1
|
Jiang X, Guo J, Zhang Y, Zuo H, Bao Y, Liu N, Guo M, Wu R, Chen Q. Electrophoretic deposition of Ag-Cu-CTS coatings on porous titanium with photothermal-responsive antibacterial effect. J Colloid Interface Sci 2024; 682:1116-1126. [PMID: 39667331 DOI: 10.1016/j.jcis.2024.11.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Porous architecture of titanium implants offers significant advantages in promoting osseointegration and mitigating the "stress shielding" effect. However, challenges remain in enhancing vascularization and preventing infection, especially given the complexities of modifying the intricate surface structure of porous titanium (PT). This study introduces a novel surface modification technique of PT using anti-gravity perfusion electrophoretic deposition (EPD) technique to fabricate antibacterial coatings containing silver (Ag) and copper (Cu) co-doped mesoporous silica nanoparticles (Ag-Cu@MSN) and chitosan binder on the surface of PT. The developed coating exhibits rapid and stable photothermal response to 808 nm near-infrared (NIR) light, leading to a localized temperature rise and triggered release of Ag and Cu ions for synergistic bactericidal efficacy against both E. coli and S. aureus. In vitro studies further demonstrated that the coated PT significantly promoted the proliferation of mouse calvaria pre-osteoblast (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs), with a notable increase in HUVECs migration and angiogenesis, attributable to the presence of Cu ions. This innovative EPD-based coating strategy offers a promising avenue for developing uniform, photothermally-activated antibacterial surfaces on PT implants, with substantial implications for advancing clinical bone repair applications.
Collapse
Affiliation(s)
- Xiaodan Jiang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiabao Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuhan Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hubao Zuo
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuanqi Bao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Nian Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Mingna Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ronghai Wu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
2
|
Monika P, Chandraprabha MN, Hari Krishna R, Vittal M, Likhitha C, Pooja N, Chaudhary V, C M. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications. Biotechnol Genet Eng Rev 2024; 40:3379-3407. [PMID: 36117472 DOI: 10.1080/02648725.2022.2122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 12/07/2022]
Abstract
Manufacturing new materials at the nanoscale level is a field that is rapidly expanding with widespread application in advanced science and MMT is effectively used for the technology. Nanoparticles (NP), the building blocks of nanotechnology, exhibit improved properties than the larger counterparts and can be prepared from a variety of metals, including silver, copper, gold, zinc, and others. Phytonanotechnology is gaining major attention as various clinical researches have focused on the excellent properties (physicochemical and biological) of nanoscale phytochemicals and its applications in biological systems. In recent developments, pomegranate (Punica granatum L.) has gained major attention due to the phenolic compounds like apigenin, caffeic acid, chlorogenic acid, cyanidin, ellagic acid, gallic acid, granatin A, granatin B, pelargonidin, punicalagin, punicalin and quercetin found in its peel. Pomegranate Peel Extract (PPE) that aid the synthesis of PPE mediated nanoparticles (PPE-MNPs) like PPE-MAuNPs, PPE-MAgNPs, PPE-MZnONPs, PPE-MCuNPs, PPE-MPtNPs and PPE-MFeNPs has yielded plethora of beneficial properties in both plants and humans. In the current review, we discuss in detail the recent advances in synthesis and characterization of various nanoparticles from PPE. Moreover, the multitude biological properties of PPE-MNPs make up the long list of clinical uses. In addition, we discuss the pharmacokinetics, current advantages, and limitations of PPE-MNPs which can further help in development of more efficient therapeutics. Despite some of the challenges, PPE-MNPs hold a lot of potential for drug delivery and are always a better choice. The convergence of science and engineering has created new hopes, in which phytomedicines will have more efficacy, bioavailability, and less toxicity.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - R Hari Krishna
- Center for Bio and Energy Materials Innovation, M.S. Ramaiah Institute of Technology, Bangalore, India
- Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Maanya Vittal
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - C Likhitha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - N Pooja
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering, Bangalore, India
- Centre for Nanomaterials and Devices, RV College of Engineering, Bangalore, India
| |
Collapse
|
3
|
Huang Z, Lin M, Wang L, Dou L, Hou X, Zhang J, Huang Y, Wei L, An R, Wang D, Yao Y, Guo D, Li Z, Zhang Y. Bafi A1 inhibits nano-copper oxide-induced mitochondrial damage by reducing the release of copper from lysosomes. J Appl Toxicol 2024; 44:1257-1268. [PMID: 38700028 DOI: 10.1002/jat.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.
Collapse
Affiliation(s)
- Zhi Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Mo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Hou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yongchao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Lifang Wei
- Department of Nephrology, Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| | - Zhibo Li
- The 5th Ward, Department of Internal Medicine, Anshan Tuberculosis Hospital, Anshan, China
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and L-Arginine Ameliorated the Deleterious Effects of Copper Oxide Nanoparticles on the Liver of Mice Through Anti-inflammatory and Anti-apoptotic Pathways. Biol Trace Elem Res 2024; 202:3128-3140. [PMID: 37775700 DOI: 10.1007/s12011-023-03884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The widespread use and applications of copper oxide nanoparticles (CuO NPs) in daily life make human exposure to these particles inevitable. This study was carried out to investigate the deteriorations in hepatic and serum biochemical parameters induced by CuO NPs in adult male mice and the potential ameliorative effect of L-arginine and quercetin, either alone or in combination. Seventy adult male mice were equally allocated into seven groups: untreated group, L-arginine, quercetin, CuO NPs, arginine + CuO NPs, quercetin + CuO NPs, and quercetin + arginine + CuO NPs. Treating mice with CuO NPs resulted in bioaccumulation of copper in the liver and consequent liver injury as typified by elevation of serum ALT activity, reduction in the synthetic ability of the liver indicated by a decrease in the hepatic arginase activity, and serum total protein content. This copper accumulation increased oxidative stress, lipid peroxidation, inflammation, and apoptosis as manifested by elevation in malondialdehyde, nitric oxide, tumor necrosis factor-α, the expression level of caspase-3 and bax quantified by qPCR, and the activity of caspase-3, in addition to the reduction of superoxide dismutase activity. It also resulted in severe DNA fragmentation as assessed by Comet assay and significant pathological changes in the liver architecture. The study proved the efficiency of quercetin and L-arginine in mitigating CuO NPs-induced sub-chronic liver toxicity due to their antioxidant, anti-inflammatory, and anti-apoptotic properties; ability to inhibit DNA damage; and the potential as good metal chelators. The results of histopathological analysis confirmed the biochemical and molecular studies.
Collapse
Affiliation(s)
- Amina M Haroun
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Rasha E Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Sun K, Hu H, He Z, Xiao Z, Jin X, Zheng C, Liu Y. One-pot green solid-state synthesis of Cu 2O/microcrystalline cellulose composite with high anti-pathogenic activity. Carbohydr Polym 2024; 332:121851. [PMID: 38431425 DOI: 10.1016/j.carbpol.2024.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Cuprous oxide (Cu2O) is proven as an excellent anti-harmful microbial material. However, the liquid and vapor pha5se preparation methods reported so far hardly make pure Cu2O-containing composites and suffer environmental issues caused by chemical reducing agents with multiple processing steps. This work develops a facile one-pot solid-state sintering method to synthesize Cu2O/microcrystalline cellulose (MCC) composite via the thermal decomposition and oxidation-reduction reactions where copper formate was reduced by MCC. The Cu2O/MCC composite exhibits superior purity, dispersibility, stability, high yield, and high efficacy of antibacterial and antiviral properties, e.g., against E. coli, S. aureus, and Equine Arteritis Viral. This work utilizes elegantly the strong reducing capability of cellulose to develop an environmentally benign method to prepare high-purity Cu2O-polymer composites with low cytotoxicity and cost, which can be incorporated readily into other substrate materials to form various forms of anti-harmful microbial materials widely used in public health care products. In addition, the preparation of Cu2O-containing composites based on the reducing capability of cellulose is also expected to be applied to other cellulose-based materials for the loading of Cu2O particles.
Collapse
Affiliation(s)
- Ke Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Han Hu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zirong He
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhuojun Xiao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xiaoqian Jin
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chen Zheng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yi Liu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
6
|
Hou H, Liu Y, Li X, Liu W, Gong X. Rapid electrodeposition of Cu nanoparticle film on Ni foam as an integrated 3D free-standing electrode for non-invasive and non-enzymatic creatinine sensing. Analyst 2024; 149:2905-2914. [PMID: 38572989 DOI: 10.1039/d4an00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 μA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.
