrating important antioxidant activity. However, it was observed that MHS reduced up to 90% the activity of the four-electron transport complexes, reducing the ATP production of the endothelial cells. In the toxicity assay performed in Artemia salina, MHS showed mild toxicity (LD50 = 0,4 mg/mL). The major compounds found in MHS were epigallocatechin gallate, epicatechin, rutin, kaempferol, and quercetin. CONCLUSIONS This data draws attention to the fact that supplements with high content of phenolic compounds, capable of avoiding oxidative and nitrosative stress can have a dual effect and, simultaneously to antioxidant activity, can induce toxicity in different cell types.
Collapse
Affiliation(s)
- Tuani Mendes Silva
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Débora Soligo Fracasso
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Ana Paula Vargas Visentin
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Carina Cassini
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Fernando Joel Scariot
- Laboratório de Enologia e Microbiologia Aplicada, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sidineia Danetti
- Laboratório de Biotecnologia, Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sergio Echeverrigaray
- Laboratório de Enologia e Microbiologia Aplicada, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sidnei Moura
- Laboratório de Biotecnologia, Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Luciana Bavaresco Touguinha
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Catia Santos Branco
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Mirian Salvador
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| |
Collapse
|
18
|
Mehany HM, El-Shafai NM, Attia AM, Ibrahim MM, El-Mehasseb IM. Potential of chitosan nanoparticle/fluoride nanocomposite for reducing the toxicity of fluoride an in-vivo study on the rat heart functions: Hematopoietic and immune systems. Int J Biol Macromol 2022; 216:251-262. [PMID: 35780919 DOI: 10.1016/j.ijbiomac.2022.06.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 01/15/2023]
Abstract
The present work-study the decreasing fluoride ions toxicity on the rat heart via loading them on the chitosan nanoparticles (Cs NPs) surface to form the biologically compatible composite (Cs@NaF). The obtained nanocomposite was characterized by different techniques such as field emission scanning electron microscopy (FEG-SEM), zeta potential, and x-ray diffraction (XRD). The biochemical parameters in the albino rats perform, where twenty-eight male adult Sprague Dawley rats (average body weight of 150 ± 10 g) were obtained from the Faculty of Agriculture, Alexandria University, then acclimatized for two weeks before the experiment and divided into four groups in galvanized wire cages at room temperature (22-25 °C) with a 12-h photoperiod and fed a well-balanced commercial diet. The blood samples were obtained from the vena cava of the rat heart via estimation of the troponin T, Lactate dehydrogenase, and creatine phosphokinase. Also, immunoglobulins (IgA, IgM, and IgG) and hematological measurements have been performed on the rat heart. To express all of the data, the mean and standard error of the mean are utilized by (ANOVA), followed by Tukey's multiple comparison test. The modified chitosan with fluoride decreases the toxicity of fluoride via improving the rat heart function due to the presence of Cs NPs helped to mitigate some of the negative effects of fluoride therapy.
Collapse
Affiliation(s)
- Hany M Mehany
- Biochemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Ahmed M Attia
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
19
|
Effect of Green Tea on the Level of Salivary Interleukin-1 Beta in Patients with Chronic Periodontitis: A Randomized Clinical Trial. Int J Dent 2022; 2022:8992313. [PMID: 35706460 PMCID: PMC9192211 DOI: 10.1155/2022/8992313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Interleukin-1 beta (IL-1β) is one of the major biomarkers involved in the pathogenesis of chronic periodontitis. The aim of this study was to evaluate the changes in salivary IL-1β concentration in patients with chronic periodontitis following daily consumption of green tea. Methods and Materials Thirty patients with an average age of 45.8 years suffering from chronic periodontitis were randomly assigned into 2 groups (i.e., experimental and control groups). Besides receiving phase 1 periodontal treatment (scaling and root planning (SRP)), the experimental group drank green tea for a period of 6 weeks. To measure the concentration of salivary IL-1β, saliva samples were taken from both groups at 2 time points, i.e., prior to SRP (time point 1 (T0)) and after 6 weeks (time point 2 (T1)). The nonparametric Wilcoxon test was used to examine and compare the changes in the concentration of salivary IL-1β in each group relevant to the 2 time points (T0 and T1). Data were submitted to statistical analysis. Results At the end of the study period, a significant reduction (P=0.0001) in the concentration of salivary IL-1β was observed in the experimental group (A). As for the control group (B), however, there was no significant change (P=0.307) in the concentration of salivary IL-1β after 6 weeks following phase 1 periodontal treatment. Conclusion Green tea supplementation, in addition to SRP, may reduce salivary IL-1β levels in patients with chronic periodontitis for a period of 6 weeks.
