1
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Hirono M, Kudo M, Yamada M, Yanagawa Y. The modulatory role of bone morphogenetic protein signaling in cerebellar synaptic plasticity. J Neurochem 2025; 169:e16290. [PMID: 39680498 DOI: 10.1111/jnc.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Bone morphogenetic proteins (BMPs), regulators of bone formation, have been implicated in embryogenesis and morphogenesis of various tissues and organs. BMP signaling plays a role in the formation of appropriate synaptic connections and development of normal neural circuits in the brain. However, physiological roles of BMP signaling in postnatal neural functions, including synaptic plasticity, remain largely unknown. Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum has been suggested one neuronal mechanism underlying cerebellar functions. Here, we explored the contribution of BMP signaling to the induction of mouse cerebellar LTD. We first demonstrated that BMP2 and/or 4 were expressed in GABAergic neurons in mature networks of the cerebellar cortex. mRNA encoding BMP receptor type 1B (Bmpr1b) was expressed in the PC layer. Exogenous application of noggin, a BMP ligand inhibitor, suppressed the induction of cerebellar LTD by conjunctive stimulation, which caused normal LTD under control condition. Furthermore, mice deficient in BMPR1B exhibited attenuation of the extent of LTD induction, whereas they showed normal excitatory synaptic transmission at PF-PC synapses. These results suggest that after postnatal development, BMP signaling activated by BMPR1B, expressed in the PC layer, plays a crucial role in the facilitation of cerebellar LTD, leading to the modulation of cerebellar functions and behaviors.
Collapse
Affiliation(s)
| | - Moeko Kudo
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
3
|
Azargoonjahromi A. Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer's disease. Mol Brain 2024; 17:93. [PMID: 39696587 DOI: 10.1186/s13041-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.
Collapse
|
4
|
Affaneh A, Linden AK, Tunc-Ozcan E, Tsai YH, Peng CY, Kessler JA. Inhibition of Bone Morphogenetic Protein Signaling Prevents Tau Pathology in iPSC Derived Neurons and PS19 Mice. Ann Neurol 2024. [PMID: 39644182 DOI: 10.1002/ana.27149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Many neurodegenerative disorders share a common pathologic feature involving the deposition of abnormal tau protein in the brain (tauopathies). This suggests that there may be some shared pathophysiologic mechanism(s). The largest risk factor for the majority of these disorders is aging, suggesting involvement of the aging process in the shared pathophysiology. We test the hypothesis that an increase in bone morphogenetic protein (BMP) signaling that occurs during aging contributes to the onset and progression of tauopathies. METHODS Human induced pluripotent stem cell (iPSC)-derived neurons from patients with Alzheimer's disease (AD) were used to investigate the effects of BMP signaling on tau phosphorylation and release and the mechanisms underlying these effects. Wildtype mice were used to examine effects of BMP signaling in vivo. P301S (PS19) mice were examined for the effects of BMP signaling in a model of tauopathy. RESULTS Here, we show that BMP signaling, mediated by non-canonical p38 signaling, increases tau phosphorylation and release of p-tau in human iPSC-derived AD neurons. Further, there is an interaction between BMP signaling and apolipoprotein E4 (ApoE4) that significantly increases tau phosphorylation and release compared with ApoE3 neurons. Inhibiting BMP signaling reduces the changes in tau in the cultured human neurons, and it limits tau pathology and prevents cognitive decline in PS19 mice. INTERPRETATION Our study suggests that the age-related increase in BMP signaling may participate in the onset and progression of tau pathology. Thus, therapeutic interventions that reduce BMP signaling in the aging brain could potentially slow or prevent development of diseases involving tau hyperphosphorylation. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anne K Linden
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Elif Tunc-Ozcan
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Yung-Hsu Tsai
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Chian-Yu Peng
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
5
|
Yang R, Ji F, Jiao J. Early central nervous system development and neuron regeneration. Curr Opin Genet Dev 2024; 90:102286. [PMID: 39637751 DOI: 10.1016/j.gde.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The nervous system is the most complex system in the human body, and the normal development of the central nervous system (CNS) is essential for maintaining the healthy life activities of the individual. CNS development requires the orchestration of multiple internal or external or direct or indirect factors to regulate neural stem cell fate specification. Here, we provide a broad overview of the regulatory system of nerve cell fate decisions and discuss the latest technological approaches to achieve neural regeneration. Understanding the CNS development and regeneration mechanisms has shifted the paradigm from traditional experiments to high-throughput sequencing.
