1
|
Turchanin A, George A. Tailored Growth of Transition Metal Dichalcogenides' Monolayers by Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403089. [PMID: 39487631 DOI: 10.1002/smll.202403089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Indexed: 11/04/2024]
Abstract
Here, results on the tailored growth of monolayers (MLs) of transition metal dichalcogenides (TMDs) are presented using chemical vapor deposition (CVD) techniques. To enable reproducible growth, the flow of chalcogen precursors is controlled by Knudsen cells providing an advantage in comparison to the commonly used open crucible techniques. It is demonstrated that TMD MLs can be grown by CVD on large scale with structural, and therefore electronic, photonic and optoelectronic properties similar to TMD MLs are obtained by exfoliating bulk crystals. It is shown that besides the growth of the "standard" TMD MLs also the growth of MLs that are not available by the exfoliation is possible including examples like lateral TMD1-TMD2 ML heterostructures and Janus TMDs. Moreover, the CVD technique enables the growth of TMD MLs on various 3D substrates on large scale and with high quality. The intrinsic properties of the grown MLs are analyzed by complementary microscopy and spectroscopy techniques down to the nanoscale with a particular focus on the influence of structural defects. Their functional properties are studied in devices including field-effect transistors, photodetectors, wave guides and excitonic diodes. Finally, an outlook of the developed methodology in both applied and fundamental research is given.
Collapse
Affiliation(s)
- Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 6, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany
| |
Collapse
|
2
|
Li J, Chen YQ, Yuan HK, Tian CL. Prediction of the two-dimensional ferromagnetic semiconductor Janus 2H-ZrTeI monolayer with large valley and piezoelectric polarizations. NANOSCALE 2024; 16:18504-18517. [PMID: 39267610 DOI: 10.1039/d4nr01692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Two-dimensional room-temperature Janus ferrovalley semiconductors with valley polarization and piezoelectric polarization offer new perspectives for designing multifunctional nanodevices. Herein, using first-principles calculations, we predict that the Janus 2H-ZrTeI monolayer is an intrinsic ferromagnetic semiconductor with in-plane magnetic anisotropy and a Curie temperature of 111 K. The Janus ZrTeI monolayer possesses a significant valley polarization of 141 meV due to time-reversal and inversion symmetry breaking. Based on the valley-contrasting Berry curvature, the anomalous valley Hall effect can be observed under an in-plane electric field. Meanwhile, the breaking of the inversion symmetry and mirror symmetry results in large longitudinal and transverse piezoelectric coefficients. By applying biaxial strain, the Janus 2H-ZrTeI monolayer can also be transformed into a Weyl nodal line semimetal. Furthermore, bilayers of ZrTeI with AB and BA stacking configurations allow the coexistence of valley polarization and ferroelectricity, enabling the manipulation of magnetism, ferroelectric polarization, and valley polarization through interlayer sliding. Our work provides a platform for studying valley polarization, piezoelectricity, and multiferroic coupling, which is significant for the application of multifunctional devices.
Collapse
Affiliation(s)
- Jie Li
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Ya-Qing Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Hong-Kuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Chun-Ling Tian
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhou Z, Wang H, Li X. Multiple Valley Modulations in Noncollinear Antiferromagnets. NANO LETTERS 2024; 24:11497-11503. [PMID: 39230935 DOI: 10.1021/acs.nanolett.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Two-dimensional valleys and magnetism are rising areas with intriguing properties and practical uses in advanced information technology. By coupling valleys to collinear magnetism, valley degeneracy is lifted in a large number of magnetic valley materials to exploit the valley degree of freedom. Beyond collinear magnetism, new coupling modes between valley and magnetism are few but highly desirable. By tight-binding calculations of a breathing Kagome lattice, we demonstrate a tunable valley structure and valley-contrasting physical properties in noncollinear antiferromagnets. Distinct from collinear magnetism, noncollinear antiferromagnetic order enables valley splittings even without spin-orbit coupling. Both the canting and azimuthal angles of magnetic moments can be used as experimentally accessible knobs to tune valley splittings. Our first-principles calculations of the Fe3C6O6-silicene-Fe3C6O6 heterostructure also exhibit tunable valley splittings in noncollinear antiferromagnetism, agreeing with our tight-binding results. Our work paves avenues for designing novel magnetic valley materials and energy-efficient valleytronic devices based on noncollinear magnetism.
Collapse
Affiliation(s)
- Zhichao Zhou
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Huiqian Wang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
- Center for Quantum Transport and Thermal Energy Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Li
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
- Center for Quantum Transport and Thermal Energy Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Alexeev EM, Purser CM, Gilardoni CM, Kerfoot J, Chen H, Cadore AR, Rosa BLT, Feuer MSG, Javary E, Hays P, Watanabe K, Taniguchi T, Tongay SA, Kara DM, Atatüre M, Ferrari AC. Nature of Long-Lived Moiré Interlayer Excitons in Electrically Tunable MoS 2/MoSe 2 Heterobilayers. NANO LETTERS 2024; 24:11232-11238. [PMID: 39213644 PMCID: PMC11403766 DOI: 10.1021/acs.nanolett.4c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
Collapse
Affiliation(s)
- Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Carola M Purser
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Carmem M Gilardoni
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - James Kerfoot
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
| | - Hao Chen
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-849 Sao Paulo, Brazil
| | - Bárbara L T Rosa
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
| | - Matthew S G Feuer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Evans Javary
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- École Normale Supérieure, PSL, 5 Rue D'ulm, Paris 75005, France
| | - Patrick Hays
- Materials Science and Engineering, School for Engineering of Matter,Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Seth Ariel Tongay
- Materials Science and Engineering, School for Engineering of Matter,Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Dhiren M Kara
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K
| |
Collapse
|
5
|
Zhou J, You JY, Zhao YM, Feng YP, Shen L. Van der Waals Electrides. Acc Chem Res 2024; 57:2572-2581. [PMID: 39159428 DOI: 10.1021/acs.accounts.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ConspectusElectrides make up a fascinating group of materials with unique physical and chemical properties. In these materials, excess electrons do not behave like normal electrons in metals or form any chemical bonds with atoms. Instead, they "float" freely in the gaps within the material's structure, acting like negatively charged particles called anions (see the graph). Recently, there has been a surge of interest in van der Waals (vdW) electrides or electrenes in two dimensions. A typical example is layered lanthanum bromide (LaBr2), which can be taken as [La3+(Br1-)2]+•(e-). Each excess free electron is trapped within a hexagonal pore, forming dense dots of electron density. These anionic electrons are loosely bound, giving vdW electrides some unique properties such as ferromagnetism, superconductivity, topological features, and Dirac plasmons. The high density of the free electron makes electrides very promising for applications in thermionic emission, organic light-emitting diodes, and high-performance catalysts.In this Account, we first discuss the discovery of numerous vdW electrides through high-throughput computational screening of over 67,000 known inorganic crystals in Materials Project. A dozen of them have been newly discovered and have not been reported before. Importantly, they possess completely different structural prototypes and properties of anionic electrons compared to widely studied electrides such as Ca2N. Finding these new vdW electrides expands the variety of electrides that can be made in the experiment and opens up new possibilities for studying their unique properties and applications.Then, based on the screened vdW electrides, we delve into their various emerging properties. For example, we developed a new magnetic mechanism specific to atomic-orbital-free ferromagnetism in electrides. We uncover the dual localized and extended nature of the anionic electrons in such electrides and demonstrate the formation of the local moment by the localized feature and the ferromagnetic interaction by the direct overlapping of their extended states. We further show the effective tuning of the magnetic properties of vdW electrides by engineering their structural, electronic, and compositional properties. Besides, we show that the complex interaction between the multiple quantum orderings in vdW electrides leads to many interesting properties including valley polarization, charge density waves, a topological property, a superconducting property, and a thermoelectrical property.Moreover, we discuss strategies to leverage the unique intrinsic properties of vdW electrides for practical applications. We show that these properties make vdW electrides potential candidates for advanced applications such as spin-orbit torque memory devices, valleytronic devices, K-ion batteries, and thermoelectricity. Finally, we discuss the current challenges and future perspectives for research using these emerging materials.
