1
|
Azam MNK, Biswas P, Khandker A, Tareq MMI, Tauhida SJ, Shishir TA, Bibi S, Alam MA, Zilani MNH, Albekairi NA, Alshammari A, Rahman MS, Hasan MN. Profiling of antioxidant properties and identification of potential analgesic inhibitory activities of Allophylus villosus and Mycetia sinensis employing in vivo, in vitro, and computational techniques. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118695. [PMID: 39142619 DOI: 10.1016/j.jep.2024.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Amia Khandker
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhanmondi, Dhaka, 1209, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
2
|
Xie X, Lin M, Xiao G, Liu H, Wang F, Liu D, Ma L, Wang Q, Li Z. Phenolic amides (avenanthramides) in oats - an update review. Bioengineered 2024; 15:2305029. [PMID: 38258524 PMCID: PMC10807472 DOI: 10.1080/21655979.2024.2305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.
Collapse
Affiliation(s)
- Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoyan Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Feng Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Łaska G, Sieniawska E, Świątek Ł, Czapiński J, Rivero-Müller A, Kiercul S, Tekwani BL, Pasco DS, Balachandran P. Evaluating the impact of Xanthoparmelia conspersa extracts on signaling in HeLa cells and exploring their diverse biological activities. Sci Rep 2024; 14:28531. [PMID: 39557857 PMCID: PMC11574082 DOI: 10.1038/s41598-024-73599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024] Open
Abstract
Xanthoparmelia conspersa is rich in specific secondary metabolites but an unexplored lichen species. This work determined the chemical composition and biological activities (anti-microbial, anti-protozoal, and cytotoxic) of its methanolic and hexane extracts. Additionally, we evaluated the potential of these extracts in modulating cancer signaling pathways in HeLa cells. The phytochemical analysis revealed that usnic acid was the predominant constituent in the hexane extract, while stictic acid was in the methanolic one. Among tested cell lines (VERO, FaDu, SCC-25, HeLa), cytotoxic selectivity was detected for X. conspersa hexane extract against the FaDu (SI 7.36) and HeLa (SI 2.19) cells. A noticeably better anti-microbial potential was found for hexane extract, however, the overall anti-microbial activity was relatively weak (28, 21, and 20% inhibition of Candida glabrata, Cryptococcus neoformans, and Escherichia coli, respectively). On the contrary, the anti-parasitic action of hexane extract was significant, with an IC50 value of 2.64 µg/mL against Leishmania donovani - amastigote and 7.18 µg/mL against Trypanosoma brucei. The detailed evaluation of the cancer-related signaling pathways in HeLa cells, done by two distinct methodologies (luciferase reporter tests), revealed that especially the hexane extract and usnic acid exhibited selective inhibition of Stat3, Smad, NF-κB, cMYC, and Notch pathways.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, 20-093, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Sylwia Kiercul
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Babu Lal Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - David S Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
4
|
Dai Y, Bao L, Huang J, Zhang M, Yu J, Zhang Y, Li F, Yu B, Gong S, Kou J. Endothelial NMMHC IIA dissociation from PAR1 activates the CREB3/ARF4 signaling in thrombin-mediated intracerebral hemorrhage. J Adv Res 2024:S2090-1232(24)00500-9. [PMID: 39521432 DOI: 10.1016/j.jare.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION There is an urgent need for cerebroprotective interventions to improve the suboptimal outcomes with intracerebral hemorrhage (ICH). Despite the important role of nonmuscle myosin heavy chain IIA (NMMHC IIA) in the blood-brain barrier (BBB), its function in ICH remains unclear. OBJECTIVES The objective of this study is to explore how NMMHC IIA functions in ICH and to evaluate the effectiveness of targeting NMMHC IIA as a treatment for ICH. METHODS We firstly examined the protein expression of NMMHC IIA in clinical patients and animal models with ICH. The function of NNMMHC IIA was then corroborated by using overexpress or knockdown NMMHC IIA specifically in ECs mice and pBMECs. In addition, we explored protein interacts with NMMHC IIA and signaling pathways after ICH by LC-MS/MS and transcriptomics analysis with an emphasis on the function of PAR1 and the CREB3/ARF4 signaling pathway, and validated them in three kind of animal models. To support the clinical translation of our results, we targeted NMMHC IIA to bicalutamide selected from a library of marketed drugs and examined to validate its ameliorative effect on ICH. RESULTS We observed an upregulation of endothelial NMMHC IIA in the brain following the onset of ICH in both patients and mice, while inhibited NMMHC ⅡA improved ICH induced by thrombin, warfarin or tissue plasminogen activator (tPA) after ischemic stroke. Mechanistically, the head domain of NMMHC IIA interacted with protease-activated receptor 1 (PAR1) at the 380-430 aa region and subsequently dissociated and activated the CREB3/ARF4 signaling pathway. We found that bicalutamide and blebbistatin could bind to NMMHC IIA and effectively protect mice from thrombin-mediated ICH. CONCLUSION The findings indicated that NMMHC IIA dissociated from PAR1 and activated CREB3/ARF4 pathway, which aggravated BBB damage induced by thrombin. This suggested that NMMHC IIA was a novel potential therapeutic target for BBB-related diseases.
