1
|
Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E, Kolla L, Gitter A, Greene CS. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. mSystems 2023; 8:e0092722. [PMID: 36861991 PMCID: PMC10134813 DOI: 10.1128/msystems.00927-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, in either an inactivated or an attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion article (H. M. Rando, R. Lordan, L. Kolla, E. Sell, et al., mSystems 8:e00928-22, 2023, https://doi.org/10.1128/mSystems.00928-22), we review the more recent and novel development of nucleic acid-based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2. IMPORTANCE The development, production, and distribution of vaccines is imperative to saving lives, preventing illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Vaccines that use cutting-edge biotechnology have played an important role in mitigating the effects of SARS-CoV-2. However, more traditional methods of vaccine development that were refined throughout the 20th century have been especially critical to increasing vaccine access worldwide. Effective deployment is necessary to reducing the susceptibility of the world's population, which is especially important in light of emerging variants. In this review, we discuss the safety, immunogenicity, and distribution of vaccines developed using established technologies. In a separate review, we describe the vaccines developed using nucleic acid-based vaccine platforms. From the current literature, it is clear that the well-established vaccine technologies are also highly effective against SARS-CoV-2 and are being used to address the challenges of COVID-19 globally, including in low- and middle-income countries. This worldwide approach is critical for reducing the devastating impact of SARS-CoV-2.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Likhitha Kolla
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E, Kolla L, Gitter A, Greene CS. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. ARXIV 2023:arXiv:2208.08907v2. [PMID: 36034485 PMCID: PMC9413721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against the SARS-CoV-2 virus. A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, either in an inactivated or attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion manuscript, we review the more recent and novel development of nucleic-acid based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic-acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by NIH Medical Scientist Training Program T32 GM07170
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Morgridge Institute for Research, Madison, Wisconsin, United States of America · Funded by John W. and Jeanne M. Rowe Center for Research in Virology
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| |
Collapse
|
3
|
Hassanin AA, Haidar Abbas Raza S, Ahmed Ujjan J, Aysh ALrashidi A, Sitohy BM, AL-surhanee AA, Saad AM, Mohamed Al -Hazani T, Osman Atallah O, Al Syaad KM, Ezzat Ahmed A, Swelum AA, El-Saadony MT, Sitohy MZ. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi J Biol Sci 2021; 29:1981-1997. [PMID: 34924802 PMCID: PMC8667566 DOI: 10.1016/j.sjbs.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.
Collapse
|
4
|
Li JF, He L, Deng YQ, Qi SH, Chen YH, Zhang XL, Hu SX, Fan RW, Zhao GY, Qin CF. Generation and Characterization of a Nanobody Against SARS-CoV. Virol Sin 2021; 36:1484-1491. [PMID: 34403037 PMCID: PMC8369142 DOI: 10.1007/s12250-021-00436-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003, and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available; thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain (RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensin-converting enzyme 2 (ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.
Collapse
Affiliation(s)
- Jiang-Fan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Shu-Hui Qi
- College of Veterinary Medicine, Shanxi Agriculture University, Jinzhong, 030801, China
| | - Yue-Hong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Xiao-Lu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Shi-Xiong Hu
- College of Veterinary Medicine, Shanxi Agriculture University, Jinzhong, 030801, China
| | - Rui-Wen Fan
- College of Veterinary Medicine, Shanxi Agriculture University, Jinzhong, 030801, China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
5
|
Zhou P, Li Z, Xie L, An D, Fan Y, Wang X, Li Y, Liu X, Wu J, Li G, Li Q. Research progress and challenges to coronavirus vaccine development. J Med Virol 2021; 93:741-754. [PMID: 32936465 DOI: 10.1002/jmv.26517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023]
Abstract
Coronaviruses (CoVs) are nonsegmented, single-stranded, positive-sense RNA viruses highly pathogenic to humans. Some CoVs are known to cause respiratory and intestinal diseases, posing a threat to the global public health. Against this backdrop, it is of critical importance to develop safe and effective vaccines against these CoVs. This review discusses human vaccine candidates in any stage of development and explores the viral characteristics, molecular epidemiology, and immunology associated with CoV vaccine development. At present, there are many obstacles and challenges to vaccine research and development, including the lack of knowledge about virus transmission, pathogenesis, and immune response, absence of the most appropriate animal models.