Collapse
Affiliation(s)
- Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jing-Yang You
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Yi-Ming Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
| |
Collapse
|
6
|
Sharma S, Gill D, Krishna J, Dewhurst JK, Shallcross S. Direct coupling of light to valley current. Nat Commun 2024; 15:7579. [PMID: 39217163 PMCID: PMC11365965 DOI: 10.1038/s41467-024-51968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The coupling of circularly polarized light to local band structure extrema ("valleys") in two dimensional semiconductors promises a new electronics based on the valley degree of freedom. Such pulses, however, couple only to valley charge and not to the valley current, precluding lightwave manipulation of this second vital element of valleytronic devices. Contradicting this established wisdom, we show that the few cycle limit of circularly polarized light is imbued with an emergent vectorial character that allows direct coupling to the valley current. The underlying physical mechanism involves the emergence of a momentum space valley dipole, the orientation and magnitude of which allows complete control over the direction and magnitude of the valley current. We demonstrate this effect via minimal tight-binding models both for the visible spectrum gaps of the transition metal dichalcogenides (generation time ~ 1 fs) as well as the infrared gaps of biased bilayer graphene ( ~ 14 fs); we further verify our findings with state-of-the-art time-dependent density functional theory incorporating transient excitonic effects. Our findings both mark a striking example of emergent physics in the ultrafast limit of light-matter coupling, as well as allowing the creation of valley currents on time scales that challenge quantum decoherence in matter.
Collapse
Affiliation(s)
- S Sharma
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
- Institute for theoretical solid-state physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - D Gill
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J Krishna
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany
| | - J K Dewhurst
- Max-Planck-Institut für Mikrostrukturphysik Weinberg 2, D-06120, Halle, Germany
| | - S Shallcross
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A, 12489, Berlin, Germany.
| |
Collapse
|
7
|
Yeh IH, Ghobadifard M, Feng L, Galievsky V, Radovanovic PV. Origin of Dopant-Carrier Exchange Coupling and Excitonic Zeeman Splitting in Mn 2+-Doped Lead Halide Perovskite Nanocrystals. NANO LETTERS 2024; 24:10554-10561. [PMID: 39151058 DOI: 10.1021/acs.nanolett.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Low-dimensional metal halide perovskites have unique optical and electrical properties that render them attractive for the design of diluted magnetic semiconductors. However, the nature of dopant-exciton exchange interactions that result in spin-polarization of host-lattice charge carriers as a basis for spintronics remains unexplored. Here, we investigate Mn2+-doped CsPbCl3 nanocrystals using magnetic circular dichroism spectroscopy and show that Mn2+ dopants induce excitonic Zeeman splitting which is strongly dependent on the nature of the band-edge structure. We demonstrate that the largest splitting corresponds to exchange interactions involving the excited state at the M-point along the spin-orbit split-off conduction band edge. This splitting gives rise to an absorption-like C-term excitonic MCD signal, with the estimated effective g-factor (geff) of ca. 70. The results of this work help resolve the assignment of absorption transitions observed for metal halide perovskite nanocrystals and allow for a design of new diluted magnetic semiconductor materials for spintronics applications.
Collapse
Affiliation(s)
- I-Hsuan Yeh
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahdieh Ghobadifard
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lin Feng
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Victor Galievsky
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
8
|
Singh S, Kim KH, Jo K, Musavigharavi P, Kim B, Zheng J, Trainor N, Chen C, Redwing JM, Stach EA, Olsson RH, Jariwala D. Nonvolatile Control of Valley Polarized Emission in 2D WSe 2-AlScN Heterostructures. ACS NANO 2024; 18:17958-17968. [PMID: 38918951 DOI: 10.1021/acsnano.4c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that the integration of 2D materials with ferroelectrics is a promising strategy; however, an experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-effect transistors using a ML-WSe2 channel and an Al0.68Sc0.32N (AlScN) ferroelectric dielectric and experimentally demonstrate efficient tuning as well as non-volatile control of valley polarization. We measure a large array of transistors and obtain a maximum valley polarization of ∼27% at 80 K with stable retention up to 5400 s. The enhancement in the valley polarization is ascribed to the efficient exciton-to-trion (X-T) conversion and its coupling with an out-of-plane electric field, viz., the quantum-confined Stark effect. This changes the valley depolarization pathway from strong exchange interactions to slow spin-flip intervalley scattering. Our research demonstrates a promising approach for achieving non-volatile control over valley polarization for practical valleytronic device applications.
Collapse
Affiliation(s)
- Simrjit Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kwan-Ho Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pariasadat Musavigharavi
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Bumho Kim
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey Zheng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Trainor
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roy H Olsson
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Chang Y, Zhang Z, Deng L, Wu Y, Zhang X. Ferrovalley and Quantum Anomalous Hall Effect in Janus TiTeCl Monolayer. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3331. [PMID: 38998413 PMCID: PMC11243056 DOI: 10.3390/ma17133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Ferrovalley materials are garnering significant interest for their potential roles in advancing information processing and enhancing data storage capabilities. This study utilizes first-principles calculations to determine that the Janus monolayer TiTeCl exhibits the properties of a ferrovalley semiconductor. This material demonstrates valley polarization with a notable valley splitting of 80 meV. Additionally, the Berry curvature has been computed across the first Brillouin zone of the monolayer TiTeCl. The research also highlights that topological phase transitions ranging from ferrovalley and half-valley metals to quantum anomalous Hall effect states can occur in monolayer TiTeCl under compressive strains ranging from -1% to 0%. Throughout these strain changes, monolayer TiTeCl maintains its ferromagnetic coupling. These characteristics make monolayer TiTeCl a promising candidate for the development of new valleytronic and topological devices.
Collapse
Affiliation(s)
- Yufang Chang
- Public Basic Department, Shenyang Conservatory of Music, Shenyang 110818, China;
| | - Zhijun Zhang
- School of Electrical and Automation Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China;
| | - Li Deng
- School of Material Science and Engineering, Northeastern University, Shenyang 110819, China; (L.D.); (Y.W.)
| | - Yanzhao Wu
- School of Material Science and Engineering, Northeastern University, Shenyang 110819, China; (L.D.); (Y.W.)
| | - Xianmin Zhang
- School of Material Science and Engineering, Northeastern University, Shenyang 110819, China; (L.D.); (Y.W.)
| |
Collapse
|
10
|
Kenny-Wilby A, Wedde ES, Zorn S, Gojsevic M, Radovanovic PV. Dual Exciton Polarization in Bipolar CeO 2-x Nanocrystals Controlled by Defect-Based Redox Processes. J Am Chem Soc 2024; 146:17986-17994. [PMID: 38914978 DOI: 10.1021/jacs.4c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Discovering alternative means to control electronic states in semiconductor nanostructures is the key to the development of new quantum technologies. Controlling the cyclotron motion of free charge carriers in semiconductor nanocrystals using an external magnetic field generates a tunable angular momentum, as a collective electronic degree of freedom, which can be imparted to the electronic band states to achieve complete exciton polarization. The sign of this polarization is determined by the type of majority charge carriers in a given lattice. Using magnetic circular dichroism spectroscopy, we demonstrate a simultaneous polarization of excitonic states in substoichiometric oxygen-deficient CeO2-x nanocrystals associated with electrons and holes, which can be controlled by the thermal treatment of colloidal nanocrystals in oxidizing or reducing conditions. The presence of both occupied and unoccupied midgap states, due to Ce3+ 4f and Ce4+ 4f orbitals, respectively, allows for selective probing of the effect of holes in the valence band (VB → Ce4+ 4f) and electrons in the conduction band (Ce3+ 4f → CB). The two transitions show the opposite sign at 300 K due to the opposite angular momenta associated with cyclotron electrons and holes. The ability to manipulate Ce 4f-derived midgap states by defect formation during the synthesis or postsynthesis treatment allows for a range of new technological applications of CeO2-x nanocrystals in optoelectronics.
Collapse
Affiliation(s)
- Aaron Kenny-Wilby
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Emily S Wedde
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott Zorn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milena Gojsevic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Chen B, Zhou B, Wang X. Valley polarization and magnetic anisotropy of two-dimensional Ni 2Cl 3I 3/MoSe 2 heterostructures. NANOSCALE 2024; 16:12196-12206. [PMID: 38842385 DOI: 10.1039/d4nr01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Two-dimensional (2D) Janus trihalides have attracted widespread attention due to their potential applications in spintronics. In this work, the valley polarization of MoSe2 at the K' and K points can be modulated by Ni2Cl3I3, a new 2D Janus trihalide. The Ni2Cl3I3/MoSe2 heterostructure has an in-plane magnetic anisotropy energy (IMA) and is characterized by three distinct electronic structures: metallic, semiconducting, and half-metallic. It is noted that the semiconducting state features a band gap of 0.07 eV. When spin-orbit coupling (SOC) is considered, valley polarization is exhibited in the Ni2Cl3I3/MoSe2 heterostructure, with the degree of valley polarization varying across different configurations and reaching a maximum value of 4.6 meV. The electronic properties, valley polarization and MAE of the system can be tuned by biaxial strains. The application of a biaxial strain ranging from -6% to +6% can enhance the valley polarization value from 0.9 meV to 12.9 meV. The directions of MAE of the Ni2Cl3I3/MoSe2 heterostructure can be changed at biaxial strains of -6%, +2%, +4% and +6%. The above calculation results show that the heterostructure system possesses rich electronic properties and tunability, with extensive potential applications in the fields of spintronic and valleytronic devices.
