1
|
Nagano T, Matsuya Y, Kaida A, Nojima H, Furuta T, Sato K, Yoshimura R, Miura M. In vitro and in silico study of biological effects on cancer cells in the presence of metallic materials during radiotherapy. JOURNAL OF RADIATION RESEARCH 2024; 65:628-639. [PMID: 39174316 PMCID: PMC11420842 DOI: 10.1093/jrr/rrae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/26/2024] [Indexed: 08/24/2024]
Abstract
X-ray therapy aims to eliminate tumours while minimizing side effects. Intense mucositis is sometimes induced when irradiating the oral cavity with a dental metal crown (DMC). However, the underlying mechanisms of such inducing radiosensitization by DMC remain uncertain. This study explored the radiosensitizing mechanisms around DMCs in an interdisciplinary approach with cell experiments and Monte Carlo simulation with the PHITS code. Clonogenic survival and nuclear 53BP1 foci of a cell line derived from cervical cancer cells (HeLa cells) were measured post-irradiation with therapeutic X-rays near high-Z materials such as Pb or Au plates, and the experimental sensitizer enhancement ratio (SER) was obtained. Meanwhile, the dose enhancement ratio (DER) and relative biological effectiveness for DNA damage yields were calculated using the PHITS code, by considering the corresponding experimental condition. The experiments show the experimental SER values for cell survival and 53BP1 foci near metals are 1.2-1.4, which agrees well with the calculated DER values. These suggest that the radiosensitizing effects near metal are predominantly attributed to the dose increase. In addition, as a preclinical evaluation, the spatial distributions of DER near DMC are calculated using Computed Tomography Digital Imaging and Communications in Medicine (CT-DICOM) data and a simple tooth model. As a result, the DER values evaluated using the CT-DICOM data were lower than those from a simple tooth model. These findings highlight the challenge of evaluating radiosensitizing effects near DMCs using Digital Imaging and Communications in Medicine (DICOM) images due to volume-averaging effects and emphasize the need for a high-resolution (<1 mm) dose assessment method unaffected by these effects.
Collapse
Affiliation(s)
- Takuya Nagano
- Department of Radiation Therapeutics and Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Atsushi Kaida
- Department of Dental Radiology and Radiation Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hitomi Nojima
- Department of Dental Radiology and Radiation Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takuya Furuta
- Nuclear Science and Engineering Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Kaoru Sato
- Nuclear Science and Engineering Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ryoichi Yoshimura
- Department of Radiation Therapeutics and Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masahiko Miura
- Department of Dental Radiology and Radiation Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
2
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Okazaki Y, Kusumoto T, Roux S, Hirayama R, Fromm M, Bazzi R, Kodaira S, Kataoka J. Increase of OH radical yields due to the decomposition of hydrogen peroxide by gold nanoparticles under X-ray irradiation. RSC Adv 2024; 14:9509-9513. [PMID: 38516151 PMCID: PMC10953845 DOI: 10.1039/d4ra00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
We elucidate the decomposition mechanism of hydrogen peroxide, which is formed by water radiolysis, by gold nanoparticles (GNPs) under X-ray irradiation. The variations in yields of hydrogen peroxide generated in the presence of GNPs are evaluated using the Ghormley technique. The increase of yields of OH radicals has been quantified using Ampliflu® Red solutions. Almost all hydrogen peroxide generated by irradiation of <25 Gy is decomposed by GNPs, while the yield of OH radicals increases by 1.6 times. The amount of OH radicals thus obtained is almost equivalent to that of the decomposed hydrogen peroxide. The decomposition of hydrogen peroxide is an essential reaction to produce additional OH radicals efficiently in the vicinity of GNPs.
Collapse
Affiliation(s)
- Yu Okazaki
- Graduate School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Tamon Kusumoto
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Stephane Roux
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Ryoichi Hirayama
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Michel Fromm
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Rana Bazzi
- UMR CNRS 6249 Chrono-Environnement, Université de Franche-Comté F-25030 Besançon Cedex France
| | - Satoshi Kodaira
- National Institutes for Quantum Science and Technology (QST) 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Jun Kataoka
- Graduate School of Advanced Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
4
|
Ducrozet F, Sebastian A, Garcia Villavicencio CJ, Ptasinska S, Sicard-Roselli C. Quantifying hydroxyl radicals generated by a low-temperature plasma using coumarin: methodology and precautions. Phys Chem Chem Phys 2024; 26:8651-8657. [PMID: 38436422 DOI: 10.1039/d4cp00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The detection and quantification of hydroxyl radicals (HO˙) generated by low-temperature plasmas (LTPs) are crucial for understanding their role in diverse applications of plasma radiation. In this study, the formation of HO˙ in the irradiated aqueous phase is investigated at various plasma parameters, by probing them indirectly using the coumarin molecule. We propose a quantification methodology for these radicals, combining spectrophotometry to study the coumarin reaction with hydroxyl radicals and fluorimetry to evaluate the formation yield of the hydroxylated product, 7-hydroxycoumarin. Additionally, we thoroughly examine and discuss the impact of pH on this quantification process. This approach enhances our comprehension of HO˙ formation during LTP irradiation, adding valuable insights to plasma's biological applications.
Collapse
Affiliation(s)
- Florent Ducrozet
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amal Sebastian
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cecilia Julieta Garcia Villavicencio
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cécile Sicard-Roselli
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
5
|
Huwaidi A, Robert G, Kumari B, Bass AD, Cloutier P, Guérin B, Sanche L, Wagner JR. Electron-Induced Damage by UV Photolysis of DNA Attached to Gold Nanoparticles. Chem Res Toxicol 2024; 37:419-428. [PMID: 38314730 DOI: 10.1021/acs.chemrestox.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
6
|
Hosseini FS, Naghavi N, Sazgarnia A. A physicochemical model of X-ray induced photodynamic therapy (X-PDT) with an emphasis on tissue oxygen concentration and oxygenation. Sci Rep 2023; 13:17882. [PMID: 37857727 PMCID: PMC10587104 DOI: 10.1038/s41598-023-44734-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
X-PDT is one of the novel cancer treatment approaches that uses high penetration X-ray radiation to activate photosensitizers (PSs) placed in deep seated tumors. After PS activation, some reactive oxygen species (ROS) like singlet oxygen (1O2) are produced that are very toxic for adjacent cells. Efficiency of X-PDT depends on 1O2 quantum yield as well as X-ray mortality rate. Despite many studies have been modeled X-PDT, little is known about the investigation of tissue oxygen content in treatment outcome. In the present study, we predicted X-PDT efficiency through a feedback of physiological parameters of tumor microenvironment includes tissue oxygen and oxygenation properties. The introduced physicochemical model of X-PDT estimates 1O2 production in a vascularized and non-vascularized tumor under different tissue oxygen levels to predict cell death probability in tumor and adjacent normal tissue. The results emphasized the importance of molecular oxygen and the presence of a vascular network in predicting X-PDT efficiency.
