1
|
Li Y, Loh YR, Li Q, Luo D, Kang C. 1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. BIOMOLECULAR NMR ASSIGNMENTS 2024:10.1007/s12104-024-10208-z. [PMID: 39505821 DOI: 10.1007/s12104-024-10208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Zika virus has raised global concerns due to its link to microcephaly and Guillain-Barré syndrome in adults. One of viral nonstructural proteins-NS4B, an integral membrane protein, plays crucial roles in viral replication by interacting with both viral and host proteins, rendering it an attractive drug target for antiviral development. We purified the N-terminal region of ZIKV NS4B (NS4B NTD) and reconstituted it into detergent micelles. Here, we report the assignments of the backbone resonances of NS4B NTD in detergent micelles. The available assignment is useful for understanding its structure and ligand binding to provide useful information for developing NS4B inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Ying Ru Loh
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
2
|
Schult P, Kümmerer BM, Hafner M, Paeschke K. Viral hijacking of hnRNPH1 unveils a G-quadruplex-driven mechanism of stress control. Cell Host Microbe 2024; 32:1579-1593.e8. [PMID: 39094585 DOI: 10.1016/j.chom.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Viral genomes are enriched with G-quadruplexes (G4s), non-canonical structures formed in DNA or RNA upon assembly of four guanine stretches into stacked quartets. Because of their critical roles, G4s are potential antiviral targets, yet their function remains largely unknown. Here, we characterize the formation and functions of a conserved G4 within the polymerase coding region of orthoflaviviruses of the Flaviviridae family. Using yellow fever virus, we determine that this G4 promotes viral replication and suppresses host stress responses via interactions with hnRNPH1, a host nuclear protein involved in RNA processing. G4 binding to hnRNPH1 causes its cytoplasmic retention with subsequent impacts on G4-containing tRNA fragments (tiRNAs) involved in stress-mediated reductions in translation. As a result, these host stress responses and associated antiviral effects are impaired. These data reveal that the interplay between hnRNPH1 and both host and viral G4 targets controls the integrated stress response and viral replication.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Machmouchi D, Courageot MP, El-Kalamouni C, Kohl A, Desprès P. Replication properties of a contemporary Zika virus from West Africa. PLoS Negl Trop Dis 2024; 18:e0012066. [PMID: 38968296 PMCID: PMC11253966 DOI: 10.1371/journal.pntd.0012066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
Zika virus (ZIKV) has become a global health problem over the past decade due to the extension of the geographic distribution of the Asian/American genotype. Recent epidemics of Asian/American ZIKV have been associated with developmental disorders in humans. There is mounting evidence that African ZIKV may be associated with increased fetal pathogenicity necessitating to pay a greater attention towards currently circulating viral strains in sub-Saharan Africa. Here, we generated an infectious molecular clone GUINEA-18 of a recently transmitted human ZIKV isolate from West Africa, ZIKV-15555. The available infectious molecular clone MR766MC of historical African ZIKV strain MR766-NIID was used for a molecular clone-based comparative study. Viral clones GUINEA-18 and MR766MC were compared for their ability to replicate in VeroE6, A549 and HCM3 cell lines. There was a lower replication rate for GUINEA-18 associated with weaker cytotoxicity and reduced innate immune system activation compared with MR766MC. Analysis of chimeric viruses between viral clones stressed the importance of NS1 to NS4B proteins, with a particular focus of NS4B on GUINEA-18 replicative properties. ZIKV has developed strategies to prevent cytoplasmic stress granule formation which occurs in response to virus infection. GUINEA-18 was greatly efficient in inhibiting stress granule assembly in A549 cells subjected to a physiological stressor, with NS1 to NS4B proteins also being critical in this process. The impact of these GUINEA-18 proteins on viral replicative abilities and host-cell responses to viral infection raises the question of the role of nonstructural proteins in the pathogenicity of currently circulating ZIKV in sub-Saharan Africa.
Collapse
Affiliation(s)
- Dana Machmouchi
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | | | - Chaker El-Kalamouni
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Philippe Desprès
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
4
|
Jiang B, Zhang W, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A, Chen S. The topological model of NS4B and its TMD3 in duck TMUV proliferation. Poult Sci 2024; 103:103727. [PMID: 38652953 PMCID: PMC11063511 DOI: 10.1016/j.psj.2024.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.
Collapse
Affiliation(s)
- Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China.
| |
Collapse
|
5
|
Surya W, Honey SS, Torres J. Flavivirus Zika NS4A protein forms large oligomers in liposomes and in mild detergent. Sci Rep 2024; 14:12533. [PMID: 38822066 PMCID: PMC11143224 DOI: 10.1038/s41598-024-63407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
In flaviviruses such as Dengue or Zika, non-structural (NS) NS4A protein forms homo-oligomers, participates in membrane remodelling and is critical for virulence. In both viruses, mature NS4A has the same length and three predicted hydrophobic domains. The oligomers formed by Dengue NS4A are reported to be small (n = 2, 3), based on denaturing SDS gels, but no high-resolution structure of a flavivirus NS4A protein is available, and the size of the oligomer in lipid membranes is not known. Herein we show that crosslinking Zika NS4A protein in lipid membranes results in oligomers at least up to hexamers. Further, sedimentation velocity shows that NS4A in mild detergent C14-betaine appears to be in fast equilibrium between at least two species, where one is smaller, and the other larger, than a trimer or a tetramer. Consistently, sedimentation equilibrium data was best fitted to a model involving an equilibrium between dimers (n = 2) and hexamers (n = 6). Overall, the large, at least hexameric, oligomers obtained herein in liposomes and in mild detergent are more likely to represent the forms of NS4A present in cell membranes.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Shwe Sin Honey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
6
|
Sistrom M, Andrews H, Edwards DL. Comparative genomics of Japanese encephalitis virus shows low rates of recombination and a small subset of codon positions under episodic diversifying selection. PLoS Negl Trop Dis 2024; 18:e0011459. [PMID: 38295106 PMCID: PMC10861042 DOI: 10.1371/journal.pntd.0011459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/12/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Orthoflavivirus japonicum (JEV) is the dominant cause of viral encephalitis in the Asian region with 100,000 cases and 25,000 deaths reported annually. The genome is comprised of a single polyprotein that encodes three structural and seven non-structural proteins. We collated a dataset of 349 complete genomes from a number of public databases, and analysed the data for recombination, evolutionary selection and phylogenetic structure. There are low rates of recombination in JEV, subsequently recombination is not a major evolutionary force shaping JEV. We found a strong overall signal of purifying selection in the genome, which is the main force affecting the evolutionary dynamics in JEV. There are also a small number of genomic sites under episodic diversifying selection, especially in the envelope protein and non-structural proteins 3 and 5. Overall, these results support previous analyses of JEV evolutionary genomics and provide additional insight into the evolutionary processes shaping the distribution and adaptation of this important pathogenic arbovirus.
