1
|
Pande DC, Vu TH, Lu Y, Sainsbury F, Dau VT, Rehm BHA. Restructuring Biologically Assembled Binding Protein-Biopolymer Conjugates toward Advanced Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68983-68995. [PMID: 39651969 DOI: 10.1021/acsami.4c15941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein. Polymer core-protein shell assemblies were completely dissolved in chloroform. Subsequent reconstitution into different formats such as hollow spheres, fibers, and films was achieved. Different proteins such as the green fluorescent protein or IgG binding domains GB1 or Z derived from protein G or protein A, respectively, were implemented to monitor the retention of protein function upon generation of reformatted materials. Materials were characterized and the retention of protein functionality was studied by assessing the fluorescence or IgG binding capacity. Since the Z domain protein functionality is retained, it suggests that protein refolding properties are critical parameters for restructuring these functional materials. This study shows that bioengineered biologically assembled protein-coated biopolymer particles can be completely dissolved and reformed into fibers, films, and hollow spheres retaining the original protein function.
Collapse
Affiliation(s)
- Deeptee Chandrashekhar Pande
- Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Trung-Hieu Vu
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Yaoying Lu
- Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
- Australian Research Council Centre of Excellence for Synthetic Biology, Sydney 2109, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Gold Coast, QLD 4215, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
- Australian Research Council Centre of Excellence for Synthetic Biology, Sydney 2109, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
2
|
Li W, He F, Liu H, Jiang Y, Mu Y, Wang C, Zhou X, Jiang S, Xu L, Wang L, He X, Li M. Electric Field-Induced Ordered-Structural Aerogels Enable Superinsulation and Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406188. [PMID: 39402763 DOI: 10.1002/smll.202406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Indexed: 12/20/2024]
Abstract
1D flexible fibers assembled 3D porous networked ceramic fiber aerogels (CFAs) are developed to overcome the brittleness of traditional ceramic particle aerogels. However, existing CFAs with disordered and quasi-ordered structures fail to balance the relationship between flexibility, robustness, and thermal insulation. Creating novel architectural CFAs with an excellent combination of performances has proven extremely challenging. In this paper, a novel strategy is adopted to fabricate porous mullite fibrous aerogels (MFAs) with ordered structures by combining fiber sedimentation and electric field-induced fiber alignment techniques. For the first time, electric field-induced alignment of ceramic fibers is utilized to prepare bulk aerogels on a large scale. The resulting MFAs exhibit ultra-low high-temperature thermal conductivity of 0.0830 W m-1 K-1 at 1000 °C, anisotropic mechanical and sound absorption performances, and multifunctionality in terms of the combination of thermal insulation, sound absorption, and hydrophobicity. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional CFAs for various applications.
Collapse
Affiliation(s)
- Wenjie Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fei He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hang Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuncong Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuwen Mu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chen Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Zhou
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Siyi Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lingfeng Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Linyan Wang
- Department of materials engineering, Taiyuan Institute of Technology, Taiyuan, 030024, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Mingwei Li
- National Key Laboratory for Precision Hot Processing of Materials, Harbin Institute of Technology, Harbin, 150080, P. R. China
| |
Collapse
|
3
|
Mizoshita N, Yamada Y, Masuoka Y. Self-Assembled Molecular Fibers Aligned by Compression in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402570. [PMID: 38682735 DOI: 10.1002/smll.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Molecular self-assembly has attracted much attention as a potential approach for fabricating nanostructured functional materials. To date, energy-efficient fabrication of nano-objects such as nanofibers, nanorings, and nanotubes is achieved using well-designed self-assembling molecules. However, the application of molecular self-assembly to industrial manufacturing processes remains challenging because regulating the positions and directions of self-assembled products is difficult. Non-covalent molecular assemblies are also too fragile to allow mechanical handling. The present work demonstrates the macroscopic alignment of self-assembled molecular fibers using compression. Specifically, the macroscopic bundling of self-assembled nanofibers is achieved following dispersion in water. These fiber bundles can also be chemically crosslinked without drastic changes in morphology via trialkoxysilyl groups. Subsequently, vertically oriented porous membranes can be produced rapidly by slicing the bundles. This technique is expected to be applicable to various functional self-assembled fibers and can lead to the development of innovative methods of producing anisotropic nanostructured materials.