Collapse
Affiliation(s)
- Farideh S Hosseini
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nadia Naghavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
8
|
Johny J, van Halteren CER, Cakir FC, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rauschenbach L, Tippelt S, Scheffler B, Schramm A, Rehbock C, Barcikowski S. Surface Chemistry and Specific Surface Area Rule the Efficiency of Gold Nanoparticle Sensitizers in Proton Therapy. Chemistry 2023; 29:e202301260. [PMID: 37334753 DOI: 10.1002/chem.202301260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.
Collapse
Affiliation(s)
- Jacob Johny
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Charlotte E R van Halteren
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Fatih-Can Cakir
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Sandra Zwiehoff
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- Department of Physics, TU Dortmund University, 44227, Dortmund, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- Department of Physics, TU Dortmund University, 44227, Dortmund, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), 45147, Essen, Germany
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, 45147, Essen, Germany
| | - Laurèl Rauschenbach
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147, Essen, Germany
- DKFZ-Division Translational Neurooncology at the, West German Cancer Center (WTZ), University Hospital Essen, 45147, Essen, Germany
| | - Stephan Tippelt
- Pediatrics III, Pediatric Oncology and Hematology, University Hospital Essen, 45147, Essen, Germany
| | - Björn Scheffler
- West German Cancer Center (WTZ), 45147, Essen, Germany
- German Cancer Consortium (DKTK), 45147, Essen, Germany
- DKFZ-Division Translational Neurooncology at the, West German Cancer Center (WTZ), University Hospital Essen, 45147, Essen, Germany
| | - Alexander Schramm
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
9
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
10
|
Shcherbakov V, Denisov SA, Mostafavi M. A mechanistic study of gold nanoparticles catalysis of O 2 reduction by ascorbate and hydroethidine, investigating reactive oxygen species reactivity. RSC Adv 2023; 13:8557-8563. [PMID: 36936851 PMCID: PMC10015436 DOI: 10.1039/d3ra00443k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
In this work, the mechanism of dioxygen reduction catalysed by gold nanoparticles (AuNPs) by two electron donors was investigated, i.e., by sodium ascorbate and hydroethidine, focusing on potential ROS (reactive oxygen species) formation, such as O2˙- and H2O2. According to our results, when AuNPs catalyse the reduction of O2, ROS are formed only as intermediates on the surface of nanoparticles, and they are unavoidably reduced to water, catalysed by the AuNPs. Thus, the statement on ROS production in the presence of AuNPs often reported in the literature is excessive. The AuNPs can catalyze the oxidation of electron donors in the cell, e.g., antioxidants causing oxidative stress. Therefore we propose that when explaining damage in the living cells observed in the presence of AuNP, the catalysis of redox reactions by AuNPs must be considered.
Collapse
Affiliation(s)
| | - Sergey A Denisov
- Institut de Chimie Physique (ICP), CNRS/Université Paris-Saclay 91405 Orsay France
| | - Mehran Mostafavi
- Institut de Chimie Physique (ICP), CNRS/Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
11
|
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. Int J Mol Sci 2023; 24:ijms24054697. [PMID: 36902132 PMCID: PMC10003700 DOI: 10.3390/ijms24054697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).
Collapse
|
12
|
Stein F, Kohsakowski S, Martinez-Hincapie R, Reichenberger S, Rehbock C, Colic V, Guay D, Barcikowski S. Disproportional surface segregation in ligand-free gold-silver alloy solid solution nanoparticles, and its implication for catalysis and biomedicine. Faraday Discuss 2023; 242:301-325. [PMID: 36222171 DOI: 10.1039/d2fd00092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Catalytic activity and toxicity of mixed-metal nanoparticles have been shown to correlate and are known to be dependent on surface composition. The surface chemistry of the fully inorganic, ligand-free silver-gold alloy nanoparticle molar fraction series, is highly interesting for applications in heterogeneous catalysis, which is determined by active surface sites which are also relevant for understanding their dissolution behavior in biomedically-relevant ion-release scenarios. However, such information has never been systematically obtained for colloidal nanoparticles without organic surface ligands and has to date, not been analyzed in a surface-normalized manner to exclude density effects. For this, we used detailed electrochemical measurements based on cyclic voltammetry to systematically analyze the redox chemistry of particle-surface-normalized gold-silver alloy nanoparticles with varying gold molar fractions. The study addressed a broad range of gold molar fractions (Ag90Au10, Ag80Au20, Ag70Au30, Ag50Au50, Ag40Au60, and Ag20Au80) as well as monometallic Ag and Au nanoparticle controls. Oxygen reduction reaction (ORR) measurements in O2 saturated 0.1 M KOH revealed a linear reduction of the overpotential with increasing gold content on the surface, probably attributed to the higher ORR activity of gold over silver, verified by monometallic Ag and Au controls. These findings were complemented by detailed XPS studies revealing an accumulation of the minor constituent of the alloy on the surface, e.g., silver surface enrichment in gold-rich particles. Furthermore, highly oxidized Ag surface site enrichment was detected after the ORR reaction, most pronounced in gold-rich alloys. Further, detailed CV studies at acidic pH, analyzing the position, onset potential, and peak integrals of silver oxidation and silver reduction peaks revealed particularly low reactivity and high chemical stability of the equimolar Au50Ag50 composition, a phenomenon attributed to the outstanding thermodynamic, entropically driven, stabilization arising at this composition.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | | | | | - Sven Reichenberger
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Christoph Rehbock
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| | - Viktor Colic
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Guay
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Stephan Barcikowski
- Technical Chemistry I, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-45141 Essen, Germany.
| |
Collapse
|
13
|
Dong X, Tian Y, Wang F, Chen C, Wang Y, Ma J. Gold-Nanoparticle-Enhanced Radio-Fluorogenic Hydrogel Sensor for Low Radiation Doses in Clinical Radiotherapy. Polymers (Basel) 2022; 14:4841. [PMID: 36432968 PMCID: PMC9694710 DOI: 10.3390/polym14224841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Radio-fluorogenic hydrogel dosimeters are urgently needed in radiotherapy for 3D dose verification. However, few hydrogel sensors have been reported at low absorbed doses under 2 Gy which meets the requirements of clinical practice. Here, we report a new type of gold-nanoparticle-enhanced radio-fluorogenic agarose hydrogel with coumarin as the dose-responsive material. An optimal composition of 3 wt% of agarose, 0.1 mM of gold nanoparticles, and 0.5 mM coumarin was selected. The addition of gold nanoparticles enhanced the hydroxyl radicals generated from the radiolysis of water, which can react with coumarin and generate fluorescent 7-hydroxy-coumarin and, eventually, achieve low-dose verification of 0-2.4 Gy with a high linear correlation coefficient. These findings provide an effective method for 3D dose verification, and will inspire the development of other radio-fluorogenic sensing hydrogels as well.
