1
|
Zhou Q, Yuan W, Li Y, Han Y, Bao L, Fan W, Jiao L, Zhao Y, Ni Y, Zou Y, Yang HB, Wu J. [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202417749. [PMID: 39431291 DOI: 10.1002/anie.202417749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024]
Abstract
π-Conjugated chiral shape-persistent molecular nanocarbons hold great potential as chiroptical materials, though their synthesis remains a considerable challenge. Here, we present a simple approach using Suzuki coupling of a [5]helicene building block with various aromatic units, enabling the one-pot synthesis of a series of chiral macrocycles with persistent figure-eight and Möbius shapes. Single-crystal structures of 7 compounds were solved, and 22 enantiomers were separated by preparative chiral HPLC. A notable pyrene-bridged figure-eight macrocycle, with its rigid, fully π-conjugated and overcrowded structure, exhibited pure excimer emission and outstanding circularly polarized luminescence (CPL) properties, including a large dissymmetric factor (|glum|=3.8×10-2) and significant CPL brightness (BCPL=710.5 M-1cm-1). This method provides a versatile synthetic platform for producing various chiral D2-symmetric figure-eight macrocycles and singly or triply twisted Möbius macrocycles with C2 and D3 symmetry, offering tunable chiroptical properties for CPL applications.
Collapse
Affiliation(s)
- Qifeng Zhou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yunfei Li
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lintao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Wei Fan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Liuying Jiao
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ya Zou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
2
|
Fang S, Swamy KMK, Zan WY, Yoon J, Liu S. An excimer process induced a turn-on fluorescent probe for detection of ultra-low concentration of mercury ions. J Mater Chem B 2024; 12:8376-8382. [PMID: 39109420 DOI: 10.1039/d4tb00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The accumulation of mercury pollution in plants can induce severe injury to human beings. It is a great challenge to monitor ultra-low concentrations of mercury in complicated matrixes. In this study, we successfully developed a strategy via Hg2+-triggered naphthalene-based fluorescent probe 1, which formed excimer that subsequently emitted fluorescence for the successful detection of ultra-low concentrations of Hg2+. The coordination of N and S atoms with Hg2+ facilitated the formation of excimer from the naphthalene-conjugated planes that were in sufficiently close proximity. Suppression of CN bond rotation also induced the chelation-enhanced fluorescence (CHEF) effect, and the cumulative result of these effects was obvious fluorescent enhancement. Compared with probe 2, the other key factor for detection of Hg2+ is that the electrons of the hydroxyl group can easily transfer to a naphthalene moiety, resulting in an augmented π-electron density that enhanced the π-π stacking of the naphthalene-conjugated excimer. After detailed spectral studies and mechanism discussions, it was realized that probe 1 was able to detect ultra-low concentrations of Hg2+ in PBS buffer solution. The detection limit was calculated to be 1.98 nM. On account of the excellent performances, the probe was successfully applied in monitoring Hg2+ in water and pea sprouts with the potential for application as an advanced warning of contamination.
Collapse
Affiliation(s)
- Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Wen-Yan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
3
|
Li YL, Wang HL, Zhu ZH, Wang YF, Liang FP, Zou HH. Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors. Nat Commun 2024; 15:2896. [PMID: 38575592 PMCID: PMC10994944 DOI: 10.1038/s41467-024-47246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Yu-Feng Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
4
|
Yadav S, Choudhary N, Sonpal V, Paital AR. Carbon Dots-Embedded Silica Tubes: An Excitation-Independent Yellow-Emitting Turn-On Probe for Simultaneous Detection and Removal of Inorganic Arsenic with In Vivo Tracking in Living Organisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307491. [PMID: 37880860 DOI: 10.1002/smll.202307491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Indexed: 10/27/2023]
Abstract
The environmental monitoring and remediation of highly toxic inorganic arsenic species in natural water are needed for the benefit of the ecosystem. Current studies on arsenic detection and removal often employ separate materials, which exhibit blue luminescence with fluorescence quenching, making them unsuitable for biological and environmental samples. In this study, carbon dot-embedded mesoporous silica tubes functionalized with melamine are synthesized to address these limitations and enable specific and turn-on probing of inorganic arsenic. The newly synthesized material demonstrates excitation-independent yellow luminescence and can effectively detect both As (III) and As (V) at low detection limits (11 × 10-9 m, 11.2 × 10-9 m), well below the prescribed threshold limits in drinking water. It also exhibits a high adsorption capacity (≈125, 159 mg g-1 ) with fast kinetics. The material's applicability in environmental samples is validated through the successful quantification of arsenic in real samples with satisfactory recoveries. Moreover, the material shows recyclability for reuse, as demonstrated by its arsenic adsorption and desorption for several cycles under basic conditions. Additionally, the material's capability for monitoring arsenic in a biological sample (Artemia salina) is demonstrated through fluorescence imaging. The encouraging outcomes underscore the material's potential use in monitoring and mitigating arsenic in aqueous systems.
