1
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2025; 82:70-85. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
2
|
Urrutia‐Ortega IM, Valencia I, Ispanixtlahuatl‐Meraz O, Benítez‐Flores JC, Espinosa‐González AM, Estrella‐Parra EA, Flores‐Ortiz CM, Chirino YI, Avila‐Acevedo JG. Full-spectrum cannabidiol reduces UVB damage through the inhibition of TGF-β1 and the NLRP3 inflammasome. Photochem Photobiol 2025; 101:83-105. [PMID: 38958000 PMCID: PMC11737019 DOI: 10.1111/php.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 μg/mL) and 35% (3.5 μg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-β1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-β1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-β1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.
Collapse
Affiliation(s)
- I. M. Urrutia‐Ortega
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - I. Valencia
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - O. Ispanixtlahuatl‐Meraz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - J. C. Benítez‐Flores
- Laboratorio de Histología, Unidad de Morfología y Función, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - A. M. Espinosa‐González
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - E. A. Estrella‐Parra
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - C. M. Flores‐Ortiz
- Laboratorio de Fisiología Vegetal, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - Y. I. Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| | - J. G. Avila‐Acevedo
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazEstado de MéxicoMexico
| |
Collapse
|
3
|
Zhou R, Huang R, Zhou S, Lu S, Lin H, Qiu J, Ma S, He J. Sorbicillinoid HSL-2 inhibits the infection of influenza A virus via interaction with the PPAR-γ/NF-κB pathway. J Infect Chemother 2024; 30:1295-1308. [PMID: 38942291 DOI: 10.1016/j.jiac.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Drug resistance is an important factor in the fight against influenza A virus (IAV). Natural products offer a rich source of lead compounds for the discovery of novel antiviral drugs. In a previous study, we isolated the sorbicillinoid polyketide HSL-2 from the mycelium of fungus Trichoderma sp. T-4-1. Here, we show that this compound exerts strong antiviral activity against a panel of IAVs. METHODS The immunofluorescence and qRT-PCR assays were used to detect the inhibitory effect of HSL-2 toward the replication of influenza virus and IAV-induced expression of the pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. RESULTS The results indicated that HSL-2 inhibited influenza virus replication, and it significantly inhibited IAV-induced overexpression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β through modulating the PPAR-γ/NF-κB pathway. Notably, this effect was decreased when cells were transfected with PPAR-γ siRNA or treated with the PPAR-γ inhibitor T0070907. In addition, HSL-2 was able to attenuate lung inflammatory responses and to improve lung lesions in a mouse model of IAV infection. CONCLUSIONS In this paper, we identified a microbial secondary metabolite, HSL-2, with anti-influenza virus activity. This report is the first to describe the antiviral activity and mechanism of action of HSL-2, and it provides a new strategy for the development of novel anti-influenza virus drugs from natural sources.
Collapse
Affiliation(s)
- Runhong Zhou
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China; Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuaiqi Ma
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
4
|
Gupta P, Dev K, Kaur G. Phytoconstituents as modulator of inflammatory pathways for COVID-19: A comprehensive review and recommendations. Phytother Res 2024; 38:5389-5416. [PMID: 39246209 DOI: 10.1002/ptr.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024]
Abstract
SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.
Collapse
Affiliation(s)
- Pragati Gupta
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Pharmacology & Toxicology, Wright State University, Dayton, Ohio, USA
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
- National Center cum Department of Human Genome Research Center and Studies, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
5
|
Akcay E, Karatas H. P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol. Brain Behav Immun Health 2024; 41:100853. [PMID: 39296605 PMCID: PMC11407962 DOI: 10.1016/j.bbih.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Many patients with depressive disorder do not respond to conventional antidepressant treatment. There is an ongoing interest in investigating potential mechanisms of treatment resistance in depression to provide alternative treatment options involving inflammatory mechanisms. Increasing evidence implicates the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome as a critical factor in neuroinflammation. ATP-induced P2X7 receptor (P2X7R) activation is a major trigger for inflammation, activating the canonical NLRP3 inflammatory cascade. Psychosocial stress, the primary environmental risk factor for depression, is associated with changes in ATP-mediated P2X7R signaling. Depression and stress response can be alleviated by Cannabidiol (CBD). CBD has an anti-inflammatory activity related to the regulation of NLRP3 inflammasome activation. However, CBD's effects on the inflammasome pathway are poorly understood in central nervous system (CNS) cells, including microglia, astrocytes, and neurons. This review will emphasize some findings for neuroinflammation and NLRP3 inflammasome pathway involvement in depression, particularly addressing the ATP-induced P2X7R activation. Moreover, we will underline evidence for the effect of CBD on depression and address its potential impacts on neuroinflammation through the NLRP3 inflammasome cascade.