Collapse
Affiliation(s)
| | | | | | | | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
14
|
Johny J, van Halteren CER, Zwiehoff S, Behrends C, Bäumer C, Timmermann B, Rehbock C, Barcikowski S. Impact of Sterilization on the Colloidal Stability of Ligand-Free Gold Nanoparticles for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13030-13047. [PMID: 36260482 DOI: 10.1021/acs.langmuir.2c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sterilization is a major prerequisite for the utilization of nanoparticle colloids in biomedicine, a process well examined for particles derived from chemical synthesis although highly underexplored for electrostatically stabilized ligand-free gold nanoparticles (AuNPs). Hence, in this work, we comprehensively examined and compared the physicochemical characteristics of laser-generated ligand-free colloidal AuNPs exposed to steam sterilization and sterile filtration as a function of particle size and mass concentration and obtained physicochemical insight into particle growth processes. These particles exhibit long-term colloidal stability (up to 3 months) derived from electrostatic stabilization without using any ligands or surfactants. We show that particle growth attributed to cluster-based ripening occurs in smaller AuNPs (∼5 nm) following autoclaving, while larger particles (∼10 and ∼30 nm) remain stable. Sterile filtration, as an alternative effective sterilizing approach, has no substantial impact on the colloidal stability of AuNPs, regardless of particle size, although a mass loss of 5-10% is observed. Finally, we evaluated the impact of the sterilization procedures on potential particle functionality in proton therapy, using the formation of reactive oxygen species (ROS) as a readout. In particular, 5 nm AuNPs exhibit a significant loss in activity upon autoclaving, probably dedicated to specific surface area reduction and surface restructuring during particle growth. The filtered analog enhanced the ROS release by up to a factor of ∼2.0, at 30 ppm gold concentration. Our findings highlight the need for carefully adapting the sterilization procedure of ligand-free NPs to the desired biomedical application with special emphasis on particle size and concentration.
Collapse
Affiliation(s)
- Jacob Johny
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Charlotte E R van Halteren
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Sandra Zwiehoff
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Carina Behrends
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
| | - Christian Bäumer
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Beate Timmermann
- West German Cancer Centre (WTZ), University Hospital Essen, 45147 Essen, Germany
- West German Proton Therapy Centre Essen (WPE), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, 45147 Essen, Germany
- Faculty of Medicine, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
15
|
Liu X, Kifle MT, Xie H, Xu L, Luo M, Li Y, Huang Z, Gong Y, Wu Y, Xie C. Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183138. [PMID: 36144927 PMCID: PMC9501587 DOI: 10.3390/nano12183138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 05/04/2023]
Abstract
Radiotherapy (RT) is currently considered as an essential treatment for non-small cell lung cancer (NSCLC); it can induce cell death directly and indirectly via promoting systemic immune responses. However, there still exist obstacles that affect the efficacy of RT such as tumor hypoxia and immunosuppressive tumor microenvironment (TME). Herein, we report that the biomineralized manganese oxide nanoparticles (Bio-MnO2 NPs) prepared by mild enzymatic reaction could be a promising candidate to synergistically enhance RT and RT-induced immune responses by relieving tumor hypoxia and activating cGAS-STING pathway. Bio-MnO2 NPs could convert endogenic H2O2 to O2 and catalyze the generation of reactive oxygen species so as to sensitize the radiosensitivity of NSCLC cells. Meanwhile, the release of Mn2+ into the TME significantly enhanced the cGAS-STING activity to activate radio-immune responses, boosting immunogenic cell death and increasing cytotoxic T cell infiltration. Collectively, this work presents the great promise of TME reversal with Bio-MnO2 NPs to collaborate RT-induced antitumor immune responses in NSCLC.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meron Tsegay Kifle
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liexi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Maoling Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| |
Collapse
|
16
|
Behrends C, Bäcker CM, Schilling I, Zwiehoff S, Weingarten J, Kröninger K, Rehbock C, Barcikowski S, Wulff J, Bäumer C, Timmermann B. The radiosensitizing effect of platinum nanoparticles in proton irradiations is not caused by an enhanced proton energy deposition at the macroscopic scale. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac80e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Due to the radiosensitizing effect of biocompatible noble metal nanoparticles (NPs), their administration is considered to potentially increase tumor control in radiotherapy. The underlying physical, chemical and biological mechanisms of the NPs’ radiosensitivity especially when interacting with proton radiation is not conclusive. In the following work, the energy deposition of protons in matter containing platinum nanoparticles (PtNPs) is experimentally investigated. Approach. Surfactant-free monomodal PtNPs with a mean diameter of (40 ± 10) nm and a concentration of 300 μg ml−1, demonstrably leading to a substantial production of reactive oxygen species (ROS), were homogeneously dispersed into cubic gelatin samples serving as tissue-like phantoms. Gelatin samples without PtNPs were used as control. The samples’ dimensions and contrast of the PtNPs were verified in a clinical computed tomography scanner. Fields from a clinical proton machine were used for depth dose and stopping power measurements downstream of both samples types. These experiments were performed with a variety of detectors at a pencil beam scanning beam line as well as a passive beam line with proton energies from about 56–200 MeV. Main results. The samples’ water equivalent ratios in terms of proton stopping as well as the mean proton energy deposition downstream of the samples with ROS-producing PtNPs compared to the samples without PtNPs showed no differences within the experimental uncertainties of about 2%. Significance. This study serves as experimental proof that the radiosensitizing effect of biocompatible PtNPs is not due to a macroscopically increased proton energy deposition, but is more likely caused by a catalytic effect of the PtNPs. Thus, these experiments provide a contribution to the highly discussed radiobiological question of the proton therapy efficiency with noble metal NPs and facilitate initial evidence that the dose calculation in treatment planning is straightforward and not affected by the presence of sensitizing PtNPs.
Collapse
|
17
|
Breaking photoswitch activation depth limit using ionising radiation stimuli adapted to clinical application. Nat Commun 2022; 13:4102. [PMID: 35835744 PMCID: PMC9283480 DOI: 10.1038/s41467-022-30917-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Electromagnetic radiation-triggered therapeutic effect has attracted a great interest over the last 50 years. However, translation to clinical applications of photoactive molecular systems developed to date is dramatically limited, mainly because their activation requires excitation by low-energy photons from the ultraviolet to near infra-red range, preventing any activation deeper than few millimetres under the skin. Herein we conceive a strategy for photosensitive-system activation potentially adapted to biological tissues without any restriction in depth. High-energy stimuli, such as those employed for radiotherapy, are used to carry energy while molecular activation is provided by local energy conversion. This concept is applied to azobenzene, one of the most established photoswitches, to build a radioswitch. The radiation-responsive molecular system developed is used to trigger cytotoxic effect on cancer cells upon gamma-ray irradiation. This breakthrough activation concept is expected to expand the scope of applications of photosensitive systems and paves the way towards the development of original therapeutic approaches.
