1
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
3
|
Pöysti S, Silojärvi S, Brodnicki TC, Catterall T, Liu X, Mackin L, Luster AD, Kay TWH, Christen U, Thomas HE, Hänninen A. Gut dysbiosis promotes islet-autoimmunity by increasing T-cell attraction in islets via CXCL10 chemokine. J Autoimmun 2023; 140:103090. [PMID: 37572540 DOI: 10.1016/j.jaut.2023.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
CXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node. In amounts typical to low-grade endotoxemia, bacterial lipopolysaccharide induced CXCL10 production in isolated islets of wild type and RAG1 or IFNG-receptor-deficient but not type-I-IFN-receptor-deficient NOD mice, dissociating lipopolysaccharide-induced CXCL10 production from T-cells and IFNγ. Although mostly myeloid-cell dependent, also β-cells showed activation of innate immune signaling pathways and Cxcl10 expression in response to lipopolysaccharide indicating their independent sensitivity to dysbiosis. Thus, CXCL10 induction in response to low levels of lipopolysaccharide may allow islet-specific T-cells imprinted in pancreatic lymph node to enter in healthy islets independently of IFN-g, and thus link gut dysbiosis to early islet-autoimmunity via dysbiosis-associated low-grade endotoxemia.
Collapse
MESH Headings
- Animals
- Mice
- Autoimmunity
- Chemokine CXCL10/metabolism
- Chemokine CXCL10/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/etiology
- Disease Models, Animal
- Dysbiosis/immunology
- Gastrointestinal Microbiome/immunology
- Interferon-gamma/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lipopolysaccharides/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- Sakari Pöysti
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Satu Silojärvi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tara Catterall
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Xin Liu
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Leanne Mackin
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas W H Kay
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Urs Christen
- Klinikum der Goethe Universität Frankfurt, Frankfurt Am Main, Germany
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Arno Hänninen
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku University Hospital Laboratory Division, Turku, Finland.
| |
Collapse
|
4
|
Wang Y, Guo H, Wang G, Zhai J, Du B. COVID-19 as a Trigger for Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:2176-2183. [PMID: 36950864 DOI: 10.1210/clinem/dgad165] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Type 1 diabetes (T1D) is usually caused by immune-mediated destruction of islet β cells, and genetic and environmental factors are thought to trigger autoimmunity. Convincing evidence indicates that viruses are associated with T1D development and progression. During the COVID-19 pandemic, cases of hyperglycemia, diabetic ketoacidosis, and new diabetes increased, suggesting that SARS-CoV-2 may be a trigger for or unmask T1D. Possible mechanisms of β-cell damage include virus-triggered cell death, immune-mediated loss of pancreatic β cells, and damage to β cells because of infection of surrounding cells. This article examines the potential pathways by which SARS-CoV-2 affects islet β cells in these 3 aspects. Specifically, we emphasize that T1D can be triggered by SARS-CoV-2 through several autoimmune mechanisms, including epitope spread, molecular mimicry, and bystander activation. Given that the development of T1D is often a chronic, long-term process, it is difficult to currently draw firm conclusions as to whether SARS-CoV-2 causes T1D. This area needs to be focused on in terms of the long-term outcomes. More in-depth and comprehensive studies with larger cohorts of patients and long-term clinical follow-ups are required.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gongquan Wang
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiawei Zhai
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Du
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2022; 11:vaccines11010076. [PMID: 36679922 PMCID: PMC9864234 DOI: 10.3390/vaccines11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.