Collapse
Affiliation(s)
- Elif Akcay
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- University of Health Sciences, Ankara Bilkent City Hospital, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
6
|
Wang Y, Liu R, Xie Z, Du L, Wang Y, Han J, Zhang L. Structure characterization and immunological activity of capsular polysaccharide from live and heat-killed Lacticaseibacillus paracasei 6235. Int J Biol Macromol 2024; 277:134010. [PMID: 39032891 DOI: 10.1016/j.ijbiomac.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Capsular polysaccharide (CPS) as a probiotic component has the ability to regulate the function of the host's immune system. However, how the structure and function of heat-killed CPS are altered remains unclear. In the present study, CPS were isolated and purified from live (LCPS) and heat-killed (HCPS) Lacticaseibacillus paracasei 6235. The differences in structure and immunomodulation between LCPS and HCPS were compared and analyzed. The results demonstrate that after heat killed, the molecular weight of CPS decreased from 23.4 kDa to 17.5 kDa, with the disappearance of galactosamine in the monosaccharide composition, and changes in the microstructure. Methylation analysis and nuclear magnetic resonance analysis revealed that the LCPS and HCPS are similar in structure, which main units of →3,4)-α-D-Glcp-(1→4)-α-D-Galp-(1→3)-β-L-Rhap-(1→6)-β-D-Galp-(1→, and repeating units of →3,4)-α-D-Glcp-(1→, →3)-β-L-Rhap-(1→, and →4)-α-D-Galp-(1→ residues. Furthermore, both LCPS and HCPS significantly downregulated the expression of pro-inflammatory cytokines in RAW264.7 cells induced by LPS. Specifically, HCPS reduced the levels of IL-6 and IL-1β by 79.38 % and 88.42 %, respectively, compared to LCPS. Concurrently, both LCPS and HCPS effectively mitigated inflammatory responses through the NF-κB and MAPK signaling pathways. Moreover, compared to LCPS, HCPS increased the protein expression levels of NF-κB/p-NF-κB and IκB/p-IκB by 26.14 % and 28.92 %, respectively. These results suggest that CPS has a role in modulating immune responses and that HCPS is more effective. This study can be further developed into new products related to postbiotics.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingnan Wang
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
8
|
Dai X, Liu Y, Wu Y, Wang S, Guo Q, Feng X, Zhao F, Li Y, Lan L, Li X. DYZY01 alleviates pulmonary hypertension via inhibiting endothelial cell pyroptosis and rescuing endothelial dysfunction. Eur J Pharmacol 2024; 978:176785. [PMID: 38942262 DOI: 10.1016/j.ejphar.2024.176785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Pulmonary hypertension (PH) is a malignant pulmonary vascular disease with a poor prognosis. Although the development of targeted drugs for this disease has made some breakthroughs in recent decades, PH remains incurable. Therefore, innovative clinical treatment methods and drugs for PH are still urgently needed. DYZY01 is a new drug whose main ingredient is high-purity cannabidiol, a non-psychoactive constituent of cannabinoids that was demonstrated to have anti-inflammatory and anti-pyroptosis properties. Several recent studies have found cannabidiol could improve experimental PH, whereas the mechanistic effect of it warrants further investigation. Thus, this study aimed to investigate whether DYZY01 can treat PH by inhibiting inflammation and pyroptosis and to reveal its underlying mechanism. We established hypoxia and monocrotaline (MCT)-induced PH rat models in vivo and treated them with either DYZY01 (10,50 mg/kg/d) or Riociguat (10 mg/kg/d) by oral administration. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), and extent of vascular remodeling were measured. Meanwhile, the effect of DYZY01 on human pulmonary arterial endothelial cells (HPAECs) was assessed in vitro. The results indicated that DYZY01 significantly reduced mPAP and RVHI in PH rats and reversed the extent of pulmonary vascular remodeling. This improvement may have been achieved by reducing endothelial cell pyroptosis via inhibiting the NF-κB/NLRP3/Caspase-1 pathway. Furthermore, DYZY01 could improve endothelial vascular function, possibly by regulating the secretion of vasodilator factors and inhibiting the proliferation and migration of pulmonary endothelial cells.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Rats
- Male
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Humans
- Rats, Sprague-Dawley
- NF-kappa B/metabolism
- Vascular Remodeling/drug effects
- Cannabidiol/pharmacology
- Cannabidiol/therapeutic use
- Disease Models, Animal
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Xuejing Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yi Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yusi Wu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Shubin Wang
- Deyi Pharmaceutical Company Ltd., 102600, Beijing, China
| | - Qing Guo
- Deyi Pharmaceutical Company Ltd., 102600, Beijing, China
| | - Xuexiang Feng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Feilong Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lan Lan
- Deyi Pharmaceutical Company Ltd., 102600, Beijing, China.
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Van Tin H, Rethi L, Higa S, Kao YH, Chen YJ. Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3 Inflammasomes and NF-κB Signaling. Cells 2024; 13:1331. [PMID: 39195221 PMCID: PMC11353017 DOI: 10.3390/cells13161331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to viral entry and can cause cardiac injuries. Toll-like receptor 4 (TLR4) and NOD-, LPR-, and pyrin-domain-containing 3 (NLRP3) inflammasome are critical immune system components implicated in cardiac fibrosis. The spike protein activates NLRP3 inflammasome through TLR4 or angiotensin-converting enzyme 2 (ACE2) receptors, damaging various organs. However, the role of spike protein in cardiac fibrosis in humans, as well as its interactions with NLRP3 inflammasomes and TLR4, remain poorly understood. METHODS We utilized scratch assays, Western blotting, and immunofluorescence to evaluate the migration, fibrosis signaling, mitochondrial calcium levels, reactive oxygen species (ROS) production, and cell morphology of cultured human cardiac fibroblasts (CFs) treated with spike (S1) protein for 24 h with or without an anti-ACE2 neutralizing antibody, a TLR4 blocker, or an NLRP3 inhibitor. RESULTS S1 protein enhanced CFs migration and the expressions of collagen 1, α-smooth muscle actin, transforming growth factor β1 (TGF-β1), phosphorylated SMAD2/3, interleukin 1β (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). S1 protein increased ROS production but did not affect mitochondrial calcium content and cell morphology. Treatment with an anti-ACE2 neutralizing antibody attenuated the effects of S1 protein on collagen 1 and TGF-β1 expressions. Moreover, NLRP3 (MCC950) and NF-kB inhibitors, but not the TLR4 inhibitor TAK-242, prevented the S1 protein-enhanced CFs migration and overexpression of collagen 1, TGF-β1, and IL-1β. CONCLUSION S1 protein activates human CFs by priming NLRP3 inflammasomes through NF-κB signaling in an ACE2-dependent manner.
Collapse
Affiliation(s)
- Huynh Van Tin
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Lekha Rethi
- Department of Orthopedics, Shuangho Hospital, Taipei Medical University, Taipei 11031, Taiwan;
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan;
| | - Yu-Hsun Kao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Nascimento RR, Aquino CC, Sousa JK, Gadelha KL, Cajado AG, Schiebel CS, Dooley SA, Sousa PA, Rocha JA, Medeiros JR, Magalhães PC, Maria-Ferreira D, Gois MB, C P Lima-Junior R, V T Wong D, Lima AM, Engevik AC, Nicolau LD, Vale ML. SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance. Mucosal Immunol 2024; 17:565-583. [PMID: 38555027 DOI: 10.1016/j.mucimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1β, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.