Collapse
Affiliation(s)
- Bo Chen
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaocha Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
12
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Tunable abundant valley Hall effect and chiral spin-valley locking in Janus monolayer VCGeN 4. NANOSCALE 2024; 16:8639-8649. [PMID: 38618905 DOI: 10.1039/d3nr05643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
It is both conceptually and practically fascinating to explore fundamental research studies and practical applications of two-dimensional systems with the tunable abundant valley Hall effect. In this work, based on first-principles calculations, the tunable abundant valley Hall effect is proved to appear in Janus monolayer VCGeN4. When the magnetization is along the out-of-plane direction, VCGeN4 is an intrinsic ferromagnetic semiconductor with a valley feature. The intriguing spontaneous valley polarization exists in VCGeN4 due to the common influence of broken inversion and time-reversal symmetries, which makes it easier to realize the anomalous valley Hall effect. Furthermore, we observe that the valley-non-equilibrium quantum anomalous Hall effect is driven by external strain, which is located between two half-valley-metal states. When reversing the magnetization, the spin flipping makes the position of the edge state to change from one valley to another valley, demonstrating an intriguing behavior known as chiral spin-valley locking. Although the easy magnetic axis orientation is along the in-plane direction, we can utilize an external magnetic field to transform the magnetic axis orientation. Moreover, it is found that the valley state, electronic and magnetic properties can be well regulated by the electric field. Our works explore the mechanism of the tunable abundant valley Hall effect by applying an external strain and electric field, which provides a perfect platform to investigate the spin, valley, and topology.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| |
Collapse
|
13
|
Krizman G, Bermejo-Ortiz J, Zakusylo T, Hajlaoui M, Takashiro T, Rosmus M, Olszowska N, Kołodziej JJ, Bauer G, Guldner Y, Springholz G, de Vaulchier LA. Valley-Polarized Quantum Hall Phase in a Strain-Controlled Dirac System. PHYSICAL REVIEW LETTERS 2024; 132:166601. [PMID: 38701448 DOI: 10.1103/physrevlett.132.166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
In multivalley systems, the valley pseudospin offers rich physics going from encoding of information by its polarization (valleytronics), to exploring novel phases of matter when its degeneracy is changed. Here, by strain engineering, we reveal fully valley-polarized quantum Hall phases in the Pb_{1-x}Sn_{x}Se Dirac system. Remarkably, when the valley energy splitting exceeds the fundamental band gap, we observe a "bipolar quantum Hall phase," heralded by the coexistence of hole and electron chiral edge states at distinct valleys in the same quantum well. This suggests that spatially overlaid counterpropagating chiral edge states emerging at different valleys do not interfere with each other.
Collapse
Affiliation(s)
- G Krizman
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - J Bermejo-Ortiz
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue Lhomond 75005 Paris, France
| | - T Zakusylo
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - M Hajlaoui
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - T Takashiro
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - M Rosmus
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland
| | - N Olszowska
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland
| | - J J Kołodziej
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - G Bauer
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - Y Guldner
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue Lhomond 75005 Paris, France
| | - G Springholz
- Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenberger Strasse 69, 4040 Linz, Austria
| | - L-A de Vaulchier
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue Lhomond 75005 Paris, France
| |
Collapse
|
14
|
Su B, Peng X, Yan Z, Lin L, Huang X, Liu JM. Large valley polarization and the valley-dependent Hall effect in a Janus TiTeBr monolayer. Phys Chem Chem Phys 2024; 26:11722-11730. [PMID: 38563575 DOI: 10.1039/d4cp00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ferrovalley materials hold great promise for implementation of logic and memory devices in valleytronics. However, there have so far been limited ferrovalley materials exhibiting significant valley polarization and high Curie temperature (TC). Using first-principles calculations, we predict that the TiTeBr monolayer is a promising ferrovalley candidate. It exhibits intrinsic ferromagnetism with TC as high as 220 K. It is indicated that an out-of-plane alignment of magnetization demonstrates a valley polarization up to 113 meV in the topmost valence band, as further verified by perturbation theory considering both the spin polarization and spin-orbit coupling. Under an in-plane electric field, the valley-dependent Berry curvature results in the anomalous valley Hall effect (AVHE). Moreover, under a suitable in-plane biaxial strain, the TiTeBr monolayer transforms into a Chern insulator with a nonzero Chern number, yet retains its ferrovalley characters and thus the emergent quantum anomalous valley Hall effect (QAVHE). Our study indicates that the TiTeBr monolayer is a promising ferrovalley material, and it provides a platform for investigating the valley-dependent Hall effect.
Collapse
Affiliation(s)
- Bingwen Su
- Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao Peng
- Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Zhibo Yan
- Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Lin Lin
- Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
- Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaokun Huang
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Shao K, Geng H, Liu E, Lado JL, Chen W, Xing DY. Non-Hermitian Moiré Valley Filter. PHYSICAL REVIEW LETTERS 2024; 132:156301. [PMID: 38683008 DOI: 10.1103/physrevlett.132.156301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
A valley filter capable of generating a valley-polarized current is a crucial element in valleytronics, yet its implementation remains challenging. Here, we propose a valley filter made of a graphene bilayer which exhibits a 1D moiré pattern in the overlapping region of the two layers controlled by heterostrain. In the presence of a lattice modulation between layers, electrons propagating in one layer can have valley-dependent dissipation due to valley asymmetric interlayer coupling, thus giving rise to a valley-polarized current. Such a process can be described by an effective non-Hermitian theory, in which the valley filter is driven by a valley-resolved non-Hermitian skin effect. Nearly 100% valley polarization can be achieved within a wide parameter range and the functionality of the valley filter is electrically tunable. The non-Hermitian topological scenario of the valley filter ensures high tolerance against imperfections such as disorder and edge defects. Our work opens a new route for efficient and robust valley filters while significantly relaxing the stringent implementation requirements.
Collapse
Affiliation(s)
- Kai Shao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hao Geng
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Erfu Liu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jose L Lado
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Wei Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - D Y Xing
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Tyulnev I, Jiménez-Galán Á, Poborska J, Vamos L, Russell PSJ, Tani F, Smirnova O, Ivanov M, Silva REF, Biegert J. Valleytronics in bulk MoS 2 with a topologic optical field. Nature 2024; 628:746-751. [PMID: 38658682 DOI: 10.1038/s41586-024-07156-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/02/2024] [Indexed: 04/26/2024]
Abstract
The valley degree of freedom1-4 of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing5-7. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures8,9 or specific material engineering10-13, non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses14,15 to switch the material's electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry16 through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.
Collapse
Affiliation(s)
- Igor Tyulnev
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Álvaro Jiménez-Galán
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Max-Born-Institut, Berlin, Germany
| | - Julita Poborska
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Lenard Vamos
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Philip St J Russell
- Max-Planck Institute for Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Francesco Tani
- Max-Planck Institute for Science of Light, Erlangen, Germany
| | - Olga Smirnova
- Max-Born-Institut, Berlin, Germany
- Technische Universität Berlin, Berlin, Germany
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Misha Ivanov
- Max-Born-Institut, Berlin, Germany
- Technion - Israel Institute of Technology, Haifa, Israel
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics, Imperial College London, London, UK
| | - Rui E F Silva
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jens Biegert
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
17
|
Mitra S, Jiménez-Galán Á, Aulich M, Neuhaus M, Silva REF, Pervak V, Kling MF, Biswas S. Light-wave-controlled Haldane model in monolayer hexagonal boron nitride. Nature 2024; 628:752-757. [PMID: 38622268 PMCID: PMC11041748 DOI: 10.1038/s41586-024-07244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
In recent years, the stacking and twisting of atom-thin structures with matching crystal symmetry has provided a unique way to create new superlattice structures in which new properties emerge1,2. In parallel, control over the temporal characteristics of strong light fields has allowed researchers to manipulate coherent electron transport in such atom-thin structures on sublaser-cycle timescales3,4. Here we demonstrate a tailored light-wave-driven analogue to twisted layer stacking. Tailoring the spatial symmetry of the light waveform to that of the lattice of a hexagonal boron nitride monolayer and then twisting this waveform result in optical control of time-reversal symmetry breaking5 and the realization of the topological Haldane model6 in a laser-dressed two-dimensional insulating crystal. Further, the parameters of the effective Haldane-type Hamiltonian can be controlled by rotating the light waveform, thus enabling ultrafast switching between band structure configurations and allowing unprecedented control over the magnitude, location and curvature of the bandgap. This results in an asymmetric population between complementary quantum valleys that leads to a measurable valley Hall current7, which can be detected by optical harmonic polarimetry. The universality and robustness of our scheme paves the way to valley-selective bandgap engineering on the fly and unlocks the possibility of creating few-femtosecond switches with quantum degrees of freedom.
