1
|
Kwon K, Lee YJ, Jung Y, Soltis I, Na Y, Romero L, Kim MC, Rodeheaver N, Kim H, Lee C, Ko SH, Lee J, Yeo WH. Smart filtering facepiece respirator with self-adaptive fit and wireless humidity monitoring. Biomaterials 2025; 314:122866. [PMID: 39342918 DOI: 10.1016/j.biomaterials.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The widespread emergence of airborne diseases has transformed our lifestyle, and respirators have become an essential part of daily life. Nevertheless, finding respirators that fit well can be challenging due to the variety of human facial sizes and shapes, potentially compromising protection. In addition, the current respirators do not inform the user of the air quality in case of continuous long-term use. Here, we introduce a smart filtering facepiece respirator incorporating a humidity sensor and pressure sensory feedback for self-fit adjusting and maintaining an adequate fit. The humidity detection sensor uses laser-induced graphene, and the pressure sensor array based on the dielectric elastomeric sponge monitors the respirator contact on the user's face, providing real-time closed-loop feedback and the wearer's fitting status. Those membrane sensors show outstanding performance, such as a low humidity hysteresis of 0.131 % and a precise pressure detection limit of 0.23 ± 0.02 kPa. As a result of the self-fit adjusting mode, the overall fit factor is increased by 10 % on average compared to the commercial respirator. This significant improvement in fit factor, coupled with the innovative design, has the potential to develop next-generation facepiece respirators as essential personal protective equipment.
Collapse
Affiliation(s)
- Kangkyu Kwon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ira Soltis
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yewon Na
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lissette Romero
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Industrial Design, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Myung Chul Kim
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nathan Rodeheaver
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hodam Kim
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chaewon Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seung-Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Woon-Hong Yeo
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Jiang W, Seidi F, Liu Y, Li C, Huang Y, Xiao H. Cellulose-based functional textiles through surface nano-engineering with MXene and MXene-based composites. Adv Colloid Interface Sci 2024; 335:103332. [PMID: 39536515 DOI: 10.1016/j.cis.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emergence of smart textiles with the ability to regulate body temperature, monitor human motion, exhibit antibacterial properties, sound fire alarms, and offer fire resistance has sparked considerable interest in recently. MXene displays remarkable attributes like high metallic conductivity, electromagnetic shielding capability, and photothermal/electrothermal properties. Furthermore, due to the highly polar surface groups, MXene nanosheets show exceptional hydrophilic properties and are able to establish strong connections with the polar surfaces of natural fabrics. This review focuses on the most recent developments in altering the surface of cellulosic textiles with MXene and MXene-based composites. The combination of MXene with other modifier agents, such as phosphorous compounds, graphene, carbon nanotube, conductive polymers, antibacterial macromolecules, superhydrophobic polymers, and metal or metal oxide nanoparticles, imparts diverse functionalities to textiles, such as self-cleaning and fire resistance. Moreover, the synergistic effects between these modifier agents with MXenes can improve MXene-related properties like antibacterial, photothermal, electrothermal, and motion- and fire-sensing characteristics.
Collapse
Affiliation(s)
- Wensi Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
3
|
Walsh LJ. Reusable Personal Protective Equipment Viewed Through the Lens of Sustainability. Int Dent J 2024; 74 Suppl 2:S446-S454. [PMID: 39515932 PMCID: PMC11583863 DOI: 10.1016/j.identj.2024.07.1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 11/16/2024] Open
Abstract
From early 2020 the COVID-19 pandemic drove dramatic increases in the production and use of single use disposable masks, respirators and gowns, and highlighted the vulnerability of supply chains for these items. This paper explores the impacts of the rising demands for these single use items through the lens of sustainability, by collating data on the carbon footprint and other impacts, and then discussing challenges, solutions, and future perspectives. Polypropylene and other key synthetic fibre components of these items are not biodegradable, and persist in the environments for prolonged periods generating microplastics as they degrade slowly. Various methods have been shown to allow limited repeated use of surgical masks and respirators, and this has spurred the development of masks and respirators designed for many cycles of reuse. Parallel discussions around gowns reveal that reuseable gowns offer many advantages for performance as well as reduced environmental impact. At the local dental clinic level, those making purchasing decisions should consider impacts of their product choices on the environment. Such impacts occur from manufacture, transport, and disposal of PPE, and from degradation within the environment. Regulators need to encourage use of reuseable items and facilitate this through local guidelines, while at the international level, more work is needed to develop uniform standards for reuseable masks, respirators and gowns.
Collapse
Affiliation(s)
- Laurence J Walsh
- School of Dentistry, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Abbass M, Kotaich J, Ziade K, Sleiman Y, Olleik H, Nasrallah I, Obeid MB, Moussa M. Exploring the need for surgical face masks in operating room: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:6012-6020. [PMID: 39359805 PMCID: PMC11444544 DOI: 10.1097/ms9.0000000000002542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Surgical face masks (SFM) are pivotal in preventing surgical site infections (SSI) in the operating room (OR). However, there are currently no specific recommendations for their most effective use. SFM effectiveness is influenced by factors such as material, fit, and duration of use, sparking ongoing debates about their benefits and risks in surgery. SFMs act as a protective barrier, but their ability to filter out harmful compounds is questioned. They can also impact communication and create a false sense of security. Nevertheless, SFMs aid in infection prevention and provide psychological comfort. Clear guidelines are needed to ensure their appropriate use in the OR. This paper offers a historical overview of surgical masks, emphasizing their role in infection prevention. It explores SFM effectiveness for both the surgical team and patients during surgery and considers their future in surgical settings. As we navigate the evolving landscape of SFMs, clear and concise guidelines are imperative to ensure their judicious and effective use in the OR. This paper serves as an essential resource for understanding the historical significance, contemporary efficacy, and prospective trajectory of SFMs in surgical practice.