Collapse
Affiliation(s)
- Renata R Nascimento
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristhyane C Aquino
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - José K Sousa
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kalinne L Gadelha
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aurilene G Cajado
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carolina S Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paulo A Sousa
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jefferson A Rocha
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jand R Medeiros
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Pedro C Magalhães
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Marcelo B Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Roberto C P Lima-Junior
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi V T Wong
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aldo M Lima
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas D Nicolau
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil; Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil.
| | - Mariana L Vale
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
11
|
Rodrigues FDS, Newton WR, Tassinari ID, da Cunha Xavier FH, Marx A, de Fraga LS, Wright K, Guedes RP, Bambini-Jr V. Cannabidiol prevents LPS-induced inflammation by inhibiting the NLRP3 inflammasome and iNOS activity in BV2 microglia cells via CB2 receptors and PPARγ. Neurochem Int 2024; 177:105769. [PMID: 38761855 DOI: 10.1016/j.neuint.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Neuroinflammation stands as a critical player in the pathogenesis of diverse neurological disorders, with microglial cells playing a central role in orchestrating the inflammatory landscape within the central nervous system. Cannabidiol (CBD) has gained attention for its potential to elicit anti-inflammatory responses in microglia, offering promising perspectives for conditions associated with neuroinflammation. Here we investigated whether the NLRP3 inflammasome and inducible nitric oxide synthase (iNOS) are involved in the protective effects of CBD, and if their modulation is dependent on cannabinoid receptor 2 (CB2) and PPARγ signalling pathways. We found that treatment with CBD attenuated pro-inflammatory markers in lipopolysaccharide (LPS)-challenged BV2 microglia in a CB2- and PPARγ-dependent manner. At a molecular level, CBD inhibited the LPS-induced pro-inflammatory responses by suppressing iNOS and NLRP3/Caspase-1-dependent signalling cascades, resulting in reduced nitric oxide (NO), interleukin-1β (IL-1β), and tumour necrosis factor-alpha (TNF-α) concentrations. Notably, the protective effects of CBD on NLRP3 expression, Caspase-1 activity, and IL-1β concentration were partially hindered by the antagonism of both CB2 receptors and PPARγ, while iNOS expression and NO secretion were dependent exclusively on PPARγ activation, with no CB2 involvement. Interestingly, CBD exhibited a protective effect against TNF-α increase, regardless of CB2 or PPARγ activation. Altogether, these findings indicate that CB2 receptors and PPARγ mediate the anti-inflammatory effects of CBD on the NLRP3 inflammasome complex, iNOS activity and, ultimately, on microglial phenotype. Our results highlight the specific components responsible for the potential therapeutic applications of CBD on neuroinflammatory conditions.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - William Robert Newton
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; MRC Centre for Medical Mycology, Exeter University, Exeter, United Kingdom.
| | - Isadora D'Ávila Tassinari
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Adél Marx
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Luciano Stürmer de Fraga
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Karen Wright
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Victorio Bambini-Jr
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| |
Collapse
|
12
|
Marquez AB, Vicente J, Castro E, Vota D, Rodríguez-Varela MS, Lanza Castronuovo PA, Fuentes GM, Parise AR, Romorini L, Alvarez DE, Bueno CA, Ramirez CL, Alaimo A, García CC. Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses. Cannabis Cannabinoid Res 2024; 9:751-765. [PMID: 37682578 DOI: 10.1089/can.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Introduction: Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. Objectives: The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses. Materials and Methods: Cell cultures were infected with enveloped and nonenveloped viruses and treated with non-cytotoxic concentrations of CBD and then, viral titers were determined. Additionally, the mechanism of action of the compound during ZIKV in vitro infections was studied. To study the possible immunomodulatory role of CBD, infected and uninfected Huh-7 cells were exposed to 10 μM CBD during 48 h and levels of interleukins 6 and 8 and interferon-beta (IFN-β) expression levels were measured. On the other hand, the effect of CBD on cellular membranes was studied. For this, an immunofluorescence assay was performed, in which cell membranes were labeled with wheat germ agglutinin. Finally, intracellular cholesterol levels were measured. Results: CBD exhibited a potent antiviral activity against all the tested viruses in different cell lines with half maximal effective concentration values (CE50) ranging from 0.87 to 8.55 μM. Regarding the immunomodulatory effect of CBD during ZIKV in vitro infections, CBD-treated cells exhibited significantly IFN-β increased levels, meanwhile, interleukins 6 and 8 were not induced. Furthermore, it was determined that CBD affects cellular membranes due to the higher fluorescence intensity that was observed in CBD-treated cells and lowers intracellular cholesterol levels, thus affecting the multiplication of ZIKV and other viruses. Conclusions: It was demonstrated that CBD inhibits structurally dissimilar viruses, suggesting that this phytochemical has broad-spectrum antiviral effect, representing a valuable alternative in emergency situations during viral outbreaks, like the one caused by severe acute respiratory syndrome coronavirus 2 in 2020.