Collapse
|
20
|
Mariano LNB, Boeing T, da Silva RDCV, da Silva LM, Gasparotto-Júnior A, Cechinel-Filho V, de Souza P. Exotic Medicinal Plants Used in Brazil with Diuretic Properties: A Review. Chem Biodivers 2022; 19:e202200258. [PMID: 35544364 DOI: 10.1002/cbdv.202200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Several exotic plants (non-native) are used in Brazilian traditional medicine and are known worldwide for their possible diuretic actions. Among the wide variety of plants, standing out Achillea millefolium L., Camellia sinensis L. Kuntze, Crocus sativus L., Hibiscus sabdariffa Linn., Petroselinum crispum (Mill.) A.W. Hill, Taraxacum officinale (L.) Weber, and Urtica dioica L., whose effects have already been the subject of some scientific study. In addition, we also discussed other exotic species in Brazil used popularly, but that still lack scientific studies, like the species Arctium lappa L., Carica papaya L., Catharanthus roseus (L.) G. Don, Centella asiatica (L.) Urb, Citrus aurantium L., and Persea americana Mill. However, generally, clinical studies on these plants are scarce. In this context, different plant species can be designated for further comprehensive studies, therefore, promoting support for developing an effective medicine to induce diuresis.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Arquimedes Gasparotto-Júnior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| |
Collapse
|
21
|
Allkanjari O, Menniti-Ippolito F, Ippoliti I, Di Giacomo S, Piccioni T, Vitalone A. A descriptive study of commercial herbal dietary supplements used for dyslipidemia-Sales data and suspected adverse reactions. Phytother Res 2022; 36:2583-2604. [PMID: 35524700 PMCID: PMC9321615 DOI: 10.1002/ptr.7473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
Abstract
Herbal dietary supplements (HDS) used for dyslipidemia represent a category of concern in Italy for suspected adverse reactions (ARs). However, we cannot estimate their safety, as we do not know their commercial profile. Sales data of HDS, and particularly, those used for dyslipidemia, were monitored for 2 years in two pharmacies of Rome. Meanwhile, spontaneous reports of suspected ARs potentially related to dyslipidemia supplements were collected by the Italian Phytovigilance System. The 50% of the total dietary supplements are herbal-derived; the 9% of HDS are recommended for dyslipidemia. From our data, 113 different brands have claims for improving lipids profile and 91% of them are multiingredient preparations. Fifteen spontaneous reports of suspected ARs concerned HDS used, for dyslipidemia. The most frequent ARs were joint, abdominal, and muscles pain; vomiting; erythema and hematological disorders; nausea; and rhabdomyolysis. Our findings point out the limited compliance of commercial dyslipidemia-HDS and scientific research about their intrinsic safety. A wide range of ingredients could not support the risk/benefit profile of the supplement. The variable compositions of HDS do not assure the safety, as they do not support the reproducibility of their pharmacological activities. This study could contribute to optimize consumer guidance about what they purchase and consume.
Collapse
Affiliation(s)
- Olta Allkanjari
- Department of Physiology and Pharmacology 'Vittorio Erspamer', Sapienza University of Rome, Rome, Italy
| | | | - Ilaria Ippoliti
- National Centre for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology 'Vittorio Erspamer', Sapienza University of Rome, Rome, Italy
| | | | - Annabella Vitalone
- Department of Physiology and Pharmacology 'Vittorio Erspamer', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
23
|
Pan SY, Nie Q, Tai HC, Song XL, Tong YF, Zhang LJF, Wu XW, Lin ZH, Zhang YY, Ye DY, Zhang Y, Wang XY, Zhu PL, Chu ZS, Yu ZL, Liang C. Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 2022; 17:27. [PMID: 35193642 PMCID: PMC8861626 DOI: 10.1186/s13020-022-00571-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. Methods We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word “tea”, and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea’s history, culture, customs, experimental studies, and markets. Results China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people’s health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world’s top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. Conclusions Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Hai-Chuan Tai
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yu-Fan Tong
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Long-Jian-Feng Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Wei Wu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Zhao-Heng Lin
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yong-Yu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Du-Yun Ye
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pei-Li Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhu-Sheng Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China. .,EnKang Pharmaceuticals (Guangzhou) Ltd, Guangzhou, China.
| |
Collapse
|
24
|
Mohammed HRH, El Bolok AHM, Elgayar SF, Ali Sholqamy MI. Evaluation the Effect of Natural Compounds: Vitamin C, Green Tea, and their Combination on Progression of Mg-63 Osteosarcoma Cell Line Cells. (An In Vitro Study). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Osteosarcoma (OS) is considered extremely rare type of bone tumor although it is the most common type of malignant bone tumor in children with less common occurrence in elderly patients. Herbal plants and phytoconstituents are recently used in the treatment of OS to avoid the side effects of chemotherapeutic drugs.
AIM: The aims of the present study are to investigate the effect of natural compound Vitamin C, green tea, and their combination on OS cell line (Mg-63 cells) after 72 h.
MATERIAL AND METHODS: Mg-63 cells were obtained from Nawah scientific and divided to four groups: Control untreated cells, Vitamin C treated group, green tea treated group, and Vitamin C and green tea treated group (compounds combination treated group). The viability of treated cells was examined by sulforhodamine B (SRB) assay. Antioxidant 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay was performed to investigate the antioxidant property of Vitamin C, green tea, and their combination. Flow cytometer analysis was applied to demonstrate cell cycle analysis and apoptosis. Wound width and cell migration were calculated by wound healing assay.
RESULTS: SRB cytotoxic assay revealed that the Vitamin C, green tea, and their combination have a cytotoxic effect on MG-63 cells and Vitamin C has more cytotoxic effect than other two groups. Antioxidant DPPH assay showed that Vitamin C is more antioxidant agent than green tea and their combination on MG-63 cells. Flow cytometry assay revealed that the all-treated cells in different groups are arrested in cell cycle. Vitamin C, green tea, and their combination induced apoptosis and necrosis. Migration of MG-63 cells is inhibited after treated by Vitamin C, green tea, and their combination.