Collapse
Affiliation(s)
- Mortada Abbass
- MEDICA Research Investigation
- Faculty of Medicine, Beirut Arab University
| | - Jana Kotaich
- MEDICA Research Investigation
- Faculty of Medical Sciences, Lebanese University, Rafic Hariri University Campus
| | - Karl Ziade
- MEDICA Research Investigation
- Faculty of Medical Sciences, Saint Joseph University
| | - Yara Sleiman
- MEDICA Research Investigation
- Department of General Surgery, Lebanese American University Medical Center Rizk Hospital, Beirut
| | - Hanine Olleik
- MEDICA Research Investigation
- Faculty of Medicine, Saint George University of Beirut, Achrafieh
| | - Inaam Nasrallah
- Faculty of Pharmacy, Lebanese University, Rafic Hariri University Campus
- Laboratoire de Biotechnologie des Substances Naturelles et Produits de Santé (BSNPS), Faculty of Pharmacy, Lebanese University, Rafic Hariri University Campus, Hadath, Lebanon
| | - M. Baker Obeid
- Faculty of Medical Sciences, Lebanese University, Rafic Hariri University Campus
| | - Mohamad Moussa
- Faculty of Medical Sciences, Lebanese University, Rafic Hariri University Campus
| |
Collapse
|
5
|
Song Y, Wang X, Wang L, Qu L, Zhang X. Functionalized Face Masks as Smart Wearable Sensors for Multiple Sensing. ACS Sens 2024; 9:4520-4535. [PMID: 39297358 DOI: 10.1021/acssensors.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Wearable sensors provide continuous physiological information and measure deviations from healthy baselines, resulting in the potential to personalize health management and diagnosis of diseases. With the emergence of the COVID-19 pandemic, functionalized face masks as smart wearable sensors for multimodal and/or multiplexed measurement of physical parameters and biochemical markers have become the general population for physiological health management and environmental pollution monitoring. This Review examines recent advances in applications of smart face masks based on implantation of digital technologies and electronics and focuses on respiratory monitoring applications with the advantages of autonomous flow driving, enrichment enhancement, real-time monitoring, diversified sensing, and easily accessible. In particular, the detailed introduction of diverse respiratory signals including physical, inhalational, and exhalant signals and corresponding associations of health management and environmental pollution is presented. In the end, we also provide a personal perspective on future research directions and the remaining challenges in the commercialization of smart functionalized face masks for multiple sensing.
Collapse
Affiliation(s)
- Yongchao Song
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiyan Wang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Lirong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xian, Shaanxi 710126, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
6
|
d’Alessandro N, Coccia F, Vitali LA, Rastelli G, Cinosi A, Mascitti A, Tonucci L. Cu-ZnO Embedded in a Polydopamine Shell for the Generation of Antibacterial Surgical Face Masks. Molecules 2024; 29:4512. [PMID: 39339506 PMCID: PMC11434467 DOI: 10.3390/molecules29184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.
Collapse
Affiliation(s)
- Nicola d’Alessandro
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Coccia
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Luca Agostino Vitali
- School of Pharmacy, University of Camerino via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Amedeo Cinosi
- G.N.R. s.r.l., Via Torino 7, 28010 Agrate Conturbia, Italy;
| | - Andrea Mascitti
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
| | - Lucia Tonucci
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
7
|
Liu M, Pan ZZ, Ohwada M, Tang R, Matsui H, Tada M, Ito M, Ikura A, Nishihara H. Highly Permeable and Regenerative Microhoneycomb Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29177-29187. [PMID: 38781454 DOI: 10.1021/acsami.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.
Collapse
Affiliation(s)
- Minghao Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Mao Ohwada
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rui Tang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science/Research Center for Materials Science/Institute for Advance Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, RIKEN, Koto, Sayo, Hyogo 679-5148, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science/Research Center for Materials Science/Institute for Advance Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, RIKEN, Koto, Sayo, Hyogo 679-5148, Japan
| | - Masashi Ito
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Ami Ikura
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Tang J, Zhang Y, Liu X, Lin Y, Liang L, Li X, Casals G, Zhou X, Casals E, Zeng M. Versatile Antibacterial and Antioxidant Bacterial Cellulose@Nanoceria Biotextile: Application in Reusable Antimicrobial Face Masks. Adv Healthc Mater 2024; 13:e2304156. [PMID: 38271691 DOI: 10.1002/adhm.202304156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Despite considerable interest in medical and pharmaceutical fields, there remains a notable absence of functional textiles that concurrently exhibit antibacterial and antioxidant properties. Herein, a new composite fabric constructed using nanostructured bacterial cellulose (BC) covalently-linked with cerium oxide nanoparticles (BC@CeO2NPs) is introduced. The synthesis of CeO2NPs on the BC is performed via a microwave-assisted, in situ chemical deposition technique, resulting in the formation of mixed valence Ce3+/Ce4+ CeO2NPs. This approach ensures the durability of the composite fabric subjected to multiple washing cycles. The Reactive oxygen species (ROS) scavenging activity of CeO2NPs and their rapid and efficient eradication of >99% model microbes, such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus remain unaltered in the composite. To demonstrate the feasibility of incorporating the fabric in marketable products, antimicrobial face masks are fabricated with filter layers made of BC@CeO2NPs cross-linked with propylene or cotton fibers. These masks exhibit complete inhibition of bacterial growth in the three bacterial strains, improved breathability compared to respirator masks and enhanced filtration efficiency compared to single-use surgical face masks. This study provides valuable insights into the development of functional BC@CeO2NPs biotextiles in which design can be extended to the fabrication of medical dressings and cosmetic products with combined antibiotic, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari and The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Villarroel, 170, Barcelona, 08036, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, 08007, Spain
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai, 200011, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| |
Collapse
|
9
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Ferrari IV, Giuntoli G, Pisani A, Cavallo A, Mazzetti P, Fonnesu R, Rosellini A, Pistello M, Al Kayal T, Cataldo A, Montanari R, Varone A, Castellino M, Antonaroli S, Soldani G, Losi P. One-step silver coating of polypropylene surgical mask with antibacterial and antiviral properties. Heliyon 2024; 10:e23196. [PMID: 38163242 PMCID: PMC10754878 DOI: 10.1016/j.heliyon.2023.e23196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Face masks can filter droplets containing viruses and bacteria minimizing the transmission and spread of respiratory pathogens but are also an indirect source of microbes transmission. A novel antibacterial and antiviral Ag-coated polypropylene surgical mask obtained through the in situ and one-step deposition of metallic silver nanoparticles, synthesized by silver mirror reaction combined with sonication or agitation methods, is proposed in this study. SEM analysis shows Ag nanoparticles fused together in a continuous and dense layer for the coating obtained by sonication, whereas individual Ag nanoparticles around 150 nm were obtained combining the silver mirror reaction with agitation. EDX, XRD and XPS confirm the presence of metallic Ag in both coatings and also oxidized Ag in samples by agitation. A higher amount of Ag nanoparticles is deposited on samples by sonication, as calculated by TGA. Further, both coatings are biocompatible and show antibacterial properties: coating by sonication caused 24 % and 40 % of bacterial reduction while coating by agitation 48 % and 96 % against S. aureus and E. coli, respectively. At 1 min of contact with SARS-CoV-2, the coating by agitation has an antiviral capacity of 75 % against 24 % of the one by sonication. At 1 h, both coatings achieve 100 % of viral inhibition. Nonetheless, larger samples could be produced only through the silver mirror reaction combined with agitation, preserving the integrity of the mask. In conclusion, the silver-coated mask produced by silver mirror reaction combined with agitation is scalable, has excellent physico-chemical characteristics as well as significant biological properties, with higher antimicrobial activities, providing additional protection and preventing the indirect transmission of pathogens.