Collapse
|
18
|
Kusumoto T, Inaniwa T, Mizushima K, Sato S, Hojo S, Kitamura H, Konishi T, Kodaira S. Radiation Chemical Yields of 7-Hydroxy-Coumarin-3-Carboxylic Acid for Proton- and Carbon-Ion Beams at Ultra-High Dose Rates: Potential Roles in FLASH Effects. Radiat Res 2022; 198:255-262. [PMID: 35738014 DOI: 10.1667/rade-21-00.230.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
It has been observed that healthy tissues are spared at ultra-high dose rate (UHDR: >40 Gy/s), so called FLASH effect. To elucidate the mechanism of FLASH effect, we evaluate changes in radiation chemical yield (G value) of 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), which is formed by the reaction of hydroxyl radicals with coumarin-3-carboxylic acid (C3CA), under carbon ions (140 MeV/u) and protons (27.5 and 55 MeV) in a wide-dose-rate range up to 100 Gy/s. The relative G value, which is the G value at each dose rate normalized by that at the conventional dose (CONV: 0.1 Gy/s >), 140 MeV/u carbon-ion beam is almost equivalent to 27.5 and 55 MeV proton beams. This finding implies that UHDR irradiations using carbon-ion beams have a potential to spare healthy tissues. Furthermore, we evaluate the G value of 7OH-C3CA under the de-oxygenated condition to investigate roles of oxygen to the generation of 7OH-C3CA effect. The G value of 7OH-C3CA under the de-oxygenated condition is lower than that under the oxygenated condition. The G value of 7OH-C3CA under the de-oxygenated condition is higher than those under UHDR irradiations. By direct measurements of the oxygen concentration during 55 MeV proton irradiations, the oxygen concentration drops by 0.1%/Gy, which is independent of the dose rate. When the oxygen concentration directly affects to yields of 7OH-C3CA, the rate of decrease in the oxygen concentration may be correlated with that of decrease in the G value of 7OH-C3CA. However, the reduction rate of G value under UHDR is significantly higher than the oxygen consumption. This finding implied that the influence of the reaction between water radiolysis species formed by neighborhood tracks could be strongly related to the mechanisms of UHDR effect.
Collapse
Affiliation(s)
- Tamon Kusumoto
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Taku Inaniwa
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Kota Mizushima
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Shinji Sato
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoru Hojo
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Hisashi Kitamura
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Teruaki Konishi
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Satoshi Kodaira
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
19
|
Gerken LRH, Gogos A, Starsich FHL, David H, Gerdes ME, Schiefer H, Psoroulas S, Meer D, Plasswilm L, Weber DC, Herrmann IK. Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nat Commun 2022; 13:3248. [PMID: 35668122 PMCID: PMC9170699 DOI: 10.1038/s41467-022-30982-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO2, TiO2, WO3 and HfO2), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO2 nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO2 nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO2, leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy. Nanoparticles have recently received attention in radiation therapy since they can act as radioenhancers. In this article, the authors report on the dose enhancement capabilities of a series of nanoparticles based on their metal core composition and beam characteristics, obtaining designing criteria for their optimal performance in specific radiotreatments.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Fabian H L Starsich
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Helena David
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Maren E Gerdes
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Hans Schiefer
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Ludwig Plasswilm
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland.,Department of Radiation Oncology, University Hospital Bern (Inselspital), 3010, Bern, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.,Department of Radiation Oncology, University Hospital Bern (Inselspital), 3010, Bern, Switzerland.,Department of Radiation Oncology, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
20
|
Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23095279. [PMID: 35563666 PMCID: PMC9105611 DOI: 10.3390/ijms23095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
For a while, gold nanoparticles (AuNPs) have been recognized as potential radiosensitizers in cancer radiation therapy, mainly due to their physical properties, making them appealing for medical applications. Nevertheless, the performance of AuNPs as radiosensitizers still raises important questions that need further investigation. Searching for selective prostate (PCa) radiosensitizing agents, we studied the radiosensitization capability of the target-specific AuNP-BBN in cancer versus non-cancerous prostate cells, including the evaluation of dose rate effects in comparison with non-targeted counterparts (AuNP-TDOTA). PCa cells were found to exhibit increased AuNP uptake when compared to non-tumoral ones, leading to a significant loss of cellular proliferation ability and complex DNA damage, evidenced by the occurrence of multiple micronucleus per binucleated cell, in the case of PC3 cells irradiated with 2 Gy of γ-rays, after incubation with AuNP-BBN. Remarkably, the treatment of the PC3 cells with AuNP-BBN led to a much stronger influence of the dose rate on the cellular survival upon γ-photon irradiation, as well as on their genomic instability. Overall, AuNP-BBN emerged in this study as a very promising nanotool for the efficient and selective radiosensitization of human prostate cancer PC3 cells, therefore deserving further preclinical evaluation in adequate animal models for prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Marques
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Luis Santos
- Laboratório de Metrologia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - António P. A. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| |
Collapse
|
21
|
Verkhovtsev AV, Nichols A, Mason NJ, Solov'yov AV. Molecular Dynamics Characterization of Radiosensitizing Coated Gold Nanoparticles in Aqueous Environment. J Phys Chem A 2022; 126:2170-2184. [PMID: 35362970 DOI: 10.1021/acs.jpca.2c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) have been proposed as promising radiosensitizing agents for more efficient radiotherapy treatment using photons and ion beams. Radiosensitizing properties of NPs may depend on many different parameters (such as size, composition, and density) of the metal core, the organic coatings, and the molecular environment. A systematic exploration of each of these parameters on the atomistic level remains a formidable and costly experimental task, but it can be addressed by means of advanced computational modeling. This paper describes a detailed computational procedure for construction and atomistic-level characterization of radiosensitizing metal NPs in explicit molecular media. The procedure is general and is extensible to many different combinations of the core, coating, and environment. As an illustrative and experimentally relevant case study, we consider nanometer-sized gold NPs coated with thiol-poly(ethylene glycol)-amine molecules of different length and surface density and solvated in water at ambient conditions. The radial distribution of different atoms in the coatings as well as distribution and structural properties of water around the coated NPs are analyzed and linked to radiosensitizing properties of the NPs. It is revealed that the structure of the coating layer on the solvated NPs depends strongly on the surface density of ligands. At surface densities below ∼3 molecules/nm2 the coating represents a mixture of different conformation states, whereas elongated "brush"-like structures are formed at higher densities of ligands. The water content in denser coatings is significantly lower at distances from 1 nm up to 3 nm from the gold surface depending on the length of ligand molecules. Such dense and thick coatings may suppress the production of hydroxyl radicals by low-energy electrons emitted from the metal NPs and thus diminish their radiosensitizing properties. The presented computational framework provides precise information for a quantitative atomistic-level description of the structural properties of coated metal NPs in biologically relevant environments and so may form a basis for future developments to achieve a more realistic description of irradiation-driven chemistry effects in the vicinity of coated metal NPs.