CONCLUSION: Vitamin C, green tea, and their combination have cytotoxic effect on Mg-63 cells, also induced their effects on the cell cycle distribution and apoptosis. Anti-oxidant test was applied on three drugs revealed the powerful anti-oxidant capacity of Vitamin C than green tea and their combination. At least wound healing test was applied on malignant Mg-63 cells treated with our drugs that revealed Vitamin C was more effective.
Collapse
|
25
|
Abstract
Brewed tea (Camellia sinensis) is a major dietary source of flavonoids, in particular flavan-3-ols. Tea consumption has been suggested to be inversely associated with a decreased risk of cardiovascular disease (CVD). Several biological mechanisms support the inverse relationship between tea flavonoid intake and CVD risk. Given the recent accumulating evidence from various systematic reviews regarding the role of tea as a beverage in reducing CVD risk and severity, we conducted an umbrella review to describe and critically evaluate the totality of evidence to date. We searched the PubMed, Web of Science, Cochrane Database of Systematic Reviews, and BIOSIS databases for systematic reviews published between January 1, 2010 and February 22, 2020 reporting relationships between tea (C. sinensis) consumption and CVD mortality, CVD diagnosis or incidence, CVD events, stroke events, blood pressure, endothelial function, blood lipids and triglycerides, and inflammatory markers. Herein, we describe results from 23 included systematic reviews. Consistently consuming 2 cups of unsweet tea per day offers the right levels of flavonoids to potentially decrease CVD risk and its progression. This is supported by the consistency between a recent high-quality systematic review and dose-response meta-analyses of population-based studies demonstrating beneficial effects of consumption on CVD mortality, CVD events and stroke events and medium- to high-quality systematic reviews of intervention studies that further elucidate potential benefits on both validated (i.e., SBP, DBP, total cholesterol, and LDL-cholesterol) and emerging risk biomarkers of CVD (TNF-ɑ and IL-6). On the basis of this umbrella review, the consumption of tea as a beverage did not seem to be harmful to health; therefore, the benefits of moderate consumption likely outweigh risk. Future large, clinical intervention studies will provide better mechanistic insight with the ability to confirm the outcome effects shown across observational studies. The review protocol was registered on PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) as CRD42020218159.KEY MESSAGESIt is reasonable to judge that 2 cups of unsweet tea per day has the potential to decrease CVD risk and progression due to its flavonoid content.The primary side effects of tea documented in human studies are hepatotoxicity and gastrointestinal disturbances (i.e., vomiting and diarrhea) after high-dose supplemental intake.Additional clinical research is needed to fully elucidate the effects of tea flavonoids on markers of CVD, as many studies were under-powered to detect changes.[Figure: see text].
Collapse
Affiliation(s)
- Abby Keller
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
| | | |
Collapse
|
26
|
Tarawneh IN. Polycyclic Aromatic Hydrocarbons and Some of Organochlorine Pesticide Residues and Health Risk Assessments in Commonly Consumed Teas in Jordan. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2006246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
28
|
Zhao L, Sun QY, Ge ZJ. Potential role of tea extract in oocyte development. Food Funct 2021; 12:10311-10323. [PMID: 34610081 DOI: 10.1039/d1fo01725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China. .,Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
29
|
Mohsenzadeh MS, Razavi BM, Imenshahidi M, Tabatabaee Yazdi SA, Mohajeri SA, Hosseinzadeh H. Potential role of green tea extract and epigallocatechin gallate in preventing bisphenol A-induced metabolic disorders in rats: Biochemical and molecular evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153754. [PMID: 34607205 DOI: 10.1016/j.phymed.2021.153754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an artificial chemical widely used in the production of polycarbonate plastics and epoxy resins. Accumulating evidence indicates that BPA exposure is associated with metabolic disorders. The beneficial effects of green tea and epigallocatechin gallate (EGCG), major catechin present in green tea, on alleviating BPA-induced metabolic disorders have been shown in various studies. PURPOSE Protective effects of green tea extract and EGCG on BPA-induced metabolic disorders and possible underlying mechanisms were investigated. METHODS Rats were randomly divided into control, green tea extract (50 and 100 mg/kg, IP), EGCG (20 and 40 mg/kg, IP), BPA (10 mg/kg, gavage), BPA plus green tea extract (25, 50, and 100 mg/kg, IP), BPA plus EGCG (10, 20, and 40 mg/kg, IP), and BPA plus vitamin E (200 IU/kg, IP). After two months, body weight, blood pressure, biochemical blood tests, hepatic malondialdehyde (MDA), and glutathione (GSH) were assessed. By enzyme-linked immunosorbent assay, serum levels of insulin, leptin, adiponectin, TNFα, and IL-6, and by western blotting, hepatic insulin signaling (IRS-1, PI3K, Akt) were measured. RESULTS BPA increased body weight, blood pressure, and MDA, decreased GSH, elevated serum levels of low-density lipoprotein cholesterol, total cholesterol, triglyceride, glucose, insulin, leptin, TNFα, IL-6, and liver enzymes including alanine aminotransferase and alkaline phosphatase, and lowered high-density lipoprotein cholesterol and adiponectin levels. In western blot, decreased phosphorylation of IRS-1, PI3K, and Akt was obtained. Administration of green tea extract, EGCG, or vitamin E with BPA reduced the detrimental effects of BPA. CONCLUSION These findings indicate that green tea extract and EGCG can be effective in preventing or reducing metabolic disorders induced by BPA linked to their antioxidant and anti-inflammatory activity, regulating the metabolism of lipids, and improving insulin signaling pathways.