Collapse
Affiliation(s)
- Ivan Vito Ferrari
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | - Giulia Giuntoli
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | - Anissa Pisani
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | - Aida Cavallo
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | - Paola Mazzetti
- Virology Unit, Pisa University Hospital, Pisa, Italy and Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Rossella Fonnesu
- Virology Unit, Pisa University Hospital, Pisa, Italy and Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Alfredo Rosellini
- Virology Unit, Pisa University Hospital, Pisa, Italy and Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, Pisa, Italy and Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | | | - Roberto Montanari
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Alessandra Varone
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, 10129, Turin, Italy
| | - Simonetta Antonaroli
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 54100, Italy
| |
Collapse
|
11
|
Nciri N, Kim N. Infrastructure in the Age of Pandemics: Utilizing Polypropylene-Based Mask Waste for Durable and Sustainable Road Pavements. Polymers (Basel) 2023; 15:4624. [PMID: 38139876 PMCID: PMC10747566 DOI: 10.3390/polym15244624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
When navigating the environmental exigencies precipitated by global pandemics, the escalation of mask waste presents a multifaceted dilemma. In this avant-garde research, we unveil a novel approach: harnessing the sterilized shredded mask residues (SMRs), predominantly composed of 100 wt. % polypropylene, as pioneering modifiers for asphalt. Distinct proportions of SMR (e.g., 3, 6, and 9 wt. %) were judiciously integrated with fresh-virgin base AP-5 asphalt and subjected to an extensive suite of state-of-the-art examinations, encompassing thin-layer chromatography-flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and specific rheological metrics. The TLC-FID diagnostic trajectories highlighted the nuanced rejuvenating influence of SMR on the binder, a facet reinforced by a pronounced elevation in the thermodynamic stability index (IC). The FT-IR spectra elucidated SMR's preeminent role as a filler, negating notions of chemical reactivity. The TGA analyses unveiled an elevated thermal onset of degradation, signposting enhanced thermal resilience, whereas the DSC readings illuminated a superior thermal comportment at lower extremities. The SEM evaluations rendered a clearer panorama: there was heightened textural perturbation at escalated SMR incorporations, yet the 3 wt. % concoction showcased an optimal, coherent microtexture symbiosis with asphalt. The rheological scrutinies revealed a systematic trajectory: a diminishing penetration and ductility countered by ascending softening points and viscosity metrics. The coup de maître stemmed from the DSR analyses, unequivocally validating SMR's unparalleled prowess in curtailing rutting distress. This seminal inquiry not only posits a blueprint for refined pavement longevity but also champions a sustainable countermeasure to pandemic-propelled waste, epitomizing the confluence of environmental prudence an d infrastructural fortitude.
Collapse
Affiliation(s)
- Nader Nciri
- School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Republic of Korea;
- School of Energy, Materials & Chemical Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Republic of Korea
| | - Namho Kim
- School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Republic of Korea;
| |
Collapse
|
12
|
Meier P, Clement P, Altenried S, Reina G, Ren Q, Züst R, Enger O, Choi F, Nestle N, Deisenroth T, Neubauer P, Wick P. Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health. Sci Rep 2023; 13:20556. [PMID: 37996620 PMCID: PMC10667359 DOI: 10.1038/s41598-023-47707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
While the global healthcare system is slowly recovering from the COVID-19 pandemic, new multi-drug-resistant pathogens are emerging as the next threat. To tackle these challenges there is a need for safe and sustainable antiviral and antibacterial functionalized materials. Here we develop an 'easy-to-apply' procedure for the surface functionalization of textiles, rendering them antiviral and antibacterial and assessing the performance of these textiles. A metal-free quaternary ammonium-based coating was applied homogeneously and non-covalently to hospital curtains. Abrasion, durability testing, and aging resulted in little change in the performance of the treated textile. Additionally, qualitative and quantitative antibacterial assays on Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumanii revealed excellent antibacterial activity with a CFU reduction of 98-100% within only 4 h of exposure. The treated curtain was aged 6 months before testing. Similarly, the antiviral activity tested according to ISO-18184 with murine hepatitis virus (MHV) showed > 99% viral reduction with the functionalized curtain. Also, the released active compounds of the coating 24 ± 5 µg mL-1 revealed no acute in vitro skin toxicity (IC50: 95 µg mL-1) and skin sensitization. This study emphasizes the potential of safe and sustainable metal-free textile coatings for the rapid antiviral and antibacterial functionalization of textiles.
Collapse
Affiliation(s)
- Philipp Meier
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Pietro Clement
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Stefanie Altenried
- Biointerfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Giacomo Reina
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Qun Ren
- Biointerfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Roland Züst
- Federal Office for Civil Protection FOCP, Spiez Laboratory, 3700, Spiez, Switzerland
| | - Olivier Enger
- Technology Scouting & Incubation, BASF Schweiz AG, 4005, Basel, Switzerland
| | - Francis Choi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, MI, 48192, USA
| | - Nikolaus Nestle
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Ted Deisenroth
- Formulation Research, BASF Corporation, 500 White Plains Road, Tarrytown, NY, 10591, USA
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, TU Berlin, 13355, Berlin, Germany
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland.
| |
Collapse
|
13
|
Potisk T, Remškar M, Pirker L, Filipič G, Mihelič I, Ješelnik M, Čoko U, Ravnik M. Single-Layer and Double-Layer Filtration Materials Based on Polyvinylidene Fluoride-Co-hexafluoropropylene Nanofibers Coated on Melamine Microfibers. ACS APPLIED NANO MATERIALS 2023; 6:15807-15819. [PMID: 37706065 PMCID: PMC10496027 DOI: 10.1021/acsanm.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
In this work, we demonstrate selected optimization changes in the simple design of filtration masks to increase particle removal efficiency (PRE) and filter quality factor by combining experiments and numerical modeling. In particular, we focus on single-layer filters fabricated from uniform thickness fibers and double-layer filters consisting of a layer of highly permeable thick fibers as a support and a thin layer of filtering electrospun nanofibers. For single-layer filters, we demonstrate performance improvement in terms of the quality factor by optimizing the geometry of the composition. We show significantly better PRE performance for filters composed of micrometer-sized fibers covered by a thin layer of electrospun nanofibers. This work is motivated and carried out in collaboration with a targeted industrial development of selected melamine-based filter nano- and micromaterials.