Collapse
Affiliation(s)
| | - Yuri Yamada
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Yumi Masuoka
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
4
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
5
|
Yang N, Huang M, Gao C, Hu J, Liu Y, Nishinari K. Preparation and drug release performance of different gelation type polysaccharide/β-lactoglobulin fiber composite gels. Int J Biol Macromol 2024; 269:132003. [PMID: 38697426 DOI: 10.1016/j.ijbiomac.2024.132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Self-assembled protein fibers have attracted much attention in the fields of medicine and food because of their high aspect ratio, polymorphic structure and strong surface hydrophobicity. In this study, three different gelation types of polysaccharides/β-lactoglobulin fiber (Fblg) composite gels, including ionic alginate-Fblg gels, synergistic xanthan-Fblg gels, and double network agar-Fblg gels, were first prepared. The interactions between the polysaccharides and the Fblgs, the microstructure and mechanical properties of the composite gels were investigated using the light scattering, scanning electron microscopy, rheology and texture analysis in order to reveal their formation mechanisms. Then the loading and release properties of the water-soluble drug 5-fluorouracil (5-FU) and the hydrophobic drug curcumin (Cur) through these composite gels were further studied with release mechanisms determined by fitting different release models. It was found that the mechanical properties of the composite gels were determined by the mesh density of the three-dimensional networks formed inside the gels. The network structure and mechanical strength of the alginate-Fblg gels became weaker with the increase of Fblg content at pH 4 due to their attractive interaction which hindered the binding of Ca2+ to ALG, while the network and the strength of the alginate-Fblg gels didn't change much at pH 7 due to the repulsion between Alg and Fblg. The xanthan-Fblg gels formed lamellar structures with enhanced gel network and mechanical strength due to the hydrogen bonding and the electrostatic interaction with Fblg. The Agar-Fblg composite gel formed at 60 °C (above the gelation temperature of agar of 40 °C) had a denser double network structure and higher mechanical strength than that formed at 0 °C due to inhibition of diffusion of Ca2+ as salt bridges for Fblg. The hydrophilic drugs were loaded in the meshes of the composite gels and their release was determined by the structure of the composite gel networks, whereas the hydrophobic drugs were loaded by attaching to the Fblgs in the composite gels and their release was determined by the loading ability and strength of the gels. The study not only provided a new idea for the preparation and application of polysaccharide-protein fiber composite hydrogels, but also provided insights for improving the efficiency of drug carriers.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China.
| | - Minhui Huang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Chao Gao
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Junxian Hu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
7
|
Liu R, Dong X, Seroski DT, Soto Morales B, Wong KM, Robang AS, Melgar L, Angelini TE, Paravastu AK, Hall CK, Hudalla GA. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies. Angew Chem Int Ed Engl 2023; 62:e202314531. [PMID: 37931093 PMCID: PMC10841972 DOI: 10.1002/anie.202314531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Lucas Melgar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| |
Collapse
|
8
|
Pitocchi R, Stanzione I, Illiano A, Amoresano A, Tarallo O, Cicatiello P, Piscitelli A, Giardina P. Evidence of Small Fungal Cysteine-Rich Proteins Acting as Biosurfactants and Self-Assembling into Large Fibers. Int J Mol Sci 2023; 24:13843. [PMID: 37762146 PMCID: PMC10531366 DOI: 10.3390/ijms241813843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Fungi produce surface-active proteins, among which hydrophobins are the most characterized and attractive also for their ability to form functional amyloids. Our most recent findings show that these abilities are shared with other classes of fungal proteins. Indeed, in this paper, we compared the characteristics of a class I hydrophobin (Vmh2 from Pleurotus ostreatus) and an unknown protein (named PAC3), extracted from the marine fungal strain Acremonium sclerotigenum, which does not belong to the same protein family based on its sequence features. They both proved to be good biosurfactants, stabilizing emulsions in several conditions (concentration, pH, and salinity) and decreasing surface tension to a comparable value to that of some synthetic surfactants. After that, we observed for both Vmh2 and PAC3 the formation of giant fibers without the need for harsh conditions or long incubation time, a remarkable ability herein reported for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (R.P.); (I.S.); (A.I.); (A.A.); (O.T.); (A.P.); (P.G.)