Collapse
Affiliation(s)
- Hongming Hou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xianglong Li
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoli Gong
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Mafla C, Kolenovic B, Centeno D, Darwish J, Cabinian K, Richards K, Cattabiani T, Nunez J, Drwiega TJ, Li W, Iwanicki M, Sciorra L, Li C, Traba C. Application of Argon Plasma Technology for the Synthesis of Anti-Infective Copper Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:1588-1599. [PMID: 38437727 DOI: 10.1021/acsabm.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The synthesis of copper nanoparticles (CuNPs) was accomplished by using a rapid, green, and versatile argon plasma reduction method that involves solvent extraction. With this method, a plasma-solid state interaction forms and CuNPs can be synthesized from copper(II) sulfate using a low-pressure, low-temperature argon plasma. Characterization studies of the CuNPs revealed that when a metal precursor is treated under optimal experimental conditions of 80 W of argon plasma for 300 s, brown CuNPs are synthesized. However, when those same brown CuNPs are placed in Milli-Q water for a period of 10 days, oxidation occurs and green CuNPs are formed. Confirmation of the chemical identity of the CuNPs was performed by using X-ray photoelectron spectroscopy. The results reveal that the brown CuNPs are predominantly Cu0 or what we refer to as CuNPs, while the green CuNPs are a mixture of Cu0 and Cu(OH)2 NPs. Upon further characterization of both brown and green CuNPs with scanning electron microscopy (SEM), the results depict brown CuNPs with a rod-like shape and approximate dimensions of 40 nm × 160 nm, while the green CuNPs were smaller in size, with dimensions of 40-80 nm, and more of a round shape. When testing the antibacterial activity of both brown and green CuNPs, our findings demonstrate the effectiveness of both CuNPs against Escherichia coli and Staphylococcus aureus bacteria at a concentration of 17 μg/mL. The inactivation of S. aureus and E. coli 7-day-old biofilms required CuNP concentrations of 99 μg/mL. SEM images of treated 7-day-old S. aureus and E. coli biofilms depict cell membranes that are completely damaged, suggesting a physical killing mechanism. In addition, when the same concentration of CuNPs used to inactivate biofilms were tested with human fibroblasts, both brown and green CuNPs were found to be biocompatible.
Collapse
Affiliation(s)
- Camila Mafla
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Belmin Kolenovic
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Daniel Centeno
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Janeen Darwish
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Katrina Cabinian
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Kyle Richards
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Thomas Cattabiani
- Fourth State of Matter Technologies Corporation, Bayonne, New Jersey 07002, United States
| | - Jonathan Nunez
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Thomas J Drwiega
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - Wanlu Li
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Leonard Sciorra
- Department of Applied Science and Technology, Saint Peter's University, Jersey City, New Jersey 07306, United States
| | - Clive Li
- Department of STEM, Hudson County Community College, Jersey City, New Jersey 07306, United States
| | - Christian Traba
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| |
Collapse
|
8
|
Sharma R, Sharma N, Prashar A, Hansa A, Asgari Lajayer B, Price GW. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167697. [PMID: 37832694 DOI: 10.1016/j.scitotenv.2023.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Increased use of nanoscale particles have benefited many industries, including medicine, electronics, and environmental cleaning. These particles provide higher material performance, greater reactivity, and improved drug delivery. However, the main concern is the generation of nanowastes that can spread in different environmental matrices, posing threat to our environment and human health. Nanoparticles (NPs) have the potential to enter the food chain through a variety of pathways, including agriculture, food processing, packaging, and environmental contamination. These particles can negatively impact plant and animal physiology and growth. Due to the assessment of their environmental damage, nanoparticles are the particles of size between 1 and 100 nm that is the recent topic to be discussed. Nanoparticles' absorption, distribution, and toxicity to plants and animals can all be significantly influenced by their size, shape, and surface chemistry. Due to their absorptive capacity and potential to combine with other harmful substances, they can alter the metabolic pathways of living organisms. Nevertheless, despite the continuous research and availability of data, there are still knowledge gaps related to the ecotoxicology, prevalence and workable ways to address the impact of nanoparticles. This review focuses on the impact of nanoparticles on different organisms and the application of advanced techniques to remediate ecosystems using hyperaccumulator plant species. Future considerations are explored around nano-phytoremediation, as an eco-friendly, convenient and cost effective technology that can be applied at field scales.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Nindhia Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abhinav Prashar
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
9
|
Kessler A, Huang P, Blomberg E, Odnevall I. Unravelling the Mechanistic Understanding of Metal Nanoparticle-Induced Reactive Oxygen Species Formation: Insights from a Cu Nanoparticle Study. Chem Res Toxicol 2023; 36:1891-1900. [PMID: 37948660 PMCID: PMC10731636 DOI: 10.1021/acs.chemrestox.3c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Humans can be exposed to engineered and nonintentionally formed metal and metal oxide nanoparticles (Me NPs) in occupational settings, in public transportation areas, or by means of contact with different consumer products. A critical factor in the toxic potency of Me NPs is their ability to induce oxidative stress. It is thus essential to assess the potential reactive oxygen species (ROS) formation properties of Me NPs. A common way to assess the relative extent of ROS formation in vitro is to use fluorescence spectroscopy with the DCFH-DA (2',7'-dichlorofluorescein diacetate) probe, with and without HRP (horseradish peroxidase). However, this method does not provide any information about specific ROS species or reaction mechanisms. This study investigated the possibility of using complementary techniques to obtain more specific information about formed ROS species, both the type and reaction mechanisms. Cu NPs in PBS (phosphate buffered saline) were chosen as a test system to have the simplest (least interference from other components) aqueous solution with a physiologically relevant pH. ROS formation was assessed using fluorescence by means of the DCFH-DA method (information on relative amounts of oxygen radicals without selectivity), the Ghormley's triiodide method using UV-vis spectrophotometry (concentrations of H2O2), and electron paramagnetic resonance with DMPO as the spin-trap agent (information on specific oxygen radicals). This approach elucidates that Cu NPs undergo ROS-generating corrosion reactions, which previously have not been assessed in situ. In the presence of H2O2, and based on the type of oxygen radical formed, it was concluded that released copper participates in Haber-Weiss and/or Fenton reactions rather than in Fenton-like reactions. The new combination of techniques used to determine ROS induced by Me NPs provides a way forward to gain a mechanistic understanding of Me NP-induced ROS formation, which is important for gaining crucial insight into their ability to induce oxidative stress.
Collapse
Affiliation(s)
- Amanda Kessler
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Eva Blomberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES−Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institute and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Chan WJ, Urandur S, Li H, Goudar VS. Recent advances in copper sulfide nanoparticles for phototherapy of bacterial infections and cancer. Nanomedicine (Lond) 2023; 18:2185-2204. [PMID: 38116732 DOI: 10.2217/nnm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Copper sulfide nanoparticles (CuS NPs) have attracted growing interest in biomedical research due to their remarkable properties, such as their high photothermal and thermodynamic capabilities, which are ideal for anticancer and antibacterial applications. This comprehensive review focuses on the current state of antitumor and antibacterial applications of CuS NPs. The initial section provides an overview of the various approaches to synthesizing CuS NPs, highlighting the size, shape and composition of CuS NPs fabricated using different methods. In this review, the mechanisms underlying the antitumor and antibacterial activities of CuS NPs in medical applications are discussed and the clinical challenges associated with the use of CuS NPs are also addressed.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sandeep Urandur
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
11
|
Wang J, Cheng X, Li P, Fan Q, Wu D, Liang H. Activation of peroxymonosulfate with biochar-supported CuO (CuO@BC) for natural organic matter removal and membrane fouling control. CHEMOSPHERE 2023; 341:140044. [PMID: 37660795 DOI: 10.1016/j.chemosphere.2023.140044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
To achieve excellent activation efficiency of peroxymonosulfate (PMS), this work prepared a biochar-supported CuO (CuO@BC) catalyst, and the CuO@BC/PMS system was proposed to remove the organic matter in natural surface water and reduce the fouling of ultrafiltration membrane. The successful synthesis of CuO@BC was demonstrated through characterization of its microscopic morphology and chemical composition by various techniques. The prepared heterogeneous catalyst showed a strong catalytic effect on PMS, which significantly removed natural organic matter through the production of active substances (•OH, SO4•-, O2•- and 1O2) from water. With respective degradation rates of 39.4% and 59.4%, the concentrations of DOC and UV254 dropped to 1.702 mg/L and 0.026 cm-1, respectively. Additionally, the CuO@BC/PMS oxidation displayed potent oxidation capabilities for contaminants and fluorescent organics with various molecular weights. The system effectively decreased the amount of organic matter that caused reversible and irreversible fouling of polyethersulfone membranes in natural water by 85.8% and 56.3%, respectively. The main fouling mechanisms changed as well, with standard and complete blocking dominating the entire filtration process. The results demonstrated the capacity of the CuO@BC/PMS system to remove contaminants in natural water and mitigate membrane fouling.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China.
| | - Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qingshui Fan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
12
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
13
|
Zhakypov AS, Nemkayeva RR, Yerlanuly Y, Tulegenova MA, Kurbanov BY, Aitzhanov MB, Markhabayeva AA, Gabdullin MT. Synthesis and in situ oxidation of copper micro- and nanoparticles by arc discharge plasma in liquid. Sci Rep 2023; 13:15714. [PMID: 37735535 PMCID: PMC10514342 DOI: 10.1038/s41598-023-41631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
This work presents a one-step controlled method for the synthesis of copper oxide nanoparticles using an arc discharge in deionized water without subsequent thermal annealing. The synthesis conditions were varied by changing the arc discharge current from 2 to 4 A. Scanning electron microscopy images of samples synthesized at discharge current of 2 A revealed the formation of tenorite (CuO) nanopetals with an average length of 550 nm and a width of 100 nm, which had a large surface area. Arc discharge synthesis at 3 and 4 A current modes provides the formation of a combination of CuO nanopetals with spherical cuprite (Cu2O) nanoparticles with sizes ranging from 30 to 80 nm. The crystalline phase and elemental composition of the synthesized particles were identified by X-ray diffraction analysis, Raman spectroscopy and Energy dispersive analysis. As the arc discharge current was raised from 2 to 4 A, two notable changes occurred in the synthesized particles: the Cu/O ratio increased, and the particle sizes decreased. At 4 A, the synthesized particles were from 30 to 80 nm in size and had a spherical shape, indicating an increase in the amount of cuprite (Cu2O) phase. The optical band gap of the aqueous solutions of copper oxide particles also increased from 2 to 2.34 eV with increasing synthesis current from 2 to 4 A, respectively. This suggests that the proposed synthesis method can be used to tune the band gap of the final material by controlling the Cu/O ratio through the current of arc discharge. Overall, this work demonstrates a novel approach to the synthesis of copper oxide nanoparticles with controllable CuO/Cu2O/Cu ratios, which has the potential to be useful in a variety of applications, particularly due to the significant enhancement of photocatalytic abilities and widen the working spectral range.
Collapse
Affiliation(s)
- Alibek S Zhakypov
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Renata R Nemkayeva
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Yerassyl Yerlanuly
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
- Institute of Applied Science and Information Technologies, Shashkina, 40/48, 050038, Almaty, Kazakhstan
| | - Malika A Tulegenova
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Beibarys Y Kurbanov
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Madi B Aitzhanov
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Aiymkul A Markhabayeva
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | | |
Collapse
|
14
|
Al Kayal T, Giuntoli G, Cavallo A, Pisani A, Mazzetti P, Fonnesu R, Rosellini A, Pistello M, D’Acunto M, Soldani G, Losi P. Incorporation of Copper Nanoparticles on Electrospun Polyurethane Membrane Fibers by a Spray Method. Molecules 2023; 28:5981. [PMID: 37630233 PMCID: PMC10458218 DOI: 10.3390/molecules28165981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 μg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications.
Collapse
Affiliation(s)
- Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Giulia Giuntoli
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Aida Cavallo
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Anissa Pisani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Mazzetti
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Rossella Fonnesu
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Alfredo Rosellini
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy; (P.M.); (R.F.); (A.R.); (M.P.)
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Mario D’Acunto
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy;
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, 54100 Massa, Italy; (G.G.); (A.C.); (A.P.); (G.S.); (P.L.)
| |
Collapse
|
15
|
Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E. Antibacterial Activity of Biosynthesized Copper Oxide Nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics (Basel) 2023; 12:1251. [PMID: 37627671 PMCID: PMC10451715 DOI: 10.3390/antibiotics12081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.
Collapse
Affiliation(s)
- Karla M. Flores-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | - Daniel Rivera-Mendoza
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | | | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Juriquilla 76230, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| |
Collapse
|
16
|
Lejeune B, Zhang X, Sun S, Hines J, Jinn KW, Reilly AN, Clark HA, Lewis LH. Enhancing Biocidal Capability in Cuprite Coatings. ACS Biomater Sci Eng 2023; 9:4178-4186. [PMID: 37267510 PMCID: PMC10620754 DOI: 10.1021/acsbiomaterials.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
The SARS-CoV-2 global pandemic has reinvigorated interest in the creation and widespread deployment of durable, cost-effective, and environmentally benign antipathogenic coatings for high-touch public surfaces. While the contact-kill capability and mechanism of metallic copper and its alloys are well established, the biocidal activity of the refractory oxide forms remains poorly understood. In this study, commercial cuprous oxide (Cu2O, cuprite) powder was rapidly nanostructured using high-energy cryomechanical processing. Coatings made from these processed powders demonstrated a passive "contact-kill" response to Escherichia coli (E. coli) bacteria that was 4× (400%) faster than coatings made from unprocessed powder. No viable bacteria (>99.999% (5-log10) reduction) were detected in bioassays performed after two hours of exposure of E. coli to coatings of processed cuprous oxide, while a greater than 99% bacterial reduction was achieved within 30 min of exposure. Further, these coatings were hydrophobic and no external energy input was required to activate their contact-kill capability. The upregulated antibacterial response of the processed powders is positively correlated with extensive induced crystallographic disorder and microstrain in the Cu2O lattice accompanied by color changes that are consistent with an increased semiconducting bandgap energy. It is deduced that cryomilling creates well-crystallized nanoscale regions enmeshed within the highly lattice-defective particle matrix. Increasing the relative proportion of lattice-defective cuprous oxide exposed to the environment at the coating surface is anticipated to further enhance the antipathogenic capability of this abundant, inexpensive, robust, and easily handled material for wider application in contact-kill surfaces.
Collapse
Affiliation(s)
- Brian
T. Lejeune
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Xiaoyu Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Su Sun
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Julia Hines
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Kevin W. Jinn
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Ashlyn Neal Reilly
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Heather A. Clark
- Department
of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Laura H. Lewis
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- The
George J. Kostas Research Institute for Homeland Security, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
18
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
19
|
S C, G G, LA S, W N, P M, L A, A W, V F, P W, D G, T BT. Transcriptomic profiling reveals differential cellular response to copper oxide nanoparticles and polystyrene nanoplastics in perfused human placenta. ENVIRONMENT INTERNATIONAL 2023; 177:108015. [PMID: 37315489 DOI: 10.1016/j.envint.2023.108015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The growing nanoparticulate pollution (e.g. engineered nanoparticles (NPs) or nanoplastics) has been shown to pose potential threats to human health. In particular, sensitive populations such as pregnant women and their unborn children need to be protected from harmful environmental exposures. However, developmental toxicity from prenatal exposure to pollution particles is not yet well studied despite evidence of particle accumulation in human placenta. Our study aimed to investigate how copper oxide NPs (CuO NPs; 10-20 nm) and polystyrene nanoplastics (PS NPs; 70 nm) impact on gene expression in ex vivo perfused human placental tissue. Whole genome microarray analysis revealed changes in global gene expression profile after 6 h of perfusion with sub-cytotoxic concentrations of CuO (10 µg/mL) and PS NPs (25 µg/mL). Pathway and gene ontology enrichment analysis of the differentially expressed genes suggested that CuO and PS NPs trigger distinct cellular response in placental tissue. While CuO NPs induced pathways related to angiogenesis, protein misfolding and heat shock responses, PS NPs affected the expression of genes related to inflammation and iron homeostasis. The observed effects on protein misfolding, cytokine signaling, and hormones were corroborated by western blot (accumulation of polyubiquitinated proteins) or qPCR analysis. Overall, the results of the present study revealed extensive and material-specific interference of CuO and PS NPs with placental gene expression from a single short-term exposure which deserves increasing attention. In addition, the placenta, which is often neglected in developmental toxicity studies, should be a key focus in the future safety assessment of NPs in pregnancy.