Collapse
Affiliation(s)
- Tilen Potisk
- Laboratory
for Molecular Modeling, National Institute
of Chemistry, SI-1001 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, SI-1001 Ljubljana, Slovenia
| | - Maja Remškar
- Jožef
Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Luka Pirker
- Jožef
Stefan Institute, SI-1000 Ljubljana, Slovenia
- J. Heyrovsky
Institute of Physical Chemistry, Czech Academy
of Sciences, 182 23 Prague 8, Czech Republic
| | | | | | | | - Urban Čoko
- Laboratory
for Molecular Modeling, National Institute
of Chemistry, SI-1001 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, SI-1001 Ljubljana, Slovenia
| | - Miha Ravnik
- Faculty
of Mathematics and Physics, University of
Ljubljana, SI-1001 Ljubljana, Slovenia
- Jožef
Stefan Institute, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Bonsu DNO, Higgins D, Austin JJ. From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates. Sci Justice 2023; 63:588-597. [PMID: 37718006 DOI: 10.1016/j.scijus.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/28/2023] [Accepted: 07/16/2023] [Indexed: 09/19/2023]
Abstract
Titanium dioxide (titania, TiO2) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO2 causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO2-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO2 is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO2-coated materials.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Sciences, Griffith University, Nathan, Queensland, Australia; Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; Forensic Science Queensland, 39 Kessels Rd, Coopers Plains, Queensland, Australia.
| | - Denice Higgins
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| | - Jeremy J Austin
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
15
|
Collings K, Boisdon C, Sham TT, Skinley K, Oh HK, Prince T, Ahmed A, Pennington SH, Brownridge PJ, Edwards T, Biagini GA, Eyers CE, Lamb A, Myers P, Maher S. Attaching protein-adsorbing silica particles to the surface of cotton substrates for bioaerosol capture including SARS-CoV-2. Nat Commun 2023; 14:5033. [PMID: 37596260 PMCID: PMC10439164 DOI: 10.1038/s41467-023-40696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The novel coronavirus pandemic (COVID-19) has necessitated a global increase in the use of face masks to limit the airborne spread of the virus. The global demand for personal protective equipment has at times led to shortages of face masks for the public, therefore makeshift masks have become commonplace. The severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has a spherical particle size of ~97 nm. However, the airborne transmission of this virus requires the expulsion of droplets, typically ~0.6-500 µm in diameter (by coughing, sneezing, breathing, and talking). In this paper, we propose a face covering that has been designed to effectively capture SARS-CoV-2 whilst providing uncompromised comfort and breathability for the wearer. Herein, we describe a material approach that uses amorphous silica microspheres attached to cotton fibres to capture bioaerosols, including SARS CoV-2. This has been demonstrated for the capture of aerosolised proteins (cytochrome c, myoglobin, ubiquitin, bovine serum albumin) and aerosolised inactivated SARS CoV-2, showing average filtration efficiencies of ~93% with minimal impact on breathability.
Collapse
Affiliation(s)
- Kieran Collings
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Kevin Skinley
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Hyun-Kyung Oh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adham Ahmed
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amanda Lamb
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Applied Health Insights Ltd, Cheshire, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
16
|
Lu Y, Liu YX, Wang Y, Oestreich R, Xu ZY, Zhang W, Hügenell P, Janiak C, Yang XY. A facile spray-pressing synthesis approach for reusable photothermal masks. iScience 2023; 26:107286. [PMID: 37520721 PMCID: PMC10374458 DOI: 10.1016/j.isci.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Certain types of face masks are highly efficient in protecting humans from bacterial and viral pathogens, and growing concerns with high safety, low cost, and wide market suitability have accelerated the replacement of reusable face masks with disposable ones during the last decades. However, wearing these masks creates countless problems associated with personnel comfort as well as more significant issues related to the cost of fabrication, the generation of medical waste, and environmental contaminants. In this work, we present a facile spray-pressing technique for the production of P-masks with a potential scale-up prospect by adding a graphene layer on one side of meltblown fabric and a functional layer on the other side. In principle, this technique could be easily integrated into the present automatic mask production process and the masks have self-cleaning and/or self-sterilizing properties when it is exposed to solar or simulated solar irradiation.
Collapse
Affiliation(s)
- Yi Lu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yi-Xuan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Zi-Yan Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Philipp Hügenell
- Division Thermal Systems and Buildings, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, Freiburg 79110, Germany
| | - Christoph Janiak
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Lipovka A, Fatkullin M, Shchadenko S, Petrov I, Chernova A, Plotnikov E, Menzelintsev V, Li S, Qiu L, Cheng C, Rodriguez RD, Sheremet E. Textile Electronics with Laser-Induced Graphene/Polymer Hybrid Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38946-38955. [PMID: 37466067 DOI: 10.1021/acsami.3c06968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The concept of wearables is rapidly evolving from flexible polymer-based devices to textile electronics. The reason for this shift is the ability of textiles to ensure close contact with the skin, resulting in comfortable, lightweight, and compact "always with you" sensors. We are contributing to this polymer-textile transition by introducing a novel and simple way of laser intermixing of graphene with synthetic fabrics to create wearable sensing platforms. Our hybrid materials exhibit high electrical conductivity (87.6 ± 36.2 Ω/sq) due to the laser reduction of graphene oxide and simultaneous laser-induced graphene formation on the surface of textiles. Furthermore, the composite created between graphene and nylon ensures the durability of our materials against sonication and washing with detergents. Both of these factors are essential for real-life applications, but what is especially useful is that our free-form composites could be used as-fabricated without encapsulation, which is typically required for conventional laser-scribed materials. We demonstrate the exceptional versatility of our new hybrid textiles by successfully recording muscle activity, heartbeat, and voice. We also show a gesture sensor and an electrothermal heater embedded within a single commercial glove. Additionally, the use of these textiles could be extended to personal protection equipment and smart clothes. We achieve this by implementing self-sterilization with light and laser-induced functionalization with silver nanoparticles, which results in multifunctional antibacterial textiles. Moreover, incorporating silver into such fabrics enables their use as surface-enhanced Raman spectroscopy sensors, allowing for the direct analysis of drugs and sweat components on the clothing itself. Our research offers valuable insights into simple and scalable processes of textile-based electronics, opening up new possibilities for paradigms like the Internet of Medical Things.
Collapse
Affiliation(s)
- Anna Lipovka
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | - Anna Chernova
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | | | | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenina Ave. 30, Tomsk 634034, Russia
| | | |
Collapse
|
18
|
Hashem MH, Wehbe M, Damacet P, El Habbal RK, Ghaddar N, Ghali K, Ahmad MN, Karam P, Hmadeh M. Electrospun Metal-Organic Framework-Fabric Nanocomposites as Efficient Bactericides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37384737 DOI: 10.1021/acs.langmuir.3c01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In this work, we utilized electrospinning to develop advanced composite membranes of polyvinyl chloride (PVC) loaded with postmetalated metal-organic frameworks (MOFs), specifically UiO-66(COOH)2-Ag and ZIF-8-Ag. This innovative technique led to the creation of highly stable PVC/MOFs-Ag membrane composites, which were thoroughly characterized using various analytical techniques, including scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, porosity analysis, and water contact angle measurement. The results verified the successful integration of MOF crystals within the nanofibrous PVC membranes. The obtained composites exhibited larger fiber diameters for 5 and 10% MOF loadings and a smaller diameter for 20% loading. Additionally, they displayed greater average pore sizes than traditional PVC membranes across most MOF loading percentages. Furthermore, we examined the antibacterial properties of the fabricated membranes at different MOFs-Ag loadings. The findings revealed that the membranes demonstrated significant antibacterial activity up to 95% against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as the MOFs-Ag loading increased, even when maintaining a constant silver concentration. This indicates a contact-based inhibition mechanism. The outcomes of this study have crucial implications for the development of novel, stable, and highly effective antibacterial materials, which could serve as superior alternatives for face masks and be integrated into materials requiring regular decontamination, as well as potential water filtration systems.