Collapse
Affiliation(s)
- Mark Sistrom
- Department of Industry, Trade and Tourism, Berrimah Veterinary Laboratories, Darwin, Australia
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
| | - Hannah Andrews
- Department of Industry, Trade and Tourism, Berrimah Veterinary Laboratories, Darwin, Australia
| | - Danielle L. Edwards
- Research Institute for the Environment and Livelihoods, Faculty of Science and Technology, Charles Darwin University, Casuarina, Australia
- Department of Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, Australia
| |
Collapse
|
7
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
8
|
Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Protein Sci 2023; 32:e4833. [PMID: 37937856 PMCID: PMC10682691 DOI: 10.1002/pro.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 β-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Taniya Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Shivani K. Kapuganti
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kumar Udit Saumya
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Nitin Sharma
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Deepanshu Verma
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kundlik Gadhave
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
9
|
Sarratea MB, Alberti AS, Redolfi DM, Truant SN, Iannantuono Lopez LV, Bivona AE, Mariuzza RA, Fernández MM, Malchiodi EL. Zika virus NS4B protein targets TANK-binding kinase 1 and inhibits type I interferon production. Biochim Biophys Acta Gen Subj 2023; 1867:130483. [PMID: 37802371 DOI: 10.1016/j.bbagen.2023.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND During viral infections, nucleic acid sensing by intracellular receptors can trigger type I interferon (IFN-I) production, key mediators in antiviral innate immunity. However, many flaviviruses use non-structural proteins to evade immune sensing favoring their survival. These mechanisms remain poorly characterized. Here, we studied the role of Zika virus (ZIKV) NS4B protein in the inhibition of IFN-I induction pathway and its biophysical interaction with host proteins. METHODS Using different cell-based assays, we studied the effect of ZIKV NS4B in the activation of interferon regulatory factors (IRFs), NF-κB, cytokines secretion and the expression of interferon-stimulating genes (ISG). We also analyzed the in vitro interaction between recombinant ZIKV NS4B and TANK-binding kinase 1 (TBK1) using surface plasmon resonance (SPR). RESULTS Transfection assays showed that ZIKV NS4B inhibits IRFs activation involved in different nucleic acid sensing cascades. Cells expressing NS4B secreted lower levels of IFN-β and IL-6. Furthermore, early induction of ISGs was also restricted by ZIKV NS4B. For the first time, we demonstrate by SPR assays that TBK1, a critical component in IFN-I production pathway, binds directly to ZIKV NS4B (KD of 3.7 × 10-6 M). In addition, we show that the N-terminal region of NS4B is directly involved in this interaction. CONCLUSIONS Altogether, our results strongly support that ZIKV NS4B affects nucleic acid sensing cascades and disrupts the TBK1/IRF3 axis, leading to an impairment of IFN-β production. SIGNIFICANCE This study provides the first biophysical data of the interaction between ZIKV NS4B and TBK1, and highlights the role of ZIKV NS4B in evading the early innate immune response.
Collapse
Affiliation(s)
- Maria B Sarratea
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrés Sánchez Alberti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Daniela M Redolfi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sofía Noli Truant
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura V Iannantuono Lopez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Augusto E Bivona
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Marisa M Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Emilio L Malchiodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU (UBA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología-IMPAM (UBA-CONICET), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
10
|
Loe MWC, Lee RCH, Chin WX, Min N, Teo ZY, Ho SX, Yi B, Chu JJH. Chelerythrine chloride inhibits Zika virus infection by targeting the viral NS4B protein. Antiviral Res 2023; 219:105732. [PMID: 37832876 DOI: 10.1016/j.antiviral.2023.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that has re-emerged as a significant threat to global health in the recent decade. Whilst infections are primarily asymptomatic, the virus has been associated with the manifestation of severe neurological complications. At present, there is still a lack of approved antivirals for ZIKV infections. In this study, chelerythrine chloride, a benzophenanthridine alkaloid, was identified from a mid-throughput screen conducted on a 502-compound natural products library to be a novel and potent inhibitor of ZIKV infection in both in-vitro and in-vivo assays. Subsequent downstream studies demonstrated that the compound inhibits a post-entry step of the viral replication cycle and is capable of disrupting viral RNA synthesis and protein expression. The successful generation and sequencing of a ZIKV resistant mutant revealed that a single S61T mutation on the viral NS4B allowed ZIKV to overcome chelerythrine chloride inhibition. Further investigation revealed that chelerythrine chloride could directly inhibit ZIKV protein synthesis, and that the NS4B-S61T mutation confers resistance to this inhibition. This study has established chelerythrine chloride as a potential candidate for further development as a therapeutic agent against ZIKV infection.