Collapse
Affiliation(s)
| | - Adam Nichols
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, U.K
| | - Nigel J Mason
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, U.K
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Zwiehoff S, Johny J, Behrends C, Landmann A, Mentzel F, Bäumer C, Kröninger K, Rehbock C, Timmermann B, Barcikowski S. Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles Is Driven by the Number and Chemical Activity of Surface Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106383. [PMID: 34921500 DOI: 10.1002/smll.202106383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Proton-based radiotherapy is a modern technique for the treatment of solid tumors with significantly reduced side effects to adjacent tissues. Biocompatible nanoparticles (NPs) with high atomic numbers are known to serve as sensitizers and to enhance treatment efficacy, which is commonly believed to be attributed to the generation of reactive oxygen species (ROS). However, little systematic knowledge is available on how either physical effects due to secondary electron generation or the particle surface chemistry affect ROS production. Thereto, ligand-free colloidal platinum (Pt) and gold (Au) NPs with well-controlled particle size distributions and defined total surface area are proton-irradiated. A fluorescence-based assay is developed to monitor the formation of ROS using terephthalic acid as a cross-effect-free dye. The findings indicate that proton irradiation (PI)-induced ROS formation sensitized by noble metal NPs is driven by the total available particle surface area rather than particle size or mass. Furthermore, a distinctive material effect with Pt being more active than Au is observed which clearly indicates that the chemical reactivity of the NP surface is a main contributor to ROS generation upon PI. These results pave the way towards an in-depth understanding of the NP-induced sensitizing effects upon PI and hence a well-controlled enhanced therapy.
Collapse
Affiliation(s)
- Sandra Zwiehoff
- University of Duisburg-Essen, Technical Chemistry I, (CENIDE), (ZMB), 45141, Essen, Germany
| | - Jacob Johny
- University of Duisburg-Essen, Technical Chemistry I, (CENIDE), (ZMB), 45141, Essen, Germany
| | - Carina Behrends
- TU Dortmund University, Department of Physics, 44227, Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), University Hospital Essen, 45147, Essen, Germany
| | - Alina Landmann
- TU Dortmund University, Department of Physics, 44227, Dortmund, Germany
| | - Florian Mentzel
- TU Dortmund University, Department of Physics, 44227, Dortmund, Germany
| | - Christian Bäumer
- TU Dortmund University, Department of Physics, 44227, Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), University Hospital Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Kevin Kröninger
- TU Dortmund University, Department of Physics, 44227, Dortmund, Germany
| | - Christoph Rehbock
- University of Duisburg-Essen, Technical Chemistry I, (CENIDE), (ZMB), 45141, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), University Hospital Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Faculty of Medicine, University of Duisburg-Essen, Department of Particle Therapy, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Barcikowski
- University of Duisburg-Essen, Technical Chemistry I, (CENIDE), (ZMB), 45141, Essen, Germany
| |
Collapse
|
23
|
Radiosensitization Effect of Gold Nanoparticles on Plasmid DNA Damage Induced by Therapeutic MV X-rays. NANOMATERIALS 2022; 12:nano12050771. [PMID: 35269259 PMCID: PMC8911739 DOI: 10.3390/nano12050771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/30/2023]
Abstract
Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient enhancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although −AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than −AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes.
Collapse
|
24
|
Precek M, Kubelik P, Vysin L, Schmidhammer U, Larbre JP, Demarque A, Jeunesse P, Mostafavi M, Juha L. Dose Rate Effects in Fluorescence Chemical Dosimeters Exposed to Picosecond Electron Pulses: An Accurate Measurement of Low Doses at High Dose Rates. Radiat Res 2022; 197:131-148. [PMID: 34614193 DOI: 10.1667/rade-20-00292.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.
Collapse
Affiliation(s)
- Martin Precek
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Petr Kubelik
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Ludek Vysin
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Uli Schmidhammer
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Philippe Larbre
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Alexandre Demarque
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Pierre Jeunesse
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Mehran Mostafavi
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 18200 Prague, Czech Republic
| |
Collapse
|
25
|
Shiryaeva ES, Baranova IA, Sanochkina EV, Dement'eva OV, Kartseva ME, Shishmakova EM, Rudoy VM, Belousov AV, Morozov VN, Feldman VI. On the mechanism of radiation sensitization by gold nanoparticles under X-ray irradiation of oxygen-free aqueous organic solutions: A spin trapping study. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Klapproth AP, Schuemann J, Stangl S, Xie T, Li WB, Multhoff G. Multi-scale Monte Carlo simulations of gold nanoparticle-induced DNA damages for kilovoltage X-ray irradiation in a xenograft mouse model using TOPAS-nBio. Cancer Nanotechnol 2021; 12:27. [PMID: 35663252 PMCID: PMC9165761 DOI: 10.1186/s12645-021-00099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models. Methods A tumor was placed inside a voxel mouse model and irradiated with either 100 kVp or 200 kVp x-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3 core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale. Results An AuFeNP induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200 kVp x-ray beams. Conclusions Our multi-scale approach allows to study irradiation induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.
Collapse
Affiliation(s)
- Alexander P. Klapproth
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, München, Germany
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America
- Harvard Medical School, Boston, MA 02115, United States of America
| | - Stefan Stangl
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, München, Germany
| | - Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, München, Germany
| |
Collapse
|
27
|
Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun 2021; 12:6145. [PMID: 34686685 PMCID: PMC8536768 DOI: 10.1038/s41467-021-26380-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor response to radiotherapy or ferroptosis is closely related to hydroxyl radical (•OH) production. Noninvasive imaging of •OH fluctuation in tumors can allow early monitoring of response to therapy, but is challenging. Here, we report the optimization of a diene electrochromic material (1-Br-Et) as a •OH-responsive chromophore, and use it to develop a near-infrared ratiometric fluorescent and photoacoustic (FL/PA) bimodal probe for in vivo imaging of •OH. The probe displays a large FL ratio between 780 and 1113 nm (FL780/FL1113), but a small PA ratio between 755 and 905 nm (PA755/PA905). Oxidation of 1-Br-Et by •OH decreases the FL780/FL1113 while concurrently increasing the PA755/PA905, allowing the reliable monitoring of •OH production in tumors undergoing erastin-induced ferroptosis or radiotherapy. The hydroxyl radical is generated during radiotherapy and ferroptosis and accurate imaging of this reactive oxygen species may permit the monitoring of response to therapy. Here, the authors develop a ratiometric probe for accurate imaging of hydroxyl radical generation in vivo.