Collapse
Affiliation(s)
- Mohammad H Hashem
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohamad Wehbe
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Patrick Damacet
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Rayan Kadah El Habbal
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Nesreen Ghaddar
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Kamel Ghali
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad N Ahmad
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Mohamad Hmadeh
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
19
|
Zhang F, Lin J, Yang M, Wang Y, Ye Z, He J, Shen J, Zhou X, Guo Z, Zhang Y, Wang B. High-breathable, antimicrobial and water-repellent face mask for breath monitoring. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 466:143150. [PMID: 37138814 PMCID: PMC10122566 DOI: 10.1016/j.cej.2023.143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Face masks with multiple functionalities and exceptional durability have attracted increasing interests during the COVID-19 pandemic. How to integrate the antibacterial property, comfortability during long-time wearing, and breath monitoring capability together on a face mask is still challenging. Here we developed a kind of face mask that assembles the particles-free water-repellent fabric, antibacterial fabric, and hidden breath monitoring device together, resulting in the highly breathable, water-repellent, and antibacterial face mask with breath monitoring capability. Based on the rational design of the functional layers, the mask shows exceptional repellency to micro-fogs generated during breathing while maintaining high air permeability and inhibiting the passage of bacteria-containing aerogel. More importantly, the multi-functional mask can also monitor the breath condition in a wireless and real-time fashion, and collect the breath information for epidemiological analysis. The resultant mask paves the way to develop multi-functional breath-monitoring masks that can aid the prevention of the secondary transmission of bacteria and viruses while preventing potential discomfort and face skin allergy during long-period wearing.
Collapse
Affiliation(s)
- Fangfei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingwan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jiajun He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
20
|
Cheraghi Bidsorkhi H, Faramarzi N, Ali B, Ballam LR, D'Aloia AG, Tamburrano A, Sarto MS. Wearable Graphene-based smart face mask for Real-Time human respiration monitoring. MATERIALS & DESIGN 2023; 230:111970. [PMID: 37162811 PMCID: PMC10151252 DOI: 10.1016/j.matdes.2023.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
After the pandemic of SARS-CoV-2, the use of face-masks is considered the most effective way to prevent the spread of virus-containing respiratory fluid. As the virus targets the lungs directly, causing shortness of breath, continuous respiratory monitoring is crucial for evaluating health status. Therefore, the need for a smart face mask (SFM) capable of wirelessly monitoring human respiration in real-time has gained enormous attention. However, some challenges in developing these devices should be solved to make practical use of them possible. One key issue is to design a wearable SFM that is biocompatible and has fast responsivity for non-invasive and real-time tracking of respiration signals. Herein, we present a cost-effective and straightforward solution to produce innovative SFMs by depositing graphene-based coatings over commercial surgical masks. In particular, graphene nanoplatelets (GNPs) are integrated into a polycaprolactone (PCL) polymeric matrix. The resulting SFMs are characterized morphologically, and their electrical, electromechanical, and sensing properties are fully assessed. The proposed SFM exhibits remarkable durability (greater than1000 cycles) and excellent fast response time (∼42 ms), providing simultaneously normal and abnormal breath signals with clear differentiation. Finally, a developed mobile application monitors the mask wearer's breathing pattern wirelessly and provides alerts without compromising user-friendliness and comfort.
Collapse
Affiliation(s)
- Hossein Cheraghi Bidsorkhi
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Negin Faramarzi
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Babar Ali
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lavanya Rani Ballam
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Giuseppe D'Aloia
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Tamburrano
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Sabrina Sarto
- Department of Astronautical, Electrical, and Energy Engineering (DIAEE), Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
23
|
Kwiatkowska A, Granicka LH. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. MEMBRANES 2023; 13:464. [PMID: 37233525 PMCID: PMC10223398 DOI: 10.3390/membranes13050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
This review is conducted against the background of nanotechnology, which provides us with a chance to effectively combat the spread of coronaviruses, and which primarily concerns polyelectrolytes and their usability for obtaining protective function against viruses and as carriers for anti-viral agents, vaccine adjuvants, and, in particular, direct anti-viral activity. This review covers nanomembranes in the form of nano-coatings or nanoparticles built of natural or synthetic polyelectrolytes--either alone or else as nanocomposites for creating an interface with viruses. There are not a wide variety of polyelectrolytes with direct activity against SARS-CoV-2, but materials that are effective in virucidal evaluations against HIV, SARS-CoV, and MERS-CoV are taken into account as potentially active against SARS-CoV-2. Developing new approaches to materials as interfaces with viruses will continue to be relevant in the future.
Collapse
Affiliation(s)
| | - Ludomira H. Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| |
Collapse
|
24
|
Lou Z, Wang L, Yu K, Wei Q, Hussain T, Xia X, Zhou H. Electrospun PVB/AVE NMs as mask filter layer for win-win effects of filtration and antibacterial activity. J Memb Sci 2023; 672:121473. [PMID: 36785656 PMCID: PMC9908571 DOI: 10.1016/j.memsci.2023.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.