Collapse
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Percevault S, Charpiat B, Lebossé F, Mabrut JY, Vial T, Colom M. Green tea and hepatoxicity: Two case reports. Therapie 2021; 77:620-622. [PMID: 34776253 DOI: 10.1016/j.therap.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Soizic Percevault
- Hospices civils de Lyon, service hospitalo-universitaire de pharmaco-toxicologie, 69003 Lyon, France
| | - Bruno Charpiat
- Hospices civils de Lyon, service de pharmacie, hôpital de la Croix-Rousse, 69001 Lyon, France
| | - Fanny Lebossé
- Hospices civils de Lyon, service d'hépatologie, hôpital de la Croix-Rousse, 69004 Lyon, France
| | - Jean-Yves Mabrut
- Service de chirurgie digestive et transplantation hépatique, CHU de la Croix-Rousse, université Lyon, 69004 Lyon, France
| | - Thierry Vial
- Hospices civils de Lyon, service hospitalo-universitaire de pharmaco-toxicologie, 69003 Lyon, France
| | - Matthieu Colom
- Hospices civils de Lyon, service hospitalo-universitaire de pharmaco-toxicologie, 69003 Lyon, France.
| |
Collapse
|
31
|
Bhattacharya S, Paul SMN. Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. Virusdisease 2021; 32:435-445. [PMID: 34189187 PMCID: PMC8224255 DOI: 10.1007/s13337-021-00706-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Throughout history, disease outbreaks have worked havoc upon humanity, sometimes reorienting the history and at times, signaling the end of entire civilizations and the modern pandemic that the world is dealing with, is COVID-19 or SARS-CoV-2. A healthy immunity could be an ideal gear for resisting COVID-19 for neither medicines nor vaccines have been ascertained till date. In view of the present scenario, there is a demanding necessity to analyze innovative and valid techniques for forestalling and cure of COVID-19 by re-evaluating the structure of the natural compounds for drug designing. The Ayurveda has come forward by prescribing a lot of medicinal herbs for combating this dreaded disease. We have searched from sources in Pubmed and Google Scholar and found 1509 items. The search criteria were limited to the effect of phytochemicals in certain immunomodulatory aspects of viral infection. The original research papers related to the works on phytochemicals in the down regulation of NF-kB, activation of NK and CD8+ cells, inhibition of inflammatory cytokine release and ROS scavenging were included in our study. Here, we try to focus on the immunoregulatory cells which have a vital aspect in COVID-19 and highlight the potential effects of the restorative use of phytochemicals as drugs or dietary supplements. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00706-2.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal 743165 India
| | | |
Collapse
|
32
|
Dimmito MP, Stefanucci A, Della Valle A, Scioli G, Cichelli A, Mollica A. An overview on plants cannabinoids endorsed with cardiovascular effects. Biomed Pharmacother 2021; 142:111963. [PMID: 34332376 DOI: 10.1016/j.biopha.2021.111963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Nowadays cardiovascular diseases (CVDs) are the major causes for the reduction of the quality of life. The endocannabinoid system is an attractive therapeutic target for the treatment of cardiovascular disorders due to its involvement in vasomotor control, cardiac contractility, blood pressure and vascular inflammation. Alteration in cannabinoid signalling can be often related to cardiotoxicity, circulatory shock, hypertension, and atherosclerosis. Plants have been the major sources of medicines until modern eras in which researchers are experiencing a rediscovery of natural compounds as novel therapeutics. One of the most versatile plant is Cannabis sativa L., containing phytocannabinoids that may play a role in the treatment of CVDs. The aim of this review is to collect and investigate several less studied plants rich in cannabinoid-like active compounds able to interact with cannabinoid system; these plants may play a pivotal role in the treatment of disorders related to the cardiovascular system.
Collapse
Affiliation(s)
- Marilisa Pia Dimmito
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Della Valle
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
33
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
34
|
Sirotkin AV, Kolesárová A. The anti-obesity and health-promoting effects of tea and coffee. Physiol Res 2021; 70:161-168. [PMID: 33992045 DOI: 10.33549/physiolres.934674] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This paper reviews provenance, chemical composition and properties of tea (Camelia sinensis L.) and coffee (Coffee arabica, L. and Coffeacaniphora, L.), their general health effects, as well as the currently available knowledge concerning their action on fat storage, physiological mechanisms of their effects, as well as their safety and recommended dosage for treatment of obesity. Both tea and coffee possess the ability to promote health and to prevent, to mitigate and to treat numerous disorders. This ability can be partially due to presence of caffeine in both plants. Further physiological and medicinal effects could be explained by other molecules (theaflavins, catechins, their metabolites and polyphenols in tea and polyphenol chlorogenic acid in coffee). These plants and plant molecules can be efficient for prevention and treatment of numerous metabolic disorders including metabolic syndrome, cardiovascular diseases, type 2 diabetes and obesity. Both plants and their constituents can reduce fat storage through suppression of adipocyte functions, and support of gut microbiota. In addition, tea can prevent obesity via reduction of appetite, food consumption and food absorption in gastrointestinal system and through the changes in fat metabolism.