Collapse
Affiliation(s)
- Peiwen Zhou
- Department of Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zonghui Li
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linqing Xie
- Department of Guangzhou Cyanvaccine Biotechnology Co, Ltd, Guangzhou, China
| | - Dong An
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Yaohua Fan
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao Wang
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwei Li
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianguo Wu
- Department of Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Department of Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Li
- Department of Guangzhou Cyanvaccine Biotechnology Co, Ltd, Guangzhou, China
| |
Collapse
|
6
|
Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Wu X, Yan Y, Zhao W, Wu J, Chodosh J, Zhang Q. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol 2020; 11:602256. [PMID: 33424848 PMCID: PMC7785583 DOI: 10.3389/fimmu.2020.602256] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Wang Y, Wang L, Cao H, Liu C. SARS-CoV-2 S1 is superior to the RBD as a COVID-19 subunit vaccine antigen. J Med Virol 2020; 93:892-898. [PMID: 32691875 PMCID: PMC7404424 DOI: 10.1002/jmv.26320] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022]
Abstract
Since its emergence in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic within a matter of months. While subunit vaccines are one of the prominent options for combating coronavirus disease 2019 (COVID-19), the immunogenicity of spike protein-based antigens remains unknown. When immunized in mice, the S1 domain induced much higher IgG and IgA antibody levels than the receptor-binding domain (RBD) and more efficiently neutralized SARS-CoV-2 when adjuvanted with alum. It is inferred that a large proportion of these neutralization epitopes are located in the S1 domain but outside the RBD and that some of these are spatial epitopes. This finding indicates that expression systems with posttranslational modification abilities are important to maintain the natural configurations of recombinant spike protein antigens and are critical for effective COVID-19 vaccines. Further, adjuvants prone to a Th1 response should be considered for S1-based subunit COVID-19 vaccines to reduce the potential risk of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Yunfei Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Han Cao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cunbao Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
8
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020; 11:1949. [PMID: 32849654 PMCID: PMC7426442 DOI: 10.3389/fimmu.2020.01949] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. Coronavirus attacks the respiratory system, causing pneumonia and lymphopenia in infected individuals. Viral components like spike and nucleocapsid proteins trigger an immune response in the host to eliminate the virus. These viral antigens can be either recognized by the B cells or presented by MHC complexes to the T cells, resulting in antibody production, increased cytokine secretion, and cytolytic activity in the acute phase of infection. Genetic polymorphism in MHC enables it to present some of the T cell epitopes very well over the other MHC alleles. The association of MHC alleles and its downregulated expression has been correlated with disease severity against influenza and coronaviruses. Studies have reported that infected individuals can, after recovery, induce strong protective responses by generating a memory T-cell pool against SARS-CoV and MERS-CoV. These memory T cells were not persistent in the long term and, upon reactivation, caused local damage due to cross-reactivity. So far, the reports suggest that SARS-CoV-2, which is highly contagious, shows related symptoms in three different stages and develops an exhaustive T-cell pool at higher loads of viral infection. As there are no specific treatments available for this novel coronavirus, numerous small molecular drugs that are being used for the treatment of diseases like SARS, MERS, HIV, ebola, malaria, and tuberculosis are being given to COVID-19 patients, and clinical trials for many such drugs have already begun. A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.
Collapse
Affiliation(s)
- Vibhuti Kumar Shah
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Priyanka Firmal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Aftab Alam
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Samit Chattopadhyay
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrob Agents Chemother 2016; 60:2118-31. [PMID: 26787699 DOI: 10.1128/aac.02457-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/12/2016] [Indexed: 11/20/2022] Open
Abstract
Most cases of severe influenza are associated with pulmonary complications, such as acute respiratory distress syndrome (ARDS), and no antiviral drugs of proven value for treating such complications are currently available. The use of monoclonal antibodies targeting the stem of the influenza virus surface hemagglutinin (HA) is a rapidly developing strategy for the control of viruses of multiple HA subtypes. However, the mechanisms of action of these antibodies are not fully understood, and their ability to mitigate severe complications of influenza has been poorly studied. We evaluated the effect of treatment with VIS410, a human monoclonal antibody targeting the HA stem region, on the development of ARDS in BALB/c mice after infection with influenza A(H7N9) viruses. Prophylactic administration of VIS410 resulted in the complete protection of mice against lethal A(H7N9) virus challenge. A single therapeutic dose of VIS410 given 24 h after virus inoculation resulted in dose-dependent protection of up to 100% of mice inoculated with neuraminidase inhibitor-susceptible or -resistant A(H7N9) viruses. Compared to the outcomes in mock-treated controls, a single administration of VIS410 improved viral clearance from the lungs, reduced virus spread in lungs in a dose-dependent manner, resulting in a lower lung injury score, reduced the extent of the alteration in lung vascular permeability and protein accumulation in bronchoalveolar lavage fluid, and improved lung physiologic function. Thus, antibodies targeting the HA stem can reduce the severity of ARDS and show promise as agents for controlling pulmonary complications in influenza.