Collapse
Affiliation(s)
- Yujie Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Liangying Bao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Juan Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Miling Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Junhe Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
5
|
Rokonuzzman M, Bhuia MS, Al-Qaaneh AM, El-Nashar HAS, Islam T, Chowdhury R, Hasan Shanto H, Al Hasan MS, El-Shazly M, Torequl Islam M. Biomedical Perspectives of Citronellal: Biological Activities, Toxicological Profile and Molecular Mechanisms. Chem Biodivers 2024:e202401973. [PMID: 39252577 DOI: 10.1002/cbdv.202401973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Citronellal, known as rhodinal, is a naturally occurring monoterpenoid aldehyde distinctly found in the distilled oils of Cymbopogon species including C. marginatus, C. citratus, C. validus and C. winterianus family Gramineae. It is also obtained from eucalyptus, mentha, melissa, cinnamomum and allium. It is traditionally used in air freshener, cleaner, floor polishing, deodorants, moisturizing hand/body lotion, perfumes, and adhesives due to its lemon characteristic fragrance and therapeutic benefits. This study aimed to summarize the pharmacological activities and underlying mechanisms of citronellal against different diseases, as well as its toxicological profile. The data was collected from various reliable and authentic literatures by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings imply that citronellal demonstrated several pharmacological effects in various preclinical and pharmacological experimental systems. The results indicated that citronellal demonstrated antioxidant, anti-inflammatory, antibacterial, antifungal, anthelminthic, and anticancer effects with beneficial effects in neurological and cardiovascular diseases. Our findings also indicated the toxic level of the phytochemical. In conclusion, it has been proposed that citronellal has the capability to serve as a hopeful therapeutic agent, so further extensive clinical research is necessary to develop it as a reliable drug.
Collapse
Affiliation(s)
- Md Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hasibul Hasan Shanto
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
6
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
7
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
El-Nashar HAS, Al-Azzawi MA, Al-Kazzaz HH, Alghanimi YK, Kocaebli SM, Alhmammi M, Asad A, Salam T, El-Shazly M, Ali MAM. HPLC-ESI/MS-MS metabolic profiling of white pitaya fruit and cytotoxic potential against cervical cancer: Comparative studies, synergistic effects, and molecular mechanistic approaches. J Pharm Biomed Anal 2024; 244:116121. [PMID: 38581932 DOI: 10.1016/j.jpba.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Natural approach became a high demand for the prevention and treatment of such diseases for their proven safety and efficacy. This study is aimed to perform comparative phytochemical analysis of white pitaya (Hylocereus undatus) peel, pulp and seed extracts via determination of total flavonoid content, phenolic content, and antioxidant capacity, coupled with HPLC-ESI/MS-MS analysis. Further, we evaluated the synergistic cytotoxic potential with Cisplatin against cervical cancer cells with investigation of underlying mechanism. The highest content of phenolics and antioxidants were found in both seed and peel extracts. The HPLC-ESI/MS-MS revealed identification of flavonoids, phenolic acids, anthocyanin glycosides, lignans, stilbenes, and coumarins. The cytotoxicity effects were evaluated by MTT assay against prostate, breast and cervical (HeLa) and Vero cell lines. The seed and peel extracts showed remarkable cytotoxic effect against all tested cell lines. Moreover, the selectivity index confirmed high selectivity of pitaya extracts to cancer cells and safety on normal cells. The combined therapy with Cisplatin effectively enhanced its efficacy and optimized the treatment outcomes, through the apoptotic ability of pitaya extracts in HeLa cells, as evaluated by flow cytometry. Besides, RT-PCR and western blotting analysis showed downregulation of Bcl-2 and overexpression of P53, BAX among HeLa cells treated with pitaya extracts, which eventually activated apoptosis process. Thus, pitaya extract could be used as adjuvant therapy with cisplatin for treatment of cervical cancer. Furthermore, in-vivo extensive studies on the seed and peel extracts, and their compounds are recommended to gain more clarification about the required dose, and side effects.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mahmood A Al-Azzawi
- Department of Forensic Science, College of Science, Al-Karkh University of Science, P.O. Box 10081, Baghdad, Iraq
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq
| | | | | | - Moaz Alhmammi
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed Asad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tarek Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
10
|
Biswas P, Kaium MA, Islam Tareq MM, Tauhida SJ, Hossain MR, Siam LS, Parvez A, Bibi S, Hasan MH, Rahman MM, Hosen D, Islam Siddiquee MA, Ahmed N, Sohel M, Azad SA, Alhadrami AH, Kamel M, Alamoudi MK, Hasan MN, Abdel-Daim MM. The experimental significance of isorhamnetin as an effective therapeutic option for cancer: A comprehensive analysis. Biomed Pharmacother 2024; 176:116860. [PMID: 38861855 DOI: 10.1016/j.biopha.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Labib Shahriar Siam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