Collapse
Affiliation(s)
- Sanjay Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Nishu Choudhary
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Vasavdutta Sonpal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Alok Ranjan Paital
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
5
|
Xiong H, Wang M, Qiang R, Wu Y, Zheng X. TiO 2/Ag-based photodeposited catalyst boosted electrochemiluminescence of ninhydrin-hydrogen peroxide system for ultrasensitive sensing of copper (II). Anal Chim Acta 2024; 1290:342223. [PMID: 38246740 DOI: 10.1016/j.aca.2024.342223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Photodeposited TiO2/Ag nanocomposites were generally used to be a friendly catalyst for degrading organic contaminant in environmental field. However, electrochemiluminescence (ECL) sensing analysis based on photocatalysts remains a significant challenge. Herein, polyvinylimide (PEI)-TiO2/Ag nanocomposites (PEI-TiO2/AgNCPs) film with reduced graphene oxide(r-GO) was constructed as a sensing interface for copper(II) ECL detection. TiO2/Ag nanocomposites was prepared by reversed phase microemulsion method and photodeposition technique. Moreover, it was discovered that a small amount of Cu2+ could obviously boost the ECL signal of ninhydrin-hydrogen peroxide system. Signal amplification was achieved by using the synergistic effect between r-GO and TiO2/Ag nanocomposites, and the efficiently concentrated effect of PEI to Cu2+. Furthermore, the investigation showed that ECL mechanism of ninhydrin-hydrogen peroxide system was attributed to the generated hydroxyl radical and superoxide anion during the several type of reactions. Thus for the first time, an ultrasensitive ECL approach for detecting Cu2+ could be performed using ninhydrin as an ECL signal probe and hydrogen peroxide as a co-reaction reagent. Under the suitable circumstances, the proposed method showed an excellent linear relationship in the concentration range of Cu2+ from 1.0 fM to 5.0 nM. Detection limit was estimated to be as low as 0.26 fM. The sensing interface expanded the application of photodeposited TiO2/Ag nanocomposites in ultrasensitive ECL detection. It has potential applications in other components and biological analysis.
Collapse
Affiliation(s)
- Haitao Xiong
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Sciences, Shaanxi University of Technology, HanZhong, 723001, PR China.
| | - Mengyang Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Sciences, Shaanxi University of Technology, HanZhong, 723001, PR China
| | - Ruirui Qiang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Sciences, Shaanxi University of Technology, HanZhong, 723001, PR China
| | - Yingchun Wu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environmental Sciences, Shaanxi University of Technology, HanZhong, 723001, PR China
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| |
Collapse
|
6
|
Xu L, Jiang X, Liu Y, Liang K, Gao M, Kong B. Fluorogen-Functionalized Mesoporous Silica Hybrid Sensing Materials: Applications in Cu 2+ Detection. Chemistry 2024; 30:e202302589. [PMID: 37752657 DOI: 10.1002/chem.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since Cu2+ ions play a pivotal role in both ecosystems and human health, the development of a rapid and sensitive method for Cu2+ detection holds significant importance. Fluorescent mesoporous silica materials (FMSMs) have garnered considerable attention in the realm of chemical sensing, biosensing, and bioimaging due to their distinctive structure and easily functionalized surfaces. As a result, numerous Cu2+ sensors based on FMSMs have been devised and extensively applied in environmental and biological Cu2+ detection over the past few decades. This review centers on the recent advancements in the methodologies for preparing FMSMs, the mechanisms underlying sensing, and the applications of FMSMs-based sensors for Cu2+ detection. Lastly, we present and elucidate pertinent perspectives concerning FMSMs-based Cu2+ sensors.
Collapse
Affiliation(s)
- Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xiaoping Jiang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Yuhong Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Kang Liang
- School of Chemical Engineering Graduate, School of Biomedical Engineering, and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Kashyap P, Rajpurohit D, Modi K, Bhasin H, Fernandes P, Mishra D. Benzene Sulfonyl Linked Tetrasubstituted Thiacalix[4]arene for Selective and Sensitive Fluorometric Sensing of Sulfosulfuron along with Theoretical Studies. J Fluoresc 2023; 33:1961-1970. [PMID: 36930343 DOI: 10.1007/s10895-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Herein, we designed two fluorescent tetrasubstituted benzene sulfonyl appended Thiacalix[4]arene receptors named L1 and L2, which sensitively and selectively detect Sulfosulfuron among other herbicides and pesticides. The detection limit (LOD) was found to be 0.21 ppm and 0.35 ppm, and the enhancement constant (Ks) was determined to be 7.07 X 104 M-1 and 5.55 X 104 M-1 for L1 and L2, respectively. Using the non-linear regression method, the association constant was obtained as 2.1 X 104 M-1 and 2.23 X 104 M-1 whereas, the binding ratio was found to be 1:1 for both L1 and L2, respectively. Additionally, the interference studies show the selective nature of receptors for Sulfosulfuron among its sulfonylurea family. To further confirm the interaction mechanism, 1H-NMR spectroscopy, and a computational investigation were carried out, which validates the 1:1 binding ratio. The receptors were found to be recyclable in nature with simple acid-base treatment. This new approach of using supramolecules as fluorescent probes for sensitive and selective detection of herbicides is rare in the literature.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, 382740, Mehsana, Gujarat, India.
| | - Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Patrick Fernandes
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
8
|
Zhou X, Zhang J, Huang D, Yi Y, Wu K, Zhu G. Nitrogen-doped Ti 3C 2 MXene quantum dots as an effective FRET ratio fluorometric probe for sensitive detection of Cu 2+ and D-PA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122484. [PMID: 36796242 DOI: 10.1016/j.saa.2023.122484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, a ratiometric fluorescence sensing platform was established to detect Cu2+ and D-PA (d-penicillamine) based on nitrogen-doped Ti3C2 MXene quantum dots (N-MODs) that was prepared via a simple hydrothermal method and exhibited strong fluorescent and photoluminescence performance as well as excellent stability. Since the oxidation reaction between o-phenylenediamine (OPD) and Cu2+ induced the formation of 2,3-diaminophenazine (ox-OPD) which not only can emerge an emission peak at 570 nm, but also inhibit the fluorescence intensity of N-MQDs at 450 nm, a ratiometric reverse fluorescence sensor via fluorescence resonance energy transfer (FRET) was designed to sensitively detect Cu2+, where N-MQDs acted as energy donor and ox-OPD as energy acceptor. More importantly, another considerably interesting phenomenon was that their catalytic oxidation reaction can be restrained in the presence of D-PA because of the coordination of Cu2+ with D-PA, further triggering the obvious changes in ratio fluorescent signal and color, thus a ratiometric fluorescent sensor of determining D-PA was proposed also in this work. After optimizing various conditions, the ratiometric sensing platform showed rather low detection limits for Cu2+ (3.0 nM) and D-PA (0.115 μM), coupled with excellent sensitivity and stability.
Collapse
Affiliation(s)
- Xun Zhou
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Juerui Zhang
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongyan Huang
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, PR China.
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, PR China; State Environmental Protection Key Laboratory of Monitoriing for Heavy Metal Pollutants, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Ocean College, Minjiang University, PR China.
| |
Collapse
|
9
|
Mahboob I, Shafique S, Shafiq I, Akhter P, Belousov AS, Show PL, Park YK, Hussain M. Mesoporous LaVO 4/MCM-48 nanocomposite with visible-light-driven photocatalytic degradation of phenol in wastewater. ENVIRONMENTAL RESEARCH 2023; 218:114983. [PMID: 36462696 DOI: 10.1016/j.envres.2022.114983] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.
Collapse
Affiliation(s)
- Iqra Mahboob
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan; Refinery Division, Pak-Arab Refinery Limited "Company" (PARCO), Corporate Headquarters, Korangi Creek Road, Karachi, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Artem S Belousov
- Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih, 43500, Malaysia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan.
| |
Collapse
|
10
|
Chen Y. Recent Advances in Excimer-Based Fluorescence Probes for Biological Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238628. [PMID: 36500722 PMCID: PMC9741103 DOI: 10.3390/molecules27238628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The fluorescent probe is a powerful tool for biological sensing and optical imaging, which can directly display analytes at the molecular level. It provides not only direct visualization of biological structures and processes, but also the capability of drug delivery systems regarding the target therapy. Conventional fluorescent probes are mainly based on monomer emission which has two distinguishing shortcomings in practice: small Stokes shifts and short lifetimes. Compared with monomer-based emission, excimer-based fluorescent probes have large Stokes shifts and long lifetimes which benefit biological applications. Recent progress in excimer-based fluorescent sensors (organic small molecules only) for biological applications are highlighted in this review, including materials and mechanisms as well as their representative applications. The progress suggests that excimer-based fluorescent probes have advantages and potential for bioanalytical applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
12
|
Alireza Hashemi S, Bahrani S, Mojtaba Mousavi S, Mojoudi F, Omidifar N, Bagheri Lankarani K, Arjmand M, Ramakrishna S. Development of sulfurized Polythiophene-Silver Iodide-Diethyldithiocarbamate nanoflakes toward Record-High and selective absorption and detection of mercury derivatives in aquatic substrates. CHEMICAL ENGINEERING JOURNAL 2022. [DOI: 10.1016/j.cej.2022.135896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Tokoro Y, Nakayama G, Yamamoto S, Koizumi T. Tuning Solid‐State Emission Behavior of Janus‐Type Anthracenes by Addition of Shielding Bridges. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuichiro Tokoro
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Genta Nakayama
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Shin‐ichi Yamamoto
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| |
Collapse
|
14
|
Wang D, Chen X, Feng J, Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J Chromatogr A 2022; 1675:463157. [PMID: 35623192 DOI: 10.1016/j.chroma.2022.463157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