Collapse
|
11
|
Ng OW, Keng CT, Leung CSW, Peiris JSM, Poon LLM, Tan YJ. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody. PLoS One 2014; 9:e102415. [PMID: 25019613 PMCID: PMC4097068 DOI: 10.1371/journal.pone.0102415] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/19/2014] [Indexed: 12/28/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is the etiological agent for the infectious disease, SARS, which first emerged 10 years ago. SARS-CoV is a zoonotic virus that has crossed the species barriers to infect humans. Bats, which harbour a diverse pool of SARS-like CoVs (SL-CoVs), are believed to be the natural reservoir. The SARS-CoV surface Spike (S) protein is a major antigenic determinant in eliciting neutralizing antibody production during SARS-CoV infection. In our previous work, we showed that a panel of murine monoclonal antibodies (mAbs) that target the S2 subunit of the S protein are capable of neutralizing SARS-CoV infection in vitro (Lip KM et al, J Virol. 2006 Jan; 80(2): 941-50). In this study, we report our findings on the characterization of one of these mAbs, known as 1A9, which binds to the S protein at a novel epitope within the S2 subunit at amino acids 1111-1130. MAb 1A9 is a broadly neutralizing mAb that prevents viral entry mediated by the S proteins of human and civet SARS-CoVs as well as bat SL-CoVs. By generating mutant SARS-CoV that escapes the neutralization by mAb 1A9, the residue D1128 in S was found to be crucial for its interaction with mAb 1A9. S protein containing the substitution of D1128 with alanine (D1128A) exhibited a significant decrease in binding capability to mAb 1A9 compared to wild-type S protein. By using a pseudotyped viral entry assay, it was shown that the D1128A substitution in the escape virus allows it to overcome the viral entry blockage by mAb 1A9. In addition, the D1128A mutation was found to exert no effects on the S protein cell surface expression and incorporation into virion particles, suggesting that the escape virus retains the same viral entry property as the wild-type virus.
Collapse
Affiliation(s)
- Oi-Wing Ng
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Choong-Tat Keng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Cynthia Sau-Wai Leung
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - J. S. Malik Peiris
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo Lit Man Poon
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| |
Collapse
|
12
|
Ishii K, Hasegawa H, Nagata N, Ami Y, Fukushi S, Taguchi F, Tsunetsugu-Yokota Y. Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model. Microbiol Immunol 2009; 53:75-82. [PMID: 19291090 PMCID: PMC7168451 DOI: 10.1111/j.1348-0421.2008.00097.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We evaluated the efficacy of three SARS vaccine candidates in a murine SARS model utilizing low‐virulence Pp and SARS‐CoV coinfection. Vaccinated mice were protected from severe respiratory disease in parallel with a low virus titer in the lungs and a high neutralizing antibody titer in the plasma. Importantly, the administration of spike protein‐specific neutralizing monoclonal antibody protected mice from the disease, indicating that the neutralization is sufficient for protection. Moreover, a high level of IL‐6 and MCP‐1 production, but not other 18 cytokines tested, on days 2 and 3 after SARS‐CoV infection was closely linked to the virus replication and disease severity, suggesting the importance of these cytokines in the lung pathogenicity of SARS‐CoV infection.