| | - Md Hasibul Hasan
- Department of Food Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Moshiur Rahman
- Department of Information Systems Security, Faculty of Science & Technology, Bangladesh University of Professionals, Mirpur 1216, Bangladesh
| | - Delwar Hosen
- Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh
| | | | - Nasim Ahmed
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Salauddin Al Azad
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore 7400, Bangladesh
| | - Albaraa H Alhadrami
- Faculty of Medicine, King Abdulaziz University, P.O.Box 80402, Jeddah 21589, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
11
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
12
|
Rahman MA, Apu EH, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Taleb SA, Shaikh MH, Jalouli M, Harrath AH, Kim B. Exploring Importance and Regulation of Autophagy in Cancer Stem Cells and Stem Cell-Based Therapies. Cells 2024; 13:958. [PMID: 38891090 PMCID: PMC11171866 DOI: 10.3390/cells13110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is a globally conserved cellular activity that plays a critical role in maintaining cellular homeostasis through the breakdown and recycling of cellular constituents. In recent years, there has been much emphasis given to its complex role in cancer stem cells (CSCs) and stem cell treatment. This study examines the molecular processes that support autophagy and how it is regulated in the context of CSCs and stem cell treatment. Although autophagy plays a dual role in the management of CSCs, affecting their removal as well as their maintenance, the intricate interaction between the several signaling channels that control cellular survival and death as part of the molecular mechanism of autophagy has not been well elucidated. Given that CSCs have a role in the development, progression, and resistance to treatment of tumors, it is imperative to comprehend their biological activities. CSCs are important for cancer biology because they also show a tissue regeneration model that helps with organoid regeneration. In other words, the manipulation of autophagy is a viable therapeutic approach in the treatment of cancer and stem cell therapy. Both synthetic and natural substances that target autophagy pathways have demonstrated promise in improving stem cell-based therapies and eliminating CSCs. Nevertheless, there are difficulties associated with the limitations of autophagy in CSC regulation, including resistance mechanisms and off-target effects. Thus, the regulation of autophagy offers a versatile strategy for focusing on CSCs and enhancing the results of stem cell therapy. Therefore, understanding the complex interactions between autophagy and CSC biology would be essential for creating therapeutic treatments that work in both regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology and Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - S. M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Mushfiq H. Shaikh
- Department of Otolaryngology—Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Masood M, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Carbon nanotubes: a novel innovation as food supplements and biosensing for food safety. Front Nutr 2024; 11:1381179. [PMID: 38803447 PMCID: PMC11128632 DOI: 10.3389/fnut.2024.1381179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, nanotechnology has emerged as an extensively growing field. Several important fabricated products including Carbon nanotubes (CNTs) are of great importance and hold significance in several industrial sectors, mainly food industry. Recent developments have come up with methodologies for the prevention of health complications like lack of adequate nutrition in our diet. This review delves deeper into the details of the food supplementation techniques and how CNTs function in this regard. This review includes the challenges in using CNTs for food applications and their future prospects in the industry. Food shortage has become a global issue and limiting food resources put an additional burden on the farmers for growing crops. Apart from quantity, quality should also be taken into consideration and new ways should be developed for increasing nutritional value of food items. Food supplementation has several complications due to the biologically active compounds and reaction in the in vivo environment, CNTs can play a crucial role in countering this problem through the supplementation of food by various processes including; nanoencapsulation and nanobiofortification thus stimulating crop growth and seed germination rates. CNTs also hold a key position in biosensing and diagnostic application for either the quality control of the food supplements or the detection of contagions like toxins, chemicals, dyes, pesticides, pathogens, additives, and preservatives. Detection such pathogens can help in attaining global food security goal and better production and provision of food resources. The data used in the current review was collected up to date as of March 31, 2024 and contains the best of our knowledge. Data collection was performed from various reliable and authentic literatures comprising PubMed database, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Research related to commercially available CNTs has been added for the readers seeking additional information on the use of CNTs in various economic sectors.