Collapse
Affiliation(s)
- Marcus Wing Choy Loe
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zi Yun Teo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Si Xian Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
11
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
12
|
Caldwell HS, Kuo L, Pata JD, Dupuis AP, Arnold JJ, Yeager C, Stout J, Koetzner CA, Payne AF, Bialosuknia SM, Banker EM, Nolen TA, Cameron CE, Ciota AT. Maintenance of a host-specific minority mutation in the West Nile virus NS3. iScience 2023; 26:107468. [PMID: 37593454 PMCID: PMC10428113 DOI: 10.1016/j.isci.2023.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between Culex spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes. In theory, this genetic diversity can facilitate adaptation to distinct environments during host cycling, yet host-specific fitness of minority genotypes has not been assessed. Utilizing WNV deep-sequencing data, we previously identified a naturally occurring, mosquito-biased substitution, NS3 P319L. Using both cell culture and experimental infection in natural hosts, we demonstrated that this substitution confers attenuation in vertebrate hosts and increased transmissibility by mosquitoes. Biochemical assays demonstrated temperature-sensitive ATPase activity consistent with host-specific phenotypes. Together these data confirm the maintenance of host-specific minority variants in arbovirus mutant swarms, suggest a unique role for NS3 in viral fitness, and demonstrate that intrahost sequence data can inform mechanisms of host-specific adaptation.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
| | - Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Calvin Yeager
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jessica Stout
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Anne F. Payne
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Elyse M. Banker
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Taylor A. Nolen
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA
| |
Collapse
|
13
|
van den Elsen K, Chew BLA, Ho JS, Luo D. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets. Curr Opin Virol 2023; 59:101305. [PMID: 36870091 PMCID: PMC10023477 DOI: 10.1016/j.coviro.2023.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
Many flaviviruses are well-known pathogens, such as dengue, Zika, Japanese encephalitis, and yellow fever viruses. Among them, dengue viruses cause global epidemics and threaten billions of people. Effective vaccines and antivirals are in desperate need. In this review, we focus on the recent advances in understanding viral nonstructural (NS) proteins as antiviral drug targets. We briefly summarize the experimental structures and predicted models of flaviviral NS proteins and their functions. We highlight a few well-characterized inhibitors targeting these NS proteins and provide an update about the latest development. NS4B emerges as one of the most promising drug targets as novel inhibitors targeting NS4B and its interaction network are entering clinical studies. Studies aiming to elucidate the architecture and molecular basis of viral replication will offer new opportunities for novel antiviral discovery. Direct-acting agents against dengue and other pathogenic flaviviruses may be available very soon.
Collapse
Affiliation(s)
- Kaïn van den Elsen
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jun Sheng Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
14
|
Goethals O, Kaptein SJF, Kesteleyn B, Bonfanti JF, Van Wesenbeeck L, Bardiot D, Verschoor EJ, Verstrepen BE, Fagrouch Z, Putnak JR, Kiemel D, Ackaert O, Straetemans R, Lachau-Durand S, Geluykens P, Crabbe M, Thys K, Stoops B, Lenz O, Tambuyzer L, De Meyer S, Dallmeier K, McCracken MK, Gromowski GD, Rutvisuttinunt W, Jarman RG, Karasavvas N, Touret F, Querat G, de Lamballerie X, Chatel-Chaix L, Milligan GN, Beasley DWC, Bourne N, Barrett ADT, Marchand A, Jonckers THM, Raboisson P, Simmen K, Chaltin P, Bartenschlager R, Bogers WM, Neyts J, Van Loock M. Blocking NS3-NS4B interaction inhibits dengue virus in non-human primates. Nature 2023; 615:678-686. [PMID: 36922586 PMCID: PMC10033419 DOI: 10.1038/s41586-023-05790-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.
Collapse
Affiliation(s)
- Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Galapagos, Romainville, France
| | | | | | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J Robert Putnak
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Oliver Ackaert
- Janssen Clinical Pharmacology and Pharmacometrics, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Roel Straetemans
- Statistics and Decision Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Peggy Geluykens
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
- Discovery, Charles River Beerse, Beerse, Belgium
| | - Marjolein Crabbe
- Statistics and Decision Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Oliver Lenz
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Lotke Tambuyzer
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sandra De Meyer
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kai Dallmeier
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nicos Karasavvas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Franck Touret
- Unité des Virus Émergents, Aix-Marseille Université-IRD 190-Inserm 1207, Marseille, France
| | - Gilles Querat
- Unité des Virus Émergents, Aix-Marseille Université-IRD 190-Inserm 1207, Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents, Aix-Marseille Université-IRD 190-Inserm 1207, Marseille, France
| | - Laurent Chatel-Chaix
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Gregg N Milligan
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch Health, Galveston, TX, USA
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch Health, Galveston, TX, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch Health, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch Health, Galveston, TX, USA
| | | | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Pierre Raboisson
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
- Galapagos NV, Mechelen, Belgium
| | | | - Patrick Chaltin
- Cistim Leuven vzw, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), KU Leuven, Leuven, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg Partner Site, Heidelberg, Germany
| | - Willy M Bogers
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD, USA
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
15
|
Plante JA, Plante KS, Popov VL, Shinde DP, Widen SG, Buenemann M, Nogueira ML, Vasilakis N. Morphologic and Genetic Characterization of Ilheus Virus, a Potential Emergent Flavivirus in the Americas. Viruses 2023; 15:195. [PMID: 36680235 PMCID: PMC9866216 DOI: 10.3390/v15010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Ilheus virus (ILHV) is a mosquito-borne flavivirus circulating throughout Central and South America and the Caribbean. It has been detected in several mosquito genera including Aedes and Culex, and birds are thought to be its primary amplifying and reservoir host. Here, we describe the genomic and morphologic characterization of ten ILHV strains. Our analyses revealed a high conservation of both the 5'- and 3'-untranslated regions but considerable divergence within the open reading frame. We also showed that ILHV displays a typical flavivirus structural and genomic organization. Our work lays the foundation for subsequent ILHV studies to better understand its transmission cycles, pathogenicity, and emergence potential.
Collapse
Affiliation(s)
- Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Vsevolod L. Popov
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Divya P. Shinde
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0679, USA
| | - Michaela Buenemann
- Department of Geography and Environmental Studies, New Mexico State University, Las Cruces, NM 88003-8801, USA
| | - Mauricio L. Nogueira
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto 15090-000, SP, Brazil
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
16
|
Bialosuknia SM, Dupuis II AP, Zink SD, Koetzner CA, Maffei JG, Owen JC, Landwerlen H, Kramer LD, Ciota AT. Adaptive evolution of West Nile virus facilitated increased transmissibility and prevalence in New York State. Emerg Microbes Infect 2022; 11:988-999. [PMID: 35317702 PMCID: PMC8982463 DOI: 10.1080/22221751.2022.2056521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.