Collapse
Affiliation(s)
- Chortarea S
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Gupta G
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Saarimäki LA
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Netkueakul W
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Manser P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Aengenheister L
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health (LIH), 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Wichser A
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials, Science and Technology, Dübendorf, Switzerland
| | - Fortino V
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Wick P
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland
| | - Greco D
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Buerki-Thurnherr T
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9014 St. Gallen, Switzerland.
| |
Collapse
|
20
|
Rodolpho JMDA, Godoy KFD, Brassolatti P, Fragelli BDDL, Camillo L, Castro CAD, Assis M, Speglich C, Longo E, Anibal FDF. Carbon Black CB-EDA Nanoparticles in Macrophages: Changes in the Oxidative Stress Pathway and in Apoptosis Signaling. Biomedicines 2023; 11:1643. [PMID: 37371738 DOI: 10.3390/biomedicines11061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/29/2023] Open
Abstract
The influence of black carbon nanoparticles on J774.A1 murine cells was investigated with the objective of exploring the cytotoxicity of black carbon functionalized with ethylenediamine CB-EDA. The results showed that CB-EDA has a cytotoxic profile for J774.A1 macrophages in a time- and dose-dependent manner. When phagocytosed by the macrophage, CB-EDA triggers a mechanism that leads to apoptosis. In this process, there is an increase in oxidative stress pathways due to the activation of nitric oxide and then ROS. This causes an imbalance in redox function and a disruption of membrane integrity that occurs due to high levels of LDH, in addition to favoring the release of the pro-inflammatory cytokines IL-6, IL-12, and tumor necrosis factor (TNF) in an attempt to modulate the cell. However, these stimuli are not sufficient to repair the cell and the level of mitochondrial integrity is affected, causing a decrease in cell viability. This mechanism may be correlated with the activation of the caspasse-3 pathway, which, when compromised, cleaves and induces cells death via apoptosis, either through early or late apoptosis. In view of this, the potential for cell damage was investigated by analyzing the oxidative and inflammatory profile in the macrophage lineage J774.A1 and identifying potential mechanisms and metabolic pathways connected to these processes when cells were exposed to NP CB-EDA for both 24 h and 48 h.
Collapse
Affiliation(s)
- Joice Margareth de Almeida Rodolpho
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Krissia Franco de Godoy
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Patricia Brassolatti
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Bruna Dias de Lima Fragelli
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Luciana Camillo
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Cynthia Aparecida de Castro
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), 12006 Castelló, Spain
- Centro de Desenvolvimento de Materiais Funcionais, Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Carlos Speglich
- Centro de Pesquisa Leopoldo Américo Miguez de Mello CENPES/Petrobras, Rio de Janeiro 21941-915, Brazil
| | - Elson Longo
- Centro de Desenvolvimento de Materiais Funcionais, Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Fernanda de Freitas Anibal
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| |
Collapse
|
21
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
22
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
23
|
Fromell K, Johansson U, Abadgar S, Bourzeix P, Lundholm L, Elihn K. The effect of airborne Palladium nanoparticles on human lung cells, endothelium and blood - A combinatory approach using three in vitro models. Toxicol In Vitro 2023; 89:105586. [PMID: 36931534 DOI: 10.1016/j.tiv.2023.105586] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
A better understanding of the mechanisms behind adverse health effects caused by airborne fine particles and nanoparticles (NP) is essential to improve risk assessment and identification the most critical particle exposures. While the use of automobile catalytic converters is decreasing the exhausts of harmful gases, concentrations of fine airborne particles and nanoparticles (NPs) from catalytic metals such as Palladium (Pd) are reaching their upper safe level. Here we used a combinatory approach with three in vitro model systems to study the toxicity of Pd particles, to infer their potential effects on human health upon inhalation. The three model systems are 1) a lung system with human lung cells (ALI), 2) an endothelial cell system and 3) a human whole blood loop system. All three model systems were exposed to the exact same type of Pd NPs. The ALI lung cell exposure system showed a clear reduction in cell growth from 24 h onwards and the effect persisted over a longer period of time. In the endothelial cell model, Pd NPs induced apoptosis, but not to the same extent as the most aggressive types of NPs such as TiO2. Similarly, Pd triggered clear coagulation and contact system activation but not as forcefully as the highly thrombogenic TiO2 NPs. In summary, we show that our 3-step in vitro model of the human lung and surrounding vessels can be a useful tool for studying pathological events triggered by airborne fine particles and NPs.
Collapse
Affiliation(s)
- Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden.
| | - Ulrika Johansson
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden; Linnæus Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Sophia Abadgar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Pauline Bourzeix
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Zhao X, Fan X, Gong Z, Gao X, Wang Y, Ni B. The Toxic Effects of Cu and CuO Nanoparticles on Euplotes aediculatus. MICROBIAL ECOLOGY 2023; 85:544-556. [PMID: 35316342 DOI: 10.1007/s00248-022-01972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The single-celled eukaryote Euplotes aediculatus was chosen to test and compare the toxic effects of Cu and CuO nanoparticles (NPs). The antioxidant enzymatic activity, morphological changes, and functional groups on the membrane were determined using spectrophotometry, microscopy, and Fourier transform infrared spectroscopy after NPs treatment. The toxicity of the NPs to cells was dose-dependent, and the 24 h-LC50 values of the CuNPs and CuONPs were 0.46 µg/L and 1.24 × 103 µg/L, respectively. These NPs increased the activities of superoxide dismutase, glutathione peroxidase, and catalase and destroyed the cell structure; moreover, the CuNPs were more toxic than the CuONPs. In addition to the higher enzymatic activity, CuNPs also caused nucleoli disappearance, chromatin condensation, and mitochondrial and pellicle damage. The oxidization of the functional groups of the membrane (PO2 - , C-O-C, and δ(COH) of carbohydrates) also confirmed the severe damage caused by CuNPs. Our study showed that oxidative stress and organelle destruction played important roles in the toxic effects of these NPs on this protozoan. Compared with other aquatic organisms, E. aediculatus can be considered a potential indicator at the preliminary stage of environmental pollution.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhiwei Gong
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Xilei Gao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
25
|
Wang X, Hung TF, Chen FR, Wang WX. In Situ Tracking of Crystal-Surface-Dependent Cu 2O Nanoparticle Dissolution in an Aqueous Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1006-1016. [PMID: 36598407 DOI: 10.1021/acs.est.2c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide-based nanoparticles (MONPs) such as Cu2O NPs have attracted growing attention, but the potential discharges of MONPs have raised considerable concern of their environmental fate including their dissolution behavior. The impacts of morphology on MONP dissolution are largely uncertain due to the lack of in situ tracking techniques. In this study, we combined a series of in situ technologies including liquid-cell transmission electron microscopy and fluorescence probes to reveal the in situ dissolution process of Cu2O NPs in freshwater. Our results suggest that cubic Cu2O NPs exhibit a higher dissolution quantity compared with spherical NPs of the same surface area. The difference was mainly related to the crystal surface, while other factors such as particle size or aggregation status showed minor effects. Importantly, we demonstrated the simultaneous growth of new small NPs and the dissolution of pristine Cu2O NPs during the dissolution of Cu2O NPs. Cubic Cu2O NPs became much less soluble under O2-limited conditions, suggesting that O2 concentration largely affected the dependence of dissolution on the NP morphology. Our findings highlight the potential application of in situ techniques to track the environmental fates of MONPs, which would provide important information for assessing the ecological risks of engineered NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Tak-Fu Hung
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
26
|
Cai Y, Wu C, Ou Q, Zeng M, Xue S, Chen J, Lu Y, Ding C. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-β1. Bioact Mater 2023; 19:444-457. [PMID: 35574050 PMCID: PMC9079106 DOI: 10.1016/j.bioactmat.2022.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy shows the potential benefits to relieve clinical symptoms of osteoarthritis (OA), but it is uncertain if it can repair articular cartilage lesions — the main pathology of OA. Here, we prepared biomimetic cupper sulfide@phosphatidylcholine (CuS@PC) nanoparticles (NPs) loaded with plasmid DNA (pDNA) encoding transforming growth factor-beta 1 (TGF-β1) to engineer MSCs for enhanced OA therapy via cartilage regeneration. We found that the NPs not only promoted cell proliferation and migration, but also presented a higher pDNA transfection efficiency relative to commercial transfection reagent lipofectamine 3000. The resultant CuS/TGF-β1@PC NP-engineered MSCs (termed CTP-MSCs) were better than pure MSCs in terms of chondrogenic gene expression, glycosaminoglycan deposition and type II collagen formation, favoring cartilage repair. Further, CTP-MSCs inhibited extracellular matrix degradation in interleukin-1β-induced chondrocytes. Consequently, intraarticular administration of CTP-MSCs significantly enhanced the repair of damaged cartilage, whereas pure MSCs exhibited very limited effects on cartilage regeneration in destabilization of the medial meniscus (DMM) surgical instability mice. Hence, this work provides a new strategy to overcome the limitation of current stem cell therapy in OA treatment through developing more effective nanoengineered MSCs. Biomimetic CuS nanoparticles (NPs) loaded with TGF-β1 pDNA are prepared for nanoengineering of MSCs. CuS/TGF-β1@PC NPs are more efficient than commercial transfection agent in terms of pDNA transfection. The NP-engineered CTP-MSCs exhibit enhanced migration, chondrogenesis and inhibition of ECM degradation. CTP-MSCs effectively treat osteoarthritis (OA) mice models via cartilage regeneration.