Collapse
Key Words
- AVE, apocynum venetum extract
- Air filtration
- Antibacterial properties
- Apocynum venetum extract
- CNF, cellulose nanofibres
- PA, polyamide
- PAN, polyacrylonitrile
- PLA, poly(lactic acid)
- PVB, polyvinyl butyral
- PVB/AVE NMs, polyvinyl butyral/apocynum venetum extract nanofibrous membranes
- PVDF, polyvinylidene fluoride
- Protective masks
- QF, quality factor
- WCA, water contact angle
- Win-win effects
Collapse
Affiliation(s)
- Zhuyushuang Lou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Ling Wang
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Kefei Yu
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tanveer Hussain
- Textile Processing Department, Faculty of Engineering & Technology, National Textile University, Sheikhupura Road, Faisalabad, 37610, Pakistan
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| | - Huimin Zhou
- College of Textile and Clothing, Xinjiang University, Xinjiang, Urumchi, 830046, China,Corresponding author
| |
Collapse
|
25
|
Ehsanimehr S, Sonnier R, Badawi M, Ducos F, Kadi N, Skrifvars M, Saeb MR, Vahabi H. Sustainable Flame-Retardant Flax Fabrics by Engineered Layer-by-Layer Surface Functionalization with Phytic Acid and Polyethylenimine. FIRE TECHNOLOGY 2023:1-19. [PMID: 37360675 PMCID: PMC10042673 DOI: 10.1007/s10694-023-01387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
New generation of mission-oriented fabrics meets advanced requirements; such as electrical conductivity, flame retardancy, and anti-bacterial properties. However, sustainability concerns still are on-demand in fabrication of multi-functional fabrics. In this work, we used a bio-based phosphorus molecule (phytic acid, PA) to reinforce flax fabrics against flame via layer-by-layer consecutive surface modification. First, the flax fabric was treated with PA. Then, polyethylenimine (PEI) was localized above it to create negative charges, and finally PA was deposited as top-layer. Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and inductively-coupled plasma atomic emission spectrometry (ICP-AES) proved successful chemical treatment. Pyrolysis-combustion flow calorimetry (PCFC) showed significant drop by about 77% in the peak of heat release rate (pHRR) from 215 W/g for untreated to 50 W/g for treated flax fabric. Likewise, the total heat release (THR) decreased by more than three times from 11 to 3.2 kJ/g. Mechanical behavior of the treated flax fabric was completely different from untreated flax fabrics, changing from almost highly-strengthened behavior with short elongation at break to a rubber-like behavior with significantly higher elongation at break. Surface friction resistance was also improved, such that the abrasion resistance of the modified fabrics increased up to 30,000 rub cycles without rupture. Supplementary Information The online version contains supplementary material available at 10.1007/s10694-023-01387-7.
Collapse
Affiliation(s)
- S. Ehsanimehr
- Université de Lorraine, CNRS, LPCT, 54000 Nancy, France
| | - R. Sonnier
- IMT – Mines Ales, Polymers Hybrids and Composites (PCH), 6 Avenue De Clavières, 30319 Alès Cedex, France
| | - M. Badawi
- Université de Lorraine, CNRS, LPCT, 54000 Nancy, France
| | - F. Ducos
- Université de Lorraine, CentraleSupélec, LMOPS, 57000 Metz, France
| | - N. Kadi
- Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Borås, Sweden
| | - M. Skrifvars
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Borås, Sweden
| | - M. R. Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - H. Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, 57000 Metz, France
| |
Collapse
|
26
|
Zhang Z, Jia S, Wu W, Xiao G, Sundarrajan S, Ramakrishna S. Electrospun transparent nanofibers as a next generation face filtration media: A review. BIOMATERIALS ADVANCES 2023; 149:213390. [PMID: 36963249 DOI: 10.1016/j.bioadv.2023.213390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.
Collapse
Affiliation(s)
- Zongqi Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Shuyue Jia
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenting Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Subramanian Sundarrajan
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore; Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore.
| |
Collapse
|
27
|
Choi J, Poudel K, Nam KS, Piri A, Rivera-Piza A, Ku SK, Hwang J, Kim JO, Byeon JH. Aero-manufacture of nanobulges for an in-place anticoronaviral on air filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130458. [PMID: 36444810 DOI: 10.1016/j.jhazmat.2022.130458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.
Collapse
Affiliation(s)
- Jisoo Choi
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea; Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Adriana Rivera-Piza
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
28
|
Photoactive decontamination and reuse of face masks. E-PRIME - ADVANCES IN ELECTRICAL ENGINEERING, ELECTRONICS AND ENERGY 2023:100129. [PMCID: PMC9942455 DOI: 10.1016/j.prime.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has led to global shortages in disposable respirators. Increasing the recycling rate of masks is a direct, low-cost strategy to mitigate COVID-19 transmission. Photoactive decontamination of used masks attracts great attention due to its fast response, remarkable virus inactivation effect and full protection integrity. Here, we review state-of-the-art situation of photoactive decontamination. The basic mechanism of photoactive decontamination is firstly discussed in terms of ultraviolet, photothermal or photocatalytic properties. Among which, ultraviolet radiation damages DNA and RNA to inactivate viruses and microorganisms, and photothermal method damages them by destroying proteins, while photocatalysis kills them by destroying the structure. The practical applications of photoactive decontamination strategies are then fully reviewed, including ultraviolet germicidal irradiation, and unconventional masks made of functional nanomaterials with photothermal or photocatalytic properties. Their performance requirements are elaborated together with the advantages of long-term recycle use. Finally, we put forward challenges and prospects for further development of photoactive decontamination technology.
Collapse
|
29
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
30
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
31
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
32
|
Sojdeh S, Banitalebi Dehkordi A, Badiei A, Zarrabi A, Makvandi P, Ashrafizadeh M, Saeb MR, Lima EC, Rabiee M, Asadnia M, Webster TJ, Rabiee N. N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40327-40339. [PMID: 36609970 DOI: 10.1007/s11356-022-25068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine-formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV-vis spectra, and N2 adsorption-desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a λexc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013-0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues.
Collapse
Affiliation(s)
- Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Ali Banitalebi Dehkordi
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box, Tehran, 14155-6455, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, 56025, Pisa, Italy
| | - Milad Ashrafizadeh
- Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, Porto Alegre, ZIP, 91501-970, Brazil.
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, New South Wales, 2109, Sydney, Australia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tijian, 300130, China.,School of Engineering, Saveetha University, Chennai, 602105, India.,Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, 64049-550, Brazil
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, 6150, Australia
| |
Collapse
|
33
|
Ray SS, Soni R, Huyen DTT, Ravi S, Myung S, Lee CY, Kwon Y. Chemical engineering of electrospun
nanofibrous‐based three‐layered
nonwoven polymeric protective mask for enhanced performance. J Appl Polym Sci 2023. [DOI: 10.1002/app.53584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Saikat Sinha Ray
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Ritesh Soni
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Dao Thi Thanh Huyen
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Srinath Ravi
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Suwan Myung
- Research Center for Bio‐based Chemistry Korea Research Institute of Chemical Technology (KRICT) Ulsan South Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Young‐Nam Kwon
- Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| |
Collapse
|
34
|
Torres I, González-Tobío B, Ares P, Gómez-Herrero J, Zamora F. Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. MATERIALS TODAY. CHEMISTRY 2022; 26:101146. [PMID: 36159446 PMCID: PMC9481924 DOI: 10.1016/j.mtchem.2022.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.