This review mainly focuses on the development and application of ordered mesoporous silica materials for solid-phase extraction in recent years. It overviews not only bare mesoporous silica but also the functionalized mesoporous silica with organic groups, molecularly imprinted polymers, and magnetic materials. These mesoporous silica materials were used as the extraction adsorbents in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, micro-solid-phase extraction and matrix solid phase dispersion. Coupled with atomic emission spectrometry, chromatography or other detection methods, these techniques efficiently extracted and sensitively determined various targets, such as metal ions, perfluorocarboxylic acids, pesticides, drugs, endocrine disruptors, phenols, flavanones, polycyclic aromatic hydrocarbons, parabens and so on. Based on unique advantages of mesoporous silica materials, the developed analytical method successfully analyzed different matrix samples, like environmental water samples, soil samples, food samples, biological samples and cosmetics. In addition, the prospects of these materials in solid-phase extraction are presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Dan Wang
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Xueguo Chen
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Juanjuan Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Min Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
15
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Water-dispersible chlorophyll-based fluorescent material derived from willow seeds for sensitive analysis of copper ions and biothiols in food and living cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Wang Z, Gao Z, Qiao M, Peng J, Ding L. Pyrene-functionalized mesoporous silica as a fluorescent nanosensor for selective detection of Hg2+ in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Modulating the sensing behavior of functionalized mesoporous silica towards metal ions in aqueous medium. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Sun X, Guo Y, Wen R, Li H. A highly sensitive and selective ratiometric sensing platform based on 7-amino-4-methylcoumarin for naked-eye visual fluorescence sensing of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120627. [PMID: 34836812 DOI: 10.1016/j.saa.2021.120627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Cu2+ is a major environmental pollutant. An efficient measurement for Cu2+ is urgently needed. In this report, we have developed a new sensitive and selective ratiometric sensing platform using 7-amino-4-methylcoumarin (AMC) for detecting Cu2+ in real samples. In the presence of Cu2+, o-phenylenediamine (OPD) could be catalytically oxidized to 2,3-diaminophenazine (DAP), which could react with AMC, leading to quench the fluorescence intensity of AMC at 438 nm. Meanwhile, DAP provided a new emission peak at 557 nm. Based on the efficient overlapped spectrum of AMC and DAP, a ratiometric sensing platform through fluorescence resonance energy transfer (FRET) was carried out. Furthermore, the as-proposed strategy displayed the linear relationship in the wide range from 6 to 250 μM with a low detection limit of 0.059 μM, and the recoveries of the spiked samples in real samples ranged from 86.5% to 110.1%. Moreover, comparing the visual fluorescence colors of the real samples with the standard colorimetric card, we used the as-proposed strategy as a solid-based platform for realizing an efficient semi-quantitative detection of Cu2+ via naked-eye visual fluorescence mode without any complicated instrument and operation. The above results implied that the as-proposed strategy could be used in the practice determination of Cu2+.
Collapse
Affiliation(s)
- Xiaoyan Sun
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuxin Guo
- China Certification & Inspection Group Hunan Co., Ltd, Changsha 410021, China
| | - Ruizhi Wen
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongchang Li
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
20
|
Lv Z, Chen Z, Feng S, Wang D, Liu H. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg 2+ ions. Polym Chem 2022. [DOI: 10.1039/d2py00077f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-function material, that is, a sulfur-containing fluorescent hybrid porous polymer, has been simply prepared and utilized to simultaneously detect and capture Hg2+ with high efficiency and selectivity.
Collapse
Affiliation(s)
- Zhuo Lv
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zixu Chen
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Hongzhi Liu
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
21
|
Ma J, Shu T, Sun Y, Zhou X, Ren C, Su L, Zhang X. Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103516. [PMID: 34605177 DOI: 10.1002/smll.202103516] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Luminescent covalent organic frameworks (LCOFs) have attracted significant attention due to their tunability of structures and photophysical properties at molecular level. LCOFs are built to highly ordered and periodic 2D or 3D framework structures through covalently assembling with various luminophore building blocks. Recently, the advantages of LCOFs including predesigned properties of structure, unique photoluminescence, hypotoxicity and good biocompatibility and tumor penetration, broaden their applications in biorelated fields, such as biosensing, bioimaging, and drug delivery. A specific review that analyses the advances of LCOFs in the field of biosensing and bioimaging is thus urged to emerge. Here the construction of LCOFs is reviewed first. The synthetic chemistry of LCOFs highlights the key role of chemical linkages, which not only concrete the building blocks but also affect the optical properties and even can act as the responsive sites for potential sensing applications. How to brighten LCOFs are clarified through description of structure managements. The ability to utilize the luminescence of LCOFs for applications in biosensing and bioimaging is discussed using state-of-the-art examples of varied practical goals. A prospect finally addresses opportunities and challenges the development of LCOFs facing from chemistry, physics to the applications, according to their current progress.