| | | | | |
Collapse
|
9
|
Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. APPLIED PHYSICS REVIEWS 2023; 10:031303. [PMID: 37576610 PMCID: PMC10364553 DOI: 10.1063/5.0152744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
Fibrous wearable and implantable devices have emerged as a promising technology, offering a range of new solutions for minimally invasive monitoring of human health. Compared to traditional biomedical devices, fibers offer a possibility for a modular design compatible with large-scale manufacturing and a plethora of advantages including mechanical compliance, breathability, and biocompatibility. The new generation of fibrous biomedical devices can revolutionize easy-to-use and accessible health monitoring systems by serving as building blocks for most common wearables such as fabrics and clothes. Despite significant progress in the fabrication, materials, and application of fibrous biomedical devices, there is still a notable absence of a comprehensive and systematic review on the subject. This review paper provides an overview of recent advancements in the development of fibrous wearable and implantable electronics. We categorized these advancements into three main areas: manufacturing processes, platforms, and applications, outlining their respective merits and limitations. The paper concludes by discussing the outlook and challenges that lie ahead for fiber bioelectronics, providing a holistic view of its current stage of development.
Collapse
Affiliation(s)
- Behnam Sadri
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| |
Collapse
|
10
|
Du Q, Tu M, Liu J, Ding Y, Zeng X, Pan D. Plant-based meat analogs and fat substitutes, structuring technology and protein digestion: A review. Food Res Int 2023; 170:112959. [PMID: 37316007 DOI: 10.1016/j.foodres.2023.112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
There is currently an increasing trend in the consumption of meat analogs and fat substitutes due to the health hazards by excessive consumption of meat. Simulating the texture and mouthfeel of meat through structured plant-derived polymers has become a popular processing method. In this review, the mechanical structuring technology of plant polymers for completely replacing real meat is mainly introduced in this review, which mainly focuses on the parameters and principles of mechanical equipment for the production of vegan meat. The difference in composition between plant meat and real meat is mainly reflected in the protein, and particular attention should be paid to the digestive characteristics of plant meat protein in the gastrointestinal tract. Therefore, the differences in the protein digestibility properties of meat analogs and real meat is discussed in this review, focusing primarily on protein digestibility and peptide/amino acid composition of mechanically structured vegan meats. In terms of fat substitutes for meat products, the types of plant polymer colloidal systems used for meat fat substitutes is comprehensively introduced, including emulsion, hydrogel and oleogel.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Choi J, Sahoo JK, Hasturk O, Falcucci T, Yao Y, Kaplan DL. Instantaneous Formation of Silk Protein Aerosols and Fibers with a Portable Spray Device Under Ambient Conditions. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201392. [PMID: 37635855 PMCID: PMC10456984 DOI: 10.1002/admt.202201392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 08/29/2023]
Abstract
A variety of artificial silk spinning approaches have been attempted to mimic the natural spinning process found in silkworms and spiders, yet instantaneous silk fiber formation with hierarchical structure under physiological and ambient conditions without post-treatment procedures remains unaddressed. Here, we report a new strategy to fabricate silk protein-based aerosols and silk fibers instantaneously (< 1 s) in situ using a simple, portable, spray device, avoiding complicated and costly advanced manufacturing techniques. The key to success is the instantaneous conformational transition of silk fibroin from random coil to β-sheet