Collapse
Affiliation(s)
- A V Sirotkin
- Faculty of Natural Science, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
35
|
EGCG, a Green Tea Catechin, as a Potential Therapeutic Agent for Symptomatic and Asymptomatic SARS-CoV-2 Infection. Molecules 2021; 26:molecules26051200. [PMID: 33668085 PMCID: PMC7956763 DOI: 10.3390/molecules26051200] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged to be the greatest threat to humanity in the modern world and has claimed nearly 2.2 million lives worldwide. The United States alone accounts for more than one fourth of 100 million COVID-19 cases across the globe. Although vaccination against SARS-CoV-2 has begun, its efficacy in preventing a new or repeat COVID-19 infection in immunized individuals is yet to be determined. Calls for repurposing of existing, approved, drugs that target the inflammatory condition in COVID-19 are growing. Our initial gene ontology analysis predicts a similarity between SARS-CoV-2 induced inflammatory and immune dysregulation and the pathophysiology of rheumatoid arthritis. Interestingly, many of the drugs related to rheumatoid arthritis have been found to be lifesaving and contribute to lower COVID-19 morbidity. We also performed in silico investigation of binding of epigallocatechin gallate (EGCG), a well-known catechin, and other catechins on viral proteins and identified papain-like protease protein (PLPro) as a binding partner. Catechins bind to the S1 ubiquitin-binding site of PLPro, which might inhibit its protease function and abrogate SARS-CoV-2 inhibitory function on ubiquitin proteasome system and interferon stimulated gene system. In the realms of addressing inflammation and how to effectively target SARS-CoV-2 mediated respiratory distress syndrome, we review in this article the available knowledge on the strategic placement of EGCG in curbing inflammatory signals and how it may serve as a broad spectrum therapeutic in asymptomatic and symptomatic COVID-19 patients.
Collapse
|
36
|
Boozari M, Hosseinzadeh H. Preventing contrast-induced nephropathy (CIN) with herbal medicines: A review. Phytother Res 2020; 35:1130-1146. [PMID: 33015894 DOI: 10.1002/ptr.6880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Currently, the use of iodinated contrast media in diagnostic imaging has been increased in clinical medicine. Contrast-induced nephropathy (CIN) is an important adverse effect of contrast media injection. According to the significant role of oxidative stress in the pathophysiology of CIN, different herbal antioxidants have been used for the prevention of nephropathy in different studies. In this review, we discussed the preventive effects of herbal medicine and natural products against CIN. METHODS We searched the electronic databases or search engines including PubMed, Scopus, ISI, Google Scholar with search terms such as "Contrast-induced nephropathy" and "Herbal medicine," "Contrast acute kidney injury" AND "natural products" and similar headings such as plant and extract. RESULTS Known medicinal plants and active ingredients such as green tea, ginger, garlic, silymarin, curcumin, resveratrol, and thymoquinone have been examined for prophylactic effects or treatment of contrast media nephropathy. CONCLUSION Herbal medicines have promising effects in the laboratory-based studies for the prevention and/or treatment of CIN. However, more practical and completed clinical trials are needed to investigate the clinical benefits of natural products against CIN.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
38
|
Mohsenzadeh MS, Razavi BM, Imenshahidi M, Mohajeri SA, Rameshrad M, Hosseinzadeh H. Evaluation of green tea extract and epigallocatechin gallate effects on bisphenol A-induced vascular toxicity in isolated rat aorta and cytotoxicity in human umbilical vein endothelial cells. Phytother Res 2020; 35:996-1009. [PMID: 32893422 DOI: 10.1002/ptr.6861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to assess bisphenol A (BPA)-induced vascular toxicity, the effectiveness of green tea extract and epigallocatechin gallate (EGCG) against BPA toxicity, and possible underlying mechanisms. In isolated rat aorta, contractile and relaxant responses as well as malondialdehyde levels were evaluated. Cell viability and effects on the protein levels of apoptotic (bax, bcl2, and caspase-3), autophagic (LC3), and cell adhesion molecules were calculated using the MTT method and western blotting in human umbilical vein endothelial cells (HUVECs). BPA increased aorta MDA levels (p < .0001) and decreased vascular responses to KCl [20 and 40 mM (p < .0001), 80 mM (p < .001)], phenylephrine [10-8 , 10-6 , and 10-5 M (p < .001), 10-7 and 10-4 M (p < .0001)], and acetylcholine [10-6 M (p < .01), 10-5 and 10-4 M (p < .0001)]. In HUVECs, BPA enhanced the levels of LC3A/B, bax/bcl2 ratio, cleaved caspase-3, and vascular cell adhesion molecule-1. Green tea extract, EGCG, and vitamin E co-treatment with BPA diminished the toxic effects of BPA. These findings provide evidence that green tea extract and EGCG possess beneficial effects in preventing BPA-induced vascular toxicity through increasing the antioxidant activities and the regulation of signaling pathways.