Collapse
Affiliation(s)
- Agostina B Marquez
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Inmunofarmacología, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - María S Rodríguez-Varela
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Priscila A Lanza Castronuovo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Giselle M Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandro R Parise
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Carlos A Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina L Ramirez
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Asociación Civil CBG2000, Mar del Plata, Argentina
| | - Agustina Alaimo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Sarnelli G, Del Re A, Palenca I, Franzin SB, Lu J, Seguella L, Zilli A, Pesce M, Rurgo S, Esposito G, Sanseverino W, Esposito G. Intranasal administration of Escherichia coli Nissle expressing the spike protein of SARS-CoV-2 induces long-term immunization and prevents spike protein-mediated lung injury in mice. Biomed Pharmacother 2024; 174:116441. [PMID: 38518597 DOI: 10.1016/j.biopha.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
While current anti-Spike protein (SP) vaccines have been pivotal in managing the pandemic, their limitations in delivery, storage, and the inability to provide mucosal immunization (preventing infections) highlight the ongoing necessity for research and innovation. To tackle these constraints, our research group developed a bacterial-based vaccine using a non-pathogenic E. coli Nissle 1917 (EcN) strain genetically modified to express the SARS-CoV-2 spike protein on its surface (EcN-pAIDA1-SP). We intranasally delivered the EcN-pAIDA1-SP in two doses and checked specific IgG/IgA production as well as the key immune mediators involved in the process. Moreover, following the initial and booster vaccine doses, we exposed both immunized and non-immunized mice to intranasal delivery of SARS-CoV-2 SP to assess the effectiveness of EcN-pAIDA1-SP in protecting lung tissue from the inflammation damage. We observed detectable levels of anti-SARS-CoV-2 spike IgG in serum samples and IgA in bronchoalveolar lavage fluid two weeks after the initial treatment, with peak concentrations in the respective samples on the 35th day. Moreover, immunoglobulins displayed a progressively enhanced avidity index, suggesting a selective binding to the spike protein. Finally, the pre-immunized group displayed a decrease in proinflammatory markers (TLR4, NLRP3, ILs) following SP challenge, compared to the non-immunized groups, along with better preservation of tissue morphology. Our probiotic-based technology provides an effective immunobiotic tool to protect individuals against disease and control infection spread.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, Naples 80138, Italy; Nextbiomics S.R.L. (Società a Responsabilità Limitata), Naples 80100, Italy.
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| | - Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| | - Jie Lu
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), Naples 80100, Italy; Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China.
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, Naples 80138, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, Naples 80138, Italy.
| | - Giovanni Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), Naples 80100, Italy; Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, Naples 80131, Italy.
| | - Walter Sanseverino
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), Naples 80100, Italy.
| | - Giuseppe Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), Naples 80100, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
14
|
Zhang Y, Zhang XY, Shi SR, Ma CN, Lin YP, Song WG, Guo SD. Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation. Front Cardiovasc Med 2024; 11:1372055. [PMID: 38699583 PMCID: PMC11064802 DOI: 10.3389/fcvm.2024.1372055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Traditional Chinese Medicine Hospital in Shandong Province, Yantai, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
15
|
Chu FX, Wang X, Li B, Xu LL, Di B. The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm Res 2024; 73:227-242. [PMID: 38191853 DOI: 10.1007/s00011-023-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Feng-Xin Chu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
17
|
Moniruzzaman M, Janjua TI, Martin JH, Begun J, Popat A. Cannabidiol - Help and hype in targeting mucosal diseases. J Control Release 2024; 365:530-543. [PMID: 37952828 DOI: 10.1016/j.jconrel.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.
Collapse
Affiliation(s)
- Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jennifer H Martin
- Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Kookaburra Circuit, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
18
|
Han S, Li S, Li J, He J, Wang QQ, Gao X, Yang S, Li J, Yuan R, Zhong G, Gao H. Hederasaponin C inhibits LPS-induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother Res 2023; 37:5974-5990. [PMID: 37778741 DOI: 10.1002/ptr.8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.
Collapse
Affiliation(s)
- Shan Han
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jilang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jia He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qin-Qin Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Guoyue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
19
|
Li F, Huang H, Zhao P, Jiang J, Ding X, Lu D, Ji L. Curculigoside mitigates dextran sulfate sodium‑induced colitis by activation of KEAP1‑NRF2 interaction to inhibit oxidative damage and autophagy of intestinal epithelium barrier. Int J Mol Med 2023; 52:107. [PMID: 37772380 PMCID: PMC10558217 DOI: 10.3892/ijmm.2023.5310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Curculigoside (CUR), a primary active ingredient of Curculigo orchioides Gaertn, serves an important role in the intervention of numerous diseases, including ulcerative colitis, rheumatoid arthritis, myocardial ischemia, etc. However its specific mechanisms of therapy have not been fully elucidated. The aim of the present study was to elucidate the mechanisms underlying the anti‑oxidative stress and anti‑ulcerative colitis (UC) effects of CUR. Mouse model of dextran sulfate sodium (DSS)‑induced colitis, along with Caco2 and mouse intestine organoid in vitro models were used. The effect of CUR on mitigating the symptoms of chronic colitis was investigated. Through ELISA experiments, it was observed that CUR alleviated the inflammation status in mice with chronic colitis. This was evidenced by the downregulation of inflammatory cytokines such as TNF‑α and IL‑6 and ‑1β and decreased neutrophil infiltration along with downregulated myeloperoxidase activity. CUR helped in maintaining the barrier functions of intestinal epithelium. In vitro TNF‑α stimulation of organoids and H2O2 stimulation of Caco2 cells demonstrated the capabilities of CUR to rescue cells from oxidative stress. There was activation of Nrf2 both in vivo and in vitro, accompanied by enhanced autophagy. Mechanistic studies of cells and Nrf2 knockout mice demonstrated that Nrf2 served a pivotal role in inhibition of UC by curculigoside via interaction with Kelch‑like ECH‑associated protein 1 (Keap1). In vitro and in vivo experiments confirmed that CUR activated Nrf2 via Keap1/Nrf2 interaction, resulting in decreased oxidative stress and promoted autophagy. These findings demonstrated that CUR could effectively mitigate colitis and may have clinical application in UC therapy.