Collapse
Affiliation(s)
- Sambit Mitra
- Max Planck Institute of Quantum Optics, Garching, Germany
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany
| | - Álvaro Jiménez-Galán
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
- Max Born Institute, Berlin, Germany.
| | - Mario Aulich
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Marcel Neuhaus
- Max Planck Institute of Quantum Optics, Garching, Germany
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Rui E F Silva
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Volodymyr Pervak
- Max Planck Institute of Quantum Optics, Garching, Germany
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany
| | - Matthias F Kling
- Max Planck Institute of Quantum Optics, Garching, Germany
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Shubhadeep Biswas
- Max Planck Institute of Quantum Optics, Garching, Germany.
- Physics Department, Ludwig-Maximilian University of Munich, Garching, Germany.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
18
|
Fan G, Wu Y, Tong J, Deng L, Yin X, Tian F, Zhang X. Influence of electronic correlation on the valley and topological properties of VSiGeP 4 monolayer. Phys Chem Chem Phys 2024; 26:9628-9635. [PMID: 38466239 DOI: 10.1039/d3cp04739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Valley is used as a new degree of freedom for information encoding and storage. In this work, the valley and topological properties of the VSiGeP4 monolayer were studied by adjusting the U value based on first-principles calculations. The VSiGeP4 monolayer remains in a ferromagnetic ground state regardless of the change in the U value. The magnetic anisotropy of the VSiGeP4 monolayer is initially in-plane, and then turns out-of-plane with the increase in the U value. Moreover, a topological phase transition is observed in the present VSiGeP4 monolayer with the increase in U value from 0 to 3 eV, i.e., the VSiGeP4 monolayer behaves as a bipolar magnetic semiconductor, a ferrovalley semiconductor, a half-valley metal characteristic, and a quantum anomalous Hall state. The mechanism of the topological phase transition behavior of the VSiGeP4 monolayer was analyzed. It was found that the variation in U values would change the strength of the electronic correlation effect, resulting in the valley and topological properties. In addition, carrier doping was studied to design a valleytronic device using this VSiGeP4 monolayer. By doping 0.05 electrons per f.u., the VSiGeP4 monolayer with a U value of 3 eV exhibits 100% spin polarization. This study indicates that the VSiGeP4 monolayer has potential applications in spintronic, valleytronic, and topological electronic nanodevices.
Collapse
Affiliation(s)
- Guangxin Fan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Junwei Tong
- Department of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Li Deng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiang Yin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
19
|
Das K, Ghorai K, Culcer D, Agarwal A. Nonlinear Valley Hall Effect. PHYSICAL REVIEW LETTERS 2024; 132:096302. [PMID: 38489650 DOI: 10.1103/physrevlett.132.096302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024]
Abstract
The valley Hall effect arises from valley-contrasting Berry curvature and requires inversion symmetry breaking. Here, we propose a nonlinear mechanism to generate a valley Hall current in systems with both inversion and time-reversal symmetry, where the linear and second-order charge Hall currents vanish along with the linear valley Hall current. We show that a second-order valley Hall signal emerges from the electric field correction to the Berry curvature, provided a valley-contrasting anisotropic dispersion is engineered. We demonstrate the nonlinear valley Hall effect in tilted massless Dirac fermions in strained graphene and organic semiconductors. Our Letter opens up the possibility of controlling the valley degree of freedom in inversion symmetric systems via nonlinear valleytronics.
Collapse
Affiliation(s)
- Kamal Das
- Department of Physics, Indian Institute of Technology, Kanpur-208016, India
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Koushik Ghorai
- Department of Physics, Indian Institute of Technology, Kanpur-208016, India
| | - Dimitrie Culcer
- School of Physics, The University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
| | - Amit Agarwal
- Department of Physics, Indian Institute of Technology, Kanpur-208016, India
| |
Collapse
|
20
|
Qiu X, Liu B, Ge L, Cao L, Han K, Yang H. High Curie temperature ferromagnetic monolayer T-CrSH and valley physics of T-CrSH/WS 2 heterostructure. Phys Chem Chem Phys 2024; 26:5589-5596. [PMID: 38284319 DOI: 10.1039/d3cp05543d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Two-dimensional magnetic materials are attracting widespread attention not only for their excellent applications in spintronic devices but also for their potential to regulate valley splitting, which is crucial for valleytronics. Herein, we design a monolayer Janus ferromagnetic semiconductor T-CrSH by using first-principles calculations. We reveal that monolayer T-CrSH has a magnetic moment of 3μB per unit cell, which is primarily contributed by the 3d orbitals of the Cr atom. Monte Carlo simulations suggest that the Curie temperature of T-CrSH is 193 K, and it can rise to 402 K when a 5% tensile strain is applied. Furthermore, the valley degeneracy of WS2 can be lifted when monolayer T-CrSH is used as a substrate. The obtained valley splitting in the conduction band is 13.7 meV and that in the valence band is 157.5 meV. In addition, the large valley polarization of 12.8 meV in the conduction band makes it easy to achieve an electron-doped valley Hall current and spin Hall current when performing in an in-plane electric field.
Collapse
Affiliation(s)
- Xiaole Qiu
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Bing Liu
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Lin Ge
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Lianzhen Cao
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Kai Han
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Hongchao Yang
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| |
Collapse
|
21
|
Ortiz Jimenez V, Pham YTH, Zhou D, Liu M, Nugera FA, Kalappattil V, Eggers T, Hoang K, Duong DL, Terrones M, Rodriguez Gutiérrez H, Phan M. Transition Metal Dichalcogenides: Making Atomic-Level Magnetism Tunable with Light at Room Temperature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304792. [PMID: 38072638 PMCID: PMC10870067 DOI: 10.1002/advs.202304792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/04/2023] [Indexed: 02/17/2024]
Abstract
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
Collapse
Affiliation(s)
- Valery Ortiz Jimenez
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
- Nanoscale Device Characterization DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | | | - Da Zhou
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Mingzu Liu
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | | | - Tatiana Eggers
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| | - Khang Hoang
- Center for Computationally Assisted Science and Technology and Department of PhysicsNorth Dakota State UniversityFargoND58108USA
| | - Dinh Loc Duong
- Department of PhysicsMontana State UniversityBozemanMT59717USA
| | - Mauricio Terrones
- Department of PhysicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | - Manh‐Huong Phan
- Department of PhysicsUniversity of South FloridaTampaFL33620USA
| |
Collapse
|
22
|
Liu H, Wu Y, Wu Z, Liu S, Zhang VL, Yu T. Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS NANO 2024; 18:2708-2729. [PMID: 38252696 DOI: 10.1021/acsnano.3c10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the past decade, significant advancements have been made in phase engineering of two-dimensional transition metal dichalcogenides (TMDCs), thereby allowing controlled synthesis of various phases of TMDCs and facile conversion between them. Recently, there has been emerging interest in TMDC coexisting phases, which contain multiple phases within one nanostructured TMDC. By taking advantage of the merits from the component phases, the coexisting phases offer enhanced performance in many aspects compared with single-phase TMDCs. Herein, this review article thoroughly expounds the latest progress and ongoing efforts on the syntheses, properties, and applications of TMDC coexisting phases. The introduction section overviews the main phases of TMDCs (2H, 3R, 1T, 1T', 1Td), along with the advantages of phase coexistence. The subsequent section focuses on the synthesis methods for coexisting phases of TMDCs, with particular attention to local patterning and random formations. Furthermore, on the basis of the versatile properties of TMDC coexisting phases, their applications in magnetism, valleytronics, field-effect transistors, memristors, and catalysis are discussed. Lastly, a perspective is presented on the future development, challenges, and potential opportunities of TMDC coexisting phases. This review aims to provide insights into the phase engineering of 2D materials for both scientific and engineering communities and contribute to further advancements in this emerging field.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaping Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Zhiming Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Zhang SH, Shao DF, Wang ZA, Yang J, Yang W, Tsymbal EY. Tunneling Valley Hall Effect Driven by Tilted Dirac Fermions. PHYSICAL REVIEW LETTERS 2023; 131:246301. [PMID: 38181146 DOI: 10.1103/physrevlett.131.246301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Valleytronics is a research field utilizing a valley degree of freedom of electrons for information processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here, we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel junctions based on a two-dimensional (2D) valley material. Different doping of the electrode and spacer regions in these tunnel junctions results in momentum filtering of the tunneling Dirac fermions, generating a strong transverse valley Hall current dependent on the Dirac-cone tilting. Using the parameters of an existing 2D valley material, we demonstrate that such a strong TVHE can host a giant valley Hall angle even in the absence of the Berry curvature. Finally, we predict that resonant tunneling can occur in a tunnel junction with properly engineered device parameters such as the spacer width and transport direction, providing significant enhancement of the valley Hall angle. Our work opens a new approach to generate valley polarization in realistic valleytronic systems.