Collapse
Affiliation(s)
- Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tong Shu
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiang Zhou
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| | - Chenyu Ren
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
22
|
Xing C, Deng J, Fu W, Li J, Xu L, Sun R, Wang D, Li C, Liang K, Gao M, Kong B. Interfacially Super-Assembled Benzimidazole Derivative-Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry 2021; 28:e202103642. [PMID: 34878646 DOI: 10.1002/chem.202103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) functionalized with benzimidazole-derived fluorescent molecules (DHBM) are fabricated via a feasible interfacial superassembly strategy for the highly sensitive and selective detection of Cu2+ . DHBM-MSN exhibits an obvious quenching effect on Cu2+ in aqueous solutions, and the detection limit can be as low as 7.69×10-8 M. The DHBM-MSN solid-state sensor has good recyclability, and the silica framework can simultaneously improve the photostability of DHBM. Two mesoporous silica nanoparticles with different morphologies were specially designed to verify that nanocarriers with different morphologies do not affect the specific detectionability. The detection mechanism of the fluorescent probe was systematically elucidated by combining experimental results and density function theory calculations. Moreover, the detection system was successfully applied to detect Cu2+ in bovine serum, juice, and live cells. These results indicate that the DHBM-MSN fluorescent sensor holds great potential in practical and biomedical applications.
Collapse
Affiliation(s)
- Chenchen Xing
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jianlin Deng
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Wenlong Fu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jichao Li
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Ruihao Sun
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Dan Wang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Chengwen Li
- Dezhou deyao Pharmaceutical Limited Company, Dezhou, 253015, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
23
|
Tümay SO, Irani-Nezhad MH, Khataee A. Development of dipodal fluorescence sensor of iron for real samples based on pyrene modified anthracene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120017. [PMID: 34098476 DOI: 10.1016/j.saa.2021.120017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A novel pyrene modified anthracene dipodal sensor was prepared by a simple synthetic method for the sensitive determination of iron ions in real samples. The chemical characterization analyses including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were carried out to characterize the target fluorescent sensor. Photophysical and electrochemical behaviors of the sensor were studied by the absorption, excitation-emission matrix analysis, steady-state fluorescence, three-dimensional fluorescence, and cyclic and square wave voltammetry, respectively. The fluorescent sensor properties were evaluated via Ultraviolet-visible and fluorescence spectroscopies. According to obtained results, the fluorescence signal of the sensor was selectively quenched with interaction with Fe3+ ions. The spectrofluorimetric determination of iron, in real water and medicine samples were successfully carried out under optimized experimental conditions. A detection limit and linear working range were calculated as 0.265 μM and 0.275-55.000 μM, respectively which demonstrated the ability of the simple and sensitive sensor for slight amounts of iron. The obtained detection limit for iron determination with the presented novel fluorescent sensor was less than nearly 20 times the tolerance limit (5.40 µM) in drinking water that was determined by the United States Environmental Protection Agency. The accuracy of the newly developed method was evaluated by Inductively coupled plasma optical emission spectroscopy and spike/recovery test which demonstrated that the developed fluorescent sensor has high accuracy for fast, easy and accessible determination of iron at 95% confidence level.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey
| | - Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
24
|
Yadav S, Choudhary N, Bhai S, Bhojani G, Chatterjee S, Ganguly B, Paital AR. Recyclable Functionalized Material for Sensitive Detection and Exceptional Sorption of Hexavalent Chromium and Permanganate Ions with Biosensing Applications. ACS APPLIED BIO MATERIALS 2021; 4:6430-6440. [PMID: 35006925 DOI: 10.1021/acsabm.1c00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environmental remediation with a single platform for selective sensing and removal of toxic analytes with recyclability of the material has always been a desirable system for sustainability. However, materials comprising all the abovementioned advantages are rarely known for oxoanions. We herein developed a fluorogenic napthalimide-based functionalized mesoporous silica material (SiO2@NBDBIA) as a signaling and remediation system for oxoanions (CrO42-, Cr2O72-, and MnO4-) from a pool of several anions. The fluorescence quenching of the SiO2@NBDBIA material in the presence of CrO42-, Cr2O72-, and MnO4- ions gives the limit of detection (LOD) values of 6.23, 25.2, and 20.32 ppb, respectively, which are well below the maximum contaminant level demarcated by the United States Environmental Protection Agency. The maximum adsorption capacities of the material for the abovementioned oxoanions are found to be 352, 363, and 330 mg/g, respectively, which are well above those mentioned in the literature reports. Contrary to the literature-dominated irreversible ion-exchange mechanism, the reversible hydrogen-bonded binding of the material with the oxoanions leads to the recyclability of the material easily, which is very rare in the literature. The DFT calculations were performed to examine the interactions between the material and oxoanions. For real applications, this material was also used as a fluorescence probe to detect these oxoanions in the actual water samples, and more interestingly, used as a biosensing probe for these oxoanions in the living organism Artemia salina through fluorescence imaging. Thus, the SiO2@NBDBIA material is a unique example of recyclable material for detecting and remediating oxoanions.