Collapse
Affiliation(s)
- Fang Li
- Department of Digestive System, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| | - Hua Huang
- Department of Digestive System, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| | - Ping Zhao
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| | - Jie Jiang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| | - Xufeng Ding
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| | - Donxgue Lu
- Department of Clinical Nutrition, Academy of Health and Rehabilitation, Academy of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Lijiang Ji
- Department of Digestive System, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Suzhou 215500, P.R. China
| |
Collapse
|
20
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
21
|
Pawełczyk A, Nowak R, Gazecka M, Jelińska A, Zaprutko L, Zmora P. Novel Molecular Consortia of Cannabidiol with Nonsteroidal Anti-Inflammatory Drugs Inhibit Emerging Coronaviruses' Entry. Pathogens 2023; 12:951. [PMID: 37513798 PMCID: PMC10383849 DOI: 10.3390/pathogens12070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic provoked a global health crisis and highlighted the need for new therapeutic strategies. In this study, we explore the potential of the molecular consortia of cannabidiol (CBD) and non-steroidal anti-inflammatory drugs (NSAIDs) as novel antiviral dual-target agents against SARS-CoV-2/COVID-19. CBD is a natural compound with a wide range of therapeutic activities, including antiviral and anti-inflammatory properties, while NSAIDs are commonly used to mitigate the symptoms of viral infections. Chemical modifications of CBD with NSAIDs were performed to obtain dual-target agents with enhanced activity against SARS-CoV-2. The synthesised compounds were characterised using spectroscopic techniques. The biological activity of three molecular consortia (CBD-ibuprofen, CBD-ketoprofen, and CBD-naproxen) was evaluated in cell lines transduced with vesicular stomatitis virus-based pseudotypes bearing the SARS-CoV-1 or SARS-CoV-2 spike proteins or infected with influenza virus A/Puerto Rico/8/34. The results showed that some CBD-NSAID molecular consortia have superior antiviral activity against SARS-CoV-1 and SARS-CoV-2, but not against the influenza A virus. This may suggest a potential therapeutic role for these compounds in the treatment of emerging coronavirus infections. Further studies are needed to investigate the efficacy of these compounds in vivo, and their potential use in clinical settings. Our findings provide a promising new approach to combatting current and future viral emergencies.
Collapse
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Rafał Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Paweł Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
22
|
Khosropoor S, Alavi MS, Etemad L, Roohbakhsh A. Cannabidiol goes nuclear: The role of PPARγ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154771. [PMID: 36965374 DOI: 10.1016/j.phymed.2023.154771] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main phytocannabinoids found in Cannabis sativa. In contrast to Δ9-tetrahydrocannabinol, it has a low affinity for cannabinoid receptors CB1 and CB2, thereby it does not induce significant psychoactive effects. However, CBD may interact with other receptors, including peroxisome proliferator-activated receptor gamma (PPARγ). CBD is a PPARγ agonist and changes its expression. There is considerable evidence that CBD's effects are mediated by its interaction with PPARγ. So, we reviewed studies related to the interaction of CBD and PPARγ. METHODS In this comprehensive literature review, the term 'cannabidiol' was used in combination with the following keywords including 'PPARγ', 'Alzheimer's disease', 'Parkinson's disease', 'seizure', 'multiple sclerosis', 'immune system', 'cardiovascular system', 'cancer', and 'adipogenesis'. PubMed, Web of Science, and Google Scholar were searched until December 20, 2022. A total of 78 articles were used for the reviewing process. RESULTS CBD, via activation of PPARγ, promotes significant pharmacological effects. The present review shows that the effects of CBD on Alzheimer's disease and memory, Parkinson's disease and movement disorders, multiple sclerosis, anxiety and depression, cardiovascular system, immune system, cancer, and adipogenesis are mediated, at least in part, via PPARγ. CONCLUSION CBD not only activates PPARγ but also affects its expression in the body. It was suggested that the late effects of CBD are mediated via PPARγ activation. We suggested that CBD's chemical structure is a good backbone for developing new dual agonists. Combining it with other chemicals enhances their biological effectiveness while reducing their dosage. The present study indicated that PPARγ is a key target for CBD, and its activation by CBD should be considered in all future studies.
Collapse
Affiliation(s)
- Sara Khosropoor
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- *Correspondence: Man Wang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Man Wang, ; Peifeng Li,
| |
Collapse
|
24
|
Yndart Arias A, Kolishetti N, Vashist A, Madepalli L, Llaguno L, Nair M. Anti-inflammatory effects of CBD in human microglial cell line infected with HIV-1. Sci Rep 2023; 13:7376. [PMID: 37147420 PMCID: PMC10162654 DOI: 10.1038/s41598-023-32927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with a chronic inflammatory stage and continuous activation of inflammasome pathway. We studied the anti-inflammatory effects of the compound cannabidiol (CBD) in comparison with Δ (9)-tetrahydrocannabinol [Δ(9)-THC] in human microglial cells (HC69.5) infected with HIV. Our results showed that CBD reduced the production of various inflammatory cytokines and chemokines such as MIF, SERPIN E1, IL-6, IL-8, GM-CSF, MCP-1, CXCL1, CXCL10, and IL-1 β compared to Δ(9)-THC treatment. In addition, CBD led to the deactivation of caspase 1, reduced NLRP3 gene expression which play a crucial role in the inflammasome cascade. Furthermore, CBD significantly reduced the expression of HIV. Our study demonstrated that CBD has anti-inflammatory properties and exhibits significant therapeutic potential against HIV-1 infections and neuroinflammation.