Collapse
|
27
|
Pourahmad J, Salami M, Zarei MH. Comparative Toxic Effect of Bulk Copper Oxide (CuO) and CuO Nanoparticles on Human Red Blood Cells. Biol Trace Elem Res 2023; 201:149-155. [PMID: 35378668 DOI: 10.1007/s12011-022-03149-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023]
Abstract
Destruction of red blood cell is associated with anemia and other pathological status; hence, the hemolytic effects of all chemicals and particles which come into contact with blood components must be considered. Nanomaterials and nanoparticles are potential substitutes for common material and particles, and assessment of their effect on blood components is a necessary part of their safety evaluation. High surface-to-volume ratio of nanoparticles may cause their toxic effects differ from those observed for bulk material. The aim of this study was to compare the hemolytic effects of CuO nanoparticles and bulk CuO. Red blood cells were isolated from blood of healthy subjects and hemolytic effects assayed following treatment of cells with 0.005-0.25 mM of CuO (bulk and nanoparticles) for 6 h. For assessment of other parameters, cells were incubated with 0.01, 0.05, and 0.25 mM of CuO nanoparticles and bulk CuO for 1, 2, and 3 h. Our results demonstrate that CuO nanoparticles, in particular, caused toxic hemolytic effects in concentration-dependent manner, and this effect maybe through formation of ROS, glutathione depletion, and lipid peroxidation. In conclusion, CuO nanoparticles are shown to effectively destruct human red blood cells in comparison to bulk CuO.
Collapse
Affiliation(s)
- Jalal Pourahmad
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salami
- Department of Chemistry, Faculty Of Science, Qom University, Qom, Iran
| | - Mohammad Hadi Zarei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
28
|
Gu J, Chen F, Zheng Z, Bi L, Morovvati H, Goorani S. Novel green formulation of copper nanoparticles by Foeniculum vulgare: Chemical characterization and determination of cytotoxicity, anti-human lung cancer and antioxidant effects. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Yousef DM, Hassan HA, Nafea OE, El Fattah ERA. Crocin averts functional and structural rat hepatic disturbances induced by copper oxide nanoparticles. Toxicol Res (Camb) 2022; 11:911-919. [PMID: 36569481 PMCID: PMC9773068 DOI: 10.1093/toxres/tfac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Exposure to nanoparticles became inevitable in our daily life due to their huge industrial uses. Copper oxide nanoparticles (CuONPs) are one of the most frequently utilized metal nanoparticles in numerous applications. Crocin (CRO) is a major active constituent in saffron having anti-inflammatory and antioxidant potentials. Objectives We designed this study to explore the probable defensive role of CRO against CuONPs-induced rat hepatic damage. Materials and methods Therefore, 24 adult rats were randomly distributed into 4 equal groups as negative control, CRO, CuONPs, and co-treated CuONPs with CRO groups. All treatments were administered for 14 days. The hepatotoxic effect of CuONPs was evaluated by estimation of hepatic alanine aminotransferase and aspartate aminotransferase enzymes, hepatic oxidative malondialdehyde and antioxidant glutathione reduced, serum levels of inflammatory biomarkers (tumor necrosis factor-alpha, interleukin-1-beta, and nuclear factor kappa B), and expression of the apoptotic BAX in hepatic tissues; in addition, histopathological examination of the hepatic tissues was conducted. Results We found that concurrent CRO supplement to CuONPs-treated rats significantly averted functional and structural rat hepatic damage as documented by decreased hepatic enzymes activities, restored hepatic oxidant/antioxidant balance, decreased serum levels of inflammatory biomarkers, reversed BAX-mediated apoptotic cell death in hepatic tissues along with repair of CuONPs-induced massive hepatic structural and ultrastructural alterations. Conclusions It is concluded that combined CRO supplement to CuONPs-treated rats improved hepatic function and structure by, at least in part, antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Doaa Mohammed Yousef
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Ahmed Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
30
|
Elwakil BH, Toderas M, El-Khatib M. Arc discharge rapid synthesis of engineered copper oxides nano shapes with potent antibacterial activity against multi-drug resistant bacteria. Sci Rep 2022; 12:20209. [PMID: 36424443 PMCID: PMC9691636 DOI: 10.1038/s41598-022-24514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays Nano metals have received an eminent compromise of attention. Even though different nanostructure of same metal maybe gives different results in wide range applications. Copper oxide (CuO-NPs) and Copper Nano wires (CuO-NWs) were prepared in controlled size via the alternating current Arc discharge process. Deionized water and argon gas were the chosen dielectric medium during the process to obtain 2 different forms of copper oxides. By changing the dielectric material from deionized water to argon gas the shape of CuO nanoparticles changed from spherical (CuO-NPs) to wires (CuO-NWS). The yield prepared depicted the purity of the prepared CuO, and their diameters were about 10 ± 5 nm and 30 ± 3 nm for CuO-NWs and CuO-NPs respectively. In vitro cytotoxic effect of the prepared CuO-NWs & CuO-NPs using human normal lung fibroblast cell line (WI-38 cells) revealed that CuO-NWs & CuO-NPs CC50 values were 458.8 and 155.6 µg/mL respectively. Both yields showed potent antibacterial activity against different multi-drug resistant Acinetobacter baumannii strains. A complete eradication of the bacterial growth was noticed after 4 Hrs incubation with CuO-NWs. Moreover, CuO-NWs showed superior antibacterial activity (with minimum inhibitory concentration reached 1.8 µg/mL) over CuO-NPs. The detailed antibacterial activity mechanism of CuO-NWs was further investigated; data proved the precipitation and adsorption of the nanoparticles on the bacterial cell surface leading to cell deformation with reactive oxygen species increment. The results explicated that the nanoparticles shape plays an essential role in the antibacterial activity. Rotational Arc discharge machine might be a promising tool to obtain various metal nanostructures with low cost and environmentally friendly with potent activity.
Collapse
Affiliation(s)
- Bassma H. Elwakil
- grid.442603.70000 0004 0377 4159Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526 Egypt
| | - M. Toderas
- grid.19723.3e0000 0001 1087 4092Department of Physics, University of Oradea, 410087 Oradea, Romania
| | - Mostafa El-Khatib
- grid.442603.70000 0004 0377 4159Basic Sciences Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, 21526 Egypt
| |
Collapse
|
31
|
Pseudomonas aeruginosa Clusters Toxic Nickel Nanoparticles to Enhance Survival. Microorganisms 2022; 10:microorganisms10112220. [PMID: 36363812 PMCID: PMC9694399 DOI: 10.3390/microorganisms10112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms forming a biofilm might become multidrug-resistant by information exchange. Multi-resistant, biofilm-producing microorganisms are responsible for a major portion of hospital-acquired infections. Additionally, these microorganisms cause considerable damage in the industrial sector. Here, we screened several nanoparticles of transition metals for their antibacterial properties. The nanoparticles sizes of nickel (<300 nm) and nickel oxide (<50 nm) were analyzed with transmission electron microscopy. We could show that the antibacterial efficacy of nickel and nickel oxide nanoparticles on Pseudomonas aeruginosa isolated from household appliances and Staphylococcus aureus was the highest. Interestingly, only P. aeruginosa was able to survive at high concentrations (up to 50 mM) due to clustering toxic nanoparticles out of the medium by biofilm formation. This clustering served to make the medium nearly free of nanoparticles, allowing the bacteria to continue living without contact to the stressor. We observed these clusters by CLSM, SEM, and light microscopy. Moreover, we calculated the volume of NiO particles in the bacterial biofilms based on an estimated thickness of 5 nm from the TEM images as an average volume of 3.5 × 10−6 µm3. These results give us a new perspective on bacterial defense mechanisms and might be useful in industries such as water purification.