Collapse
|
28
|
Gold-Protein Composite Nanoparticles for Enhanced X-ray Interactions: A Potential Formulation for Triggered Release. Pharmaceutics 2021; 13:pharmaceutics13091407. [PMID: 34575482 PMCID: PMC8471296 DOI: 10.3390/pharmaceutics13091407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Drug-delivery vehicles have been used extensively to modulate the biodistribution of drugs for the purpose of maximizing their therapeutic effects while minimizing systemic toxicity. The release characteristics of the vehicle must be balanced with its encapsulation properties to achieve optimal delivery of the drug. An alternative approach is to design a delivery vehicle that preferentially releases its contents under specific endogenous (e.g., tissue pH) or exogenous (e.g., applied temperature) stimuli. In the present manuscript, we report on a novel delivery system with potential for triggered release using external beam radiation. Our group evaluated Zein protein as the basis for the delivery vehicle and used radiation as the exogenous stimulus. Proteins are known to react with free radicals, produced during irradiation in aqueous suspensions, leading to aggregation, fragmentation, amino acid modification, and proteolytic susceptibility. Additionally, we incorporated gold particles into the Zein protein matrix to create hybrid Zein-gold nanoparticles (ZAuNPs). Zein-only nanoparticles (ZNPs) and ZAuNPs were subsequently exposed to kVp radiation (single dose ranging from 2 to 80 Gy; fractionated doses of 2 Gy delivered 10 times) and characterized before and after irradiation. Our data indicated that the presence of gold particles within Zein particles was correlated with significantly higher levels of alterations to the protein, and was associated with higher rates of release of the encapsulated drug compound, Irinotecan. The aggregate results demonstrated a proof-of-principle that radiation can be used with gold nanoparticles to modulate the release rates of protein-based drug-delivery vehicles, such as ZNPs.
Collapse
|
29
|
Interaction between organic molecules and a gold nanoparticle: a quantum chemical topological analysis. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Longo E, Sancey L, Cedola A, Barbier EL, Bravin A, Brun F, Bukreeva I, Fratini M, Massimi L, Greving I, Le Duc G, Tillement O, De La Rochefoucauld O, Zeitoun P. 3D Spatial Distribution of Nanoparticles in Mice Brain Metastases by X-ray Phase-Contrast Tomography. Front Oncol 2021; 11:554668. [PMID: 34113554 PMCID: PMC8185349 DOI: 10.3389/fonc.2021.554668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.
Collapse
Affiliation(s)
- Elena Longo
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany.,Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| | - Lucie Sancey
- Institute for Advanced Biosciences U1209 UMR5309 UGA, Allée des Alpes-Site Santé, La Tronche, France
| | | | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Inna Bukreeva
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,P. N. Lebedev Physical Institute, RAS, Moscow, Russia
| | - Michela Fratini
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lorenzo Massimi
- Institute of Nanotechnology-CNR, Rome-Unit, Rome, Italy.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Institute of Materials Physics, Geesthacht, Germany
| | | | - Olivier Tillement
- Institut lumière-matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, Villeurbanne, France
| | | | - Philippe Zeitoun
- Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique IP Paris, Palaiseau, France
| |
Collapse
|
31
|
Daouk J, Iltis M, Dhaini B, Béchet D, Arnoux P, Rocchi P, Delconte A, Habermeyer B, Lux F, Frochot C, Tillement O, Barberi-Heyob M, Schohn H. Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14050396. [PMID: 33922073 PMCID: PMC8143523 DOI: 10.3390/ph14050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of the nanoparticles was studied using human glioblastoma U-251 MG cells and was compared to treatment with AGuIX@ nanoparticles doped with Gadolinium (Gd) and P1 (AGuIX@Gd-P1). We demonstrated that the AGuIX@Tb-P1 design was consistent with X-ray photon energy transfer from Terbium to P1. Both nanoparticles had similar dark cytotoxicity and they were absorbed in a similar rate within the cells. Pre-treated cells exposure to X-rays was related to reactive species production. Using clonogenic assays, establishment of survival curves allowed discrimination of the impact of radiation treatment from X-ray-induced photodynamic effect. We showed that cell growth arrest was increased (35%-increase) when cells were treated with AGuIX@Tb-P1 compared to the nanoparticle doped with Gd.
Collapse
Affiliation(s)
- Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Mathilde Iltis
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Batoul Dhaini
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Denise Béchet
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Paul Rocchi
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Alain Delconte
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| | | | - François Lux
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory (LRGP), UMR 7274, Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (B.D.); (P.A.); (C.F.)
| | - Olivier Tillement
- Light Matter Institute, UMR-5306, Université de Lyon–French National Scientific Research Center (CNRS), F-69000 Lyon, France; (P.R.); (F.L.); (O.T.)
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
- Correspondence: ; Tel.: +33-(0)3-72-74-61-14
| | - Hervé Schohn
- Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039 Research Center for Automatic Control (CRAN), Université de Lorraine–French National Scientific Research Center (CNRS), F-54000 Nancy, France; (J.D.); (M.I.); (D.B.); (A.D.); (H.S.)
| |
Collapse
|
32
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani S, Bradley D. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Tandiana R, Brun E, Sicard-Roselli C, Domin D, Van-Oanh NT, Clavaguéra C. Probing the structural properties of the water solvation shell around gold nanoparticles: A computational study. J Chem Phys 2021; 154:044706. [DOI: 10.1063/5.0037551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rika Tandiana
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Cécile Sicard-Roselli
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Dominik Domin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Nguyen-Thi Van-Oanh
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| |
Collapse
|
35
|
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020; 65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim AS, Melemenidis S, Gustavsson AK, Abid D, Wu Y, Liu F, Hristov D, Schüler E. Increased local tumor control through nanoparticle-mediated, radiation-triggered release of nitrite, an important precursor for reactive nitrogen species. Phys Med Biol 2020; 65:195003. [PMID: 32721936 DOI: 10.1088/1361-6560/abaa27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The efficacy of dose-enhancing gold nanoparticles (AuNPs) is negatively impacted by low tumor uptake, low cell membrane penetration, limited diffusion distance, and short lifetime of radiation-induced secondary particles. To overcome these limitations, we have developed a novel AuNP system capable of radiation-triggered release of nitrite, a precursor of reactive nitrogen species, and report here on the in vivo characterization of this system. AuNPs were functionalized through PEGylation, cell-penetrating peptides (CPP; AuNP@CPP), and nitroimidazole (nIm; AuNP@nIm-CPP). Mice with subcutaneous 4T1 tumors received either AuNP@nIm-CPP or AuNP@CPP intraperitoneally. Tumor and normal tissue uptake were evaluated 24 h post AuNP administration. A separate cohort of mice was injected and irradiated to a single-fraction dose of 18 Gy in a 225 kVp small animal irradiator 24 h post NP administration. The mice were followed for two weeks to evaluate tumor response. The mean physical and hydrodynamic size of both NP systems were 5 and 13 nm, respectively. NP nIm-loading of 1 wt% was determined. Tumor accumulation of AuNP@nIm-CPP was significantly lower than that of AuNP@CPP (0.2% vs 1.2%, respectively). In contrast, AuNP@nIm-CPP showed higher accumulation compared to AuNP@CPP in liver (16.5% vs 6.6%, respectively) and spleen (10.8% vs 3.1%, respectively). With respect to tumor response, no differential response was found between non-irradiated mice receiving either saline or AuNP@nIm-CPP alone. The combination of AuNP@CPP+ radiation showed no differential response from radiation alone. In contrast, a significant delay in tumor regrowth was observed in mice receiving AuNP@nIm-CPP+ radiation compared to radiation alone. AuNP functionalized with both CPP and nIm exhibited an order of magnitude less tumor accumulation compared to the NP system without nIm yet resulted in a significantly higher therapeutic response. Our data suggest that by improving the biokinetics of AuNP@nIm-CPP, this novel NP system could be a promising radiosensitizer for enhanced therapeutic response following radiation therapy.