Collapse
Affiliation(s)
- Sanjay Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Nishu Choudhary
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Surjit Bhai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Gopal Bhojani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Shruti Chatterjee
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Bishwajit Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Alok R Paital
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India
| |
Collapse
|
25
|
Zhou A, Han S. An "off-on-off" fluorescence chemosensor for the sensitive detection of Cu 2+ in aqueous solution based on multiple fluorescence emission mechanisms. Analyst 2021; 146:2670-2678. [PMID: 33666205 DOI: 10.1039/d0an02472d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new organosiloxane precursor ((E)-3-hydroxy-4-((2-(2-hydroxy-4-(3-(3-(triethoxysilyl)propyl)ureido)benzoyl)hydrazono)methyl)phenyl(3-(triethoxysilyl)propyl)carbamate, hereinafter referred to as AHBH-Si) and tetraethylorthosilicate (TEOS) were mixed as the mixed Si source, and bridged periodic mesoporous organic silica (AHBH-PMOs) nanoparticles were obtained through the co-condensation reaction. AHBH-PMO nanoparticles possess mechanisms of "Aggregation Induced Emission" (AIE) and "Intramolecular Charge Transfer" (ICT), which originate from the molecular structure of AHBH having "C[double bond, length as m-dash]N" bond, ortho hydroxyl groups, etc.. Therefore, the optical properties of AHBH are excellent with respect to the solvent effect and enhanced fluorescence. For hybrid materials, the silica framework provides a rigid environment that restricts the rotation of AHBH, thereby turning on the fluorescence of AHBH due to the regulation by the AIE effect. In particular, AHBH-PMOs are no longer restricted by organic solvents and could really achieve the response to Cu2+ with high sensitivity and selectivity in aqueous solutions of a wide pH range. In addition, the detection limit is as low as 3.26 × 10-9 M. Methods such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry have shown the coordination interaction between AHBH and Cu2+. The Gaussian 09 software of density functional theory to calculate the reducing changes of energy gaps among AHBH and AHBH-Si before and after the addition of Cu2+ showed that coordination interaction exists in the system. These results indicate that AHBH-PMO hybrid materials have potential applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Aimei Zhou
- Key Lab of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
26
|
Preparation of Poly(acrylic acid) ‐Boron Nitride Composite as a Highly Efficient Adsorbent for Adsorptive Removal of Heavy Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Tümay SO, Irani-Nezhad MH, Khataee A. Multi-anthracene containing fluorescent probe for spectrofluorimetric iron determination in environmental water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119250. [PMID: 33316650 DOI: 10.1016/j.saa.2020.119250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
An anthracene-based fluorescence (FL) system was synthesized via a general synthetic procedure. Fourier transform infrared spectroscopy (FTIR), MALDI-MS, and nuclear magnetic resonance spectroscopy (13C and 1H NMR) were carried out to characterize the multi-anthracene containing probe. The photophysical properties of the probe were illustrated via 3D-FL analysis and excitation-emission matrix (EEM) measurements. Density-functional theory (DFT) was applied to optimize the structure of the prepared probe and investigate its molecular interactions with Fe3+. The FL proficiency of the probe was appraised by spectroscopic measurements like Ultraviolet-Visible (UV-Vis) and FL spectroscopies. The simple and highly sensitive probe was able to diagnose ferric ions' low concentrations and detection limit reached upto 0.223 µM with linear working range between 0.22 and 92.00 µM for Fe3+ ions. The efficacy of this fluorescent probe was confirmed by testing for iron determination in environmental samples. Various fluorophores or ionophores could be applied for achieving novel probes by the proposed procedures and for diagnosing diverse metal ions.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey
| | - Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
28
|
Fan Y, Xing H, Xue Y, Peng C, Li J, Wang E. Universal Platform for Ratiometric Sensing Based on Catalytically Induced Inner-Filter Effect by Cu 2. Anal Chem 2020; 92:16066-16071. [PMID: 33211481 DOI: 10.1021/acs.analchem.0c03691] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrating two kinds of fluorescent probes in one system to develop a ratiometric sensing platform is of prime importance for achieving an accurate assay. Inspired by the efficient overlapped spectrum of 2-aminoterephthalic acid (PTA-NH2) and 2,3-diaminophenazine (DAP), a new sensitive ratiometric fluorescent sensor has been developed for Cu2+ on the basis of in situ converting o-phenylenediamine (OPD) into DAP through the catalysis of Cu2+. Here, the presence of Cu2+ induced the emission of DAP, which acted as an energy acceptor to inhibit the emission of PTA-NH2. This dual-emission reverse change ratiometric profile based on the inner-filter effect improved sensitivity and accuracy, and the highly sensitive determination of Cu2+ with a detection limit of 1.7 nmol·L-1 was obtained. The proposed sensing platform displayed the wide range of detection of Cu2+ from 5 to 200 nmol·L-1 by modulating the reaction time between Cu2+ and OPD. Moreover, based on the specific interaction between glutathione (GSH) and Cu2+, this fluorescent sensor showed high response toward GSH in a range of 0.5-80 μmol·L-1 with a detection limit of 0.16 μmol·L-1. The successful construction of this simple ratiometric sensing platform without the participation of enzymes provides a new route for the detection of small biological molecules that are closely related to human health.