Collapse
Affiliation(s)
- Shu-Hui Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zi-An Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jin Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Wen Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
24
|
Geng L, Chen K, Lu H, Wang S, Yang Y. Exploring electronic and valley properties of single-layer SMSiN 2 (M = Mo, W): a first-principles study on two-dimensional Janus materials. Phys Chem Chem Phys 2023; 25:32021-32028. [PMID: 37981807 DOI: 10.1039/d3cp04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In this study, we employ first-principles calculations to explore the electronic and valleytronic properties of single-layer (SL) SMSiN2 (M = Mo, W), which are two-dimensional Janus materials with strong spin-orbit coupling. Our findings indicate that SL SMoSiN2/SWSiN2 possess a direct/indirect band gap, where the valence band maximum is situated at the K/K' point, giving rise to the formation of degenerate valleys. When considering spin-orbit coupling, SMoSiN2 and SWSiN2 demonstrate intriguing valley spin splitting in their valleys, with a maximum splitting of up to 0.14/0.39 eV in the valence bands. By implementing magnetic doping with V and Cr, we provide a demonstration that valley polarization could be realized in SL SMSiN2. Moreover, the findings reveal high carrier mobility in SL SMSiN2, notably in SWSiN2, where hole carriers can achieve a remarkable mobility of up to 7.98 × 103 cm2 V-1 s-1 along the zigzag direction. Furthermore, our observations suggest that strain can be effectively utilized to manipulate the character and magnitude of the band gap, as well as the valley spin splitting in these materials.
Collapse
Affiliation(s)
- Lijie Geng
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kun Chen
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongyan Lu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, China
| | - Shizhuo Wang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yang Yang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
25
|
Naumis GG, Herrera SA, Poudel SP, Nakamura H, Barraza-Lopez S. Mechanical, electronic, optical, piezoelectric and ferroic properties of strained graphene and other strained monolayers and multilayers: an update. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 87:016502. [PMID: 37879327 DOI: 10.1088/1361-6633/ad06db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
This is an update of a previous review (Naumiset al2017Rep. Prog. Phys.80096501). Experimental and theoretical advances for straining graphene and other metallic, insulating, ferroelectric, ferroelastic, ferromagnetic and multiferroic 2D materials were considered. We surveyed (i) methods to induce valley and sublattice polarisation (P) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisationPon hexagonal boron nitride monolayers via strain, (v) modifying the optoelectronic properties of transition metal dichalcogenide monolayers through strain, (vi) ferroic 2D materials with intrinsic elastic (σ), electric (P) and magnetic (M) polarisation under strain, as well as incipient 2D multiferroics and (vii) moiré bilayers exhibiting flat electronic bands and exotic quantum phase diagrams, and other bilayer or few-layer systems exhibiting ferroic orders tunable by rotations and shear strain. The update features the experimental realisations of a tunable two-dimensional Quantum Spin Hall effect in germanene, of elemental 2D ferroelectric bismuth, and 2D multiferroic NiI2. The document was structured for a discussion of effects taking place in monolayers first, followed by discussions concerning bilayers and few-layers, and it represents an up-to-date overview of exciting and newest developments on the fast-paced field of 2D materials.
Collapse
Affiliation(s)
- Gerardo G Naumis
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Saúl A Herrera
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Shiva P Poudel
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Hiro Nakamura
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Salvador Barraza-Lopez
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
26
|
Uemoto M, Nishiura M, Ono T. Valley filters using graphene blister defects from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:095301. [PMID: 37972399 DOI: 10.1088/1361-648x/ad0d26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Valleytronics, which makes use of the two valleys in graphenes, attracts considerable attention and a valley filter is expected to be the central component in valleytronics. We propose the application of the graphene valley filter using blister defects to the investigation of the valley-dependent transport properties of the Stone-Wales and blister defects of graphenes by density functional theory calculations. It is found that the intervalley transition from theKvalley to theK'valleys is completely suppressed in some defects. Using a large bipartite honeycomb cell (BHC) including several carbon atoms in a cell and replacing atomic orbitals with molecular orbitals in the tight-binding model, we demonstrate analytically and numerically that the symmetry between the A and B sites of the BHC contributes to the suppression of the intervalley transition. In addition, the universal rule for the atomic structures of the blisters suppressing the intervalley transition is derived. Furthermore, by introducing additional carbon atoms to graphenes to form blister defects, we can split the energies of the states at which resonant scattering occurs on theKandK'channel electrons. Because of this split, the fully valley-polarized current will be achieved by the local application of a gate voltage.
Collapse
Affiliation(s)
- Mitsuharu Uemoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| | - Masaki Nishiura
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| | - Tomoya Ono
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| |
Collapse
|
27
|
Wild A, Mariani E, Portnoi ME. Optical valley separation in two-dimensional semimetals with tilted Dirac cones. Sci Rep 2023; 13:19211. [PMID: 37932388 PMCID: PMC10628198 DOI: 10.1038/s41598-023-45940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Quasiparticles emerging in crystalline materials can possess a binary flavor known as the valley quantum number which can be used as a basis to encode information in an emerging class of valleytronic devices. Here we show that two-dimensional semimetals with tilted Dirac cones in the electronic band structure exhibit spatial separation of carriers belonging to different valleys under illumination. In stark contrast to gapped Dirac materials this optovalleytronic phenomenon occurs in systems with intact inversion and time-reversal symmetry that host gapless Dirac cones in the band structure, thereby retaining the exceptional graphene-like transport properties. We thus demonstrate that optical valley separation is possible at arbitrarily low photon frequencies including the deep infrared and terahertz regimes with full gate tunability via Pauli blocking. As a specific example of our theory, we predict tunable valley separation in the proposed two-dimensional tilted Dirac cone semimetal 8-Pmmn borophene for incident infrared photons at room temperature. This work highlights the potential of two-dimensional tilted Dirac cone materials as a platform for tunable broadband optovalleytronic applications.
Collapse
Affiliation(s)
- Andrew Wild
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom.
| | - Eros Mariani
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
| | - M E Portnoi
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom.
| |
Collapse
|
28
|
Li S, Frauenheim T, He J. Quantum anomalous valley Hall effect in ferromagnetic MXenes with asymmetric functionalization. NANOSCALE 2023; 15:16992-16997. [PMID: 37830447 DOI: 10.1039/d3nr04188c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The potential to detect and manipulate the valley degree of freedom within two-dimensional hexagonal lattices possessing both inversion asymmetry and time-reversal symmetry is theoretically feasible. Intrinsic ferrovalley polarization in MXenes could be induced by asymmetric surface functionalization to break their inversion symmetry and the presence of spin-orbital coupling ensures their time-reversal symmetry. Our results indicate that the ferromagnetic Cr2COF MXene with Janus functionalization becomes an intrinsic Chern insulator with large spin-valley polarization and belongs to the family of quantum anomalous valley Hall effect (QAVHE) materials, based on Berry curvature and edge state calculations. Applying chemical engineering of functionalization to magnetic MXenes allows us to tune the structure-property relationship in 2D layers to obtain desirable spin-valley coupling. Our theoretical insight into the QAVHE on magnetic MXenes with asymmetry functionalization provides a new opportunity for valleytronics and spintronics.
Collapse
Affiliation(s)
- Shuo Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China.
| | | | - Junjie He
- Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University, Prague 12843, Czech Republic.
| |
Collapse
|
29
|
Maity D, Sharma R, Sahoo KR, Panda JJ, Lal A, Puthirath AB, Ajayan PM, Narayanan TN. On the electronic and spin-valley coupling of vanadium doped MoS 2(1-x)Se 2xmonolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:505002. [PMID: 37708898 DOI: 10.1088/1361-648x/acf9d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Monolayers of MoS2with tunable bandgap and valley positions are highly demanding for their applications in opto-spintronics. Herein, selenium (Se) and vanadium (V) co-doped MoS2monolayers (vanadium doped MoS2(1-x)Se2x(V-MoSSe)) are developed and showed their variations in the electronic and optical properties with dopant content. Vanadium gets substitutionally (in place of Mo) doped within the MoS2lattice while selenium doped in place of sulfur, as shown by a detailed microstructure and spectroscopy analyses. The bandgap tunability with selenium doping can be achieved while valley shift is occurred due to the doping of vanadium. Chemical vapor deposition assisted grown MoS2(also selenium doped MoS2as shown here) is known for its n-type transport behavior while vanadium doping is found to be changing its nature to p-doping. Chirality dependent photoexcitation studies indicate a room temperature valley splitting in V-MoSSe (∼8 meV), where such a valley splitting is verified using density functional theory based calculations.