Collapse
Affiliation(s)
- Maazallah Masood
- Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
14
|
Juhi UH, El-Nashar HAS, Al Faruq A, Bhuia MS, Sultana I, Alam S, Abuyousef F, Saleh N, El-Shazly M, Islam MT. Phytochemical analysis and biological investigation of Cheilanthes tenuifolia (Burm.f.) Swartz. Front Pharmacol 2024; 15:1366889. [PMID: 38638865 PMCID: PMC11024464 DOI: 10.3389/fphar.2024.1366889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction: Cheilanthes tenuifolia is an evergreen ornamental small fern, belonging to the family Pteridaceae, that grows in warm and rocky regions worldwide. Many species of Cheilanthes genus are evidently endowed with important phytochemicals and bioactivities. This study aimed to perform a preliminary phytochemical analysis of Cheilanthes tenuifolia leaves alongside an evaluation of free radical scavenging, anti-inflammatory, antimicrobial, and clot lysis activities of extract fractions. Materials and methods: A preliminary phytochemical analysis was done after fractionation of ethanolic extract (ECT) with n-hexane (HCT) and chloroform (CCT). Then, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, egg albumin and RBC membrane stabilization tests, disc diffusion, and human blood clot lysis assays were performed. Results: Phytochemical investigations suggested that the plant is rich in alkaloids, glycosides, tannins, and flavonoids. All obtained fractions exhibited concentration-dependent radical scavenging, inhibition of egg protein denaturation and RBC membrane lysis capacities. Except for antifungal tests, ECT exhibited better DPPH radical scavenging, anti-inflammatory, antibacterial, and clot lysis capacities than HCT and CCT fractions. However, all fractions exhibited a mild anti-inflammatory activity. Conclusion: C. tenuifolia might be a good source of antioxidant, anti-microbial, and anti-atherothrombotic agents. Further studies are required to isolate and characterize the active principles liable for each bioactivity, along with possible molecular interactions.
Collapse
Affiliation(s)
- Umme Habiba Juhi
- Department of Pharmacy, Southern University Bangladesh, Chattogram, Bangladesh
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdullah Al Faruq
- Department of Pharmacy, Southern University Bangladesh, Chattogram, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
| | - Irin Sultana
- Department of Pharmacy, Southern University Bangladesh, Chattogram, Bangladesh
| | - Syedul Alam
- Forest Botany Division, Bangladesh Forest Research Institute (BFRI), Chattogram, Bangladesh
| | - Farah Abuyousef
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na’il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
15
|
Lee CY, Chen YC, Huang YH, Lien Y, Huang CY. Cytotoxicity and Multi-Enzyme Inhibition of Nepenthes miranda Stem Extract on H838 Human Non-Small Cell Lung Cancer Cells and RPA32, Elastase, Tyrosinase, and Hyaluronidase Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:797. [PMID: 38592804 PMCID: PMC10974603 DOI: 10.3390/plants13060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The carnivorous pitcher plants of the genus Nepenthes have long been known for their ethnobotanical applications. In this study, we prepared various extracts from the pitcher, stem, and leaf of Nepenthes miranda using 100% ethanol and assessed their inhibitory effects on key enzymes related to skin aging, including elastase, tyrosinase, and hyaluronidase. The cytotoxicity of the stem extract of N. miranda on H838 human lung carcinoma cells were also characterized by effects on cell survival, migration, proliferation, apoptosis induction, and DNA damage. The cytotoxic efficacy of the extract was enhanced when combined with the chemotherapeutic agent 5-fluorouracil (5-FU), indicating a synergistic effect. Flow cytometry analysis suggested that the stem extract might suppress H838 cell proliferation by inducing G2 cell cycle arrest, thereby inhibiting carcinoma cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 15 most abundant compounds in the stem extract of N. miranda. Notably, the extract showed a potent inhibition of the human RPA32 protein (huRPA32), critical for DNA replication, suggesting a novel mechanism for its anticancer action. Molecular docking studies further substantiated the interaction between the extract and huRPA32, highlighting bioactive compounds, especially the two most abundant constituents, stigmast-5-en-3-ol and plumbagin, as potential inhibitors of huRPA32's DNA-binding activity, offering promising avenues for cancer therapy. Overall, our findings position the stem extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and anti-skin-aging treatments, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yu-Cheng Chen
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|