Collapse
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9723686. [PMID: 32850004 PMCID: PMC7441425 DOI: 10.1155/2020/9723686] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the major polyphenolic compound present in green tea and is generally regarded as an effective antioxidant. However, its chemical reactivity makes it susceptible to generate reactive oxygen species (ROS) via autooxidation and exhibit prooxidant effects. The prooxidant actions of EGCG could play a dual role, being both beneficial and harmful. This review summarized recent research progress on (1) the anticancer, antiobesity, and antibacterial effects of EGCG and (2) the possible toxicity of EGCG. The major focus is on the involvement of prooxidant effects of EGCG and their effective doses used. Considering dosage is a crucial factor in the prooxidant effects of EGCG; further studies are required to find the appropriate dose at which EGCG could bring more health benefits with lower toxicity.
Collapse
|
40
|
Qin L, Guo L, Xu B, Hsueh CC, Jiang M, Chen BY. Exploring community evolutionary characteristics of microbial populations with supplementation of Camellia green tea extracts in microbial fuel cells. J Taiwan Inst Chem Eng 2020; 113:214-222. [PMID: 32904523 PMCID: PMC7455116 DOI: 10.1016/j.jtice.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
This first-attempt study deciphered combined characteristics of species evolution and bioelectricity generation of microbial community in microbial fuel cells (MFCs) supplemented with Camellia green tea (GT) extracts for biomass energy extraction. Prior studies indicated that polyphenols-rich extracts as effective redox mediators (RMs) could exhibit significant electrochemical activities to enhance power generation in MFCs. However, the supplementation of Camellia GT extract obtained at room temperature with significant redox capabilities into MFCs unexpectedly exhibited obvious inhibitory effect towards power generation. This systematic study indicated that the presence of antimicrobial components (especially catechins) in GT extract might significantly alter the distribution of microbial community, in particular a decrease of microbial diversity and evenness. For practical applications to different microbial systems, pre-screening criteria of selecting biocompatible RMs should not only consider their promising redox capabilities (abiotic), but also possible inhibitory potency (biotic) to receptor microbes. Although Camellia tea extract was well-characterized as GRAS energy drink, some contents (e.g., catechins) may still express inhibition towards organisms and further assessment upon biotoxicity may be inevitably required for practice.
Collapse
Affiliation(s)
- Lianjie Qin
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Lili Guo
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
41
|
Yang F, Zhang Y, Tariq A, Jiang X, Ahmed Z, Zhihao Z, Idrees M, Azizullah A, Adnan M, Bussmann RW. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother Res 2020; 34:3124-3136. [PMID: 32468635 PMCID: PMC7283886 DOI: 10.1002/ptr.6770] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022]
Abstract
The recent and ongoing outbreak of coronavirus disease (COVID‐19) is a huge global challenge. The outbreak, which first occurred in Wuhan City, Hubei Province, China and then rapidly spread to other provinces and to more than 200 countries abroad, has been declared a global pandemic by the World Health Organization. Those with compromised immune systems and/or existing respiratory, metabolic or cardiac problems are more susceptible to the infection and are at higher risk of serious illness or even death. The present review was designed to report important functional food plants with immunomodulatory and anti‐viral properties. Data on medicinal food plants were retrieved and downloaded from English‐language journals using online search engines. The functional food plants herein documented might not only enhance the immune system and cure respiratory tract infections but can also greatly impact the overall health of the general public. As many people in the world are now confined to their homes, inclusion of these easily accessible plants in the daily diet may help to strengthen the immune system and guard against infection by SARS‐CoV‐2. This might reduce the risk of COVID‐19 and initiate a rapid recovery in cases of SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Fan Yang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yue Zhang
- The Medical Center of General Practice and Nephrology Department, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolan Jiang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zeeshan Ahmed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhihao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Xinjiang Institute of Ecology and Geography, Cele, Xinjiang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Idrees
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
| | - Azizullah Azizullah
- Department of Botanical Studies and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical Studies and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
42
|
ÇAM ME. Camellia sinensis leaves hydroalcoholic extract improves the Alzheimer's disease-like alterations induced by type 2 diabetes in rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.685280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
The Pharmacological Activity of Camellia sinensis (L.) Kuntze on Metabolic and Endocrine Disorders: A Systematic Review. Biomolecules 2020; 10:biom10040603. [PMID: 32294991 PMCID: PMC7226397 DOI: 10.3390/biom10040603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tea made from Camellia sinensis leaves is one of the most consumed beverages worldwide. This systematic review aims to update Camellia sinensis pharmacological activity on metabolic and endocrine disorders. Inclusion criteria were preclinical and clinical studies of tea extracts and isolated compounds on osteoporosis, hypertension, diabetes, metabolic syndrome, hypercholesterolemia, and obesity written in English between 2014 and 2019 and published in Pubmed, Science Direct, and Scopus. From a total of 1384 studies, 80 reports met inclusion criteria. Most papers were published in 2015 (29.3%) and 2017 (20.6%), conducted in China (28.75%), US (12.5%), and South Korea (10%) and carried out with extracts (67.5%, especially green tea) and isolated compounds (41.25%, especially epigallocatechin gallate). Most pharmacological studies were in vitro and in vivo studies focused on diabetes and obesity. Clinical trials, although they have demonstrated promising results, are very limited. Future research should be aimed at providing more clinical evidence on less studied pathologies such as osteoporosis, hypertension, and metabolic syndrome. Given the close relationship among all endocrine disorders, it would be of interest to find a standard dose of tea or their bioactive constituents that would be beneficial for all of them.