Collapse
|
7
|
Yin M, Zhang Y, Liu S, Huang J, Li X. Gene Expression Signatures Reveal Common Virus Infection Pathways in Target Tissues of Type 1 Diabetes, Hashimoto's Thyroiditis, and Celiac Disease. Front Immunol 2022; 13:891698. [PMID: 35795668 PMCID: PMC9251511 DOI: 10.3389/fimmu.2022.891698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) patients are at heightened risk for other autoimmune disorders, particularly Hashimoto's thyroiditis (HT) and celiac disease (CD). Recent evidence suggests that target tissues of autoimmune diseases engage in a harmful dialogue with the immune system. However, it is unclear whether shared mechanisms drive similar molecular signatures at the target tissues among T1D, HT, and CD. In our current study, microarray datasets were obtained and mined to identify gene signatures from disease-specific targeted tissues including the pancreas, thyroid, and intestine from individuals with T1D, HT, and CD, as well as their matched controls. Further, the threshold-free algorithm rank-rank hypergeometric overlap analysis (RRHO) was used to compare the genomic signatures of the target tissues of the three autoimmune diseases. Next, promising drugs that could potentially reverse the observed signatures in patients with two or more autoimmune disorders were identified using the cloud-based CLUE software platform. Finally, microarray data of auto-antibody positive individuals but not diagnosed with T1D and single cell sequencing data of patients with T1D and HT were used to validate the shared transcriptomic fingerprint. Our findings revealed significant common gene expression changes in target tissues of the three autoimmune diseases studied, many of which are associated with virus infections, including influenza A, human T-lymphotropic virus type 1, and herpes simplex infection. These findings support the importance of common environmental factors in the pathogenesis of T1D, HT, and CD.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Ozana V, Hruska K, Sechi LA. Neglected Facts on Mycobacterium Avium Subspecies Paratuberculosis and Type 1 Diabetes. Int J Mol Sci 2022; 23:3657. [PMID: 35409018 PMCID: PMC8998319 DOI: 10.3390/ijms23073657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Civilization factors are responsible for the increasing of human exposure to mycobacteria from environment, water, and food during the last few decades. Urbanization, lifestyle changes and new technologies in the animal and plant industry are involved in frequent contact of people with mycobacteria. Type 1 diabetes is a multifactorial polygenic disease; its origin is conditioned by the mutual interaction of genetic and other factors. The environmental factors and certain pathogenetic pathways are shared by some immune mediated chronic inflammatory and autoimmune diseases, which are associated with triggers originating mainly from Mycobacterium avium subspecies paratuberculosis, an intestinal pathogen which persists in the environment. Type 1 diabetes and some other chronic inflammatory diseases thus pose the global health problem which could be mitigated by measures aimed to decrease the human exposure to this neglected zoonotic mycobacterium.
Collapse
Affiliation(s)
- Veronika Ozana
- Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic;
- Orlova Department, Karvina-Raj Hospital, 734 01 Karvina, Czech Republic
| | - Karel Hruska
- Veterinary Research Institute, 612 00 Brno, Czech Republic
- Institute for Research and Education, 621 00 Brno, Czech Republic
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università degli Studi di Sassari, 07100 Sassari, Italy
- AOU Sassari, UC Microbiologia e Virologia, 07100 Sassari, Italy
| |
Collapse
|
9
|
Morse ZJ, Horwitz MS. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Front Immunol 2021; 12:751337. [PMID: 34721424 PMCID: PMC8554326 DOI: 10.3389/fimmu.2021.751337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to genetic predisposition, environmental determinants contribute to a complex etiology leading to onset of type 1 diabetes (T1D). Multiple studies have established the gut as an important site for immune modulation that can directly impact development of autoreactive cell populations against pancreatic self-antigens. Significant efforts have been made to unravel how changes in the microbiome function as a contributor to autoimmune responses and can serve as a biomarker for diabetes development. Large-scale longitudinal studies reveal that common environmental exposures precede diabetes pathology. Virus infections, particularly those associated with the gut, have been prominently identified as risk factors for T1D development. Evidence suggests recent-onset T1D patients experience pre-existing subclinical enteropathy and dysbiosis leading up to development of diabetes. The start of these dysbiotic events coincide with detection of virus infections. Thus viral infection may be a contributing driver for microbiome dysbiosis and disruption of intestinal homeostasis prior to T1D onset. Ultimately, understanding the cross-talk between viral infection, the microbiome, and the immune system is key for the development of preventative measures against T1D.