Collapse
Affiliation(s)
- Runhua Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
| |
Collapse
|
6
|
Holland C, Dravecz N, Owens L, Benedetto A, Dias I, Gow A, Broughton S. Understanding exogenous factors and biological mechanisms for cognitive frailty: A multidisciplinary scoping review. Ageing Res Rev 2024; 101:102461. [PMID: 39278273 DOI: 10.1016/j.arr.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies were included if they used the definition of CF OR focused on conjunction of cognitive impairment and frailty (by any measure), AND excluded studies on specific disease populations, interventions, epidemiology or prediction of mortality. Searches used Web of Science, PubMed and Science Direct. Search terms included "cognitive frailty" OR (("cognitive decline" OR "cognitive impairment") AND (frail*)), with terms to elicit mechanisms, predictors, causes, pathways and risk factors. To ensure inclusion of animal and cell models, keywords such as "behavioural" or "cognitive decline" or "senescence", were added. 206 papers were included. Descriptive analysis provided high-level categorisation of determinants from social and environmental through psychological to biological. Patterns distinguishing CF from Alzheimer's disease were identified and social and psychological moderators and mediators of underlying biological and physiological changes and of trajectories of CF development were suggested as foci for further research.
Collapse
Affiliation(s)
- Carol Holland
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Nikolett Dravecz
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Lauren Owens
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Irundika Dias
- Aston University Medical School, Aston University, Birmingham B4 7ET, UK.
| | - Alan Gow
- Centre for Applied Behavioural Sciences, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| |
Collapse
|
7
|
Ruetz TJ, Pogson AN, Kashiwagi CM, Gagnon SD, Morton B, Sun ED, Na J, Yeo RW, Leeman DS, Morgens DW, Tsui CK, Li A, Bassik MC, Brunet A. CRISPR-Cas9 screens reveal regulators of ageing in neural stem cells. Nature 2024; 634:1150-1159. [PMID: 39358505 PMCID: PMC11525198 DOI: 10.1038/s41586-024-07972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
Collapse
Affiliation(s)
- Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | | | - Bhek Morton
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Jeeyoon Na
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stem Cell Biology & Regenerative Medicine Graduate Program, Stanford University, Stanford, CA, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Frazer NB, Kaas GA, Firmin CG, Gamazon ER, Hatzopoulos AK. BMP Antagonist Gremlin 2 Regulates Hippocampal Neurogenesis and Is Associated with Seizure Susceptibility and Anxiety. eNeuro 2024; 11:ENEURO.0213-23.2024. [PMID: 39349059 PMCID: PMC11493175 DOI: 10.1523/eneuro.0213-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024] Open
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination (Grem2-/- ). Histological analysis of brain sections revealed significant scattering of CA3 pyramidal cells within the dentate hilus in the hippocampus of Grem2-/- mice. Furthermore, the number of proliferating neural stem cells and neuroblasts was significantly decreased in the subgranular zone of Grem2-/- mice compared with that of wild-type (WT) controls. Due to the role of hippocampal neurogenesis in neurological disorders, we tested mice on a battery of neurobehavioral tests. Grem2-/- mice exhibited increased anxiety on the elevated zero maze in response to acute and chronic stress. Specifically, male Grem2-/- mice showed increased anxiogenesis following chronic stress, and this was correlated with higher levels of BMP signaling and decreased proliferation in the dentate gyrus. Additionally, when chemically challenged with kainic acid, Grem2-/- mice displayed a higher susceptibility to and increased severity of seizures compared with WTs. Together, our data indicate that Grem2 regulates BMP signaling and is vital in maintaining homeostasis in adult hippocampal neurogenesis and structure. Furthermore, the lack of Grem2 contributes to the development and progression of neurogenesis-related disorders such as anxiety and epilepsy.