Collapse
Affiliation(s)
- Koji Ishii
- Department of Virology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Pai JC, Sutherland JN, Maynard JA. Progress towards recombinant anti-infective antibodies. ACTA ACUST UNITED AC 2009; 4:1-17. [PMID: 19149692 DOI: 10.2174/157489109787236319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The global market for monoclonal antibody therapeutics reached a total of $11.2 billion in 2004, with an impressive 42% growth rate over the previous five years and is expected to reach approximately $34 billion by 2010. Coupled with this growth are stream-lined product development, production scale-up and regulatory approval processes for the highly conserved antibody structure. While only one of the 21 current FDA-approved antibodies, and one of the 38 products in advanced clinical trials target infectious diseases, there is increasing academic, government and commercial interest in this area. Synagis, an antibody neutralizing respiratory syncitial virus (RSV), garnered impressive sales of $1.1 billion in 2006 in spite of its high cost and undocumented effects on viral titres in human patients. The success of anti-RSV passive immunization has motivated the continued development of anti-infectives to treat a number of other infectious diseases, including those mediated by viruses, toxins and bacterial/ fungal cells. Concurrently, advances in antibody technology suggest that cocktails of several monoclonal antibodies with unique epitope specificity or single monoclonal antibodies with broad serotype specificity may be the most successful format. Recent patents and patent applications in these areas will be discussed as predictors of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jennifer C Pai
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
14
|
Mitsuki YY, Ohnishi K, Takagi H, Oshima M, Yamamoto T, Mizukoshi F, Terahara K, Kobayashi K, Yamamoto N, Yamaoka S, Tsunetsugu-Yokota Y. A single amino acid substitution in the S1 and S2 Spike protein domains determines the neutralization escape phenotype of SARS-CoV. Microbes Infect 2008; 10:908-15. [PMID: 18606245 PMCID: PMC7110505 DOI: 10.1016/j.micinf.2008.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
Abstract
In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein. We identified several amino acid substitutions, including Y442F and V601G in the S1 domain and D757N and A834V in the S2 region. In the presence of each neutralizing antibody, double mutants with substitutions in both domains exhibited a greater growth advantage than those with only one substitution. Importantly, combining two monoclonal antibodies that target different epitopes effected almost complete suppression of wild type virus replication. Thus, for effective passive immunotherapy, it is important to use neutralizing antibodies that recognize both the S1 and S2 regions.
Collapse
Affiliation(s)
- Yu-ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirotaka Takagi
- Division of Biosafety Control and Research, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamichi Oshima
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takuya Yamamoto
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
- Corresponding author. Tel.: +81 3 5285 1111; fax: +81 3 5285 1150.
| |
Collapse
|
15
|
Chou CY, Chien CH, Han YS, Prebanda MT, Hsieh HP, Turk B, Chang GG, Chen X. Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochem Pharmacol 2008; 75:1601-9. [PMID: 18313035 PMCID: PMC7092826 DOI: 10.1016/j.bcp.2008.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/04/2008] [Accepted: 01/11/2008] [Indexed: 01/19/2023]
Abstract
The papain-like protease of severe acute respiratory syndrome coronavirus (PLpro) (EC 3.4.22.46) is essential for the viral life cycle and therefore represents an important antiviral target. We have identified 6MP and 6TG as reversible and slow-binding inhibitors of SARS-CoV PLpro, which is the first report about small molecule reversible inhibitors of PLpro. The inhibition mechanism was investigated by kinetic measurements and computer docking. Both compounds are competitive, selective, and reversible inhibitors of the PLpro with K(is) values approximately 10 to 20 microM. A structure-function relationship study has identified the thiocarbonyl moiety of 6MP or 6TG as the active pharmacophore essential for these inhibitions, which has not been reported before. The inhibition is selective because these compounds do not exert significant inhibitory effects against other cysteine proteases, including SARS-CoV 3CLpro and several cathepsins. Thus, our results present the first potential chemical leads against SARS-CoV PLpro, which might be used as lead compounds for further optimization to enhance their potency against SARS-CoV. Both 6MP and 6TG are still used extensively in clinics, especially for children with acute lymphoblastic or myeloblastic leukemia. In light of the possible inhibition against subset of cysteine proteases, our study has emphasized the importance to study in depth these drug actions in vivo.