Collapse
Affiliation(s)
- Anna S Kim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Landry C, Morrison A, Ghandi K. Application of muon and other complementary radiation techniques to study interaction of radiation with nanostructures. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020; 12:E2021. [PMID: 32718058 PMCID: PMC7464732 DOI: 10.3390/cancers12082021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, a growing interest in the improvement of radiation therapies has led to the development of gold-based nanomaterials as radiosensitizer. Although the radiosensitization effect was initially attributed to a dose enhancement mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of chemical and biological contributions. Despite extensive experimental validation, the debate regarding the mechanism(s) of gold nanoparticle radiosensitization is limiting its clinical translation. This article reviews the current state of knowledge by addressing how gold nanoparticles exert their radiosensitizing effects from a transdisciplinary perspective. We also discuss the current and future challenges to go towards a successful clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| |
Collapse
|
39
|
Kempson I. Mechanisms of nanoparticle radiosensitization. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1656. [PMID: 32686321 DOI: 10.1002/wnan.1656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Metal-based nanoparticles applied to potentiating the effects of radiotherapy have drawn significant attention from the research community and are now available clinically. By improving our mechanistic understanding, nanoparticles are likely to evolve to provide very significant improvements in radiotherapy outcomes with only incremental increase in cost. This review critically assesses the inconsistent observations surrounding physical, physicochemical, chemical and biological mechanisms of radiosensitization. In doing so, a number of needs are identified for continuing research and are highlighted. The large degree of variability from one nanoparticle to another emphasizes that it is a mistake to generalize nanoparticle radiosensitizer mechanisms. Nanoparticle formulations should be considered in an analogous way as pharmacological agents and as a broad class of therapeutic agents, needing to be considered with a high degree of individuality with respect to their interactions and ultimate impact on radiobiological response. In the same way that no universal anti-cancer drug exists, it is unlikely that a single nanoparticle formulation will lead to the best therapeutic outcomes for all cancers. The high degree of complexity and variability in mechanistic action provides notable opportunities for nanoparticle formulations to be optimized for specific indications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
40
|
Charest G, Tippayamontri T, Shi M, Wehbe M, Anantha M, Bally M, Sanche L. Concomitant Chemoradiation Therapy with Gold Nanoparticles and Platinum Drugs Co-Encapsulated in Liposomes. Int J Mol Sci 2020; 21:E4848. [PMID: 32659905 PMCID: PMC7402338 DOI: 10.3390/ijms21144848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
A liposomal formulation of gold nanoparticles (GNPs) and carboplatin, named LipoGold, was produced with the staggered herringbone microfluidic method. The radiosensitizing potential of LipoGold and similar concentrations of non-liposomal GNPs, carboplatin and oxaliplatin was evaluated in vitro with the human colorectal cancer cell line HCT116 in a clonogenic assay. Progression of HCT116 tumor implanted subcutaneously in NU/NU mice was monitored after an irradiation of 10 Gy combined with either LipoGold, GNPs or carboplatin injected directly into the tumor by convection-enhanced delivery. Radiosensitization by GNPs alone or carboplatin alone was observed only at high concentrations of these compounds. Furthermore, low doses of carboplatin alone or a combination of carboplatin and GNPs did not engender radiosensitization. However, the same low doses of carboplatin and GNPs administered simultaneously by encapsulation in liposomal nanocarriers (LipoGold) led to radiosensitization and efficient control of cell proliferation. Our study shows that the radiosensitizing effect of a combination of carboplatin and GNPs is remarkably more efficient when both compounds are simultaneously delivered to the tumor cells using a liposomal carrier.
Collapse
Affiliation(s)
- Gabriel Charest
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| | - Thititip Tippayamontri
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
- Department of Radiological Technology and Medical Physics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Minghan Shi
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| | - Mohamed Wehbe
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Malathi Anantha
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Marcel Bally
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| |
Collapse
|
41
|
Poignant F, Charfi H, Chan CH, Dumont E, Loffreda D, Testa É, Gervais B, Beuve M. Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part I: Global primary chemical boost. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Nakayama M, Akasaka H, Geso M, Morita K, Yada R, Uehara K, Sasaki R. Utilisation of the chemiluminescence method to measure the radiation dose enhancement caused by gold nanoparticles: A phantom-based study. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy. NANOMATERIALS 2020; 10:nano10050952. [PMID: 32429500 PMCID: PMC7279506 DOI: 10.3390/nano10050952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023]
Abstract
Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy.
Collapse
|
44
|
Ahmad R, Schettino G, Royle G, Barry M, Pankhurst QA, Tillement O, Russell B, Ricketts K. Radiobiological Implications of Nanoparticles Following Radiation Treatment. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2020; 37:1900411. [PMID: 34526737 PMCID: PMC8427468 DOI: 10.1002/ppsc.201900411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/11/2020] [Indexed: 06/13/2023]
Abstract
Materials with a high atomic number (Z) are shown to cause an increase in the level of cell kill by ionizing radiation when introduced into tumor cells. This study uses in vitro experiments to investigate the differences in radiosensitization between two cell lines (MCF-7 and U87) and three commercially available nanoparticles (gold, gadolinium, and iron oxide) irradiated by 6 MV X-rays. To assess cell survival, clonogenic assays are carried out for all variables considered, with a concentration of 0.5 mg mL-1 for each nanoparticle material used. This study demonstrates differences in cell survival between nanoparticles and cell line. U87 shows the greatest enhancement with gadolinium nanoparticles (2.02 ± 0.36), whereas MCF-7 cells have higher enhancement with gold nanoparticles (1.74 ± 0.08). Mass spectrometry, however, shows highest elemental uptake with iron oxide and U87 cells with 4.95 ± 0.82 pg of iron oxide per cell. A complex relationship between cellular elemental uptake is demonstrated, highlighting an inverse correlation with the enhancement, but a positive relation with DNA damage when comparing the same nanoparticle between the two cell lines.