Collapse
|
32
|
Ross BN, Knightes CD. Simulation of the Environmental Fate and Transformation of Nano Copper Oxide in a Freshwater Environment. ACS ES&T WATER 2022; 2:1532-1543. [PMID: 36118665 PMCID: PMC9469096 DOI: 10.1021/acsestwater.2c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Production of engineered nanomaterials (ENMs) has rapidly increased, yet uncertainty exists regarding the full extent of their environmental implications. This study investigates the fate, transformation, and speciation of nano copper oxide (nanoCuO) released into Lake Waccamaw, North Carolina, over 101 years. Using the Advanced Toxicant module of the Water Quality Analysis Simulation Program (WASP8), we assessed the accumulation and mass proportions of nanoCuO and Cu2+ (the product of nanoCuO's dissolution) in the water column and sediments. Our simulations suggest that when nanoCuO is released into Lake Waccamaw, the highest concentrations of both nanoCuO and Cu2+ are found in the surface sediments, followed by the subsurface sediments and the water column. Simulating different heteroaggregation attachment efficiencies of nanoCuO suggested that increases in attachment efficiency increased nanoCuO concentrations and mass proportions in the water column and sediments, while Cu2+ exhibited the opposite trends. After 101 years, most nanoCuO in the sediments was attached to particulate organic matter and clay particles at all attachment efficiencies, while low attachment efficiency slowed aggregate formation in the water column. Our results highlight the influence that heteroaggregation has on the behavior of nanoCuO inputs and suggest the potential for legacy contamination of nanoCuO and Cu2+ in sediments.
Collapse
Affiliation(s)
- Bianca N. Ross
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
| | - Christopher D. Knightes
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
33
|
Stachytarpheta cayennensis-mediated copper nanoparticles shows anticancer activity in both in vitro and in vivo models. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
Scheurer T, Steffens J, Markert A, Du Marchie Sarvaas M, Roderburg C, Rink L, Tacke F, Luedde T, Kraus T, Baumann R. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro. J Occup Med Toxicol 2022; 17:15. [PMID: 35915466 PMCID: PMC9344619 DOI: 10.1186/s12995-022-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background Short-term inhalation of occupationally relevant ultrafine zinc/copper (Zn/Cu) containing welding fumes has been shown to induce subclinical systemic inflammation, associated with an elevated risk for cardiovascular diseases. The involvement of noncoding RNAs (lncRNAs) in this setting is currently unknown. However, lncRNAs have been reported to fulfill essential roles in, e.g., cardiovascular diseases, inflammation, infectious diseases, and pollution-related lung disorders. Methods In this study, the specific lncRNAs levels of the 4 lncRNAs CoroMarker, MALAT1, CDR1as and LINC00460 were determined by RT-qPCR in THP-1 macrophages exposed to Zn/Cu metal fume suspensions for 1, 2, and 4 hours in vitro. Furthermore, 14 subjects were exposed to Zn/Cu containing welding fumes (at 2.5 mg/m3) for 6 hours. Before, 6, 10, and 29 hours after exposure start, whole blood cell lncRNAs levels were determined by RT-qPCR. Results In THP-1 macrophages, we observed a 2.3-fold increase of CDR1as at 1 h (Wilcoxon p = 0.03), a non-significant increase of CoroMarker at 1 h, and an increase of LINC00460 at 2 h (p = 0.03) and at 4 h (p = 0.06). In whole blood cells, we determined a non-significant upregulation of CDR1as at 6 h (p = 0.2), a significant downregulation of CoroMarker at 6 h (p = 0.04), and a significant upregulation of LINC00460 levels at 10 h (p = 0.04) and 29 h (p = 0.04). MALAT-1 remained unchanged in both settings. Conclusion The orientation of regulation of the lncRNAs is (except for CoroMarker) similar in the in vitro and in vivo experiments and in line with their described functions. Therefore, these results, e.g. the upregulation of the potential risk marker for cardiovascular diseases, CDR1as, contribute to understanding the underlying mechanisms of Zn/Cu-induced subclinical inflammation in metal workers.
Collapse
Affiliation(s)
- Theresa Scheurer
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany. .,Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Agnieszka Markert
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
35
|
Kukla SP, Slobodskova VV, Zhuravel EV, Mazur AA, Chelomin VP. Exposure of adult sand dollars (Scaphechinus mirabilis) (Agassiz, 1864) to copper oxide nanoparticles induces gamete DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39451-39460. [PMID: 35103949 DOI: 10.1007/s11356-021-18318-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The increase in the number of products containing nanoparticles (NPs) poses a real threat to the environment. Recently, more evidence has been added to predictive models about the presence of NPs in various natural and anthropogenic systems. The acute toxicity of most aquatic NPs has now been well documented. However, data such as the ecotoxicological significance of the long-lasting effects of NPs on the reproductive system and gamete quality of aquatic organisms are still relatively scarce. Therefore, a 10-day experiment was carried out on the sand dollar Scaphechinus mirabilis (Agassiz, 1864) exposed to low (20 and 40 μg/L) concentrations of copper oxide nanoparticles (CuO NPs). An accumulation of copper in tissues and a significant increase in lipid peroxidation product concentrations after exposure to NP were observed. A significant decrease in the fertilization rate was shown at 40 μg/L. No significant changes in embryonic or larval development were found. However, comet analysis results showed a significant increase in DNA damage in spermatozoa exposed to CuO NPs, which may further manifest as negative effects at later developmental stages or in subsequent generations.
Collapse
Affiliation(s)
- Sergey Petrovich Kukla
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia.
| | - Valentina Vladimirovna Slobodskova
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Elena Vladimirovna Zhuravel
- School of Natural Sciences, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690950, Russia
| | - Andrey Alexandrovich Mazur
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Viktor Pavlovich Chelomin
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| |
Collapse
|
36
|
Gupta G, Cappellini F, Farcal L, Gornati R, Bernardini G, Fadeel B. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1). Part Fibre Toxicol 2022; 19:33. [PMID: 35538581 PMCID: PMC9088059 DOI: 10.1186/s12989-022-00467-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). Methods The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. Results We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. Conclusions CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00467-w.
Collapse
Affiliation(s)
- Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Francesca Cappellini
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.
| |
Collapse
|
37
|
Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. TOXICS 2022; 10:toxics10030130. [PMID: 35324755 PMCID: PMC8955801 DOI: 10.3390/toxics10030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are increasingly used in consumer-related products, which may result in increased oral ingestion. Digestion of particles can change their physicochemical properties and toxicity. Therefore, our aim was to simulate the gastrointestinal tract using a static in vitro digestion model. Toxic properties of digested and undigested CuO-NP were compared using an epithelial mono-culture (Caco-2) and a mucus-secreting co-culture model (Caco-2/HT29-MTX). Effects on intestinal barrier integrity, permeability, cell viability and apoptosis were analyzed. CuO-NP concentrations of 1, 10 and 100 µg mL−1 were used. Particle characterization by dynamic light scattering and transmission electron microscopy showed similar mean particle sizes before and after digestion, resulting in comparable delivered particle doses in vitro. Only slight effects on barrier integrity and cell viability were detected for 100 µg mL−1 CuO-NP, while the ion control CuCl2 always caused significantly higher adverse effects. The utilized cell models were not significantly different. In summary, undigested and digested CuO-NP show comparable effects on the mono-/co-cultures, which are weaker than those of copper ions. Only in the highest concentration, CuO-NP showed weak effects on barrier integrity and cell viability. Nevertheless, a slightly increased apoptosis rate indicates existing cellular stress, which gives reason for further investigations.