Collapse
Affiliation(s)
- Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lakshmana Madepalli
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lorgeleys Llaguno
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
25
|
Xie Z, Zhang G, Liu R, Wang Y, Tsapieva AN, Zhang L, Han J. Heat-Killed Lacticaseibacillus paracasei Repairs Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage via MLCK/MLC Pathway Activation. Nutrients 2023; 15:nu15071758. [PMID: 37049598 PMCID: PMC10097264 DOI: 10.3390/nu15071758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Intestinal epithelial barrier function is closely associated with the development of many intestinal diseases. Heat-killed Lacticaseibacillus paracasei (HK-LP) has been shown to improve intestinal health and enhance immunity. However, the function of HK-LP in the intestinal barrier is still unclear. This study characterized the inflammatory effects of seven HK-LP (1 μg/mL) on the intestinal barrier using lipopolysaccharide (LPS) (100 μg/mL)-induced Caco-2 cells. In this study, HK-LP 6105, 6115, and 6235 were selected, and their effects on the modulation of inflammatory factors and tight junction protein expression (claudin-1, zona occludens-1, and occludin) were compared. The effect of different cultivation times (18 and 48 h) was investigated in response to LPS-induced intestinal epithelial barrier dysfunction. Our results showed that HK-LP 6105, 6115, and 6235 improved LPS-induced intestinal barrier permeability reduction and transepithelial resistance. Furthermore, HK-LP 6105, 6115, and 6235 inhibited the pro-inflammatory factors (TNF-α, IL-1β, IL-6) and increased the expression of the anti-inflammatory factors (IL-4, IL-10, and TGF-β). HK-LP 6105, 6115, and 6235 ameliorated the inflammatory response. It inhibited the nuclear factor kappa B (NF-κB) signaling pathway-mediated myosin light chain (MLC)/MLC kinase signaling pathway by downregulating the Toll-like receptor 4 (TLR4)/NF-κB pathway. Thus, the results suggest that HK-LP 6150, 6115, and 6235 may improve intestinal health by regulating inflammation and TJ proteins. Postbiotics produced by these strains exhibit anti-inflammatory properties that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Gongsheng Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Anna N Tsapieva
- Department of Molecular Microbiology, FSBSI Institute of Experimental Medicine, Acad.,197376 St. Petersburg, Russia
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
26
|
Liu Y. Integrative network pharmacology and in silico analyses identify the anti-omicron SARS-CoV-2 potential of eugenol. Heliyon 2023; 9:e13853. [PMID: 36845041 PMCID: PMC9937729 DOI: 10.1016/j.heliyon.2023.e13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Eugenol as a natural product is the source of isoniazid, and purified eugenol is extensively used in the cosmetics industry and the productive processes of edible spices. Accumulating evidence suggested that eugenol exerted potent anti-microorganism and anti-inflammation effects. Application of eugenol effectively reduced the risk of atherosclerosis, arterial embolism, and Type 2 diabetes. A previous study confirmed that treatment with eugenol attenuated lung inflammation and improved heart functions in SARS-CoV-2 spike S1-intoxicated mice. In addition to the study, based on a series of public datasets, computational analyses were conducted to characterize the acting targets of eugenol and the functional roles of these targets in COVID-19. The binding capacities of eugenol to conservative sites of SARS-CoV-2 like RNA-dependent RNA polymerase (RdRp) and mutable site as spike (S) protein, were calculated by using molecular docking following the molecular dynamics simulation with RMSD, RMSF, and MM-GBSA methods. The results of network pharmacology indicated that six targets, including PLAT, HMOX1, NUP88, CTSL, ITGB1 andTMPRSS2 were eugenol-SARS-CoV-2 interacting proteins. The omics results of in-silico study further implicated that eugenol increased the expression of SCARB1, HMOX1 and GDF15, especially HMOX1, which were confirmed the potential interacting targets between eugenol and SARS-CoV-2 antigens. Enrichment analyses indicated that eugenol exerted extensive biological effects such as regulating immune infiltration of macrophage, lipid localization, monooxyenase activity, iron ion binding and PPAR signaling. The results of the integrated analysis of eugenol targets and immunotranscription profile of COVID-19 cases shows that eugenol also plays an important role in strengthen of immunologic functions and regulating cytokine signaling. As a complement to the integrated analysis, the results of molecular docking indicated the potential binding interactions between eugenol and four proteins relating to cytokine production/release and the function of T type lymphocytes, including human TLR-4, TCR, NF-κB, JNK and AP-1. Furthermore, results of molecular docking and molecular dynamics (100ns) simulations implicated that stimulated modification of eugenol to the SARS-CoV-2 Omicron Spike-ACE2 complex, especially for human ACE2, and the molecular interaction of eugenol to SARS-CoV-2 RdRp, were no less favorable than two positive controls, molnupiravir and nilotinib. Dynamics (200ns) simulations indicated that the binding capacities and stabilities of eugenol to finger subdomain of RdRp is no less than molnupiravir. However, the simulated binding capacity of eugenol to SARS-CoV-2 wild type RBD and Omicron mutant RBD were less than nilotinib. Eugenol was predicted to have more favor LD50 value and lower cytotoxicity than two positive controls, and eugenol can pass through the blood-brain barrier (BBB). In a brief, eugenol is helpful for attenuating systemic inflammation induced by SARS-CoV-2 infection, due to the direct interaction of eugenol to SARS-CoV-2 proteins and extensive bio-manipulation of pro-inflammatory factors. This study carefully suggests eugenol is a candidate compound of developing drugs and supplement agents against SARS-CoV-2 and its Omicron variants.
Collapse
Affiliation(s)
- Yang Liu
- Graduated Student of Harbin Medical University, Cardiology. Baojian Road105, Nangang Distinct, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Thieulent CJ, Dittmar W, Balasuriya UBR, Crossland NA, Wen X, Richt JA, Carossino M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023; 8:e0055822. [PMID: 36728430 PMCID: PMC9942576 DOI: 10.1128/msphere.00558-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Several models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the in vivo efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains. Here, we compared the clinical progression, viral replication kinetics and dissemination, pulmonary tropism, and host innate immune response dynamics between the mouse-adapted MA10 strain and its parental strain (USA-WA1/2020) following intranasal inoculation of K18-hACE2 mice, a widely used model. Compared to its parental counterpart, the MA10 strain induced earlier clinical decline with significantly higher viral replication and earlier neurodissemination. Importantly, the MA10 strain also showed a wider tropism, with infection of bronchiolar epithelia. While both SARS-CoV-2 strains induced comparable pulmonary cytokine/chemokine responses, many proinflammatory and monocyte-recruitment chemokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10/CXCL10, and MCP-1/CCL2, showed an earlier peak in MA10-infected mice. Furthermore, both strains induced a similar downregulation of murine Ace2, with only a transient downregulation of Tmprss2 and no alterations in hACE2 expression. Overall, these data demonstrate that in K18-hACE2 mice, the MA10 strain has a pulmonary tropism that more closely resembles SARS-CoV-2 tropism in humans (airways and pneumocytes) than its parental strain. Its rapid replication and neurodissemination and early host pulmonary responses can have a significant impact on the clinical outcomes of infection and are, therefore, critical features to consider for study designs using these strains and mouse model. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, is still significantly impacting health care systems around the globe. Refined animal models are needed to study SARS-CoV-2 pathogenicity as well as efficacy of vaccines and therapeutics. In line with this, thorough evaluation of animal models and virus strains/variants are paramount for standardization and meaningful comparisons. Here, we demonstrated differences in replication dynamics between the Wuhan-like USA-WA1/2020 strain and the derivative mouse-adapted MA10 strain in K18-hACE2 mice. The MA10 strain showed accelerated viral replication and neurodissemination, differential pulmonary tropism, and earlier pulmonary innate immune responses. The observed differences allow us to better refine experimental designs when considering the use of the MA10 strain in the widely utilized K18-hACE2 murine model.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xue Wen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