Collapse
Affiliation(s)
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Zipris D. Visceral Adipose Tissue: A New Target Organ in Virus-Induced Type 1 Diabetes. Front Immunol 2021; 12:702506. [PMID: 34421908 PMCID: PMC8371384 DOI: 10.3389/fimmu.2021.702506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction of insulin producing β-cells and hyperglycaemia. Much of the knowledge about type 1 diabetes (T1D) has focused on mechanisms of disease progression such as adaptive immune cells and the cytokines that control their function, whereas mechanisms linked with the initiation of the disease remain unknown. It has been hypothesized that in addition to genetics, environmental factors play a pivotal role in triggering β-cell autoimmunity. The BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher the mechanisms that lead to virus-induced T1D. Both animals develop β-cell inflammation and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in the disease course plays a causal role in triggering β-cell inflammation and destruction. Furthermore, we recently found for the first time that infection with KRV induces inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated with macrophage recruitment, proinflammatory cytokine and chemokine upregulation, endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and downregulation of adipokines and molecules that mediate insulin signaling. Downregulation of inflammation suppresses VAT inflammation and T1D development. These observations are strikingly reminiscent of data from obesity and type 2 diabetes (T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms. We propose that VAT inflammation and dysfunction may be linked with the mechanism of T1D progression.
Collapse
Affiliation(s)
- Danny Zipris
- Innate Biotechnologies LLC, Denver, CO, United States
| |
Collapse
|
11
|
The Probable Association between Chronic Toxoplasma gondii Infection and Type 1 and Type 2 Diabetes Mellitus: A Case-Control Study. Interdiscip Perspect Infect Dis 2021; 2021:2508780. [PMID: 34122541 PMCID: PMC8169249 DOI: 10.1155/2021/2508780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The probable association between Toxoplasma gondii (T. gondii) infection and diabetes mellitus (DM) is still controversial, and there are several studies with conflicting results. Thus, this study was performed to assess the possible association between chronic T. gondii infection and type 1 diabetes mellitus (T1DM) and T2DM. Methods In this case-control study, a total of 105 diabetic subjects including 36 patients with T1DM and 69 patients with T2DM were recruited. In addition, 150 nondiabetic subjects were enrolled as controls. Each case group had its own control group. Each participant completed a structured questionnaire obtaining demographic information. Serum samples were examined for T. gondii-specific IgG antibody using enzyme-linked immunosorbent assay (ELISA) method. Results Analysis revealed that 69.4% and 34.0% of patients with T1DM and control subjects were serologically positive for T. gondii, respectively (odds ratio (OR): 4.41; 95% confidence interval (CI): 1.75–11.06; P=0.001). Moreover, 72.5% of T2DM patients and 29.0% of healthy individuals were seropositive for T. gondii (OR: 6.44; 95% CI: 3.25–12.74; P < 0.001). Among risk factors, only contact with cats was significantly associated with IgG seroprevalence in both T2DM patients (P < 0.001) and control subjects (P=0.045). Conclusion Although the results showed that chronic T. gondii infection is significantly associated with T1DM and T2DM, there remain many questions regarding the exact mechanisms of T. gondii in the pathogenesis of DM.
Collapse
|
12
|
Dallari S, Heaney T, Rosas-Villegas A, Neil JA, Wong SY, Brown JJ, Urbanek K, Herrmann C, Depledge DP, Dermody TS, Cadwell K. Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host Microbe 2021; 29:1014-1029.e8. [PMID: 33894129 PMCID: PMC8192460 DOI: 10.1016/j.chom.2021.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.