Collapse
Affiliation(s)
- Yongchao Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
29
|
Gao Z, Wang Z, Qiao M, Peng H, Ding L, Fang Y. Mesoporous silica nanoparticles-based fluorescent mini sensor array with dual emission for discrimination of biothiols. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
He X, Xu W, Ding F, Xu C, Li Y, Chen H, Shen J. Reaction-Based Ratiometric and Colorimetric Chemosensor for Bioimaging of Biosulfite in Live Cells, Zebrafish, and Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11774-11781. [PMID: 32886514 DOI: 10.1021/acs.jafc.0c03983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a reaction-based ratiometric and colorimetric sensor was designed and synthesized for probing bisulfite (HSO3-) by coupling coumarin (CM) with barbituric (BA) moiety. Further tests have shown that CM-BA has high selectivity and sensitivity for the recognition of HSO3-, which can be applied for the detection of HSO3- in environmental and biological systems very effectively. The fluorescence intensity ratios (F462/F568) exhibited an outstanding HSO3--dependent response with ultrafast response time (within 20 s) and a lower detection limit (105 nM). Meanwhile, the color of the CM-BA solution changed from green to colorless during the recognition process, and its fluorescence changed from green to blue. The mechanism of response is confirmed by the density functional theory (DFT) model. In summary, CM-BA has demonstrated low toxicity and good permeability, which can be applied for imaging HSO3- in cells and zebrafish safely and effectively. Besides, this novel sensor CM-BA successfully realized the quantification of the concentration of HSO3- in paper strips and food samples.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuchu Xu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
31
|
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐Muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020; 15:2588-2621. [DOI: 10.1002/asia.202000651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Yadav
- Department of Chemistry Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Thangaraj Baskaran
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Anjali Kaiprathu
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Maqsood Ahmed
- Department of Chemistry University of Delhi Delhi India
| | | | - Stalin Joseph
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat 123 P.O.Box 33 Oman
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | | | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| |
Collapse
|
32
|
A ratiometric and far-red fluorescence “off-on” sensor for sequential determination of copper(II) and L-histidine based on FRET system between N-acetyl-L-cysteine-capped AuNCs and N,S,P co-doped carbon dots. Mikrochim Acta 2020; 187:299. [DOI: 10.1007/s00604-020-04242-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
|
33
|
Wang J, Zhang X, Liu HB, Zhang D, Nong H, Wu P, Chen P, Li D. Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic-inorganic hybrid mesoporous material. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117585. [PMID: 31734570 DOI: 10.1016/j.saa.2019.117585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
We report the preparation of an organic-inorganic hybrid mesoporous material, PHC-SBA-15, derived from the coupling of a pyrene-based derivative PHC and mesoporous SBA-15 silica. Compared with the stable aggregation-induced emission (AIE) properties of PHC, those of PHC-SBA-15 were more promoted and active due to the fixation of PHC and the space limitation in mesoporous SBA-15. The aggregation and disaggregation activities can be tuned by controlling the concentrations in aqueous media and changing the fluorescence color from yellow to blue. In addition to the controllable AIE properties, PHC-SBA-15 was applied for the highly selective and sensitive detection of Hg2+ through the fluorescence quenching of monomeric pyrene in aqueous media. The fluorescence intensity at 395 nm was linearly proportional to that of Hg2+ in the concentration ranges of 0-1.0 × 10-5 and 1.0 × 10-5-10 × 10-5 M, showing a low detection limit of 1.02 × 10-7 M. This work provides an effective strategy for modulating the AIE properties from non-active to active by introducing AIE stable molecule into mesoporous silica material. This method also favors the development of fluorescent sensors for detecting targets with high sensitivity and selectivity in aqueous media with less synthetic difficulties.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Xiangmin Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Di Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Huiting Nong
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Pingyu Wu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Pengxiang Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Dong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
34
|
Surface functionalization of mesoporous silica nanoparticles with pyronine derivative for selective detection of hydrogen sulfide in aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
36
|
Parmar B, Bisht KK, Rachuri Y, Suresh E. Zn(ii)/Cd(ii) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01549c] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent developments and prospects of fluorosensors with a handful of recent examples based on mixed ligand Zn(ii)/Cd(ii) coordination polymers for aqueous phase detection of organic as well as inorganic pollutants have been discussed.