Collapse
Affiliation(s)
- Dipak Maity
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Rahul Sharma
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Krishna Rani Sahoo
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Janmey Jay Panda
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Ashique Lal
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| | - Anand B Puthirath
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, United States of America
| | - Pulickel M Ajayan
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, United States of America
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research-Hyderabad, Serilingampally Mandal, Hyderabad 500046, India
| |
Collapse
|
30
|
Tahir M, Chen H. Transport of Spin Magnetic Multipole Moments Carried by Bloch Quasiparticles. PHYSICAL REVIEW LETTERS 2023; 131:106701. [PMID: 37739362 DOI: 10.1103/physrevlett.131.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/31/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Magnetic ordering beyond the standard dipolar order has attracted significant attention in recent years, but it remains an open question how to effectively manipulate such nontrivial order parameters using external perturbations such as electric currents or fields. In particular, it is desirable to have a conceptual tool similar to nonequilibrium spin currents in spintronics to describe the creation and transport of multipole moments. In this context, we present a theory for Cartesian spin magnetic multipole moments of Bloch quasiparticles and their transport based on a general gauge-invariant formula obtained using the wave packet approach. As a concrete example, we point out that the low-energy Hamiltonian of phosphorene subject to a perpendicular electric field has a valley structure that hosts magnetic octupole moments. The magnetic octupole moments can be exhibited by an in-plane electric current and lead to accumulation of staggered spin densities at the corners of a rectangular sample. Our Letter paves the way for systematically seeking and utilizing quasiparticles with higher-order magnetic multipole moments in crystal materials towards the emergence of multipoletronics.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Hua Chen
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
31
|
Jin KH, Jiang W, Sethi G, Liu F. Topological quantum devices: a review. NANOSCALE 2023; 15:12787-12817. [PMID: 37490310 DOI: 10.1039/d3nr01288c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The introduction of the concept of topology into condensed matter physics has greatly deepened our fundamental understanding of transport properties of electrons as well as all other forms of quasi particles in solid materials. It has also fostered a paradigm shift from conventional electronic/optoelectronic devices to novel quantum devices based on topology-enabled quantum device functionalities that transfer energy and information with unprecedented precision, robustness, and efficiency. In this article, the recent research progress in topological quantum devices is reviewed. We first outline the topological spintronic devices underlined by the spin-momentum locking property of topology. We then highlight the topological electronic devices based on quantized electron and dissipationless spin conductivity protected by topology. Finally, we discuss quantum optoelectronic devices with topology-redefined photoexcitation and emission. The field of topological quantum devices is only in its infancy, we envision many significant advances in the near future.
Collapse
Affiliation(s)
- Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Wei Jiang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Gurjyot Sethi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
32
|
Wu Y, Tong J, Deng L, Luo F, Tian F, Qin G, Zhang X. Coexisting Ferroelectric and Ferrovalley Polarizations in Bilayer Stacked Magnetic Semiconductors. NANO LETTERS 2023. [PMID: 37363831 DOI: 10.1021/acs.nanolett.3c01948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
It has long been expected that the coexistence of ferroelectric and ferrovalley polarizations in one magnetic semiconductor could offer the possibility to revolutionize electronic devices. In this study, monolayer and bilayer YI2 are studied. Monolayer YI2 is a ferromagnetic semiconductor and exhibits a valley polarization up to 105 meV. All of the present bilayer YI2 regardless of stacking orders show antiferromagnetic states. Interestingly, the bilayer YI2 with 3R-type stackings shows not only valley polarization but also unexpected ferroelectric polarization, proving the concurrent ferrovalley and multiferroics behaviors. Moreover, the valley polarization of 3R-type bilayer YI2 can be reversed by controlling the direction of ferroelectric polarization through an electric field or manipulating the magnetization direction using an external magnetic field. The amazing phenomenon is also demonstrated in 2D van der Waals LaI2 and GdBr2 bilayers. A design idea of multifunctional devices is proposed based on the concurrent ferrovalley and multiferroics characteristics.
Collapse
Affiliation(s)
- Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Junwei Tong
- Department of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Li Deng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Feifei Luo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
33
|
Asaithambi A, Kazemi Tofighi N, Ghini M, Curreli N, Schuck PJ, Kriegel I. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun (Camb) 2023; 59:7717-7730. [PMID: 37199319 PMCID: PMC10281493 DOI: 10.1039/d3cc01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.
Collapse
Affiliation(s)
- Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Nastaran Kazemi Tofighi
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Michele Ghini
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
- Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
34
|
Go D, Jo D, Kim KW, Lee S, Kang MG, Park BG, Blügel S, Lee HW, Mokrousov Y. Long-Range Orbital Torque by Momentum-Space Hotspots. PHYSICAL REVIEW LETTERS 2023; 130:246701. [PMID: 37390424 DOI: 10.1103/physrevlett.130.246701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/16/2022] [Accepted: 05/16/2023] [Indexed: 07/02/2023]
Abstract
While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.
Collapse
Affiliation(s)
- Dongwook Go
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Daegeun Jo
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyoung-Whan Kim
- Center for Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Soogil Lee
- Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
| | - Min-Gu Kang
- Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Byong-Guk Park
- Department of Materials Science and Engineering and KI for Nanocentury, KAIST, Daejeon 34141, Korea
| | - Stefan Blügel
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Hyun-Woo Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Yuriy Mokrousov
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
35
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
36
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Electronic-correlation induced sign-reversible Berry phase and quantum anomalous valley Hall effects in Janus monolayer OsClBr. Phys Chem Chem Phys 2023. [PMID: 37254578 DOI: 10.1039/d3cp01504a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Topological phase transition can be induced by electronic correlation effects combined with spin-orbit coupling (SOC). Here, based on the first-principles calculations +U approach, the influence of electronic correlation effects and SOC on topological and electronic properties of the Janus monolayer OsClBr is investigated. With intrinsic out-of-plane (OOP) magnetic anisotropy, the Janus monolayer OsClBr exhibits a sequence of states, namely, the ferrovalley (FV) to half-valley-metal (HVM) to quantum anomalous valley Hall effect (QAVHE) to HVM to FV states with increasing U values. The QAVHE is characterized by a chiral edge state linking the conduction and valence bands with a Chern number C = 1, which is closely associated with the band inversion between dx2-y2/dxy and dz2 orbitals, and sign-reversible Berry curvature. The section with larger U values (2.31-2.35 eV) is very essential for determining the new HVM and QAVHE states, and also proves that a strong electron correlation effect exists in the interior of the Janus monolayer OsClBr. When taking into consideration a representative U value (U = 2.5 eV), a valley polarization value of 157 meV can be observed, which can be switched by reversing the magnetization direction of Os atoms. It is noteworthy that the Curie temperature (TC) strongly depends on the electronic correlation effects. Our work provides a comprehensive discussion on the electronic and topological properties of the Janus monolayer OsClBr, and demonstrates that the electronic correlation effects combined with SOC can drive the emergence of QAVHE, which will open up new opportunities for valleytronic, spintronic, and topological nanoelectronic applications.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
37
|
Abstract
The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Simon Yves
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Electrical Engineering, City College, The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
38
|
Singh S, Gong W, Stevens CE, Hou J, Singh A, Zhang H, Anantharaman SB, Mohite AD, Hendrickson JR, Yan Q, Jariwala D. Valley-Polarized Interlayer Excitons in 2D Chalcogenide-Halide Perovskite-van der Waals Heterostructures. ACS NANO 2023; 17:7487-7497. [PMID: 37010369 DOI: 10.1021/acsnano.2c12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.