Collapse
Affiliation(s)
- I Torres
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - B González-Tobío
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - P Ares
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - J Gómez-Herrero
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - F Zamora
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
35
|
Luo J, Yu H, Lu B, Wang D, Deng X. Superhydrophobic Biological Fluid-Repellent Surfaces: Mechanisms and Applications. SMALL METHODS 2022; 6:e2201106. [PMID: 36287096 DOI: 10.1002/smtd.202201106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Superhydrophobic biological fluid-repellent surfaces (SBFRSs) have attracted great attention in the treatment of blood and urine-related diseases because of their unique wettability and compatibility, which creates a new path for the development of medical apparatus and instruments, and are expected to create advances in various fields. Here, this review provides an up-to-date summary of research progress on the repellent mechanism and application of SBFRSs. The underlying physical and chemical principles for designing superhydrophobic surfaces are first introduced. Then, the dialectical influences of solid-liquid interactions between superhydrophobic surfaces and biological fluids on the wettability and compatibility are emphatically expounded. Subsequently, attention is drawn to the recent applications of SBFRSs in biomedical fields, such as surgical medical apparatus, implant materials, extracorporeal circulation devices, and biological fluid detection. Finally, the outlook and challenges in terms of employing SBFRSs are also discussed. This review is expected to provide a comprehensive guidance for the preparation of SBFRSs with compatibility and long-term superhydrophobic stability that is closely related to clinical applications.
Collapse
Affiliation(s)
- Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huali Yu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Binyang Lu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| |
Collapse
|
36
|
Lee S, Jang JW, Ryu YB. Surface Oxidation of Cu 2O Nanoparticles by Adsorbed Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4242. [PMID: 36500867 PMCID: PMC9739608 DOI: 10.3390/nano12234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Copper-based nanoparticles have been intensively studied owing to their superior antibacterial activity. In this study, cuprous oxide (Cu2O) nanoparticles were synthesized using two different methods. In particular, two methods for synthesizing copper oxide from NaOH, namely, with and without the addition of NH3, were used to adjust the morphology of the nanoparticles. The nanoparticles from the NH3 and NaOH samples possessed an octahedral morphology. The crystal structure of the samples was confirmed by X-ray diffraction. The size distribution of the NH3 sample was narrower than that of the NaOH sample. Furthermore, the average size of the NH3 sample was smaller than that of the NaOH sample. Unexpectedly, the antibacterial activity of the NH3 sample was found to be lower than that of the NaOH sample. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the adsorbed NH3 caused the surface oxidation of Cu2O nanoparticles with azide (N3) formation on surface.
Collapse
Affiliation(s)
- Siwoo Lee
- Korea Institute of Industrial Technology (KITECH) Ulsan Division, Ulsan 44413, Republic of Korea
| | - Ji Won Jang
- Hyundai Motors, Ulsan 44259, Republic of Korea
| | - Young Bok Ryu
- Korea Institute of Industrial Technology (KITECH) Ulsan Division, Ulsan 44413, Republic of Korea
| |
Collapse
|
37
|
Jensen MG, O'Shaughnessy PT, Shaffer M, Yu S, Choi YY, Christiansen M, Stanier CO, Hartley M, Huddle J, Johnson J, Bibby K, Myung NV, Cwiertny DM. Simple fabrication of an electrospun polystyrene microfiber filter that meets
N95
filtering facepiece respirator filtration and breathability standards. J Appl Polym Sci 2022; 140:e53406. [PMID: 37034442 PMCID: PMC10078598 DOI: 10.1002/app.53406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 μm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.
Collapse
Affiliation(s)
- Madeline G. Jensen
- Department of Civil and Environmental Engineering University of Iowa Iowa City Iowa USA
| | | | - Marlee Shaffer
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana USA
| | - Sooyoun Yu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
- Department of Chemical and Environmental Engineering University of California Riverside Riverside California USA
| | - Megan Christiansen
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City Iowa USA
| | - Charles O. Stanier
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City Iowa USA
| | - Michael Hartley
- Department of Hospital Administration University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | | | | | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana USA
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering University of Iowa Iowa City Iowa USA
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City Iowa USA
| |
Collapse
|
38
|
Guan X, Lin J, Han J, Gao X, Zhang Y, Hu B, Guidoin R, Wang L. Prolonged Use of Surgical Masks and Respirators Affects the Protection and Comfort for Healthcare Workers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227918. [PMID: 36431403 PMCID: PMC9696921 DOI: 10.3390/ma15227918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
This study explored the ideal period for wearing masks to prevent the physiological and psychological problems associated with long-term face mask use during respiratory infections by healthcare workers. Breathing simulators, surgical masks (SM) and medical respirators (PM) were prepared for two to eight hours. Changes in the comfort of masks (facial skin temperature, breathing resistance, and moisture permeability) and protection (filtration efficiency, resistance to blood penetration, and colony count) were assessed. The results demonstrated that the masks offered efficient liquid-particle filtering even after eight hours of use. However, the number of bacterial colonies using PM and SM grew significantly after two and four hours, respectively. Concerning comfort, the inspiratory resistance of masks rose dramatically after two hours, whereas the moisture permeability declined considerably after four hours. In addition, skin temperature had a significant increase within two hours, which may result in facial discomfort. When conditions permitted, the hospital staff was instructed to replace their masks every two hours.
Collapse
Affiliation(s)
- Xiaoning Guan
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jing Lin
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jiaxiang Han
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Xiaodong Gao
- Department of Hospital Infection Management, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Bijie Hu
- Department of Hospital Infection Management, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Robert Guidoin
- LOEX, Division of Regenerative Medicine, Centre de Recherche du CHU, Université Laval, Quebec City, QU G1V 0A6, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QU G1V 0A6, Canada
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
39
|
Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O, Rabiee M, Mostafavi E, Lima EC, Saeb MR, Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem Biol Drug Des 2022; 100:699-721. [PMID: 36002440 PMCID: PMC9539342 DOI: 10.1111/cbdd.14136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Faculty of Medicine, Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegManitobaCanada
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba (CHRIM), University of ManitobaWinnipegManitobaCanada
| | | | | | - Masoomeh Nazarabi
- Faculty of Organic Chemistry, Department of ChemistryUniversity of KashanKashanIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Eder C. Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS)Porto AlegreBrazil
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
| |
Collapse
|
40
|
Rabiee N, Akhavan O, Fatahi Y, Ghadiri AM, Kiani M, Makvandi P, Rabiee M, Nicknam MH, Saeb MR, Varma RS, Ashrafizadeh M, Zare EN, Sharifi E, Lima EC. CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. CHEMOSPHERE 2022; 306:135578. [PMID: 35798154 PMCID: PMC9251674 DOI: 10.1016/j.chemosphere.2022.135578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 05/13/2023]
Abstract
Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Nalbandian MJ, Kim S, Gonzalez-Ribot HE, Myung NV, Cwiertny DM. Recent advances and remaining barriers to the development of electrospun nanofiber and nanofiber composites for point-of-use and point-of-entry water treatment systems. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100204. [PMID: 37025391 PMCID: PMC10074328 DOI: 10.1016/j.hazadv.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we focus on electrospun nanofibers as a promising material alternative for the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water treatment systems. We focus our review on prior work with various formulations of electrospun materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated carbon, ion exchange resins) commonly used in commercially available, certified POU/POE devices for contaminants including organic pollutants, metals (e.g., lead) and persistent oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and development opportunities of the relevant literature based on an evaluation framework that considers (i) performance comparison to commercial analogs; (ii) appropriate pollutant targets for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE applications; (iv) consideration of water quality effects; and (v) evaluation of material strength and longevity. We also identify several emerging issues in decentralized water treatment where nanofiber-based POU/POE devices could help meet existing needs including their use for treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research has demonstrated promising material performance toward relevant targets for POU/POE applications, using appropriate aquatic matrices and considering material stability. To fully realize their promise as an emerging treatment technology, our analysis of the available literature reveals the need for more work that benchmarks nanofiber performance against established commercial analogs, as well as fabrication and performance validation at scales and under conditions simulating POU/POE water treatment.