Collapse
Affiliation(s)
- Nicolette B Frazer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Garrett A Kaas
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Caroline G Firmin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric R Gamazon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Antonis K Hatzopoulos
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
9
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
10
|
Cao Y, Liu P, Bian H, Jin S, Liu J, Yu N, Cui H, Sun F, Qian X, Qiu W, Ma C. Reduced neurogenesis in human hippocampus with Alzheimer's disease. Brain Pathol 2024; 34:e13225. [PMID: 38012054 PMCID: PMC11007046 DOI: 10.1111/bpa.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN), essential for the plasticity of hippocampal structure and function, may be disrupted in Alzheimer's disease (AD). However, the relationship between the changes in AHN and AD-related pathology in humans remains uncertain. By utilizing advanced immunostaining techniques, we could identify multiple biomarkers representing different stages of AHN in postmortem human hippocampal tissue that exhibited various AD-related neuropathological changes. In this study, we observed a significant presence of neurogenic cells in the hippocampus's dentate gyrus (DG) region in 30 individuals, including 14 individuals diagnosed with AD-related neuropathological changes and the remaining 16 individuals without any neurological diseases. Further investigation revealed that patients with AD exhibited pronounced astrogliosis and reduced neurogenesis. Specifically, the number of neuroblasts, immature and early mature granule cells decreased significantly as AD advanced. Although the number of neural stem cells (NSCs) remained unchanged in AD patients compared with mentally healthy individuals, they tended to be more quiescent state regulated by Notch and bone morphogenetic protein (BMP) signaling pathways. These abnormalities were strongly associated with the neuropathological alterations in AD patients. These research findings provide potential insights into the underlying mechanisms that underpin the pathogenesis of AD.
Collapse
Affiliation(s)
- Yan Cao
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Pan Liu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Radiation and Medical Oncology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Hongfei Bian
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Sixuan Jin
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jiaqi Liu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ning Yu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Huan Cui
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fengrun Sun
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaojing Qian
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wenying Qiu
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chao Ma
- National Human Brain Bank for Development and Function, Department of Human Anatomy, Histology and Embryology, Neuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
11
|
Kaise T, Kageyama R. Transcriptional control of neural stem cell activity. Biochem Soc Trans 2024; 52:617-626. [PMID: 38477464 DOI: 10.1042/bst20230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
12
|
Kubat Oktem E. BMP4, SGSH, and SLC11A2 are Predicted to Be Biomarkers of Aging Associated with Programmed Cell Death. J Mol Neurosci 2023; 73:713-723. [PMID: 37632651 DOI: 10.1007/s12031-023-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
Most neurodegenerative diseases are exacerbated by aging, with symptoms often worsening over time. Programmed cell death (PCD) is a controlled cell suicide mechanism that is essential for the stability, growth, and homeostasis of organisms. Understanding the effects of aging at the level of systems biology could lead to new therapeutic approaches for a broad spectrum of neurodegenerative diseases. In the absence of comprehensive functional studies on the relationship between PCD and aging of the prefrontal cortex, this study provides prefrontal brain biomarkers of aging associated with PCD that could open the way for improved therapeutic techniques for age-related neurodegenerative diseases. To this end, publicly available transcriptome data were subjected to bioinformatic analyses such as differential gene expression, functional enrichment, and the weighted gene coexpression network analysis (WGCNA). The diagnostic utility of the biomarkers was tested using a logistic regression-based prediction model. Three genes, namely BMP4, SGSH, and SLC11A2, were found to be aging biomarkers associated with PCD. Finally, a multifactorial regulatory network with interacting proteins, transcription factors (TFs), competing endogenous RNAs (ceRNAs), and microRNAs (miRNAs) was constructed around these biomarkers. The elements of this multifactorial regulatory network were mainly enriched in BMP signaling. Further exploration of these three biomarkers and their regulatory elements would enable the development of 3PM (predictive, preventive, and personalized) medicine for the treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Mah. Ünalan Sk. D100 Karayolu Yanyol 34700, Üsküdar, Istanbul, Turkey.