Collapse
Affiliation(s)
- Simone Dallari
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Heaney
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Rosas-Villegas
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jessica A Neil
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Serre-Yu Wong
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Medicine, Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biology, Trevecca Nazarene University, Nashville, TN, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel P Depledge
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA; Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
13
|
Phillips N, Ke E, Nham A, Seidl M, Freeman B, Abadejos JR, Xiao C, Nemazee D, Ku M, Kirak O. Prediabetes Induced by a Single Autoimmune B Cell Clone. Front Immunol 2020; 11:1073. [PMID: 32625203 PMCID: PMC7314986 DOI: 10.3389/fimmu.2020.01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
While B cells play a significant role in the onset of type-1 diabetes (T1D), little is know about their role in those early stages. Thus, to gain new insights into the role of B cells in T1D, we converted a physiological early pancreas-infiltrating B cell into a novel BCR mouse model using Somatic Cell Nuclear Transfer (SCNT). Strikingly, SCNT-derived B1411 model displayed neither developmental block nor anergy. Instead, B1411 underwent spontaneous germinal center reactions. Without T cell help, B1411-Rag1−/− was capable of forming peri-/intra-pancreatic lymph nodes, and undergoing class-switching. RNA-Seq analysis identified 93 differentially expressed genes in B1411 compared to WT B cells, including Irf7, Usp18, and Mda5 that had been linked to a potential viral etiology of T1D. We also found various members of the oligoadenylate synthase (OAS) family to be enriched in B1411, such as Oas1, which had recently also been linked to T1D. Strikingly, when challenged with glucose B1411-Rag1−/− mice displayed impaired glucose tolerance.
Collapse
Affiliation(s)
- Nathaniel Phillips
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Eugene Ke
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amy Nham
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Maximilian Seidl
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Brent Freeman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Justin R Abadejos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Oktay Kirak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Toxoplasma gondii Infection in Diabetes Mellitus Patients in China: Seroprevalence, Risk Factors, and Case-Control Studies. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4723739. [PMID: 30662909 PMCID: PMC6312584 DOI: 10.1155/2018/4723739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/05/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The association between Toxoplasma gondii (T. gondii) infection and diabetes mellitus remains controversial. With the improvement of living standards, the prevalence rate of diabetes is steadily increasing in China. Thus, it is necessary to explore the possible association between toxoplasmosis and diabetes mellitus in China. Hence, case-control studies were conducted to explore the T. gondii seroprevalence and identify the risk factors and possible transmission routes of T. gondii infection in different types of diabetes, including type 1 diabetes (T1DM), type 2 diabetes (T2DM), and gestational diabetes (GDM) patients in China. Four hundred serum samples for each type of diabetes mellitus, matched with 400 control subjects for each group, were collected and examined for anti-T. gondii IgG and IgM antibodies using commercially available enzyme immunoassay kits. The total T. gondii seroprevalence in T1DM, T2DM, and GDM patients was 16.50%, 23.50%, and 21.25%, respectively. Each type of diabetes mellitus patients had a significantly higher T. gondii seroprevalence than the control subjects. Multivariate regression identified three variables as risk factors for T. gondii infection in diabetes patients, including keeping cats at home and consumption of raw oysters for T1DM patients and consumption of raw/undercooked meat and raw oysters for T2DM patients, which may help to guide future research and control policies in diabetes mellitus patients.
Collapse
|
15
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|
16
|
Sioofy-Khojine AB, Lehtonen J, Nurminen N, Laitinen OH, Oikarinen S, Huhtala H, Pakkanen O, Ruokoranta T, Hankaniemi MM, Toppari J, Vähä-Mäkilä M, Ilonen J, Veijola R, Knip M, Hyöty H. Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia 2018; 61:1193-1202. [PMID: 29404673 DOI: 10.1007/s00125-018-4561-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Islet autoimmunity usually starts with the appearance of autoantibodies against either insulin (IAA) or GAD65 (GADA). This categorises children with preclinical type 1 diabetes into two immune phenotypes, which differ in their genetic background and may have different aetiology. The aim was to study whether Coxsackievirus group B (CVB) infections, which have been linked to the initiation of islet autoimmunity, are associated with either of these two phenotypes in children with HLA-conferred susceptibility to type 1 diabetes. METHODS All samples were from children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Individuals are recruited to the DIPP study from the general population of new-born infants who carry defined HLA genotypes associated with susceptibility to type 1 diabetes. Our study cohort included 91 children who developed IAA and 78 children who developed GADA as their first appearing single autoantibody and remained persistently seropositive for islet autoantibodies, along with 181 and 151 individually matched autoantibody negative control children, respectively. Seroconversion to positivity for neutralising antibodies was detected as the surrogate marker of CVB infections in serial follow-up serum samples collected before and at the appearance of islet autoantibodies in each individual. RESULTS CVB1 infections were associated with the appearance of IAA as the first autoantibody (OR 2.4 [95% CI 1.4, 4.2], corrected p = 0.018). CVB5 infection also tended to be associated with the appearance of IAA, however, this did not reach statistical significance (OR 2.3, [0.7, 7.5], p = 0.163); no other CVB types were associated with increased risk of IAA. Children who had signs of a CVB1 infection either alone or prior to infections by other CVBs were at the highest risk for developing IAA (OR 5.3 [95% CI 2.4, 11.7], p < 0.001). None of the CVBs were associated with the appearance of GADA. CONCLUSIONS/INTERPRETATION CVB1 infections may contribute to the initiation of islet autoimmunity being particularly important in the insulin-driven autoimmune process.