Collapse
Affiliation(s)
- Sean M. Bialosuknia
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alan P. Dupuis II
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Hannah Landwerlen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Laura D. Kramer
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alexander T. Ciota
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| |
Collapse
|
17
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
18
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
19
|
Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol 2022; 12:959727. [PMID: 36017362 PMCID: PMC9398000 DOI: 10.3389/fcimb.2022.959727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is an important pathogen affecting global population while no specific treatment is available against this virus. Effort has been made to develop inhibitors through targeting viral nonstructural proteins such as NS3 and NS5 with enzymatic activities. No potent inhibitors entering clinical studies have been developed so far due to many challenges. The genome of dengue virus encodes four membrane-bound nonstructural proteins which do not possess any enzymatic activities. Studies have shown that the membrane protein-NS4B is a validated target for drug discovery and several NS4B inhibitors exhibited antiviral activities in various assays and entered preclinical studies.. Here, we summarize the recent studies on dengue NS4B protein. The structure and membrane topology of dengue NS4B derived from biochemical and biophysical studies are described. Function of NS4B through protein-protein interactions and some available NS4B inhibitors are summarized. Accumulated studies demonstrated that cell-based assays play important roles in developing NS4B inhibitors. Although the atomic structure of NS4B is not obtained, target-based drug discovery approach become feasible to develop NS4B inhibitors as recombinant NS4B protein is available.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
20
|
Zakotnik S, Knap N, Bogovič P, Zorec TM, Poljak M, Strle F, Avšič-Županc T, Korva M. Complete Genome Sequencing of Tick-Borne Encephalitis Virus Directly from Clinical Samples: Comparison of Shotgun Metagenomic and Targeted Amplicon-Based Sequencing. Viruses 2022; 14:v14061267. [PMID: 35746738 PMCID: PMC9231111 DOI: 10.3390/v14061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical presentation of tick-borne encephalitis virus (TBEV) infection varies from asymptomatic to severe meningoencephalitis or meningoencephalomyelitis. The TBEV subtype has been suggested as one of the most important risk factors for disease severity, but TBEV genetic characterization is difficult. Infection is usually diagnosed in the post-viremic phase, and so relevant clinical samples of TBEV are extremely rare and, when present, are associated with low viral loads. To date, only two complete TBEV genomes sequenced directly from patient clinical samples are publicly available. The aim of this study was to develop novel protocols for the direct sequencing of the TBEV genome, enabling studies of viral genetic determinants that influence disease severity. We developed a novel oligonucleotide primer scheme for amplification of the complete TBEV genome. The primer set was tested on 21 clinical samples with various viral loads and collected over a 15-year period using the two most common sequencing platforms. The amplicon-based strategy was compared to direct shotgun sequencing. Using the novel primer set, we successfully obtained nearly complete TBEV genomes (>90% of genome) from all clinical samples, including those with extremely low viral loads. Comparison of consensus sequences of the TBEV genome generated using the novel amplicon-based strategy and shotgun sequencing showed no difference. We conclude that the novel primer set is a powerful tool for future studies on genetic determinants of TBEV that influence disease severity and will lead to a better understanding of TBE pathogenesis.
Collapse
Affiliation(s)
- Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Petra Bogovič
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Franc Strle
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
- Correspondence:
| |
Collapse
|
21
|
Desantis J, Felicetti T, Cannalire R. An overview on small molecules acting as broad spectrum-agents for yellow fever infection. Expert Opin Drug Discov 2022; 17:755-773. [PMID: 35638299 DOI: 10.1080/17460441.2022.2084529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Yellow Fever virus (YFV) is a mosquito-borne flavivirus, endemic in 47 countries in Africa and South America, which causes febrile symptoms that can evolve in 15% of the patients to serious haemorrhagic conditions, liver injury, and multiorgan failure. Although a highly effective vaccine (YF-17D vaccine) is available, to date, no antiviral drugs have been approved for the prevention and treatment of YFV infections. AREAS COVERED This review article focuses on the description of viral targets that have been considered within YFV and flavivirus drug discovery studies and on the most relevant candidates reported so far that elicit broad-spectrum inhibition against relevant strains and mutants of YFV. EXPERT OPINION Considering the growing interest on (re)emerging vector-borne viral infections, it is expected that flavivirus drug discovery will quickly deliver potential candidates for clinical evaluation. Due to similarity among flaviviral targets, several candidates identified against different flaviviruses have shown broad-spectrum activity, thus exhibiting anti-YFV activity, as well. In this regard, it would be desirable to routinely include the assessment of antiviral activity against different YFV strains. On the other hand, the development of host targeting agents are still at an initial stage and deserve further focused efforts.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
22
|
Genetic Diversity Does Not Contribute to Attenuation of HeLa Passaged Wild-Type Yellow Fever Virus Strain French Viscerotropic Virus. Viruses 2022; 14:v14030527. [PMID: 35336933 PMCID: PMC8949127 DOI: 10.3390/v14030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The disease yellow fever was prevented by two live attenuated vaccines, strains 17D and French neurotropic vaccine (FNV), derived by serial passage of wild-type (WT) strains Asibi and French Viscerotropic virus (FVV), respectively. Both 17D and FNV displayed decreased genetic diversity and resistance to the antiviral Ribavirin compared to their WT parental strains, which are thought to contribute to their attenuated phenotypes. Subsequent studies found that only a few passages of WT strain FVV in HeLa cells resulted in an attenuated virus. In the current study, the genome sequence of FVV following five passages in HeLa cells (FVV HeLa p5) was determined through Next Generation Sequencing (NGS) with the aim to investigate the molecular basis of viral attenuation. It was found that WT FVV and FVV HeLa p5 virus differed by five amino acid substitutions: E-D155A, E-K331R, E-I412V, NS2A-T105A, and NS4B-V98I. Surprisingly, the genetic diversity and Ribavirin resistance of the FVV HeLa p5 virus were not statistically different to WT parent FVV. These findings suggest that while FVV HeLa p5 is attenuated, this is not dependent on a high-fidelity replication complex, characterized by reduced genetic diversity or increased Ribavirin stability, as seen with FNV and 17D vaccines.
Collapse
|
23
|
Flavivirus recruits the valosin-containing protein-NPL4 complex to induce stress granule disassembly for efficient viral genome replication. J Biol Chem 2022; 298:101597. [PMID: 35063505 PMCID: PMC8857493 DOI: 10.1016/j.jbc.2022.101597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.