Collapse
|
44
|
Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 2020; 7:386-402. [PMID: 32140423 PMCID: PMC7044683 DOI: 10.1016/j.toxrep.2020.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."
Collapse
Key Words
- ADME, Absorption, distribution, metabolism, and excretion
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, area under the curve
- Bw, body weight
- C, Catechin
- CAM, causality assessment method
- CG, (+)‐catechin‐3‐gallate
- CIH, Concanavalin A-induced hepatitis
- CMC, chemistry, manufacturing, and controls
- COMT, catechol‐O‐methyltransferase
- Camellia sinensis
- ConA, Concanavalin A
- DILI, drug‐induced liver injury
- DILIN, Drug‐Induced Liver Injury Network
- DO, Diversity Outbred
- DS, Dietary Supplement
- DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee
- Dietary supplements
- EC, (–)‐epicatechin
- ECG, (‐)‐epicatechin‐3‐gallate
- EFSA, European Food Safety Authority
- EGC, (–)‐epigallocatechin
- EGCG, (–)‐epigallocatechin‐3‐gallate
- FDA, United States Food and Drug Administration
- GC, (+)‐gallocatechin
- GCG, (–)‐gallocatechin‐3‐gallate
- GT(E), green tea or green tea extract
- GT, green tea
- GTE, green tea extract
- GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel
- Green tea
- Green tea extract
- HDS, herbal dietary supplement
- HPMC, Hydroxypropyl methylcellulose
- Hepatotoxicity
- LD50, lethal dose, median
- LFT(s), liver function test(s)
- LT(s), Liver test(s)
- Liver injury
- MGTT, Minnesota Green Tea Trial
- MIDS, multi-ingredient dietary supplement
- MRL, maximum residue limit
- NAA, N-acetyl aspartate
- NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases
- NIH, National Institutes of Health
- NOAEL, no observed adverse effect level
- NTP, National Toxicology Program
- OSM, online supplementary material
- PAs, Pyrrolizidine Alkaloids
- PD-1, Programmed death domain-1
- PDGTE, powdered decaffeinated green tea extract
- PK/PD, pharmacokinetics and pharmacodynamics
- RUCAM, Roussel Uclaf Causality Assessment Method
- SIDS, single-ingredient dietary supplement
- TGF-beta, Transforming growth factor beta
- USP, United States Pharmacopeia
- γ-GT, Gamma-glutamyl transferase
Collapse
Affiliation(s)
- Hellen A. Oketch-Rabah
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Amy L. Roe
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Vice Chair, (USP GTEH EP, 2015-2020 cycle)
| | - Cynthia V. Rider
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Herbert L. Bonkovsky
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Gabriel I. Giancaspro
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Victor Navarro
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Mary F. Paine
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph M. Betz
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Robin J. Marles
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Steven Casper
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
| | - Bill Gurley
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Scott A. Jordan
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Kan He
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Mahendra P. Kapoor
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Theertham P. Rao
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Averell H. Sherker
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Robert J. Fontana
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simona Rossi
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | | | - Leonard B. Seeff
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Andrew Stolz
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Jawad Ahmad
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Christopher Koh
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Drive, Building 10, Rm 9B-16, Bethesda, MD, 20892,USA
| | - Jose Serrano
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Tieraona Low Dog
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Richard Ko
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Chair (USP GTEH EP, 2015-2020 cycle)
| |
Collapse
|
45
|
Li W, Tan L, Zou Y, Tan X, Huang J, Chen W, Tang Q. The Effects of Ultraviolet A/B Treatments on Anthocyanin Accumulation and Gene Expression in Dark-Purple Tea Cultivar 'Ziyan' ( Camellia sinensis). Molecules 2020; 25:molecules25020354. [PMID: 31952238 PMCID: PMC7024295 DOI: 10.3390/molecules25020354] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
‘Ziyan’ is a novel anthocyanin-rich tea cultivar with dark purple young shoots. However, how its anthocyanin accumulation is affected by environmental factors, such as ultraviolet (UV), remains unclear. In this study, we observed that UV light treatments stimulated anthocyanin accumulation in ‘Ziyan’ leaves, and we further analyzed the underlying mechanisms at gene expression and enzyme activity levels. In addition, the catechins and chlorophyll contents of young shoots under different light treatments were also changed. The results showed that the contents of total anthocyanins and three major anthocyanin molecules, i.e., delphinidin, cyanidin, and pelargonidin, were significantly higher in leaves under UV-A, UV-B, and UV-AB treatments than those under white light treatment alone. However, the total catechins and chlorophyll contents in these purple tea plant leaves displayed the opposite trends. The anthocyanin content was the highest under UV-A treatment, which was higher by about 66% than control. Compared with the white light treatment alone, the enzyme activities of chalcone synthase (CHS), flavonoid 3′,5′-hydroxylase (F3′5′H), and anthocyanidin synthase (ANS) under UV