right before spraying by mixing silk and polyethylene glycol (PEG) solutions in the spray device, allowing aerosols and silk fibers to be sprayed in situ, with further control achieved via the molecular weight of silk. The spinning process of the spray device is based on the use of green solvents, i.e., all steps of instant conformational transition of silk fibroin are carried out in aqueous conditions or with buffers at ambient conditions, in combination with shear and elongational flow caused by the hydraulic pressure generated in the spray container. The system supports a portable and user-friendly system that could be used for drug delivery carriers, wound coating materials and rapid silk fiber conformal coatings on surfaces.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA; Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Ya Yao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
12
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
13
|
Pylkkänen R, Werner D, Bishoyi A, Weil D, Scoppola E, Wagermaier W, Safeer A, Bahri S, Baldus M, Paananen A, Penttilä M, Szilvay GR, Mohammadi P. The complex structure of Fomes fomentarius represents an architectural design for high-performance ultralightweight materials. SCIENCE ADVANCES 2023; 9:eade5417. [PMID: 36812306 PMCID: PMC9946349 DOI: 10.1126/sciadv.ade5417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
High strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that Fomes fomentarius is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that F. fomentarius is a functionally graded material with three distinct layers that undergo multiscale hierarchical self-assembly. Mycelium is the primary component in all layers. However, in each layer, mycelium exhibits a very distinct microstructure with unique preferential orientation, aspect ratio, density, and branch length. We also show that an extracellular matrix acts as a reinforcing adhesive that differs in each layer in terms of quantity, polymeric content, and interconnectivity. These findings demonstrate how the synergistic interplay of the aforementioned features results in distinct mechanical properties for each layer.
Collapse
Affiliation(s)
- Robert Pylkkänen
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Ajit Bishoyi
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Dominik Weil
- KLA-Tencor GmbH, Moritzburger Weg 67, Dresden 01109, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Géza R. Szilvay
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., Espoo, FI-02044 VTT, Finland
| |
Collapse
|
14
|
Ye X, Capezza AJ, Davoodi S, Wei XF, Andersson RL, Chumakov A, Roth SV, Langton M, Lundell F, Hedenqvist MS, Lendel C. Robust Assembly of Cross-Linked Protein Nanofibrils into Hierarchically Structured Microfibers. ACS NANO 2022; 16:12471-12479. [PMID: 35904348 PMCID: PMC9413408 DOI: 10.1021/acsnano.2c03790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Natural, high-performance fibers generally have hierarchically organized nanosized building blocks. Inspired by this, whey protein nanofibrils (PNFs) are assembled into microfibers, using flow-focusing. By adding genipin as a nontoxic cross-linker to the PNF suspension before spinning, significantly improved mechanical properties of the final fiber are obtained. For curved PNFs, with a low content of cross-linker (2%) the fiber is almost 3 times stronger and 4 times stiffer than the fiber without a cross-linker. At higher content of genipin (10%), the elongation at break increases by a factor of 2 and the energy at break increases by a factor of 5. The cross-linking also enables the spinning of microfibers from long straight PNFs, which has not been achieved before. These microfibers have higher stiffness and strength but lower ductility and toughness than those made from curved PNFs. The fibers spun from the two classes of nanofibrils show clear morphological differences. The study demonstrates the production of protein-based microfibers with mechanical properties similar to natural protein-based fibers and provides insights about the role of the nanostructure in the assembly process.