Collapse
|
24
|
Gao Z, Zhang X, Zhang L, Wu S, Ma J, Wang F, Zhou Y, Dai X, Bullitt E, Du Y, Guo JT, Chang J. A yellow fever virus NS4B inhibitor not only suppresses viral replication, but also enhances the virus activation of RIG-I-like receptor-mediated innate immune response. PLoS Pathog 2022; 18:e1010271. [PMID: 35061864 PMCID: PMC8809586 DOI: 10.1371/journal.ppat.1010271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/02/2022] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future. Emergence and re-emergence of yellow fever (YF) caused by the yellow fever virus (YFV) infection have posed a global public health threat in previously non-epidemic as well as endemic regions. The approximately 30% of mortality rate makes the outbreaks particularly devastating. In addition to the vaccination campaign and mosquito controls, antiviral drugs are important components in the toolbox for combating YF outbreaks. However, only two nucleotide analogue drugs developed for the treatment of other RNA virus infections are currently repurposed for the treatment of YF with uncertain clinical efficacy. BDAA is a benzodiazepine compound discovered as a potent YFV-specific antiviral agent in our laboratory. The work reported herein further demonstrates that BDAA interaction with the YFV NS4B protein may impair the integrity of viral RNA replication organelles, which not only inhibits viral RNA replication, but also results in the leakage of viral RNA into the cytoplasm to activate RIG-I-like RNA receptors and enhances the innate antiviral immune response. The unprecedented antiviral mechanism of BDAA highlights the essential role of the NS4B protein in viral RNA replication and the evasion of host cellular innate immunity.
Collapse
Affiliation(s)
- Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Lin Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Shuo Wu
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Julia Ma
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
INMI1 Zika Virus NS4B Antagonizes the Interferon Signaling by Suppressing STAT1 Phosphorylation. Viruses 2021; 13:v13122448. [PMID: 34960717 PMCID: PMC8705506 DOI: 10.3390/v13122448] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
The evasion of the Interferon response has important implications in Zika virus (ZIKV) disease. Mutations in ZIKV viral protein NS4B, associated with modulation of the interferon (IFN) system, have been linked to increased pathogenicity in animal models. In this study, we unravel ZIKV NS4B as antagonist of the IFN signaling cascade. Firstly, we reported the genomic characterization of NS4B isolated from a strain of the 2016 outbreak, ZIKV Brazil/2016/INMI1, and we predicted its membrane topology. Secondly, we analyzed its phylogenetic correlation with other flaviviruses, finding a high similarity with dengue virus 2 (DEN2) strains; in particular, the highest conservation was found when NS4B was aligned with the IFN inhibitory domain of DEN2 NS4B. Hence, we asked whether ZIKV NS4B was also able to inhibit the IFN signaling cascade, as reported for DEN2 NS4B. Our results showed that ZIKV NS4B was able to strongly inhibit the IFN stimulated response element and the IFN-γ-activated site transcription, blocking IFN-I/-II responses. mRNA expression levels of the IFN stimulated genes ISG15 and OAS1 were also strongly reduced in presence of NS4B. We found that the viral protein was acting by suppressing the STAT1 phosphorylation and consequently blocking the nuclear transport of both STAT1 and STAT2.
Collapse
|
26
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|
27
|
Yurayart N, Ninvilai P, Chareonviriyaphap T, Kaewamatawong T, Thontiravong A, Tiawsirisup S. Interactions of duck Tembusu virus with Aedes aegypti and Aedes albopictus mosquitoes: Vector competence and viral mutation. Acta Trop 2021; 222:106051. [PMID: 34273310 DOI: 10.1016/j.actatropica.2021.106051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Duck Tembusu virus (DTMUV) is an emerging flavivirus that causes severe disease in avian hosts, while also affecting mammalian hosts; however, information on viral interaction with mosquito vectors for mammalian hosts is limited. Vector competence of Aedes (Ae.) aegypti and Aedes albopictus mosquitoes for DTMUV were investigated. Both Aedes mosquito species were orally infected with DK/TH/CU-1 strain of Thai DTMUV and isolated DTMUV from BALB/c mouse. Genomes of the viruses isolated from hosts and vectors were analyzed and compared with the positive virus. Findings showed that both Aedes mosquito species could serve as vectors for DTMUV with minimum viral titer in blood meal of 106 TCID50/mL. After taking blood meal with viral titer at 107 TCID50/mL, vector competence of the mosquitoes was significantly different from the lower titer in both species. Both Aedes species did not support development of the isolated viruses from mouse. A point mutation of nucleotide and amino acid was found in all isolated DTMUV from Ae. aegypti saliva, while other viruses were similar to the positive virus. Our findings demonstrated that both Ae. aegypti and Ae. albopictus had potential to transmit the virus and play important roles in the viral transmission cycle in mammalian hosts, while viral mutation occurred in Ae. aegypti mosquitoes.
Collapse
|
28
|
A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature 2021; 598:504-509. [PMID: 34616043 DOI: 10.1038/s41586-021-03990-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.
Collapse
|
29
|
Tripathi A, Banerjee A, Vrati S. Development and characterization of an animal model of Japanese encephalitis virus infection in adolescent C57BL/6 mouse. Dis Model Mech 2021; 14:dmm049176. [PMID: 34447981 PMCID: PMC8543065 DOI: 10.1242/dmm.049176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
A mouse-adapted isolate of Japanese encephalitis virus (JEV), designated as JEV-S3, was generated by serially passaging the P20778 strain of the virus in 3- to 4-week-old C57BL/6 mice. Blood-brain barrier leakage was evident in JEV-S3-infected mice, in which viral antigens and RNA were consistently demonstrated in the brain, along with infiltration of activated immune cells, as evidenced by an increased CD45+CD11b+ cell population. Histopathology studies showed the presence of perivascular cuffing, haemorrhage and necrotic foci in the virus-infected brain, conforming to the pathological changes seen in the brain of JEV-infected patients. Mass spectrometry studies characterized the molecular events leading to brain inflammation in the infected mice. Notably, a significant induction of inflammatory cytokines, such as IFNγ, IL6, TNFα and TGFβ, was observed. Further, genome sequencing of the JEV-S3 isolate identified the mutations selected during the mouse passage of the virus. Overall, we present an in-depth characterization of a robust and reproducible mouse model of JEV infection. The JEV-S3 isolate will be a useful tool to screen antivirals and study virus pathogenesis in the adolescent mouse model.