treatments increased significantly, whereas the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities reduced. There was no significant difference in dihydroflavonol 4-reductase (DFR) activity under all treatments. Comparative transcriptome analyses unveiled that there were 565 differentially expressed genes (DEGs) of 29,648 genes in three pair-wise comparisons (white light versus UV-A, W vs. UV-A; white light versus UV-B, W vs. UV-A; white light versus UV-AB, W vs. UV-AB). The structural genes in anthocyanin pathway such as flavanone 3-hydroxylase (F3H), F3′5′H, DFR, and ANS, and regulatory gene TT8 were upregulated under UV-A treatment; F3′5′H, DFR, ANS, and UFGT and regulatory genes EGL1 and TT2 were upregulated under UV-AB treatment. However, most structural genes involved in phenylpropanoid and flavonoid pathways were downregulated under UV-B treatment compared with control. The expression of LAR and ANR were repressed in all UV treatments. Our results indicated that UV-A and UV-B radiations can induce anthocyanin accumulation in tea plant ‘Ziyan’ by upregulating the structural and regulatory genes involved in anthocyanin biosynthesis. In addition, UV radiation repressed the expression levels of LAR, ANR, and FLS, resulting in reduced ANR activity and a metabolic flux shift toward anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Tang
- Correspondence: ; Tel.: +86-028-8629-1748
| |
Collapse
|
46
|
Depciuch J, Stec M, Maximenko A, Drzymała E, Pawlyta M, Baran J, Parlinska‐Wojtan M. Synthesis method‐dependent photothermal effects of colloidal solutions of platinum nanoparticles used in photothermal anticancer therapy. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - M. Stec
- Department of Clinical ImmunologyInstitute of Pediatrics, Jagiellonian University Medical College Krakow PL‐30‐663 Poland
| | - A. Maximenko
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - E. Drzymała
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| | - M. Pawlyta
- Institute of Engineering Materials and BiomaterialsSilesian University of Technology Konarskiego 18A Gliwice 44100 Poland
| | - J. Baran
- Department of Clinical ImmunologyInstitute of Pediatrics, Jagiellonian University Medical College Krakow PL‐30‐663 Poland
| | - M. Parlinska‐Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences Krakow PL‐31‐342 Poland
| |
Collapse
|
47
|
|
48
|
Acute and Subchronic Oral Toxicity of Fermented Green Tea with Aquilariae Lignum in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8721858. [PMID: 31662782 PMCID: PMC6754909 DOI: 10.1155/2019/8721858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Green tea is generally considered safe, but there have been concerns regarding side effects relating to the main component, catechins, especially hepatotoxicities. We have previously shown beneficial effects of fermented green tea with Aquilariae Lignum (fGT) via an oral route in diabetic and obese models. Thus, the toxicological safety of fGT was assessed at limited oral doses for a rodent. Mice or rats of both genders were orally administered distilled water as a control and fGT at 2.0, 1.0, and 0.5 g/kg. There were no mortalities or gross abnormalities in the fGT groups for 2 weeks following the single oral dose in mice. No fGT-relevant abnormalities were found in postmortem and histopathological examinations, suggesting LD50 of fGT at more than 2.0 g/kg with no specific target organs. There were also no fGT-relevant mortalities or abnormal signs in the repeated oral dose for 13 weeks in rats. In the fGT groups, no body weight changes or daily metabolic changes were found, and hematological and serum biochemical ranges were normal. The postmortem and histopathological examinations revealed few fGT-related abnormalities in most of the organs including the liver, although slight lymphoid cell hyperplasia in the lymph node was observed in a few rats with fGT at 2.0 g/kg. This may be secondary to increased immune response to the highest dose because there were no histopathological lesions or organ weight changes. It suggests nontoxic safety of fGT at up to 2.0 g/kg, which provides useful information for clinical use.
Collapse
|
49
|
Xu XY, Meng JM, Mao QQ, Shang A, Li BY, Zhao CN, Tang GY, Cao SY, Wei XL, Gan RY, Corke H, Li HB. Effects of Tannase and Ultrasound Treatment on the Bioactive Compounds and Antioxidant Activity of Green Tea Extract. Antioxidants (Basel) 2019; 8:E362. [PMID: 31480629 PMCID: PMC6770445 DOI: 10.3390/antiox8090362] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the effects of tannase and ultrasound treatment on the bioactive compounds and antioxidant activity of green tea extract. The single-factor experiments and the response surface methodology were conducted to study the effects of parameters on antioxidant activity of green tea extract. The highest antioxidant activity was found under the optimal condition with the buffer solution pH value of 4.62, ultrasonic temperature of 44.12 °C, ultrasonic time of 12.17 min, tannase concentration of 1 mg/mL, and ultrasonic power of 360 W. Furthermore, phenolic profiles of the extracts were identified and quantified by high-performance liquid chromatography. Overall, it was found that tannase led to an increase in gallic acid and a decrease in epigallocatechin gallate, and ultrasounds could also enhance the efficiency of enzymatic reaction.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xin-Lin Wei
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ren-You Gan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
50
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|