Collapse
Affiliation(s)
- Bhavesh Parmar
- Analytical and Environmental Science Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar 364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kamal Kumar Bisht
- Department of Chemistry
- RCU Government Post Graduate College
- Uttarkashi-249193
- India
| | - Yadagiri Rachuri
- Analytical and Environmental Science Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar 364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Eringathodi Suresh
- Analytical and Environmental Science Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar 364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
37
|
Chatterjee S, Qin J, Li X, Liang F, Rai DK, Yang YW. Safranin O-functionalized cuboid mesoporous silica material for fluorescent sensing and adsorption of permanganate. J Mater Chem B 2020; 8:2238-2249. [DOI: 10.1039/d0tb00036a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new safranin O-based chelating fluorophore coupled, dual-functionalized organic–inorganic hybrid material has been prepared for simultaneous MnO4− detection and adsorption in aqueous media and living organisms such as limnodrilus claparedianus and zebrafish.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
- The State Key Laboratory of Refractories and Metallurgy
| | - Jianchun Qin
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
| | - Xiangshuai Li
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry & Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Dhirendra K. Rai
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Ying-Wei Yang
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
- The State Key Laboratory of Refractories and Metallurgy
| |
Collapse
|
38
|
Das T, Singha D, Pal A, Nandi M. Mesoporous silica based recyclable probe for colorimetric detection and separation of ppb level Hg 2+ from aqueous medium. Sci Rep 2019; 9:19378. [PMID: 31852977 PMCID: PMC6920407 DOI: 10.1038/s41598-019-55910-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
Functional mesoporous silica probes, MCM-TFM and SBA-TFM, have been synthesized with varying pore sizes and having S-donor sites judiciously selected to bind soft metal centers. The soft S-donor centers are contributed by the thiol functional groups that are introduced into the silica matrices by functionalization with tris(4-formylphenyl)amine followed by 2-aminothiophenol. The materials rapidly and selectively detect Hg2+ colorimetrically and the change in color profile can be perceived through bare eyes. The probes can decontaminate the pollutant heavy metal from aqueous medium at ppb level and the materials are recyclable and reusable for several separation cycles.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India
| | - Debdas Singha
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India
| | - Ananya Pal
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India.
| |
Collapse
|
39
|
A Selenone-Functionalized Polyhedral Oligomeric Silsesquioxane for Selective Detection and Adsorption of Hg 2+ ions in Aqueous Solutions. Polymers (Basel) 2019; 11:polym11122084. [PMID: 31847067 PMCID: PMC6960921 DOI: 10.3390/polym11122084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Developing novel functional polyhedral oligomeric silsesquioxane (POSS) for various applications is highly desirable. Herein we present the first example of a novel selenone-functionalized POSS (POSS-Se) by treating an imidazolium-containing POSS with selenium powder under mild condition. The structure of POSS-Se was characterized by FT-IR, 1H NMR, 13C NMR, 29Si NMR, and elemental analysis. Acid treatment of POSS-Se results in a hydrophilic red-orange colored solid, which is highly sensitive and selective for the detection of Hg2+ ions in aqueous solutions by visually observing the color change to pale yellow, and to white. Interestingly, POSS-Se has no activity on this detection. This finding is due to the Se-Se formation by acid-treatment and subsequent coordination-induced cleavage upon the addition of Hg2+ ions. The detection behavior can be precisely monitored by a "turn-on" fluorescence phenomenon with the limit of detection (LOD) of 8.48 ppb, comparable to or higher than many reported Hg2+ sensors. Moreover, POSS-Se demonstrates a selective and efficient adsorption of Hg2+ ions with a maximum capacity of 952 mg g-1. The value is higher than most reported adsorbents for Hg2+ ions, typically thiol and/or thioether functional materials, indicating its promise as an efficient adsorbent for the selective removal of Hg2+ ions from industrial wastewater. This work may open up new horizons for the exploration of selenium-containing functional POSS.
Collapse
|
40
|
Chatterjee S, Li XS, Liang F, Yang YW. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO 2 Materials and Core-Shell Fe 3 O 4 @SiO 2 Nanoparticles for Metal Ion Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904569. [PMID: 31573771 DOI: 10.1002/smll.201904569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Indexed: 05/12/2023]
Abstract
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core-shell Fe3 O4 @SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent-group-functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core-shell Fe3 O4 @SiO2 nanoparticles, as interesting fluorescent organic-inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal-ion-sensing-oriented silica-fluorescent probe hybrid materials are provided.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiang-Shuai Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|