Collapse
MESH Headings
- Adaptation, Physiological
- Aging/pathology
- Amino Acid Substitution
- Animals
- Antiviral Agents/pharmacology
- Astrocytes/drug effects
- Astrocytes/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/pathology
- Caspases/metabolism
- Cell Line
- Disease Models, Animal
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis Virus, Japanese/physiology
- Encephalitis, Japanese/complications
- Encephalitis, Japanese/genetics
- Encephalitis, Japanese/pathology
- Encephalitis, Japanese/virology
- Gene Expression Regulation/drug effects
- Genome, Viral
- Inflammation/complications
- Inflammation/pathology
- Interferons/pharmacology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/pathology
- Mutation/genetics
- Virulence/drug effects
- Virus Replication/drug effects
- Virus Replication/physiology
- Mice
Collapse
Affiliation(s)
- Aarti Tripathi
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Arup Banerjee
- Infection and Immunology, Translational Health Science and Technology Institute, Faridabad 121001, India
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
30
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
31
|
A Novel Series of Indole Alkaloid Derivatives Inhibit Dengue and Zika Virus Infection by Interference with the Viral Replication Complex. Antimicrob Agents Chemother 2021; 65:e0234920. [PMID: 34001508 DOI: 10.1128/aac.02349-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we identified a novel class of compounds which demonstrated good antiviral activity against dengue and Zika virus infection. These derivatives constitute intermediates in the synthesis of indole (ervatamine-silicine) alkaloids and share a tetracyclic structure, with an indole and a piperidine fused to a seven-membered carbocyclic ring. Structure-activity relationship studies indicated the importance of substituent at position C-6 and especially the presence of a benzyl ester for the activity and cytotoxicity of the molecules. In addition, the stereochemistry at C-7 and C-8, as well as the presence of an oxazolidine ring, influenced the potency of the compounds. Mechanism of action studies with two analogues of this family (compounds 22 and trans-14) showed that this class of molecules can suppress viral infection during the later stages of the replication cycle (RNA replication/assembly). Moreover, a cell-dependent antiviral profile of the compounds against several Zika strains was observed, possibly implying the involvement of a cellular factor(s) in the activity of the molecules. Sequencing of compound-resistant Zika mutants revealed a single nonsynonymous amino acid mutation (aspartic acid to histidine) at the beginning of the predicted transmembrane domain 1 of NS4B protein, which plays a vital role in the formation of the viral replication complex. To conclude, our study provides detailed information on a new class of NS4B-associated inhibitors and strengthens the importance of identifying host-virus interactions in order to tackle flavivirus infections.
Collapse
|
32
|
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021; 37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tzi Shien Yeoh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Andrew Anna
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
33
|
Tran PTH, Asghar N, Johansson M, Melik W. Roles of the Endogenous Lunapark Protein during Flavivirus Replication. Viruses 2021; 13:v13071198. [PMID: 34206552 PMCID: PMC8310331 DOI: 10.3390/v13071198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is a dynamic organelle, which undergoes continuous remodeling. At the three-way tubular junctions of the ER, the lunapark (LNP) protein acts as a membrane remodeling factor to stabilize these highly curved membrane junctions. In addition, during flavivirus infection, the ER membrane is invaginated to form vesicles (Ve) for virus replication. Thus, LNP may have roles in the generation or maintenance of the Ve during flavivirus infection. In this study, our aim was to characterize the functions of LNP during flavivirus infection and investigate the underlying mechanisms of these functions. To specifically study virus replication, we generated cell lines expressing replicons of West Nile virus (Kunjin strain) or Langat virus. By using these replicon platforms and electron microscopy, we showed that depletion of LNP resulted in reduced virus replication, which is due to its role in the generation of the Ve. By using biochemical assays and high-resolution microscopy, we found that LNP is recruited to the Ve and the protein interacts with the nonstructural protein (NS) 4B. Therefore, these data shed new light on the interactions between flavivirus and host factors during viral replication.
Collapse
|
34
|
Long RKM, Moriarty KP, Cardoen B, Gao G, Vogl AW, Jean F, Hamarneh G, Nabi IR. Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum. Sci Rep 2020; 10:20937. [PMID: 33262363 PMCID: PMC7708840 DOI: 10.1038/s41598-020-77170-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.
Collapse
Affiliation(s)
- Rory K M Long
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kathleen P Moriarty
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Guang Gao
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - François Jean
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Ivan R Nabi
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
35
|
Gao Z, Zhang L, Ma J, Jurado A, Hong SH, Guo JT, Rice CM, MacDonald MR, Chang J. Development of antibody-based assays for high throughput discovery and mechanistic study of antiviral agents against yellow fever virus. Antiviral Res 2020; 182:104907. [PMID: 32798604 PMCID: PMC7426275 DOI: 10.1016/j.antiviral.2020.104907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
Despite the availability of a highly effective yellow fever virus (YFV) vaccine, outbreaks of yellow fever frequently occur in Africa and South America with significant mortality, highlighting the pressing need for antiviral drugs to manage future outbreaks. To support the discovery and development of antiviral drugs against YFV, we characterized a panel of rabbit polyclonal antibodies against the three YFV structural proteins and five non-structural proteins and demonstrated these antibody reagents in conjunction with viral RNA metabolic labeling, double-stranded RNA staining and membrane floatation assays as powerful tools for investigating YFV polyprotein processing, replication complex formation, viral RNA synthesis and high throughput discovery of antiviral drugs. Specifically, the proteolytic processing of the viral polyprotein can be analyzed by Western blot assays. The predominant nuclear localization of NS5 protein as well as the relationship between intracellular viral non-structural protein distribution and foci of YFV RNA replication can be revealed by immunofluorescence staining and membrane flotation assays. Using an antibody against YFV NS4B protein as an example, in-cell western and high-content imaging assays have been developed for high throughput discovery of antiviral agents. A synergistic antiviral effect of an YFV NS4B-targeting antiviral agent BDAA and a NS5 RNA-dependent RNA polymerase inhibitor (Sofosbuvir) was also demonstrated with the high-content imaging assay. Apparently, the antibody-based assays established herein not only facilitate the discovery and development of antiviral agents against YFV, but also provide valuable tools to dissect the molecular mechanism by which the antiviral agents inhibit YFV replication.
Collapse
Affiliation(s)
- Zhao Gao
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Lin Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Julia Ma
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Andrea Jurado
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Seon-Hui Hong
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
36
|
Kirsch JM, Mlera L, Offerdahl DK, VanSickle M, Bloom ME. Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2. Viruses 2020; 12:v12101059. [PMID: 32977414 PMCID: PMC7598186 DOI: 10.3390/v12101059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.