| |
Collapse
|
13
|
Roberts JA, Varma VR, Candia J, Tanaka T, Ferrucci L, Bennett DA, Thambisetty M. Unbiased proteomics and multivariable regularized regression techniques identify SMOC1, NOG, APCS, and NTN1 in an Alzheimer's disease brain proteomic signature. NPJ AGING 2023; 9:18. [PMID: 37414805 PMCID: PMC10326005 DOI: 10.1038/s41514-023-00112-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Advancements in omics methodologies have generated a wealth of high-dimensional Alzheimer's disease (AD) datasets, creating significant opportunities and challenges for data interpretation. In this study, we utilized multivariable regularized regression techniques to identify a reduced set of proteins that could discriminate between AD and cognitively normal (CN) brain samples. Utilizing eNetXplorer, an R package that tests the accuracy and significance of a family of elastic net generalized linear models, we identified 4 proteins (SMOC1, NOG, APCS, NTN1) that accurately discriminated between AD (n = 31) and CN (n = 22) middle frontal gyrus (MFG) tissue samples from Religious Orders Study participants with 83 percent accuracy. We then validated this signature in MFG samples from Baltimore Longitudinal Study of Aging participants using leave-one-out logistic regression cross-validation, finding that the signature again accurately discriminated AD (n = 31) and CN (n = 19) participants with a receiver operating characteristic curve area under the curve of 0.863. These proteins were strongly correlated with the burden of neurofibrillary tangle and amyloid pathology in both study cohorts. We additionally tested whether these proteins differed between AD and CN inferior temporal gyrus (ITG) samples and blood serum samples at the time of AD diagnosis in ROS and BLSA, finding that the proteins differed between AD and CN ITG samples but not in blood serum samples. The identified proteins may provide mechanistic insights into the pathophysiology of AD, and the methods utilized in this study may serve as the basis for further work with additional high-dimensional datasets in AD.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
14
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
15
|
Amrhein J, Wang G, Berger BT, Berger LM, Kalampaliki AD, Krämer A, Knapp S, Hanke T. Design and Synthesis of Pyrazole-Based Macrocyclic Kinase Inhibitors Targeting BMPR2. ACS Med Chem Lett 2023; 14:833-840. [PMID: 37312836 PMCID: PMC10258821 DOI: 10.1021/acsmedchemlett.3c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling is mediated by transmembrane protein kinases that form heterotetramers consisting of type-I and type-II receptors. Upon BMP binding, the constitutively active type-II receptors activate specific type-I receptors by transphosphorylation, resulting in the phosphorylation of SMAD effector proteins. Drug discovery in the receptor tyrosine kinase-like (TKL) family has largely focused on type-I receptors, with few inhibitors that have been published targeting type-II receptors. BMPR2 is involved in several diseases, most notably pulmonary arterial hypertension, but also contributes to Alzheimer's disease and cancer. Here, we report that macrocyclization of the promiscuous inhibitor 1, based on a 3-amino-1H-pyrazole hinge binding moiety, led to a selective and potent BMPR2 inhibitor 8a.
Collapse
Affiliation(s)
- Jennifer
A. Amrhein
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Guiqun Wang
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
- German
Cancer Consortium (DKTK), German Cancer
Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Benedict-Tilman Berger
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Lena M. Berger
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Amalia D. Kalampaliki
- Department
of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Andreas Krämer
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
- German
Cancer Consortium (DKTK), German Cancer
Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
- German
Cancer Consortium (DKTK), German Cancer
Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Thomas Hanke
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Structure
Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Sampayo RG, Sakamoto M, Wang M, Kumar S, Schaffer DV. Mechanosensitive stem cell fate choice is instructed by dynamic fluctuations in activation of Rho GTPases. Proc Natl Acad Sci U S A 2023; 120:e2219854120. [PMID: 37216516 PMCID: PMC10235963 DOI: 10.1073/pnas.2219854120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
During the intricate process by which cells give rise to tissues, embryonic and adult stem cells are exposed to diverse mechanical signals from the extracellular matrix (ECM) that influence their fate. Cells can sense these cues in part through dynamic generation of protrusions, modulated and controlled by cyclic activation of Rho GTPases. However, it remains unclear how extracellular mechanical signals regulate Rho GTPase activation dynamics and how such rapid, transient activation dynamics are integrated to yield long-term, irreversible cell fate decisions. Here, we report that ECM stiffness cues alter not only the magnitude but also the temporal frequency of RhoA and Cdc42 activation in adult neural stem cells (NSCs). Using optogenetics to control the frequency of RhoA and Cdc42 activation, we further demonstrate that these dynamics are functionally significant, where high- vs. low-frequency activation of RhoA and Cdc42 drives astrocytic vs. neuronal differentiation, respectively. In addition, high-frequency Rho GTPase activation induces sustained phosphorylation of the TGFβ pathway effector SMAD1, which in turn drives the astrocytic differentiation. By contrast, under low-frequency Rho GTPase stimulation, cells fail to accumulate SMAD1 phosphorylation and instead undergo neurogenesis. Our findings reveal the temporal patterning of Rho GTPase signaling and the resulting accumulation of an SMAD1 signal as a critical mechanism through which ECM stiffness cues regulate NSC fate.