Collapse
Affiliation(s)
- Amir-Babak Sioofy-Khojine
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland.
| | - Jussi Lehtonen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland
| | - Noora Nurminen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland
| | - Olli H Laitinen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland
- Vactech Ltd, Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland
- Fimlab laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | | | | | - Minna M Hankaniemi
- Vactech Ltd, Tampere, Finland
- Biomeditech, University of Tampere, Tampere, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre of Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Paediatrics, Turku University Hospital, Turku, Finland
| | - Mari Vähä-Mäkilä
- Institute of Biomedicine, Research Centre of Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Paediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, PEDEGO Research Unit, Medical Research Centre, Oulu University, Hospital and University of Oulu, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014 Tampereen yliopisto, Tampere, Finland
- Fimlab laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
17
|
Affiliation(s)
- Didier Hober
- Laboratoire de Virologie EA3610, Centre Paul Boulanger, Hôpital Calmette, Université de Lille and CHU de Lille, F-59000 Lille, France
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie EA3610, Centre Paul Boulanger, Hôpital Calmette, Université de Lille and CHU de Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
|
19
|
Qaisar N, Lin S, Ryan G, Yang C, Oikemus SR, Brodsky MH, Bortell R, Mordes JP, Wang JP. A Critical Role for the Type I Interferon Receptor in Virus-Induced Autoimmune Diabetes in Rats. Diabetes 2017; 66:145-157. [PMID: 27999109 PMCID: PMC5204313 DOI: 10.2337/db16-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
Abstract
The pathogenesis of human type 1 diabetes, characterized by immune-mediated damage of insulin-producing β-cells of pancreatic islets, may involve viral infection. Essential components of the innate immune antiviral response, including type I interferon (IFN) and IFN receptor-mediated signaling pathways, are candidates for determining susceptibility to human type 1 diabetes. Numerous aspects of human type 1 diabetes pathogenesis are recapitulated in the LEW.1WR1 rat model. Diabetes can be induced in LEW.1WR1 weanling rats challenged with virus or with the viral mimetic polyinosinic:polycytidylic acid (poly I:C). We hypothesized that disrupting the cognate type I IFN receptor (type I IFN α/β receptor [IFNAR]) to interrupt IFN signaling would prevent or delay the development of virus-induced diabetes. We generated IFNAR1 subunit-deficient LEW.1WR1 rats using CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) genome editing and confirmed functional disruption of the Ifnar1 gene. IFNAR1 deficiency significantly delayed the onset and frequency of diabetes and greatly reduced the intensity of insulitis after poly I:C treatment. The occurrence of Kilham rat virus-induced diabetes was also diminished in IFNAR1-deficient animals. These findings firmly establish that alterations in innate immunity influence the course of autoimmune diabetes and support the use of targeted strategies to limit or prevent the development of type 1 diabetes.