Collapse
Affiliation(s)
- Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo D, Ni B, Zhao G, Jia Z, Zhou L, Pacal M, Zhang L, Zhang S, Xing L, Lin Z, Wang L, Li J, Liang Y, Shi X, Zhao T, Zou L, Wu Y, Wang X. Protection from infection with severe acute respiratory syndrome coronavirus in a Chinese hamster model by equine neutralizing F(ab')2. Viral Immunol 2007; 20:495-502. [PMID: 17931120 DOI: 10.1089/vim.2007.0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To warrant potential clinical testing, the equine anti-severe acute respiratory syndrome coronavirus (SARS-CoV) F(ab')(2) requires evaluation in as many animal models as possible. In this study, we established a new animal model, the Chinese hamster, susceptible to SARS-CoV infection. SARS-CoV could propagate effectively and sustain high levels for 1 wk in animal lungs. All animals were protected from SARS-CoV infection in preventive settings. Further, when used therapeutically this antibody led to an approximately 4-log(10) decrease in viral burden in infected animal lungs. The pathological changes in lungs correlated closely with the dose of antibody administered. The excellent preventive and therapeutic roles of equine anti-SARS-CoV F(ab')(2) in several animal models, including the novel Chinese hamster model described in this study, have provided exciting data concerning its potential clinical study.
Collapse
Affiliation(s)
- Deyan Luo
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In general, a whole virion serves as a simple vaccine antigen and often essential material for the analysis of immune responses against virus infection. However, to work with highly contagious pathogens, it is necessary to take precautions against laboratory-acquired infection. We have learned many lessons from the recent outbreak of severe acute respiratory syndrome (SARS). In order to develop an effective vaccine and diagnostic tools, we prepared UV-inactivated SARS coronavirus on a large scale under the strict Biosafety Level 3 (BSL3) regulation. Our protocol for large-scale preparation of UV-inactivated SARS-CoV including virus expansion, titration, inactivation, and ultracentrifugation is applicable to any newly emerging virus we might encounter in the future.
Collapse
Affiliation(s)
- Dave Cavanagh
- Div. Molecular Biology, Compton Laboratory, Institute Animal Health, Newbury, Berks., RG20 7NN United Kingdom
| |
Collapse
|
18
|
Basak A, Mitra A, Basak S, Pasko C, Chrétien M, Seaton P. A fluorogenic peptide containing the processing site of human SARS corona virus S-protein: kinetic evaluation and NMR structure elucidation. Chembiochem 2007; 8:1029-37. [PMID: 17471479 PMCID: PMC7162000 DOI: 10.1002/cbic.200700007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/05/2007] [Indexed: 01/03/2023]
Abstract
Human severe acute respiratory syndrome coronavirus (hSARS-CoV) is the causative agent for SARS infection. Its surface glycoprotein (spike protein) is considered to be one of the prime targets for SARS therapeutics and intervention because its proteolytic maturation by a host protease is crucial for host-virus fusion. Using intramolecularly quenched fluorogenic (IQF) peptides based on hSARS-CoV spike protein (Abz-(755)Glu-Gln-Asp-Arg-Asn-Thr-Arg-Glu-Val-Phe-Ala-Gln(766)-Tyx-NH(2)) and in vitro studies, we show that besides furin, other PCs, like PC5 and PC7, might also be involved in this cleavage event. Through kinetic measurements with recombinant PCs, we observed that the peptide was cleaved efficiently by both furin and PC5, but very poorly by PC7. The cleavage could be blocked by a PC-inhibitor, alpha1-PDX, in a dose-dependent manner. Circular dichroism spectra indicated that this peptide possesses a high degree of sheet structure. Following cleavage by furin, the sheet content increased, possibly at the expense of turn and random structures. (1)H NMR spectra from 2D COSY and ROESY experiments under physiological buffer and pH conditions indicated that this peptide possesses a structure with a turn at its C-terminal segment, close to the cleavage site. The data suggest that the cleavable peptide bond is located within the most exposed domain; this is supported by the nearby turn structure. Several strong to weak NMR ROESY correlations were detected, and a 3D structure of the spike IQF peptide that contains the crucial cleavage site R(761) E has been proposed.