Collapse
Affiliation(s)
- Michael J. Nalbandian
- Department of Civil Engineering and Construction Management, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Humberto E. Gonzalez-Ribot
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| |
Collapse
|
42
|
Huang R, Dai Y, Ahmed J, Edirisinghe M. Facile One-Step Synthesis of PVDF Bead-on-String Fibers by Pressurized Gyration for Reusable Face Masks. Polymers (Basel) 2022; 14:4498. [PMID: 36365492 PMCID: PMC9654049 DOI: 10.3390/polym14214498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Single-use face masks pose a threat to the environment and are not cost-effective, which prompts the need for developing reusable masks. In this study, pressurized gyration (PG) successfully produced bead-on-string polyvinylidene fluoride (PVDF) fibers with fiber diameters ranging from 2.3 μm to 26.1 μm, and bead diameters ranging from 60.9 μm to 88.5 μm by changing the solution parameters. The effect of the solution parameters on the crystalline phase was studied by Fourier-transform infrared spectroscopy (FT-IR), where the β-phase contents of PG PVDF fibers reached over 75%. The fiber morphology and β-phase contents of PG PVDF fibers indicated the potential mechanical and electrostatic filtration efficiency of PG PVDF fibers, respectively. Additionally, the hydrophobicity was investigated by static water contact angle tests, and the PVDF fibers showed superior hydrophobicity properties (all samples above 125°) over commercial polypropylene (PP) single-use masks (approximately 107°). This study supports the notion that the PG PVDF fiber mats are a promising candidate for future reusable face masks.
Collapse
Affiliation(s)
| | | | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
43
|
Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM (WARRENDALE, PA. : 1989) 2022; 75:614-630. [PMID: 36267692 PMCID: PMC9568937 DOI: 10.1007/s11837-022-05505-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
We have evaluated some of the most recent breakthroughs in the synthesis and applications of graphene and graphene-based nanomaterials. This review includes three major categories. The first section consists of an overview of the structure and properties, including thermal, optical, and electrical transport. Recent developments in the synthesis techniques are elaborated in the second section. A number of top-down strategies for the synthesis of graphene, including exfoliation and chemical reduction of graphene oxide, are discussed. A few bottom-up synthesis methods for graphene are also covered, including thermal chemical vapor deposition, plasma-enhanced chemical vapor deposition, thermal decomposition of silicon, unzipping of carbon nanotubes, and others. The final section provides the recent innovations in graphene applications and the commercial availability of graphene-based devices.
Collapse
Affiliation(s)
- Akanksha R. Urade
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - Indranil Lahiri
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - K. S. Suresh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| |
Collapse
|
44
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
45
|
Farshi P, Salarian R, Rabiee M, Alizadeh S, Gholipourmalekabadi M, Ahmadi S, Rabiee N. Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Paniz Farshi
- Biomaterials Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Reza Salarian
- Biomedical Engineering Department Maziar University Mazandaran Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
| | - Sanaz Alizadeh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
- Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk South Korea
| |
Collapse
|
46
|
Ferreira CAM, Guerreiro SFC, Valente JFA, Patrício TMF, Alves N, Mateus A, Dias JR. Advanced Face Mask Filters Based on PCL Electrospun Meshes Dopped with Antimicrobial MgO and CuO Nanoparticles. Polymers (Basel) 2022; 14:polym14163329. [PMID: 36015586 PMCID: PMC9413239 DOI: 10.3390/polym14163329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The pandemic situation caused by coronavirus clearly demonstrated the need for alternatives able to protect the respiratory tract and inactivate the infectious agents. Based on this, antibacterial face-mask filters of polycaprolactone (PCL) dopped with magnesium oxide (MgO) and copper oxide (CuO) nanoparticles (NPs) were produced using an electrospinning technique. A morphological analysis of electrospun meshes evaluated the success of nanoparticles’ incorporation as well as the average fibers’ diameters (481 ± 272 nm). The performance of electrospun nanofibers was also assessed in terms of tensile strength (0.88 ± 0.25 MPa), water vapor permeability (11,178.66 ± 35.78 g·m−2·day−1), stability under wet conditions and antibacterial activity according to the standard guidelines. The filters showed structural stability up to 2 h of washing and improved antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for optimized concentrations of MgO and CuO NPs. Overall, electrospun meshes with antibacterial activity were successfully developed for advanced filtering applications.
Collapse
Affiliation(s)
- Carolina A. M. Ferreira
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), ESTM, Instituto Politécnico de Leiria, 2050-641 Peniche, Portugal
| | - Sara F. C. Guerreiro
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Medical Physics Department, Portuguese Institute of Oncology (IPO-Porto), 4200-072 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana F. A. Valente
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Tatiana M. F. Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Artur Mateus
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Correspondence:
| |
Collapse
|
47
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Bagherzadeh M, Safarkhani M, Kiani M, Radmanesh F, Daneshgar H, Ghadiri AM, Taghavimandi F, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Sci Rep 2022; 12:12105. [PMID: 35840687 PMCID: PMC9287414 DOI: 10.1038/s41598-022-16058-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 01/10/2023] Open
Abstract
The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.
Collapse
Affiliation(s)
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
49
|
Carayon I, Szarlej P, Gnatowski P, Piłat E, Sienkiewicz M, Glinka M, Karczewski J, Kucińska-Lipka J. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose. Adv Med Sci 2022; 67:269-282. [PMID: 35841880 DOI: 10.1016/j.advms.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 ± 0.64 μg/mL after 15 min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.
Collapse
Affiliation(s)
- Iga Carayon
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Paweł Szarlej
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Przemysław Gnatowski
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Edyta Piłat
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Sienkiewicz
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marta Glinka
- Department of Analytical Chemistry, Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
50
|
Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|