Collapse
|
37
|
Leier HC, Weinstein JB, Kyle JE, Lee JY, Bramer LM, Stratton KG, Kempthorne D, Navratil AR, Tafesse EG, Hornemann T, Messer WB, Dennis EA, Metz TO, Barklis E, Tafesse FG. A global lipid map defines a network essential for Zika virus replication. Nat Commun 2020; 11:3652. [PMID: 32694525 PMCID: PMC7374707 DOI: 10.1038/s41467-020-17433-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jules B Weinstein
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA, 99352, USA
| | - Kelly G Stratton
- Computing and Analytics Division, National Security Directorate, PNNL, Richland, WA, 99352, USA
| | - Douglas Kempthorne
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Center for Diversity and Inclusion, OHSU, Portland, OR, 97239, USA
| | - Aaron R Navratil
- Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Endale G Tafesse
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Thorsten Hornemann
- University Zurich and University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - William B Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, Oregon, 97239, USA
| | - Edward A Dennis
- Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - Eric Barklis
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Bhardwaj T, Saumya KU, Kumar P, Sharma N, Gadhave K, Uversky VN, Giri R. Japanese encephalitis virus - exploring the dark proteome and disorder-function paradigm. FEBS J 2020; 287:3751-3776. [PMID: 32473054 DOI: 10.1111/febs.15427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the major causes of viral encephalitis all around the globe. Approximately 3 billion people in endemic areas are at risk of Japanese encephalitis. To develop a wholistic understanding of the viral proteome, it is important to investigate both its ordered and disordered proteins. However, the functional and structural significance of disordered regions in the JEV proteome has not been systematically investigated as of yet. To fill this gap, we used here a set of bioinformatics tools to analyze the JEV proteome for the predisposition of its proteins for intrinsic disorder and for the presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs). We also analyzed all JEV proteins for the presence of the probable nucleic acid-binding (DNA and RNA) sites. The results of these computational studies are experimentally validated using JEV capsid protein as an illustrative example. In agreement with bioinformatic analysis, we found that the N-terminal region of the JEV capsid (residues 1-30) is intrinsically disordered. We showed that this region is characterized by the temperature response typical for highly disordered proteins. Furthermore, we have experimentally shown that this disordered N-terminal domain of a capsid protein has a noticeable 'gain-of-structure' potential. In addition, using DOPS liposomes, we demonstrated the presence of pronounced membrane-mediated conformational changes in the N-terminal region of JEV capsid. In our view, this disorder-centric analysis would be helpful for a better understanding of the JEV pathogenesis.
Collapse
Affiliation(s)
- Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kumar Udit Saumya
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| |
Collapse
|
39
|
Anwar MN, Wang X, Hameed M, Wahaab A, Li C, Sharma M, Pang L, Malik MI, Liu K, Li B, Qiu Y, Wei J, Ma Z. Phenotypic and Genotypic Comparison of a Live-Attenuated Genotype I Japanese Encephalitis Virus SD12-F120 Strain with Its Virulent Parental SD12 Strain. Viruses 2020; 12:v12050552. [PMID: 32429445 PMCID: PMC7290960 DOI: 10.3390/v12050552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs. SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianchao Wei
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| | - Zhiyong Ma
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| |
Collapse
|
40
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
41
|
Colmant AMG, Bielefeldt-Ohmann H, Vet LJ, O’Brien CA, Bowen RA, Hartwig AE, Davis S, Piyasena TBH, Habarugira G, Harrison JJ, Hobson-Peters J, Hall RA. NS4/5 mutations enhance flavivirus Bamaga virus infectivity and pathogenicity in vitro and in vivo. PLoS Negl Trop Dis 2020; 14:e0008166. [PMID: 32203536 PMCID: PMC7089401 DOI: 10.1371/journal.pntd.0008166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/23/2020] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses such as yellow fever, dengue or Zika viruses are responsible for significant human and veterinary diseases worldwide. These viruses contain an RNA genome, prone to mutations, which enhances their potential to emerge as pathogens. Bamaga virus (BgV) is a mosquito-borne flavivirus in the yellow fever virus group that we have previously shown to be host-restricted in vertebrates and horizontally transmissible by Culex mosquitoes. Here, we aimed to characterise BgV host-restriction and to investigate the mechanisms involved. We showed that BgV could not replicate in a wide range of vertebrate cell lines and animal species. We determined that the mechanisms involved in BgV host-restriction were independent of the type-1 interferon response and RNAse L activity. Using a BgV infectious clone and two chimeric viruses generated as hybrids between BgV and West Nile virus, we demonstrated that BgV host-restriction occurred post-cell entry. Notably, BgV host-restriction was shown to be temperature-dependent, as BgV replicated in all vertebrate cell lines at 34°C but only in a subset at 37°C. Serial passaging of BgV in Vero cells resulted in adaptive mutants capable of efficient replication at 37°C. The identified mutations resulted in amino acid substitutions in NS4A-S124F, NS4B-N244K and NS5-G2C, all occurring close to a viral protease cleavage site (NS4A/2K and NS4B/NS5). These mutations were reverse engineered into infectious clones of BgV, which revealed that NS4B-N244K and NS5-G2C were sufficient to restore BgV replication in vertebrate cells at 37°C, while NS4A-S124F further increased replication efficiency. When these mutant viruses were injected into immunocompetent mice, alongside BgV and West Nile virus chimeras, infection and neurovirulence were enhanced as determined by clinical scores, seroconversion, micro-neutralisation, viremia, histopathology and immunohistochemistry, confirming the involvement of these residues in the attenuation of BgV. Our studies identify a new mechanism of host-restriction and attenuation of a mosquito-borne flavivirus.