Collapse
Affiliation(s)
- Xinchen Ye
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Antonio J. Capezza
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Saeed Davoodi
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Teknikringen
8, SE-100 44, Stockholm, Sweden
| | - Xin-Feng Wei
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Andrei Chumakov
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Stephan V. Roth
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Maud Langton
- Department
of Molecular Sciences, SLU, Swedish University
of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756
61, Uppsala, Sweden
| | - Fredrik Lundell
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Teknikringen
8, SE-100 44, Stockholm, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Christofer Lendel
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
| |
Collapse
|
15
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
16
|
Chimerad M, Barazesh A, Zandi M, Zarkesh I, Moghaddam A, Borjian P, Chimehrad R, Asghari A, Akbarnejad Z, Khonakdar HA, Bagher Z. Tissue engineered scaffold fabrication methods for medical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mohammadreza Chimerad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Alireza Barazesh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mojgan Zandi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armaghan Moghaddam
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Pouya Borjian
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, Florida, USA
| | - Rojan Chimehrad
- Department of Biological Sciences, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head and Neck Research Center and Department, School of Medicine, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Netti F, Aviv M, Dan Y, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L. Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. NANOSCALE 2022; 14:8525-8533. [PMID: 35660804 DOI: 10.1039/d1nr08206j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, three-dimensional (3D) printing technologies have attracted the interest of researchers due to the possibility of fabricating tissue- and organ-like structures with similarities to the organ of interest. One of the most widely used materials for the fabrication of bioinks is gelatin (Gel) due to its excellent biocompatibility properties. However, in order to fabricate stable scaffolds under physiological conditions, the most common approach is to use gelatin methacrylate (GelMA) that allows the crosslinking and therefore the stabilization of the hydrogel through UV crosslinking. The crosslinking process can be harmful to cells thus decreasing total cell viability. To overcome the need for post-printing crosslinking, a new approach of bioink formulation was studied, incorporating the Fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) peptide into the Gel bioink. However, although Fmoc-FF possesses excellent mechanical properties, the lack of elasticity and viscosity makes it unsuitable for 3D-printing. Here, we demonstrate that covalent conjugation of two different ethylene glycol (EG) motifs to the Fmoc-FF peptide increases the hydrophilicity and elasticity properties, which are essential for 3D-printing. This new approach for bioink formulation avoids the need for any post-printing manufacturing processes, such as chemical or UV crosslinking.
Collapse
Affiliation(s)
- Francesca Netti
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Safra Rudnick-Glick
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| |
Collapse
|
18
|
Jia X, Song J, Lv W, Hill JP, Nakanishi J, Ariga K. Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nat Commun 2022; 13:3110. [PMID: 35661107 PMCID: PMC9166733 DOI: 10.1038/s41467-022-30622-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Stem cells and their microenvironment interact cooperatively to dictate their fates. Biomaterials are dynamically remodeled by stem cells, and stem cells sense and translate the changes into cell fate decisions. We have previously reported that adaptive biomaterials composed of fibronectin inserted into protein nanosheets at a liquid interface enhance neuronal differentiation of human mesenchymal stem cells (hMSCs). However, we could not decouple clearly the effect of ligand density from that of fibrillary structure on cellular function and fate. Here we present an adaptive biomaterial based on two-dimensional networks of protein nanofibrils at a liquid–liquid interface. Compared with flat protein nanosheets, this biomaterial enhances neuronal differentiation of hMSCs through a signaling mechanism involving focal adhesion kinase. Lipid raft microdomains in plasma membrane are found to play a central role in which hMSCs rapidly adapt to the dynamic microenvironment at the fluid interface. Our finding has substantial implications for regenerative medicine and tissue engineering. In this work the authors report how human mesenchymal stem cells rapidly adapt to dynamic microenvironment through lipid raft in membrane microdomains that direct neurogenesis.
Collapse
Affiliation(s)
- Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jingwen Song
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. .,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
19
|
Kamada A, Herneke A, Lopez-Sanchez P, Harder C, Ornithopoulou E, Wu Q, Wei X, Schwartzkopf M, Müller-Buschbaum P, Roth SV, Hedenqvist MS, Langton M, Lendel C. Hierarchical propagation of structural features in protein nanomaterials. NANOSCALE 2022; 14:2502-2510. [PMID: 35103743 DOI: 10.1039/d1nr05571b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Anja Herneke
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Patricia Lopez-Sanchez
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Eirini Ornithopoulou
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Qiong Wu
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | | | - Peter Müller-Buschbaum
- Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße. 1, D-85748 Garching, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Maud Langton
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
20
|
Lendel C, Solin N. Protein nanofibrils and their use as building blocks of sustainable materials. RSC Adv 2021; 11:39188-39215. [PMID: 35492452 PMCID: PMC9044473 DOI: 10.1039/d1ra06878d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The development towards a sustainable society requires a radical change of many of the materials we currently use. Besides the replacement of plastics, derived from petrochemical sources, with renewable alternatives, we will also need functional materials for applications in areas ranging from green energy and environmental remediation to smart foods. Proteins could, with their intriguing ability of self-assembly into various forms, play important roles in all these fields. To achieve that, the code for how to assemble hierarchically ordered structures similar to the protein materials found in nature must be cracked. During the last decade it has been demonstrated that amyloid-like protein nanofibrils (PNFs) could be a steppingstone for this task. PNFs are formed by self-assembly in water from a range of proteins, including plant resources and industrial side streams. The nanofibrils display distinct functional features and can be further assembled into larger structures. PNFs thus provide a framework for creating ordered, functional structures from the atomic level up to the macroscale. This review address how industrial scale protein resources could be transformed into PNFs and further assembled into materials with specific mechanical and functional properties. We describe what is required from a protein to form PNFs and how the structural properties at different length scales determine the material properties. We also discuss potential chemical routes to modify the properties of the fibrils and to assemble them into macroscopic structures.