Collapse
|
38
|
Stepan T, Tété L, Laundry-Mottiar L, Romanovskaia E, Hedberg YS, Danninger H, Auinger M. Effect of nanoparticle size on the near-surface pH-distribution in aqueous and carbonate buffered solutions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Chen J, Dong Z, Lei Y, Li L, Gao A, Wu L, Ye J. Vitamin C suppresses toxicological effects in MO/MФ and IgM + B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106100. [PMID: 35091370 DOI: 10.1016/j.aquatox.2022.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu), as an essential micronutrient in human and animal metabolism, easily spreads and excessively accumulates in rearing water, which make it more susceptible to fish farms and threatens the health of aquatic animals. In this issue, the protective effect of vitamin C against oxidative damage caused by copper exposure was studied in monocytes/macrophages (MO/MФ) and IgM+ B cells of Nile tilapia (Oreochromis niloticus), the cell types possessing phagocytic activities. The significant increase of ROS level and up-regulation of proinflammatory factors accompanied by depletion of GSH and down-regulation of antioxidative molecules in MO/MФ and IgM+ B cells, when stressed with CuO NPs or Cu ions, indicated the induction of oxidative damage due to the toxicological effects with copper exposure. Copper induced cell apoptosis through mitochondrial-dependent pathway in these two cell populations was demonstrated with disruption of mitochondrial membrane potential (ΔΨm) and activation of apoptosis factor. Furthermore, the phagocytic abilities for microspheres and bioparticle uptake significantly decreased in these two cell populations upon CuO NPs or Cu ions; meanwhile, antigen presentation of MO/MФ and antibody production of IgM+ B cells were also inhibited. However, vitamin C supplementation reversed all these biochemical indices, as well as cell apoptosis and phagocytic abilities in MO/MФ and IgM+ B cells that were induced by CuO NPs or Cu ions. In conclusion, these results revealed that vitamin C exerts cytoprotective effects against oxidative damage through its antioxidant properties and may be of therapeutic use in preventing toxicological effects caused by copper exposure.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Chen J, Lei Y, Dong Z, Fu S, Li L, Gao A, Wu L, Ye J. Toxicological damages on copper exposure to IgM + B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro 2022; 81:105334. [PMID: 35182770 DOI: 10.1016/j.tiv.2022.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/23/2023]
Abstract
Present investigation was carried out to study toxicological damages of copper exposure and mitigation of its adverse effects with β-glucan administration in IgM+ B cells which processes multiple roles similar to macrophages in Nile tilapia (Oreochromis niloticus). IgM+ B cells were pretreated with β-glucan (25 μg/mL) for 24 h before exposed to cupric oxide nanoparticles (CuO NPs) or cupric chloride (Cu ions) at the doses of 0, 5, 10, and 20 μg/mL for 24 h, respectively. Our results demonstrated that β-glucan increased reduced glutathione (GSH) to against oxidative damage from CuO NPs and Cu ions exposure in IgM+ B cells. The apoptosis process through mitochondrial signaling pathway was depressed in IgM+ B cells since the mitochondrial membrane potential (ΔΨm) was protected from copper exposure by β-glucan treatment. Furthermore, the inhibition on phagocytic abilities of IgM+ B cells caused by copper exposure could be enhanced with β-glucan treatment via evaluation of microspheres and bioparticles uptake and LPS-induced NO production. Importantly, β-glucan might participate in immunomodulation in IgM+ B cells through B cell antigen receptor (BCR) to suppress toxicological effect derived from copper exposure. Taken together, this study provides more information on the toxicological damages in IgM+ B cells upon copper exposure and explains the molecular mechanism to reverse adverse effects caused by copper exposure with β-glucan administration.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
41
|
Angelé-Martínez C, Ameer FS, Raval YS, Huang G, Tzeng TRJ, Anker JN, Brumaghim JL. Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death. Toxicol In Vitro 2022; 78:105252. [PMID: 34624480 PMCID: PMC8671380 DOI: 10.1016/j.tiv.2021.105252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023]
Abstract
The ability of ten polyphenolic antioxidants to prevent CuO nanoparticle (NPCuO) and H2O2-mediated DNA damage and cytotoxicity was investigated. Five of the polyphenols (MEPCA, PREGA, MEGA, ECG, and EGCG) prevent NPCuO/H2O2-mediated DNA damage (IC50 values of 7.5-800 μM), three have no effect (PCA, VA, and EC), and two (GA and EGC) result in increased DNA damage. Most polyphenols had similar antioxidant/prooxidant activity in the presence of NPCuO or free copper ions. Electron paramagnetic resonance (EPR) spectroscopy of reactive oxygen species (ROS) generated by NPCuO/H2O2 in the presence of representative polyphenols correlate with results of DNA damage studies: in the presence of NPCuO/H2O2, MEPCA prevents ROS formation, VA has no effect on ROS levels, and EGC increases ROS levels. EPR results with CuO nanoparticles washed to remove dissolved copper in solution (wCuO) in the presence of H2O2/ascorbate suggest that MEPCA prevents ROS formation on the nanoparticle surface in addition to preventing ROS formation from dissolved copper. In mouse fibroblast (L929) cells, combining NPCuO with H2O2 results in significantly greater cytotoxicity than observed for either component alone. After 3 h incubation with MEPCA or MEGA, the viability loss in L929 cells induced by NPCuO/H2O2 challenge was significantly rescued at physiologically relevant polyphenol levels (1 μM). These studies show that polyphenols can protect DNA and inhibit cytotoxicity generated by NPCuO under oxidative stress conditions.
Collapse
Affiliation(s)
| | - Fathima S Ameer
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Yash S Raval
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Guohui Huang
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Jeffrey N Anker
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| | - Julia L Brumaghim
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
42
|
Chen J, Dong Z, Lei Y, Yang Y, Guo Z, Ye J. β-glucan mitigation on toxicological effects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. FISH & SHELLFISH IMMUNOLOGY 2022; 121:124-134. [PMID: 34998984 DOI: 10.1016/j.fsi.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The protective effect of β-glucan against toxicological effects caused by copper oxide nanoparticles (Cu NPs) and copper ions (Cu ions) were studied in monocytes/macrophages (MO/MФ) of Nile tilapia (Oreochromis niloticus). Our results demonstrated that CuO NPs and Cu ions exposure aroused strong oxidative lesion in MO/MФ by detection of cellular reactive oxygen species (ROS) and reduced glutathione (GSH), as well as identification of several antioxidant-related cytokines. Meanwhile, the serious pro-inflammatory responses were accompanied during the processes of oxidative lesion by TNFα, IL-1β, and IL-6 genes validation. Copper induced MO/MФ underwent apoptosis through mitochondrial signaling pathway by mitochondrial membrane potential (ΔΨm) detection and Bax, Bcl-2, Cyt-c, Apaf-1, Caspase 9, Caspase 3 genes validation. Furthermore, the phagocytic abilities were inhibition in MO/MФ by evaluation of microspheres (0.5 and 1.0 μm beads) and bioparticles (S. agalactiae and A. hydrophila) uptake and LPS-induced NO production. However, β-glucan might participate in immunomodulation through C-type lectin receptor (CLR) and complement receptor 3 (CR3) to suppress pro-inflammatory responses, thereby revered all the copper induced aforementioned adverse effects in MO/MΦ. Taken together, our results provide insights on the mechanisms through β-glucan administration to mitigate toxicological effects of CuO NPs and Cu ions exposure to the MO/MΦ, which will benefit aspects related to fish farming and aquaculture production.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| |
Collapse
|
43
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
44
|
Wang C, Qi C. Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood. RSC Adv 2022; 12:11391-11401. [PMID: 35425055 PMCID: PMC8996127 DOI: 10.1039/d2ra01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Copper-based preservatives consisting of micronized and nanoscale copper particles have been widely used in applications for wood protection. The widespread use of these preservatives along with the potential release of copper-containing nanoparticles (Cu NPs) during the life cycle of treated wood, has raised concerns over the impacts on the environment and occupational exposure. Along with assessing the potential hazards of these materials, a critical step is determining the chemical and morphological characteristics of the copper species released from copper-treated wood. Therefore, a combination of scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) was utilized to characterize and differentiate the released copper-containing particles based on their structures, sizing, and chemical properties. Airborne wood dust samples were collected during the abrasion and sawing of micronized copper (MC) treated wood in a laboratory testing system. Based on the signature Cu L2,3 edge of EEL spectra, three different copper species (i.e., basic copper carbonate, copper, and copper–wood complex) were identified as major components of the embedded particles in wood dust. In addition, two types of individual Cu NPs consisting of basic copper carbonate and copper were identified. The variation of morphologies and chemical properties of copper-containing particles indicates the importance of copper–wood interactions to determine the formation and distribution of copper species in wood components. Our findings will advance the fundamental understanding of their released forms, potential transformation, and environmental fate during the life cycle. A combination of analytical electron microscopy and electron energy loss spectroscopy enables effective speciation and characterization of airborne copper nanoparticles released from copper-treated wood.![]()
Collapse
Affiliation(s)
- Chen Wang
- The Health Effects Lab Division, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226, USA
| | - Chaolong Qi
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226, USA
| |
Collapse
|
45
|
Dzhardimalieva G, Bondarenko L, Illés E, Tombácz E, Tropskaya N, Magomedov I, Orekhov A, Kydralieva K. Colloidal Stability of Silica-Modified Magnetite Nanoparticles: Comparison of Various Dispersion Techniques. NANOMATERIALS 2021; 11:nano11123295. [PMID: 34947643 DOI: 10.3390/nano11123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
The production of stable and homogeneous batches during nanoparticle fabrication is challenging. Surface charging, as a stability determinant, was estimated for 3-aminopropyltriethoxysilane (APTES) coated pre-formed magnetite nanoparticles (MNPs). An important consideration for preparing stable and homogenous MNPs colloidal systems is the dispersion stage of pre-formed samples, which makes it feasible to increase the MNP reactive binding sites, to enhance functionality. The results gave evidence that the samples that had undergone stirring had a higher loading capacity towards polyanions, in terms of filler content, compared to the sonicated ones. These later results were likely due to the harsh effects of sonication (extremely high temperature and pressure in the cavities formed at the interfaces), which induced the destruction of the MNPs.