28
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
29
|
Yu L, Zeng L, Zhang Z, Zhu G, Xu Z, Xia J, Weng J, Li J, Pathak JL. Cannabidiol Rescues TNF-α-Inhibited Proliferation, Migration, and Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells. Biomolecules 2023; 13:biom13010118. [PMID: 36671503 PMCID: PMC9856031 DOI: 10.3390/biom13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Strategies to promote dental pulp stem cells (DPSCs) functions including proliferation, migration, pro-angiogenic effects, and odontogenic/osteogenic differentiation are in urgent need to restore pulpitis-damaged dentin/pulp regeneration and DPSCs-based bone tissue engineering applications. Cannabidiol (CBD), an active component of Cannabis sativa has shown anti-inflammation, chemotactic, anti-microbial, and tissue regenerative potentials. Based on these facts, this study aimed to analyze the effect of CBD on DPSCs proliferation, migration, and osteogenic/odontogenic differentiation in basal and inflammatory conditions. Highly pure DPSCs with characteristics of mesenchymal stem cells (MSCs) were successfully isolated, as indicated by the results of flowcytometry and multi-lineage (osteogenic, adipogenic, and chondrogenic) differentiation potentials. Among the concentration tested (0.1-12.5 µM), CBD (2.5 μM) showed the highest anabolic effect on the proliferation and osteogenic/odontogenic differentiation of DPSCs. Pro-angiogenic growth factor VEGF mRNA expression was robustly higher in CBD-treated DPSCs. CBD also prompted the migration of DPSCs and CBD receptor CB1 and CB2 expression in DPSCs. TNF-α inhibited the viability, migration, and osteogenic/odontogenic differentiation of DPSCs and CBD reversed these effects. CBD alleviated the TNF-α-upregulated expression of pro-inflammatory cytokines TNF-α, interleukin (IL)-1β, and IL-6 in DPSCs. In conclusion, our results indicate the possible application of CBD on DPSCs-based dentin/pulp and bone regeneration.
Collapse
Affiliation(s)
- Lina Yu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Liting Zeng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Zeyu Zhang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Guanxiong Zhu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Zidan Xu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Junyi Xia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Jinlong Weng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
| | - Jiang Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou 510182, China
- Correspondence: (J.L.); (J.L.P.); Tel.: +(020)-8050-0893 (J.L.); +(020)-8192-7729 (J.L.P.)
| | - Janak Lal Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
- Correspondence: (J.L.); (J.L.P.); Tel.: +(020)-8050-0893 (J.L.); +(020)-8192-7729 (J.L.P.)
| |
Collapse
|
30
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
31
|
Suprewicz Ł, Tran KA, Piktel E, Fiedoruk K, Janmey PA, Galie PA, Bucki R. Recombinant human plasma gelsolin reverses increased permeability of the blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus. J Neuroinflammation 2022; 19:282. [PMID: 36434734 PMCID: PMC9694610 DOI: 10.1186/s12974-022-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood-brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). MATERIALS AND METHODS Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. RESULTS pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). CONCLUSION Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland.
| |
Collapse
|
32
|
Forsyth CB, Zhang L, Bhushan A, Swanson B, Zhang L, Mamede JI, Voigt RM, Shaikh M, Engen PA, Keshavarzian A. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10101996. [PMID: 36296272 PMCID: PMC9607240 DOI: 10.3390/microorganisms10101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Barbara Swanson
- Department of Adult Health & Gerontological Nursing, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li Zhang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - João I. Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
33
|
McGrail J, Martín-Banderas L, Durán-Lobato M. Cannabinoids as Emergent Therapy Against COVID-19. Cannabis Cannabinoid Res 2022; 7:582-590. [PMID: 35512732 PMCID: PMC9587773 DOI: 10.1089/can.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory distress syndrome coronavirus 2 (SARS-Cov-2), was identified for the first time in late 2019 in China, resulting in a global pandemic of massive impact. Despite a fast development and implementation of vaccination strategies, and the scouting of several pharmacological treatments, alternative effective treatments are still needed. In this regard, cannabinoids represent a promising approach because they have been proven to exhibit several immunomodulatory, anti-inflammatory, and antiviral properties in COVID-19 disease models and related pathological conditions. This mini-review aims at providing a practical brief overview of the potential applications of cannabinoids so far identified for the treatment and prevention of COVID-19, finally considering key aspects related to their technological and clinical implementation.
Collapse
Affiliation(s)
- Joseph McGrail
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Lucía Martín-Banderas
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Matilde Durán-Lobato
- Department Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
34
|
Wang Z, Wang N, Yang L, Song XQ. Bioactive natural products in COVID-19 therapy. Front Pharmacol 2022; 13:926507. [PMID: 36059994 PMCID: PMC9438897 DOI: 10.3389/fphar.2022.926507] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ning Wang
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China
| |
Collapse
|
35
|
Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol 2022; 111:109058. [PMID: 35901530 DOI: 10.1016/j.intimp.2022.109058] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic relapsing inflammatory bowel disease. Honokiol is a major active component of the traditional Chinese medicinal herb Magnolia officinalis, which has been widely used in traditional prescriptions to treat tumors, inflammation, and gastrointestinal disorders. In this study, we investigated the ability of this polyphenolic compound to suppress UC in mice and the possible regulatory mechanism. A mouse model of UC induced with dextran sulfate sodium (DSS) in 40 male C57BL/6J mice was used for the in vivo study, and in vitro experiments were performed in mouse RAW264.7 macrophages. Lipopolysaccharide was used to induce the inflammatory response. The mouse bodyweights, stool consistency, and bleeding were determined and the disease activity indices calculated. RAW264.7 macrophages were cultured with or without either honokiol or lipopolysaccharide. Gene and protein expression was analyzed with RT-PCR and western blotting, respectively. GW6471 and GW9662 were used to interrupt the transcription of peroxisome proliferator activated receptor alpha (PPAR-α) and peroxisome proliferator activated receptor gamma (PPAR-γ). Both the in vivo and in vitro experimental results showed that the oral administration of honokiol markedly attenuated the severity of UC by reducing the inflammatory signals and restoring the integrity of the colon. Honokiol dramatically reduced the proinflammatory cytokines TNF-α, IL6, IL1β, and IFN-γ in mice with DSS-induced UC. It also upregulated PPAR-γ expression, and downregulated the TLR4-NF-κB signaling pathway. Moreover, honokiol inhibited gasdermin-D-mediated cell pyroptosis. These findings demonstrate for the first time that honokiol exerts a strong anti-inflammatory effect in a mouse model of UC, and that its underlying mechanism is associated with the activation of the PPAR-γ-TLR4-NF-κB signaling pathway and gasdermin-D-mediated macrophage pyroptosis. Therefore, honokiol may be a promising new drug for the clinical management of UC.