Collapse
Affiliation(s)
- Simrjit Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher E Stevens
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- KBR Inc., Beavercreek, Ohio 45431, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Aditya Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aditya D Mohite
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Spontaneous valley polarization and valley-nonequilibrium quantum anomalous Hall effect in Janus monolayer ScBrI. NANOSCALE 2023; 15:8395-8405. [PMID: 37092871 DOI: 10.1039/d2nr07221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topology and ferrovalley (FV) are two essential concepts in emerging device applications and the fundamental research field. To date, relevant reports are extremely rare about the coupling of FV and topology in a single system. By Monte Carlo (MC) simulations and first-principles calculations, a stable intrinsic FV ScBrI semiconductor with high Curie temperature (TC) is predicted. Because of the combination of spin-orbital coupling (SOC) and exchange interaction, the Janus monolayer ScBrI shows a spontaneous valley polarization of 90 meV, which is located in the top valence band. For the magnetization direction perpendicular to the plane, the changes from FV to half-valley-metal (HVM), to valley-nonequilibrium quantum anomalous Hall effect (VQAHE), to HVM, and to FV can be induced by strain engineering. It is worth noting that there are no particular valley polarization and VQAHE states for in-plane (IP) magnetic anisotropy. By obtaining the real magnetic anisotropy energy (MAE) under different strains, due to spontaneous valley polarization, intrinsic out-of-plane (OOP) magnetic anisotropy, a chiral edge state, and a unit Chern number, the VQAHE can reliably appear between two HVM states. The increasing strains can induce VQAHE, which can be clarified by a band inversion between dx2-y2/dxy and dz2 orbitals, and a sign-reversible Berry curvature. Once synthesized, the Janus monolayer ScBrI would find more significant applications in topological electronic, valleytronic, and spintronic nanodevices.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
40
|
Hennighausen Z, Moon J, McCreary KM, Li CH, van 't Erve OMJ, Jonker BT. Interlayer Exciton-Phonon Bound State in Bi 2Se 3/Monolayer WS 2 van der Waals Heterostructures. ACS NANO 2023; 17:2529-2536. [PMID: 36646115 DOI: 10.1021/acsnano.2c10313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ability to assemble layers of two-dimensional (2D) materials to form permutations of van der Waals heterostructures provides significant opportunities in materials design and synthesis. Interlayer interactions can enable desired properties and functionality, and understanding such interactions is essential to that end. Here we report formation of interlayer exciton-phonon bound states in Bi2Se3/WS2 heterostructures, where the Bi2Se3 A1(3) surface phonon, a mode particularly susceptible to electron-phonon coupling, is imprinted onto the excitonic emission of the WS2. The exciton-phonon bound state (or exciton-phonon quasiparticle) presents itself as evenly separated peaks superposed on the WS2 excitonic photoluminescence spectrum, whose periodic spacing corresponds to the A1(3) surface phonon energy. Low-temperature polarized Raman spectroscopy of Bi2Se3 reveals intense surface phonons and local symmetry breaking that allows the A1(3) surface phonon to manifest in otherwise forbidden scattering geometries. Our work advances knowledge of the complex interlayer van der Waals interactions and facilitates technologies that combine the distinctive transport and optical properties from separate materials into one device for possible spintronics, valleytronics, and quantum computing applications.
Collapse
Affiliation(s)
- Zachariah Hennighausen
- NRC Postdoc at the Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Jisoo Moon
- NRC Postdoc at the Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kathleen M McCreary
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Connie H Li
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Olaf M J van 't Erve
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Berend T Jonker
- Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
41
|
Kunin A, Chernov S, Bakalis J, Li Z, Cheng S, Withers ZH, White MG, Schönhense G, Du X, Kawakami RK, Allison TK. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS_{2}. PHYSICAL REVIEW LETTERS 2023; 130:046202. [PMID: 36763432 DOI: 10.1103/physrevlett.130.046202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sergey Chernov
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Bakalis
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shuyu Cheng
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary H Withers
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael G White
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Gerd Schönhense
- Johannes Gutenberg-Universität, Institut für Physik, D-55099 Mainz, Germany
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
42
|
Chen Y, Qian S, Wang K, Xing X, Wee A, Loh KP, Wang B, Wu D, Chu J, Alu A, Lu P, Qiu CW. Chirality-dependent unidirectional routing of WS 2 valley photons in a nanocircuit. NATURE NANOTECHNOLOGY 2022; 17:1178-1182. [PMID: 36192494 DOI: 10.1038/s41565-022-01217-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Valleytronics is a promising candidate to address low-energy signal transport on chip, leveraging the valley pseudospin of electrons as a new degree of freedom to encode, process and store information1-7. However, valley-carrier nanocircuitry is still elusive, because it essentially requires valley transport that overcomes three simultaneous challenges: high fidelity, high directionality and room-temperature operation. Here we experimentally demonstrate a nanophotonic circuit that can route valley indices of a WS2 monolayer unidirectionally via the chirality of photons. Two propagating modes are supported in the gap area of the circuit and interfere with each other to generate beating patterns, which exhibit complementary profiles for circular dipoles of different handedness. Based on the spin-dependent beating patterns, we showcase valley fidelity of chiral photons up to 98%, and the circulation directionality is measured to be 0.44 ± 0.04 at room temperature. The proposed nanocircuit can not only enable the construction of large-scale valleytronic networks but also serve as an interactive interface to integrate valleytronics3-5, spintronics8-10 and integrated photonics11-13, opening new possibilities for hybrid spin-valley-photon ecosystems at the nanoscale.
Collapse
Affiliation(s)
- Yang Chen
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Shuhang Qian
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Kai Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Wuhan, China.
| | - Xiangyuan Xing
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Andrew Wee
- Department of Physics, National University of Singapore, Kent Ridge, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Kent Ridge, Singapore
| | - Bing Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Dong Wu
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Jiaru Chu
- Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Andrea Alu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
- Physics Program, Graduate Center of the City University of New York, New York, NY, USA
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Wuhan, China.
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
43
|
Sheng K, Yuan HK, Zhang B. Intrinsic spin, valley and piezoelectric polarizations in room-temperature ferrovalley Janus Ti XY ( XY = SCl and SeBr) monolayers. NANOSCALE 2022; 14:15156-15164. [PMID: 36214068 DOI: 10.1039/d2nr03860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional room-temperature Janus ferrovalley semiconductors with large spin, valley and piezoelectric polarizations provide fertile platforms for designing multifunctional nanodevices. Little research has been reported to date on such materials. Here, using first-principles calculations, we predict two dynamically stable Janus titanium chalcohalide (TiSCl and TiSeBr) monolayers, which are excellent piezoelectric ferrovalley semiconductors with in-plane magnetization and high magnetic transition temperatures (738 and 884 K). When an extrinsic magnetic field is used to force the magnetization along the out-of-plane direction, a large valley polarization (64 and 146 meV) can be generated in the highest valence band with a large spin-orbit coupling by the breaking of time-reversal and space-inversion symmetry, which can be further clarified by a two-band k·p model. This robust valley-contrasting physics characterized by the valley-dependent Berry curvature leads to the anomalous valley Hall effect. It can be observed by suitable hole doping or light irradiation under an in-plane electric field. Besides, we find that the missing mirror symmetry results in giant out-of-plane piezoelectric polarization (2.05 and 2.04 pm V-1). These outstanding properties give the Janus TiSCl and TiSeBr monolayers potential for a wide variety of applications in nanoelectronics, spintronics, valleytronics, piezoelectrics and other demanding areas.
Collapse
Affiliation(s)
- Kang Sheng
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Hong-Kuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
44
|
Shi Y, Jia N, Cai J, Lyu Z, Liu Z. 2D electrene LaH 2monolayer: an ideal ferrovalley direct semiconductor with room-temperature ferromagnetic stability. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:475303. [PMID: 36179704 DOI: 10.1088/1361-648x/ac96bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In developing nonvolatile valleytronic devices, ferromagnetic (FM) ferrovalley semiconductors are critically needed due to the existence of spontaneous valley polarization. At present, however, the known real materials have various drawbacks towards practical applications, including the in-plane FM ground state, low Curie temperature (TC), small valley polarization, narrow energy window with clean polarized valley, and indirect bandgap. From first-principles calculations, here we predict anideal ferrovalley semiconductor, honeycomb LaH2monolayer (ML), whose intrinsic properties can overcome all these shortcomings. We demonstrate that LaH2ML, having satisfied structural stability, is a FM half-semiconducting electrene (La3+2H-⋅e-) with its magnetic moments localized at the lattice interstitial sites rather than La atoms. At the same time, LaH2ML holds the following desired attributes: a robust out-of-plane FM ground state with a highTC(334 K), a sizable valley polarization (166 meV), a wide energy window (137 meV) harboring clean single-valley carriers, and a direct bandgap. These results identify a much needed ideal ferrovalley semiconductor candidate, holding the promising application potential in valleytronics and spintronics devices.