Collapse
Affiliation(s)
- Gulzhian Dzhardimalieva
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
- Laboratory of Metal Polymers, Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Region, Russia
| | - Lyubov Bondarenko
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
| | - Erzsébet Illés
- Department of Food Engineering, University of Szeged, 6720 Szeged, Hungary
| | - Etelka Tombácz
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, 8800 Nagykanizsa, Hungary
| | - Nataliya Tropskaya
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
- Sklifosovsky Institute for Emergency Medicine, 129090 Moscow, Russia
| | - Igor Magomedov
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
| | - Alexander Orekhov
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
| | - Kamila Kydralieva
- Department of General Engineering, Moscow Aviation Institute, National Research University, 125299 Moscow, Russia
| |
Collapse
|
46
|
Vasil'kov A, Batsalova T, Dzhambazov B, Naumkin A. XPS study of silver and copper nanoparticles demonstrated selective anticancer, proapoptotic, and antibacterial properties. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Vasil'kov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
47
|
Daneshvar F, Hankin S, Fern G, Chen H, Zhang T, Aitken R, Sue HJ. Evaluation of 1-dimensional nanomaterials release during electrospinning and thermogravimetric analysis. INDOOR AIR 2021; 31:1967-1981. [PMID: 34171141 DOI: 10.1111/ina.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The growing research interests with engineered nanomaterials in academic laboratories and manufacturing facilities pose potential safety risks to students and workers. New nanoparticle substances, compositions, and processing approaches are developed regularly, creating new health risks which may not have been addressed previously. Accordingly, the Institute of Occupational Medicine conducted field studies at Texas A&M University (TAMU) to characterize possible particle emissions during processing and fabrication of carbon nanotubes, copper nanowires, and polymeric fibers. The nature of the monitoring work carried out at TAMU was to investigate the potential release of 1D nanomaterials to air from activities associated with synthesis, handling, thermal gravimetric analysis, and electrospinning processes, and evaluate the effectiveness of the utilized control measures. The potential nanoparticle release to air from each activity was investigated using a combination of particle detection instrumentations, coupled with standard filter-based sampling techniques. The analyses indicated that a measurable quantity of free carbon nanosphere aggregates was detected during these activities; however, no free MWCNTs or nanowires were detected. Scanning electron microscopy identified the presence of carbon nanospheres aggregates on the filters. While the control measures used at TAMU are effective in containing the nanomaterial release during processing, poor handling and occupational hygiene practices can increase the risk of employee exposure to the nanomaterials.
Collapse
Affiliation(s)
- Farhad Daneshvar
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Intel Ronler Acres Campus, Intel Corp, Hillsboro, OR, USA
| | - Steve Hankin
- Institute of Occupational Medicine (IOM) and SAFENANO, Edinburgh, UK
| | - Gordon Fern
- Institute of Occupational Medicine (IOM) and SAFENANO, Edinburgh, UK
| | - Hengxi Chen
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Tan Zhang
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Rob Aitken
- Institute of Occupational Medicine (IOM) and SAFENANO, Edinburgh, UK
| | - Hung-Jue Sue
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
48
|
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, Xiao H. Functionalized Masks: Powerful Materials against COVID-19 and Future Pandemics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102453. [PMID: 34319644 PMCID: PMC8420174 DOI: 10.1002/smll.202102453] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of COVID-19 revealed the vulnerability of commercially available face masks. Without having antibacterial/antiviral activities, the current masks act only as filtering materials of the aerosols containing microorganisms. Meanwhile, in surgical masks, the viral and bacterial filtration highly depends on the electrostatic charges of masks. These electrostatic charges disappear after 8 h, which leads to a significant decline in filtration efficiency. Therefore, to enhance the masks' protection performance, fabrication of innovative masks with more advanced functions is in urgent demand. This review summarizes the various functionalizing agents which can endow four important functions in the masks including i) boosting the antimicrobial and self-disinfectant characteristics via incorporating metal nanoparticles or photosensitizers, ii) increasing the self-cleaning by inserting superhydrophobic materials such as graphenes and alkyl silanes, iii) creating photo/electrothermal properties by forming graphene and metal thin films within the masks, and iv) incorporating triboelectric nanogenerators among the friction layers of masks to stabilize the electrostatic charges and facilitating the recharging of masks. The strategies for creating these properties toward the functionalized masks are discussed in detail. The effectiveness and limitation of each method in generating the desired properties are well-explained along with addressing the prospects for the future development of masks.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chao Deng
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yajie Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yuqian Liu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yang Huang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chengcheng Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New BrunswickFrederictonNew BrunswickE3B 5A3Canada
| |
Collapse
|
49
|
Fischer J, Gräf T, Sakka Y, Tessarek C, Köser J. Ion compositions in artificial media control the impact of humic acid on colloidal behaviour, dissolution and speciation of CuO-NP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147241. [PMID: 33930810 DOI: 10.1016/j.scitotenv.2021.147241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of copper oxide nanoparticles (CuO-NP) strongly depends on their interactions with the surrounding environment, impacting their dissolution and colloidal stability. This behaviour is studied quite extensively for simplified electrolytes, but information on the behaviour of CuO-NP in more complex artificial media are lacking. In our study, we analysed the colloidal behaviour and considered the speciation of CuO-NP in pure water and three artificial media of different complexity which are used in ecotoxicology. Measurements were done over 7 days in the absence and presence of humic acid (HA) as a model organic molecule. In pure water, the addition of HA lowered the zeta potential from +11 to -41 mV, while in all artificial media, it stayed constantly at about -20 mV. The hydrodynamic diameter of CuO-NP remained unaffected by HA in pure water and seawater, while in porewater and especially in freshwater, HA suppressed strong agglomeration. In pure water, HA strongly increased dissolution to the highest observed value (3% of total Cu), while HA reduced dissolution in all artificial media. Speciation calculations revealed that cations from the media competed with Cu from the NP surface for complexing sites of the HA. This competition may have caused the reduced dissolution in the presence of ions. Furthermore, speciation calculations also suggest that ion composition drove agglomeration behaviour rather than ion concentration: agglomeration was high when divalent cations where the major interaction partner and dominant in relative terms. HA may have reduced the relative dominance and thus altered the agglomeration, aligning it in all media. Summarizing, ion composition and the presence of HA strongly drive the dissolution and agglomeration of CuO-NP in artificial media, consequently, analysing complexation can help to predict environmental behaviour and toxicity.
Collapse
Affiliation(s)
- Jonas Fischer
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany.
| | - Tonya Gräf
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Yvonne Sakka
- University of Bremen, UFT, General and Theoretical Ecology, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Tessarek
- University of Bremen, Institute of Solid State Physics, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jan Köser
- University of Bremen, UFT, Chemical Engineering, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
50
|
Chen H, Zhang J, Wu H, Li Y, Li X, Zhang J, Huang L, Deng S, Tan S, Cai X. Fabrication of a Cu Nanoparticles/Poly(ε-caprolactone)/Gelatin Fiber Membrane with Good Antibacterial Activity and Mechanical Property via Green Electrospinning. ACS APPLIED BIO MATERIALS 2021; 4:6137-6147. [PMID: 35006926 DOI: 10.1021/acsabm.1c00485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the antibacterial effect of a poly(ε-caprolactone)/gelatin (PCL/Gt) composite, Cu nanoparticles (Cu NPs) were synthesized as an antibacterial agent, and a Cu NPs/PCL/Gt fiber membrane was thus fabricated via green electrospinning. The results showed that the Cu NPs/PCL/Gt fiber membrane with a uniform and complete structure exhibited high porosity and water absorption, favorable hydrophilicity, good mechanical and thermal properties, and satisfactory antibacterial activity. The easy preparation and good comprehensive property implied the great potential application of the Cu NPs/PCL/Gt fiber membrane in various fields (e.g., wound dressing and antibacterial clothing). In addition, the synthesis in this work would offer a promising approach for the preparation of a metal nanoparticle/polymer fiber material with good antibacterial property.
Collapse
Affiliation(s)
- Huakai Chen
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jinglin Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Haoping Wu
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Yongjun Li
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao Li
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Suiping Deng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| |
Collapse
|