Collapse
|
36
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E, Malinowska B. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. Int J Mol Sci 2022; 23:6350. [PMID: 35683028 PMCID: PMC9181166 DOI: 10.3390/ijms23116350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| |
Collapse
|
37
|
Dini I, Izzo L, Ritieni A. The commercial importance of defining Δ‐9‐tetrahydrocannabinol levels in hemp. Phytother Res 2022; 36:3369-3370. [DOI: 10.1002/ptr.7476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Irene Dini
- Department of Pharmacy University of Naples Federico II Napoli Italy
| | - Luana Izzo
- Department of Pharmacy University of Naples Federico II Napoli Italy
| | - Alberto Ritieni
- Department of Pharmacy University of Naples Federico II Napoli Italy
| |
Collapse
|
38
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
39
|
Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 2022; 46:722-730. [PMID: 35399195 PMCID: PMC8979607 DOI: 10.1016/j.jgr.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogenic virus that causes coronavirus disease 2019 (COVID-19), with major symptoms including hyper-inflammation and cytokine storm, which consequently impairs the respiratory system and multiple organs, or even cause death. SARS-CoV-2 activates inflammasomes and inflammasome-mediated inflammatory signaling pathways, which are key determinants of hyperinflammation and cytokine storm in COVID-19 patients. Additionally, SARS-CoV-2 inhibits inflammasome activation to evade the host's antiviral immunity. Therefore, regulating inflammasome initiation has received increasing attention as a preventive measure in COVID-19 patients. Ginseng and its major active constituents, ginsenosides and saponins, improve the immune system and exert anti-inflammatory effects by targeting inflammasome stimulation. Therefore, this review discussed the potential preventive and therapeutic roles of ginseng in COVID-19 based on its regulatory role in inflammasome initiation and the host's antiviral immunity.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, 16227, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Cannabidiol (CBD) can prevent the inflammatory response of SARS-CoV-2 spike protein in Caco-2-cells. This action is coupled with the inhibition of IL-1beta, IL-6, IL-18, and TNF-alpha, responsible for the inflammatory process during SARS-CoV-2 infection. CBD can act on the different proteins encoded by SARS-CoV-2 and as an antiviral agent to prevent the viral infection. Furthermore, recent studies have shown the possible action of CBD as an antagonist of cytokine release syndromes. In the SARS-CoV-2 pathophysiology, the angiotensin-converting enzyme 2 (ACE2) seems to be the key cell receptor for SARS-CoV-2 infection. The WNT/β-catenin pathway and PPARγ interact in an opposite manner in many diseases, including SARS-CoV-2 infection. CBD exerts its activity through the interaction with PPARγ in SARS-CoV-2 infection. Thus, we can hypothesize that CBD may counteract the inflammatory process of SARS-CoV-2 by its interactions with both ACE2 and the interplay between the WNT/β-catenin pathway and PPARγ. Vaccines are the only way to prevent COVID-19, but it appears important to find therapeutic complements to treat patients already affected by SARS-CoV-2 infection. The possible role of CBD should be investigated by clinical trials to show its effectiveness.
Collapse
|
41
|
Bahadoram M, Saeedi-Boroujeni A, Mahmoudian-Sani MR, Hussaini H, Hassanzadeh S. COVID-19-induced immune thrombocytopenic purpura; Immunopathogenesis and clinical implications. LE INFEZIONI IN MEDICINA 2022; 30:41-50. [PMID: 35350251 PMCID: PMC8929732 DOI: 10.53854/liim-3001-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Following the outbreak of the COVID-19 pandemic, millions of people around the world have been affected with SARS-CoV-2 infection. In addition to the typical symptoms, thrombotic events, lymphopenia, and thrombocytopenia have been reported in COVID-19 patients. Immune thrombocytopenic purpura (ITP) is one of the thrombotic events that occur in some COVID-19 patients. Hyperinflammation, cytokine storms, and immune dysregulation in some patients are the cause to the main COVID-19 complications such as ALI (acute lung injury), acute respiratory distress syndrome (ARDS), and multiple organ failure. Disruption in the differentiation of T-cells, enhanced differentiation of Th17 and Th1, cell death (pyroptosis), hyper-inflammation and dysfunction of inflammatory neutrophils and macrophages, and hyperactivity of NLRP3-inflammasome are among the important factors that may be the cause to COVID-19-induced ITP. This study aimed to give an overview of the findings on the immunopathogenesis of ITP and COVID-19-induced ITP. Further studies are required to better understand the exact immunopathogenesis and effective treatments for ITP, especially in inflammatory disorders.
Collapse
Affiliation(s)
- Mohammad Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Helai Hussaini
- Department of Hematology, Faculty of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Shakiba Hassanzadeh
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Pagano E. Phytocompounds and COVID-19: Two years of knowledge. Phytother Res 2022; 36:2267-2271. [PMID: 35170093 PMCID: PMC9111037 DOI: 10.1002/ptr.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|