Collapse
Affiliation(s)
- Ajoy Basak
- Hormone, Growth, and Development Program, Regional Protein Chemistry Center, Ottawa Health Research Institute, University of Ottawa, 725 Parkdale Ave., Ottawa, ON K1Y 4E9, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Zhao G, Ni B, Jiang H, Luo D, Pacal M, Zhou L, Zhang L, Xing L, Zhang L, Jia Z, Lin Z, Wang L, Li J, Liang Y, Shi X, Zhao T, Zhou L, Wu Y, Wang X. Inhibition of severe acute respiratory syndrome-associated coronavirus infection by equine neutralizing antibody in golden Syrian hamsters. Viral Immunol 2007; 20:197-205. [PMID: 17425434 DOI: 10.1089/vim.2006.0064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Equine anti-severe acute respiratory syndrome-associated coronavirus F(ab')(2) has been verified to protect mice from infection with severe acute respiratory syndrome-associated coronavirus (SARS-CoV). However, before potential clinical application, the antibody needs to be tested in as many animal models as possible to ensure its safety and efficiency. In this study, after verification by various methods that the golden Syrian hamster constitutes a model susceptible to SARS-CoV infection, we confirmed that the antibody could protect animals completely from SARS-CoV infection in the preventive setting. More importantly, the antibody could reduce viral titers or copies by approximately 10(3)- to 10(4)-fold in animal lung after virus exposure, compared with negative control. These data provide further evidence to warrant clinical studies of this antibody in the treatment and prevention of SARS.
Collapse
Affiliation(s)
- Guangyu Zhao
- Department of Immunology, Institute of Microbiology Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ikejiri M, Saijo M, Morikawa S, Fukushi S, Mizutani T, Kurane I, Maruyama T. Synthesis and biological evaluation of nucleoside analogues having 6-chloropurine as anti-SARS-CoV agents. Bioorg Med Chem Lett 2007; 17:2470-3. [PMID: 17336519 PMCID: PMC7126875 DOI: 10.1016/j.bmcl.2007.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/22/2007] [Accepted: 02/09/2007] [Indexed: 12/16/2022]
Abstract
Nucleoside analogues that have 6-chloropurine as the nucleobase were synthesized and evaluated for anti-SARS-CoV activity by plaque reduction and yield reduction assays in order to develop novel anti-SARS-CoV agents. Among these analogues, two compounds, namely, 1 and 11, exhibited promising anti-SARS-CoV activity that was comparable to those of mizoribine and ribavirin, which are known anti-SARS-CoV agents. Moreover, we observed several SAR trends such as the antiviral effects of the 6-chloropurine moiety, unprotected 5′-hydroxyl group and benzoylated 5′-hydroxyl group.
Collapse
Affiliation(s)
- Masahiro Ikejiri
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Shigeru Morikawa
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Shuetsu Fukushi
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Ichiro Kurane
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tokumi Maruyama
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
- Corresponding author.
| |
Collapse
|
21
|
Tan YJ, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 2006; 72:78-88. [PMID: 16820226 PMCID: PMC7114237 DOI: 10.1016/j.antiviral.2006.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/29/2006] [Accepted: 05/15/2006] [Indexed: 12/14/2022]
Abstract
A novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), infected humans in Guangdong, China, in November 2002 and the subsequent efficient human-to-human transmissions of this virus caused profound disturbances in over 30 countries worldwide in 2003. Eventually, this epidemic was controlled by isolation and there has been no human infection reported since January 2004. However, research on different aspects of the SARS-CoV is not waning, as it is not known if this virus will re-emerge, especially since its origins and potential reservoir(s) are unresolved. The SARS-CoV genome is nearly 30 kb in length and contains 14 potential open reading frames (ORFs). Some of these ORFs encode for genes that are homologous to proteins found in all known coronaviruses, namely the replicase genes (ORFs 1a and 1b) and the four structural proteins: nucleocapsid, spike, membrane and envelope, and these proteins are expected to be essential for the replication of the virus. The remaining eight ORFs encodes for accessory proteins, varying in length from 39 to 274 amino acids, which are unique to SARS-CoV. This review will summarize the expeditious research on these accessory viral proteins in three major areas: (i) the detection of antibodies against accessory proteins in the serum of infected patients, (ii) the expression, processing and cellular localization of the accessory proteins, and (iii) the effects of the accessory proteins on cellular functions. These in-depth molecular and biochemical characterizations of the SARS-CoV accessory proteins, which have no homologues in other coronaviruses, may offer clues as to why the SARS-CoV causes such a severe and rapid attack in humans, while other coronaviruses that infect humans seem to be more forgiving.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|