Collapse
Affiliation(s)
- Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30 SE-100 44 Stockholm Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic Electronics, Linköping University Linköping 581 83 Sweden
| |
Collapse
|
21
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
22
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
23
|
Huang S, Song Y, He Z, Zhang JR, Zhu JJ. Self-assembled nanomaterials for biosensing and therapeutics: recent advances and challenges. Analyst 2021; 146:2807-2817. [PMID: 33949425 DOI: 10.1039/d1an00077b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled nanomaterials (SANs) exhibit designable biofunctions owing to their tunable nanostructures and modifiable surface. Various constituent units and multi-dimensional structures of SANs provide unlimited possibilities for numerous applications. This review emphasizes the recent development of SANs in the fields of biosensing, bioimaging, and nano-drug engineering. The unit type, design concepts, material advantages, assembly driving force, nanostructure effects, drug loading performance, etc. are discussed and summarized. Finally, we briefly summarize how to assemble unique nanomaterials and point out the key challenges in this field.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yuexin Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
24
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
25
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
26
|
De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021; 5:e2000168. [PMID: 33852183 PMCID: PMC8717409 DOI: 10.1002/adbi.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a complex multisystem disease with the highest case-specific mortality among all autoimmune rheumatic diseases, yet without any available curative therapy. Therefore, the development of novel therapeutic antifibrotic strategies that effectively decrease skin and organ fibrosis is needed. Existing animal models are cost-intensive, laborious and do not recapitulate the full spectrum of the disease and thus commonly fail to predict human efficacy. Advanced in vitro models, which closely mimic critical aspects of the pathology, have emerged as valuable platforms to investigate novel pharmaceutical therapies for the treatment of SSc. This review focuses on recent advancements in the development of SSc in vitro models, sheds light onto biological (e.g., growth factors, cytokines, coculture systems), biochemical (e.g., hypoxia, reactive oxygen species) and biophysical (e.g., stiffness, topography, dimensionality) cues that have been utilized for the in vitro recapitulation of the SSc microenvironment, and highlights future perspectives for effective drug discovery and validation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
| | - Benjamin D Korman
- Prof. B. D. Korman, Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Astrid Jüngel
- Prof. A. Jüngel, Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, 8008, Switzerland
- Prof. A. Jüngel, Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, 8008, Switzerland
| | - Karin Wuertz-Kozak
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
- Prof. K. Wuertz-Kozak, Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, 81547, Germany
| |
Collapse
|
27
|
Hecker L, Wang W, Mela I, Fathi S, Poudel C, Soavi G, Huang YYS, Kaminski CF. Guided Assembly and Patterning of Intrinsically Fluorescent Amyloid Fibers with Long-Range Order. NANO LETTERS 2021; 21:938-945. [PMID: 33448864 DOI: 10.1021/acs.nanolett.0c03672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fibrillar amyloids exhibit a fascinating range of mechanical, optical, and electronic properties originating from their characteristic β-sheet-rich structure. Harnessing these functionalities in practical applications has so far been hampered by a limited ability to control the amyloid self-assembly process at the macroscopic scale. Here, we use core-shell electrospinning with microconfinement to assemble amyloid-hybrid fibers, consisting of densely aggregated fibrillar amyloids stabilized by a polymer shell. Up to centimeter-long hybrid fibers with micrometer diameter can be arranged into aligned and ordered arrays and deposited onto substrates or produced as free-standing networks. Properties that are characteristic of amyloids, including their high elastic moduli and intrinsic fluorescence signature, are retained in the hybrid fiber cores, and we show that they fully persist through the macroscopic fiber patterns. Our findings suggest that microlevel confinement is key for the guided assembly of amyloids from monomeric proteins.