Collapse
Affiliation(s)
- Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J. Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Airn E. Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Davis
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, NT, Australia
| | - Thisun B. H. Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gervais Habarugira
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- * E-mail: (AMGC); (RAH)
| |
Collapse
|
42
|
Varasteh Moradi S, Gagoski D, Mureev S, Walden P, McMahon KA, Parton RG, Johnston WA, Alexandrov K. Mapping Interactions among Cell-Free Expressed Zika Virus Proteins. J Proteome Res 2020; 19:1522-1532. [DOI: 10.1021/acs.jproteome.9b00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shayli Varasteh Moradi
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Dejan Gagoski
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
43
|
Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 2020; 15:333-348. [DOI: 10.1080/17460441.2020.1714586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
46
|
Lundberg R, Melén K, Westenius V, Jiang M, Österlund P, Khan H, Vapalahti O, Julkunen I, Kakkola L. Zika Virus Non-Structural Protein NS5 Inhibits the RIG-I Pathway and Interferon Lambda 1 Promoter Activation by Targeting IKK Epsilon. Viruses 2019; 11:E1024. [PMID: 31690057 PMCID: PMC6893776 DOI: 10.3390/v11111024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The Zika virus (ZIKV) is a member of the Flaviviridae family and an important human pathogen. Most pathogenic viruses encode proteins that interfere with the activation of host innate immune responses. Like other flaviviruses, ZIKV interferes with the expression of interferon (IFN) genes and inhibits IFN-induced antiviral responses. ZIKV infects through epithelial barriers where IFN-λ1 is an important antiviral molecule. In this study, we analyzed the effects of ZIKV proteins on the activation of IFN-λ1 promoter. All ZIKV proteins were cloned and transiently expressed. ZIKV NS5, but no other ZIKV protein, was able to interfere with the RIG-I signaling pathway. This inhibition took place upstream of interferon regulatory factor 3 (IRF3) resulting in reduced phosphorylation of IRF3 and reduced activation of IFN-λ1 promoter. Furthermore, we showed that ZIKV NS5 interacts with the protein kinase IKKε, which is likely critical to the observed inhibition of phosphorylation of IRF3.
Collapse
Affiliation(s)
- Rickard Lundberg
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Krister Melén
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Veera Westenius
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Miao Jiang
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Pamela Österlund
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Hira Khan
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
- Turku University Central Hospital, Clinical microbiology, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| |
Collapse
|
47
|
Rodriguez AK, Muñoz AL, Segura NA, Rangel HR, Bello F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI JOURNAL 2019; 18:988-1006. [PMID: 31762724 PMCID: PMC6868920 DOI: 10.17179/excli2019-1825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Viruses transmitted by arthropods (arboviruses) are the etiological agents of several human diseases with worldwide distribution; including dengue (DENV), zika (ZIKV), yellow fever (YFV), and chikungunya (CHIKV) viruses. These viruses are especially important in tropical and subtropical regions; where, ZIKV and CHIKV are involved in epidemics worldwide, while the DENV remains as the biggest problem in public health. Factors, such as, environmental conditions promote the distribution of vectors, deficiencies in health services, and lack of effective vaccines, guarantee the presence of these vector-borne diseases. Treatment against these viral diseases is only palliative since available therapies formulated lack to demonstrate specific antiviral activity and vaccine candidates fail to demonstrate enough effectiveness. The use of natural products, as therapeutic tools, is an ancestral practice in different cultures. According to WHO 80 % of the population of some countries from Africa and Asia depend on the use of traditional medicines to deal with some diseases. Molecular characteristics of these viruses are important in determining its cellular pathogenesis, emergence, and dispersion mechanisms, as well as for the development of new antivirals and vaccines to control strategies. In this review, we summarize the current knowledge of the molecular structure and replication mechanisms of selected arboviruses, as well as their mechanism of entry into host cells, and a brief overview about the potential targets accessed to inhibit these viruses in vitro and a summary about their treatment with natural extracts from plants.
Collapse
Affiliation(s)
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá, 110231, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Héctor Rafael Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas, 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, 110131, Colombia
| |
Collapse
|
48
|
Japanese Encephalitis Virus Induces Apoptosis and Encephalitis by Activating the PERK Pathway. J Virol 2019; 93:JVI.00887-19. [PMID: 31189710 DOI: 10.1128/jvi.00887-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.
Collapse
|
49
|
Usutu Virus: An Arbovirus on the Rise. Viruses 2019; 11:v11070640. [PMID: 31336826 PMCID: PMC6669749 DOI: 10.3390/v11070640] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
The Usutu virus (USUV) is a flavivirus that is drawing increasing attention because of its potential for emergence. First isolated in Africa, it was introduced into Europe where it caused significant outbreaks in birds, such as in Austria in 2001. Since then, its geographical distribution has rapidly expanded, with increased circulation, especially in the last few years. Similar to West Nile virus (WNV), the USUV enzootic transmission cycle involves Culex mosquitoes as vectors, and birds as amplifying reservoir hosts, with humans and other mammals likely being dead-end hosts. A similarity in the ecology of these two viruses, which co-circulate in several European countries, highlights USUV’s potential to become an important human pathogen. While USUV has had a severe impact on the blackbird population, the number of human cases remains low, with most infections being asymptomatic. However, some rare cases of neurological disease have been described, both in healthy and immuno-compromised patients. Here, we will discuss the transmission dynamics and the current state of USUV circulation in Europe.
Collapse
|
50
|
Naranjo-Gómez JS, Castillo-Ramírez JA, Velilla-Hernández PA, Castaño-Monsalve DM. Inmunopatología del dengue: importancia y participación de los monocitos y sus subpoblaciones. IATREIA 2019. [DOI: 10.17533/udea.iatreia.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
El dengue es una infección viral aguda transmitida por la picadura de mosquitos del género Aedes, la cual produce hasta 100 millones de infecciones anuales en el mundo. Una gran proporción de individuos infectados con el virus presentan infecciones asintomáticas. Sin embargo, de los individuos que desarrollan la enfermedad, el 95 % presentan signos y síntomas similares a una virosis común, que por lo general se autoresuelven (dengue con y sin signos de alarma). El 5 % restante puede evolucionar a manifestaciones graves, caracterizadas por hemorragias, daño orgánico, choque hipovolémico e incluso la muerte (dengue grave).Los monocitos son uno de los blancos principales de la infección producida por el virus del dengue (DENV), los cuales participan en la replicación del mismo y en la producción de una gran variedad de citoquinas que contribuyen con el daño de diferentes tejidos y órganos en respuesta a la infección. Los monocitos se dividen en tres subpoblaciones: clásica (CD14++CD16-), no clásica (CD14+CD16++) e intermedia (CD14++CD16+), las cuales poseen respuestas funcionales contrastantes en diferentes procesos inflamatorios, en cuanto a la producción de mediadores solubles e interacción con el endotelio. Los monocitos no clásicos parecen ser los principales productores de mediadores inflamatorios como el TNF-α y la IL-1β en respuesta a la infección por DENV. Por lo tanto, se propone que cada subpoblación de monocitos debe tener un papel diferencial en la inmunopatología de la enfermedad.En esta revisión se recopilan los principales aspectos de la replicación viral y la inmunopatología del dengue, así como los principales hallazgos referentes al papel de los monocitos en esta infección y además, se propone un papel potencial y diferencial de las subpoblaciones de monocitos.
Collapse
|