Collapse
Affiliation(s)
- Yongting Shi
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Ningning Jia
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jiangtao Cai
- Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhiheng Lyu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhifeng Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
45
|
Ren X, Wang Y, Ji W, Ren M, Wang P, Zhang S, Li S, Zhang C. Possibility of regulating valley-contrasting physics and topological properties by ferroelectricity in functionalized arsenene. Phys Chem Chem Phys 2022; 24:23910-23918. [PMID: 36165573 DOI: 10.1039/d2cp03196e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional (2D) multifunctional material, which couples multiple physical properties together, is both fundamentally intriguing and practically appealing. Here, based on first-principles calculations and tight-binding (TB) model analysis, the possibility of regulating the valley-contrasting physics and nontrivial topological properties via ferroelectricity is investigated in monolayer AsCH2OH. Reversible electric polarization is accessible via the rotation operation on the ligand. The broken inversion symmetry and the spin-orbit coupling (SOC) would lead to valley spin splitting, spin-valley coupling and valley-contrasting Berry curvature. More importantly, the reversal of electric polarization can realize the nonvolatile control of valley-dependent properties. Besides, the nontrivial topological state is confirmed in the monolayer AsCH2OH, which is robust against the rotation operation on the ligand. The magnitude of polarization, valley spin splitting and bulk band gap can be effectively modulated by the biaxial strain. The H-terminated SiC is demonstrated to be an appropriate candidate for encapsulating monolayer AsCH2OH, without affecting its exotic properties. These findings provide insights into the fundamental physics for the coupling of the valley-contrasting phenomenon, topological properties and ferroelectricity, and open avenues for exploiting innovative device applications.
Collapse
Affiliation(s)
- Xiaohan Ren
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Yaping Wang
- State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Weixiao Ji
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Miaojuan Ren
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Peiji Wang
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Shufeng Zhang
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Shengshi Li
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Changwen Zhang
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
46
|
Mosquera MA, Marmolejo-Tejada JM, Borys NJ. Theoretical Quantum Model of Two-Dimensional Propagating Plexcitons. J Chem Phys 2022; 157:124103. [DOI: 10.1063/5.0103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When plasmonic excitations of metallic interfaces and nanostructures interact with electronic excitations in semiconductors, new states emerge that hybridize the characteristics of the uncoupled states. The engendered properties make these hybrid states appealing for a broad range of applications, ranging from photovoltaic devices to integrated circuitry for quantum devices. Here, through quantum modeling, the coupling of surface plasmon polaritons and mobile two-dimensional excitons such as those in atomically thin semiconductors is examined with emphasis on the case of strong coupling. Our model shows that at around the energy crossing of the dispersion relationships of the uncoupled species, they strongly interact and polariton states --propagating plexcitons -- emerge. The temporal evolution of the system where surface plasmon polaritons are continuously injected into the system is simulated to gain initial insight on potential experimental realizations of these states. The results show a steady state that is dominated by the lower-energy polariton. The study theoretically further establishes the possible existence of propagating plexcitons in atomically thin semiconductors and provides important guidance for the experimental detection and characterization of such states for a wide range of optoelectronic technologies.
Collapse
Affiliation(s)
- Martin Alonso Mosquera
- Department of Chemistry and Biochemistry, Montana State University, United States of America
| | | | | |
Collapse
|
47
|
Silva REF, Ivanov M, Jiménez-Galán Á. All-optical valley switch and clock of electronic dephasing. OPTICS EXPRESS 2022; 30:30347-30355. [PMID: 36242140 DOI: 10.1364/oe.460291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
2D materials with broken inversion symmetry posses an extra degree of freedom, the valley pseudospin, that labels in which of the two energy-degenerate crystal momenta, K or K', the conducting carriers are located. It has been shown that shining circularly-polarized light allows to achieve close to 100% of valley polarization, opening the way to valley-based transistors. Yet, switching of the valley polarization is still a key challenge for the practical implementation of such devices due to the short valley lifetimes. Recent progress in ultrashort laser technology now allows to produce trains of attosecond pulses with controlled phase and polarization between the pulses. Taking advantage of such technology, we introduce a coherent control protocol to turn on, off and switch the valley polarization at faster timescales than electron-hole decoherence and valley depolarization, that is, an ultrafast optical valley switch. We theoretically demonstrate the protocol for hBN and MoS2 monolayers calculated from first principles. Additionally, using two time-delayed linearly-polarized pulses with perpendicular polarization, we show that we can extract the electronic dephasing time T2 from the valley Hall conductivity.
Collapse
|
48
|
Chebl M, He X, Yang DS. Ultrafast Carrier-Coupled Interlayer Contraction, Coherent Intralayer Motions, and Phonon Thermalization Dynamics of Black Phosphorus. NANO LETTERS 2022; 22:5230-5235. [PMID: 35763556 DOI: 10.1021/acs.nanolett.2c01019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Black phosphorus (bP) exhibits highly anisotropic properties and dynamical behavior that are unique even among two-dimensional and van der Waals (vdW) layered materials. Here, we show that an interlayer lattice contraction and concerted, symmetric intralayer vibrations occur concurrently within few picoseconds following the photoinjection and relaxation of carriers, using ultrafast electron diffraction in the reflection geometry to probe the out-of-plane motions. A strong coupling between the photocarriers and bP's puckered structure, with the alignment of the electronic band structure, is at work for such directional atomic motions without a photoinduced phase transition. Three temporal regimes can be identified for the phonon thermalization dynamics where a quasi-equilibrium without anisotropy is reached in about 50 ps, followed by propagation of coherent acoustic phonons and heat diffusion into the bulk. The early time out-of-plane dynamics reported here have important implications for single- and few-layer bP and other vdW materials with strong electronic-lattice correlations.
Collapse
Affiliation(s)
- Mazhar Chebl
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Xing He
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ding-Shyue Yang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
49
|
Choi E, Sim KI, Burch KS, Lee YH. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200186. [PMID: 35596612 PMCID: PMC9313546 DOI: 10.1002/advs.202200186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Indexed: 05/10/2023]
Abstract
Proximity effect, which is the coupling between distinct order parameters across interfaces of heterostructures, has attracted immense interest owing to the customizable multifunctionalities of diverse 3D materials. This facilitates various physical phenomena, such as spin order, charge transfer, spin torque, spin density wave, spin current, skyrmions, and Majorana fermions. These exotic physics play important roles for future spintronic applications. Nevertheless, several fundamental challenges remain for effective applications: unavoidable disorder and lattice mismatch limits in the growth process, short characteristic length of proximity, magnetic fluctuation in ultrathin films, and relatively weak spin-orbit coupling (SOC). Meanwhile, the extensive library of atomically thin, 2D van der Waals (vdW) layered materials, with unique characteristics such as strong SOC, magnetic anisotropy, and ultraclean surfaces, offers many opportunities to tailor versatile and more effective functionalities through proximity effects. Here, this paper focuses on magnetic proximity, i.e., proximitized magnetism and reviews the engineering of magnetism-related functionalities in 2D vdW layered heterostructures for next-generation electronic and spintronic devices. The essential factors of magnetism and interfacial engineering induced by magnetic layers are studied. The current limitations and future challenges associated with magnetic proximity-related physics phenomena in 2D heterostructures are further discussed.
Collapse
Affiliation(s)
- Eun‐Mi Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Kyung Ik Sim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Kenneth S. Burch
- Department of PhysicsBoston College140 Commonwealth AveChestnut HillMA02467‐3804USA
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
50
|
Ng RA, Wild A, Portnoi ME, Hartmann RR. Quasi-exact solutions for guided modes in two-dimensional materials with tilted Dirac cones. Sci Rep 2022; 12:7688. [PMID: 35538110 PMCID: PMC9091279 DOI: 10.1038/s41598-022-11742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
We show that if the solutions to the (2+1)-dimensional massless Dirac equation for a given one-dimensional (1D) potential are known, then they can be used to obtain the eigenvalues and eigenfunctions for the same potential, orientated at an arbitrary angle, in a 2D Dirac material possessing tilted, anisotropic Dirac cones. This simple set of transformations enables all the exact and quasi-exact solutions associated with 1D quantum wells in graphene to be applied to the confinement problem in tilted Dirac materials such as 8-Pmmn borophene. We also show that smooth electron waveguides in tilted Dirac materials can be used to manipulate the degree of valley polarization of quasiparticles travelling along a particular direction of the channel. We examine the particular case of the hyperbolic secant potential to model realistic top-gated structures for valleytronic applications.
Collapse
Affiliation(s)
- R A Ng
- Physics Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines
| | - A Wild
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - M E Portnoi
- Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.,ITMO University, St. Petersburg, Russia, 197101
| | - R R Hartmann
- Physics Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines.
| |
Collapse
|