Collapse
Affiliation(s)
- Lisa Hecker
- Department for Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Ioanna Mela
- Department for Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Saeed Fathi
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Chetan Poudel
- Department for Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Giancarlo Soavi
- Institute of Solid State Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Clemens F Kaminski
- Department for Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
28
|
Ghosh M, Bera S, Schiffmann S, Shimon LJW, Adler-Abramovich L. Collagen-Inspired Helical Peptide Coassembly Forms a Rigid Hydrogel with Twisted Polyproline II Architecture. ACS NANO 2020; 14:9990-10000. [PMID: 32806033 PMCID: PMC7450664 DOI: 10.1021/acsnano.0c03085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Collagen, the most abundant protein in mammals, possesses notable cohesion and elasticity properties and efficiently induces tissue regeneration. The Gly-Pro-Hyp canonical tripeptide repeating unit of the collagen superhelix has been well-characterized. However, to date, the shortest tripeptide repeat demonstrated to attain a helical conformation contained 3-10 peptide repeats. Here, taking a minimalistic approach, we studied a single repeating unit of collagen in its protected form, Fmoc-Gly-Pro-Hyp. The peptide formed single crystals displaying left-handed polyproline II superhelical packing, as in the native collagen single strand. The crystalline assemblies also display head-to-tail H-bond interactions and an "aromatic zipper" arrangement at the molecular interface. The coassembly of this tripeptide, with Fmoc-Phe-Phe, a well-studied dipeptide hydrogelator, produced twisted helical fibrils with a polyproline II conformation and improved hydrogel mechanical rigidity. The design of these peptides illustrates the possibility to assemble superhelical nanostructures from minimal collagen-inspired peptides with their potential use as functional motifs to introduce a polyproline II conformation into hybrid hydrogel assemblies.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Santu Bera
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah Schiffmann
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Xu Y, Jacquat RPB, Shen Y, Vigolo D, Morse D, Zhang S, Knowles TPJ. Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000432. [PMID: 32529798 DOI: 10.1002/smll.202000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
3D scaffolds in the form of hydrogels and microgels have allowed for more native cell-culture systems to be developed relative to flat substrates. Native biological tissues are, however, usually spatially inhomogeneous and anisotropic, but regulating the spatial density of hydrogels at the microscale to mimic this inhomogeneity has been challenging to achieve. Moreover, the development of biocompatible synthesis approaches for protein-based microgels remains challenging, and typical gelation conditions include UV light, extreme pH, extreme temperature, or organic solvents, factors which can compromise the viability of cells. This study addresses these challenges by demonstrating an approach to fabricate protein microgels with controllable radial density through microfluidic mixing and physical and enzymatic crosslinking of gelatin precursor molecules. Microgels with a higher density in their cores and microgels with a higher density in their shells are demonstrated. The microgels have robust stability at 37 °C and different dissolution rates through enzymolysis, which can be further used for gradient scaffolds for 3D cell culture, enabling controlled degradability, and the release of biomolecules. The design principles of the microgels could also be exploited to generate other soft materials for applications ranging from novel protein-only micro reactors to soft robots.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Raphaël P B Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Morse
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuyuan Zhang
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
30
|