Collapse
Affiliation(s)
- Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Suvana Lin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Glennice Ryan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Chaoxing Yang
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Sarah R Oikemus
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Michael H Brodsky
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Rita Bortell
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - John P Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
20
|
Zhang J, Zhang H, Zhao Y, Guo C, Yang Z, Ma S. Molecular characterization of a new human coxsackievirus B2 associated with severe hand-foot-mouth disease in Yunnan Province of China in 2012. Arch Virol 2016; 162:307-311. [PMID: 27709402 DOI: 10.1007/s00705-016-3075-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Human coxsackievirus B2 (CVB2) belongs to the species Human enterovirus B and can cause aseptic meningitis, myocarditis and hand-foot-mouth disease (HFMD). We first determined the complete genome of the RW41-2/YN/CHN/2012 strain, isolated from a patient with HFMD and aseptic meningitis in the Yunnan Province, China in 2012. The strain shared 83.5 % and 82.2 % nucleotide similarity with CVB2 prototype strain Ohio-1, in the complete VP1 gene and the complete genome, respectively. Using phylogenetic and homogeneity analyses for the complete VP1 gene, CVB2 strains could be divided into four genogroups (A-D); the RW41-2/YN/CHN/2012 strain belonging to genogroup D. The amino acid sequence of VP1 is highly conserved. Recombination analyses showed the newly isolated RW41-2/YN/CHN/2012 strain was probably a recombinant, which was closely related to strain CVB2 (KM386639) in the genomic P1 and P2 regions and strains of other human enterovirus B (HEV-B) viruses (KT353721, JX644073, and KP262053) in the P3 region.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yilin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Chen Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
21
|
Abstract
Environmental factors play an important role in the pathogenesis of type 1 diabetes and can determine if a genetically susceptible individual develops the disease. Increasing evidence suggest that among other exogenous agents certain virus infections can contribute to the beta-cell damaging process. Possible viral etiology of type 1 diabetes has been explored extensively but the final proof for causality is still lacking. Currently, the group of enteroviruses (EVs) is considered as the strongest candidate. These viruses have been found in the pancreas of type 1 diabetic patients, and epidemiological studies have shown more EV infections in diabetic patients than in controls. Prospective studies, such as the Type 1 Diabetes Prediction and Prevention (DIPP) study in Finland, are of fundamental importance in the evaluation viral effects as they can cover all stages of the beta-cell damaging process, including those preceding the initiation of the process. DIPP study has carried out the most comprehensive virological analyses ever done in prospective cohorts. This article summarizes the findings from these analyses and discuss them in the context of the existing other knowledge and the prospects for intervention studies with EV vaccines or antiviral drugs.
Collapse
Affiliation(s)
- Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
22
|
Abstract
Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.
Collapse
Affiliation(s)
- Anne Op de Beeck
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
- Welbio, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| |
Collapse
|
23
|
Richardson SJ, Horwitz MS. miR, miR in the Cell, Does the Virus Control Them All? Diabetes 2016; 65:823-5. [PMID: 27208018 DOI: 10.2337/dbi15-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Tong J, Ma B, Ge L, Mo Q, Zhou G, He J, Wang Y. Dicaffeoylquinic Acid-Enriched Fraction of Cichorium glandulosum Seeds Attenuates Experimental Type 1 Diabetes via Multipathway Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10791-802. [PMID: 26586022 DOI: 10.1021/acs.jafc.5b04552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chicory has a major geographical presence in Europe and Asia. Cichorium glandulosum Boiss. et Huet, a genus Cichorium, is used for medicinal and food purposes in Asia. In this study, a dicaffeoylquinic acid-enriched fraction of C. glandulosum seeds n-BuOH fraction (CGSB) could ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin (STZ)-induced diabetic mice with continuous administration for 2 weeks. CGSB treatment showed significantly higher plasma insulin levels but lower free fatty acids in adipose tissue and liver. Moreover, CGSB improved pancreatic islet mass. In vitro, different fractions of C. glandulosum seed (CGS) induced the differentiation of 3T3-L1 preadipocytes. The mRNA level for peroxisome proliferator-activated receptor alpha increased in high glucose treatment group in HepG2 cells, while CGSB significantly down-regulated the mRNA expression. The main compound of CGSB, 3,5-dicaffeoylquinic acid, was isolated and identified, which exhibited α-glucosidase inhibitory activity. These findings demonstrated that CGSB attenuated experimental T1DM via multipathway protection.
Collapse
Affiliation(s)
- Jing Tong
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Bingxin Ma
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Lanlan Ge
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Qigui Mo
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Gao Zhou
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Jingsheng He
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Youwei Wang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|