Collapse
Affiliation(s)
- Reem Ahmad
- Division of Surgery and Interventional ScienceUniversity College LondonCharles Bell House, 43–45 Foley StreetLondonW1W 7JNUK
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
- Department of Medical Physics and BioengineeringUniversity College LondonMalet Place Engineering Building, Gower StreetLondonWC1E 6BTUK
| | - Giuseppe Schettino
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
- Radiation and Medical Physics GroupFaculty of Engineering and Physical SciencesUniversity of Surrey388 Stag HillGuilfordGU2 7XHUK
| | - Gary Royle
- Department of Medical Physics and BioengineeringUniversity College LondonMalet Place Engineering Building, Gower StreetLondonWC1E 6BTUK
| | - Miriam Barry
- Medical Radiation Science GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Olivier Tillement
- Institut Lumière MatièreUniversité Claude Bernard Lyon 1CNRS UMR 5306Villeurbanne69622France
| | - Ben Russell
- Nuclear Metrology GroupNational Physical LaboratoryHampton RoadTeddingtonMiddlesexTW11 0LWUK
| | - Kate Ricketts
- Division of Surgery and Interventional ScienceUniversity College LondonCharles Bell House, 43–45 Foley StreetLondonW1W 7JNUK
| |
Collapse
|
45
|
Sun W, Zhou Z, Pratx G, Chen X, Chen H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020; 10:1296-1318. [PMID: 31938066 PMCID: PMC6956812 DOI: 10.7150/thno.41578] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) has shown great effectiveness in oncotherapy but has not been implemented in broad clinical applications because the limited penetration depth of the light used has been unable to reach deep-seated tumors. However, X-rays have been widely used in the clinical field for imaging and radiation therapy due to their excellent tissue penetration depth. Recently, X-rays have been established as an ideal excitation source for PDT, which holds great promise for breaking the depth limitation of traditional PDT for treatment of deep-seated tumors. This review aims to provide an overview of nanoscintillator-mediated X-ray induced PDT (X-PDT) including the concept, the design considerations of nanosensitizers for X-PDT, the modelling of nanosensitizer energy deposition, the putative mechanism by which X-PDT kills cells, and the prospects of future directions. We attempt to summarize the main developments that have occurred over the past decades. Possibilities and challenges for the clinical translation of X-PDT are also discussed.
Collapse
|
46
|
Guerreiro A, Chatterton N, Crabb EM, Golding JP. A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions.
Results
Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage.
Conclusions
Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.
Collapse
|
47
|
Mahdavi B, Shokrani P, Hejazi SH, Talebi A, Taheri A. Doxorubicin-loaded PVP coated Gd2O3 NPs for effective chemoradiotherapy in melanoma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Rudek B, McNamara A, Ramos-Méndez J, Byrne H, Kuncic Z, Schuemann J. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Phys Med Biol 2019; 64:175005. [PMID: 31295730 PMCID: PMC11222020 DOI: 10.1088/1361-6560/ab314c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold nanoparticle (GNP) radio-enhancement is a promising technique to increase the dose deposition in a tumor while sparing neighboring healthy tissue. Previous experimental studies showed effects on cell survival and tumor control for keV x-rays but surprisingly also for MV-photons, proton and carbon-ion beams. In a systematic study, we use the Monte Carlo simulation tool TOPAS-nBio to model the GNP radio-enhancement within a cell as a function of GNP concentration, size and clustering for a wide range of energies for photons, protons and, for the first time, carbon-ions. Moreover, we include water radiolysis, which has been recognized as a major pathway of GNP mediated radio-enhancement. At a GNP concentration of 0.5% and a GNP diameter of 10 nm, the dose enhancement ratio was highest for 50 keV x-rays (1.36) and decreased in the orthovoltage (1.04 at 250 keV) and megavoltage range (1.01 at 1 MeV). The dose enhancement linearly increased with GNP concentration and decreased with GNP size and degree of clustering for all radiation modalities. While the highest physical dose enhancement at 5% concentrations was only 1.003 for 10 MeV protons and 1.004 for 100 MeV carbon-ions, we find the number of hydroxyl ([Formula: see text]) altered by 23% and 3% after 1 [Formula: see text]s at low, clinically-relevant concentrations. For the same concentration and proton-impact, the G-value is most sensitive to the nanoparticle size with 46 times more radical interactions at GNPs for 2 nm than for 50 nm GNP diameter within 1 [Formula: see text]s. Nanoparticle clustering was found to decrease the number of interactions at GNPs, e.g. for a cluster of 25 GNPs by a factor of 3.4. The changes in G-value correlate to the average distance between the chemical species and the GNPs. While the radiochemistry of GNP-loaded water has yet to be fully understood, this work offers a first relative quantification of radiolysis products for a broad parameter-set.
Collapse
Affiliation(s)
- Benedikt Rudek
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, MA, United States of America. Department of Physics, Boston University, Boston, Massachusetts, MA, United States of America. Department of Ionizing Radiation, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
49
|
Guo T. Physical, chemical and biological enhancement in X-ray nanochemistry. Phys Chem Chem Phys 2019; 21:15917-15931. [PMID: 31309206 DOI: 10.1039/c9cp03024g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-ray nanochemistry studies how to use nanomaterials and particularly how to create new nanomaterials to increase the effects of X-rays such as chemical reactivity, damage to cells, tumor destruction, scintillation and more. The increase, also called enhancement, can be categorized into several groups, and the current categorization of enhancement follows a natural division of physical, chemical and biological enhancement based on how nanomaterials behave under X-ray irradiation. In physical enhancement, electrons released from atoms in the nanomaterials upon X-ray ionization interact with the nanomaterials and surrounding media to increase the effects. Scintillation also belongs to this category. Chemical enhancement results when reactive oxygen species (ROS) or reactive radical intermediates (RRI) produced in aqueous solutions under X-ray irradiation interact with the surface of catalytic nanomaterials to increase the effects. When the damage of cells is enhanced through biological pathways beyond the abovementioned physical or chemical enhancement due to the presence of nanomaterials under X-ray irradiation, the enhancement is called biological enhancement. Works supporting this systematic categorization, the reported values of these enhancements, and important aspects of the development of enhancement in the X-ray nanochemistry framework are given and discussed in this perspective.
Collapse
Affiliation(s)
- Ting Guo
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
50
|
Kusumoto T, Ogawara R. Radiation Chemical Yield of Hydroxyl Radicals for Accelerator-based Boron Neutron Capture Therapy: Dose Assessment of 10B(n,α) 7Li Reaction Using Coumarin-3-Carboxilic Solution. Radiat Res 2019; 191:460-465. [PMID: 30896280 DOI: 10.1667/rr15318.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evaluation of the characteristics of accelerator-based thermal neutron fields is recognized as an important issue when discussing the effectiveness of boron neutron capture therapy (BNCT). In this study, we propose that the radiation chemical yield (G value) of hydroxyl radicals (Goh•) can be considered a universal parameter for the description of the accelerator-based thermal neutron field. The Goh• of the 10B(n,α)7Li reaction was quantitatively evaluated using an aqueous coumarin-3-carboxylic acid (3CCA) solution, and was discriminated from that of contaminations (i.e., γ rays and fast neutrons). The Goh• of the 10B(n,α)7Li reaction was 0.107 ± 0.004 OH•/100 eV, which is almost equivalent to that exposed to α particles with an energy of 6.0 MeV. Since the Goh• of γ rays from a 60Co source is 2.03 ± 0.05 OH•/100 eV, this lower value suggests that indirect action by the 10B(n,α)7Li reaction is not dominant in BNCT. However, our results indicate that one can assess the 60Co equivalent dose of the 10B(n,α)7Li reaction in water from the Goh• derived using aqueous 3CCA solution in the accelerator-based thermal neutron field.
Collapse
Affiliation(s)
- Tamon Kusumoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| | - Ryo Ogawara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|