Schwab A, Hélary C, Richards R, Alini M, Eglin D, D'Este M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Mater Today Bio 2020; 7:100058. [PMID: 32613184 PMCID: PMC7317236 DOI: 10.1016/j.mtbio.2020.100058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Biofabrication is providing scientists and clinicians the ability to produce engineered tissues with desired shapes and gradients of composition and biological cues. Typical resolutions achieved with extrusion-based bioprinting are at the macroscopic level. However, for capturing the fibrillar nature of the extracellular matrix (ECM), it is necessary to arrange ECM components at smaller scales, down to the micron and the molecular level. Herein, we introduce a bioink containing the tyramine derivative of hyaluronan (HA; henceforth known as THA) and collagen (Col) type 1. In this bioink, similar to connective tissues, Col is present in the fibrillar form, and HA functions as a viscoelastic space filler. THA was enzymatically cross-linked under mild conditions allowing simultaneous Col fibrillogenesis, thus achieving a homogeneous distribution of Col fibrils within the viscoelastic HA-based matrix. The THA-Col composite displayed synergistic properties in terms of storage modulus and shear thinning, translating into good printability. Shear-induced alignment of the Col fibrils along the printing direction was achieved and quantified via immunofluorescence and second-harmonic generation. Cell-free and cell-laden constructs were printed and characterized, analyzing the influence of the controlled microscopic anisotropy on human bone marrow-derived mesenchymal stromal cell (hMSC) migration. Anisotropic HA-Col showed cell-instructive properties modulating hMSC adhesion, morphology, and migration from micropellets stimulated by the presence and the orientation of Col fibers. Actin filament staining showed that hMSCs embedded in aligned constructs displayed increased cytoskeleton alignment along the fibril direction. Based on gene expression of cartilage/bone markers and ECM production, hMSCs embedded in the isotropic bioink displayed chondrogenic differentiation comparable with standard pellet culture by means of proteoglycan production (safranin O staining and proteoglycan quantification). The possibility of printing matrix components with control over microscopic alignment brings biofabrication one step closer to capturing the complexity of native tissues.
Collapse
Affiliation(s)
- A. Schwab
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - C. Hélary
- Sorbonne Université, UPMC Laboratoire de Chimie de La Matière Condensée de Paris (LCMCP), Paris, France
| | - R.G. Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - D. Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
31
|
Chen D, Narayanan N, Federici E, Yang Z, Zuo X, Gao J, Fang F, Deng M, Campanella OH, Jones OG. Electrospinning Induced Orientation of Protein Fibrils. Biomacromolecules 2020; 21:2772-2785. [DOI: 10.1021/acs.biomac.0c00500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | | | - Zhi Yang
- School of Food & Advanced Technology, Massey University, Albany, Auckland 0632, New Zealand
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jinling Gao
- School of Aeronautics and Astronautics, Purdue University, 701 W Stadium Ave., West Lafayette, Indiana 47907, United States
| | | | - Meng Deng
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, Ohio 43210, United States
| | | |
Collapse
|
32
|
Zhang J, Sun J, Li B, Yang C, Shen J, Wang N, Gu R, Wang D, Chen D, Hu H, Fan C, Zhang H, Liu K. Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907598. [PMID: 32003943 DOI: 10.1002/smll.201907598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Lightweight and mechanically strong protein fibers are promising for many technical applications. Despite the widespread investigation of biological fibers based on spider silk and silkworm proteins, it remains a challenge to develop low-cost proteins and convenient spinning technology for the fabrication of robust biological fibers. Since there are plenty of widely available proteins in nature, it is meaningful to investigate the preparation of fibers by the proteins and explore their biomedical applications. Here, a facile microfluidic strategy is developed for the scalable construction of biological fibers via a series of easily accessible spherical and linear proteins including chicken egg, quail egg, goose egg, bovine serum albumin, milk, and collagen. It is found that the crosslinking effect in microfluidic chips and double-drawn treatment after spinning are crucial for the formation of fibers. Thus, high tensile strength and toughness are realized in the fibers, which are comparable or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Moreover, the suturing applications in rat and minipig models are realized by employing the mechanically strong fibers. Therefore, this work opens a new direction for the production of biological fibers from natural sources.
Collapse
Affiliation(s)
- Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin Uuniversity, 130021, Changchun, China
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|