Collapse
Affiliation(s)
- Rocío G. Sampayo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Mason Sakamoto
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Madeline Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
| |
Collapse
|
17
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
18
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
19
|
Bonds JA, Tunc-Ozcan E, Dunlop SR, Rawat R, Peng CY, Kessler JA. Why Some Mice Are Smarter than Others: The Impact of Bone Morphogenetic Protein Signaling on Cognition. eNeuro 2023; 10:ENEURO.0213-22.2022. [PMID: 36596594 PMCID: PMC9833048 DOI: 10.1523/eneuro.0213-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023] Open
Abstract
Inbred mice (C57Bl/6) display wide variability in performance on hippocampal-dependent cognitive tasks. Examination of microdissected dentate gyrus (DG) after cognitive testing showed a highly significant negative correlation between levels of bone morphogenetic protein (BMP) signaling and recognition memory. Cognitive performance decline during the aging process, and the degree of cognitive decline is strongly correlated with aging-related increases in BMP signaling. Further, cognitive performance was impaired when the BMP inhibitor, noggin, was knocked down in the DG. Infusion of noggin into the lateral ventricles enhanced DG-dependent cognition while BMP4 infusion led to significant impairments. Embryonic overexpression of noggin resulted in lifelong enhancement of recognition and spatial memory while overexpression of BMP4 resulted in lifelong impairment, substantiating the importance of differences in BMP signaling in wild-type mice. These findings indicate that performance in DG-dependent cognitive tasks is largely determined by differences in levels BMP signaling in the dentate gyrus.
Collapse
Affiliation(s)
- Jacqueline A Bonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161
| | - Elif Tunc-Ozcan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sara R Dunlop
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Radhika Rawat
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
20
|
Mehdipour M, Amiri P, Liu C, DeCastro J, Kato C, Skinner CM, Conboy MJ, Aran K, Conboy IM. Small-animal blood exchange is an emerging approach for systemic aging research. Nat Protoc 2022; 17:2469-2493. [PMID: 35986217 PMCID: PMC10035053 DOI: 10.1038/s41596-022-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/08/2022] [Indexed: 01/28/2023]
Abstract
We describe a small-animal blood exchange approach developed for aging research as an alternative to heterochronic parabiosis or plasma injections. In parabiosis, animals are surgically coupled, which has several disadvantages, including difficulty controlling experimental procedure, the effects of shared organs, environmental enrichment from jointly exploring the housing enclosure, involuntary exercise and an imprecise onset of blood sharing. Likewise, in plasma injections, the added volumes need to be small, and there is little flexibility in changing the relative contributions of ectopic to endogenous blood components. These factors complicate the conclusions and interpretations, including the identification of key mechanisms and molecular or cellular determinants. Our approach, where blood is exchanged between animals without them being surgically coupled, is less invasive than parabiosis. The percentage of exchanged blood or other exchanged fluids is known and precise. The age of plasma and cells can be mixed and matched at all desired relative contributions to the endogenous systemic milieu, and the onset of the effects can be accurately delineated. In this protocol, we describe the preparatory and animal surgery steps required for small-animal blood exchange in mice and compare this process with parabiosis and plasma injections. We also provide the design, hardware and software for the blood exchange device and compare automated and manual exchange methods. Lastly, we report mathematical modeling of the dilution of blood factors. The fluid exchange takes ~30 min when performed by a well-trained biomedical scientist; the entire process takes ~2 h.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Payam Amiri
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jonalyn DeCastro
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Cameron Kato
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
22
|
Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming. J Mol Histol 2022; 53:623-634. [DOI: 10.1007/s10735-022-10082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
23
|
Mondal A, Roberge J, Gilleran J, Peng Y, Jia D, Akel M, Patel Y, Zoltowski H, Doraiswamy A, Langenfeld J. Bone morphogenetic protein inhibitors and mitochondria targeting agents synergistically induce apoptosis-inducing factor (AIF) caspase-independent cell death in lung cancer cells. Cell Commun Signal 2022; 20:99. [PMID: 35761398 PMCID: PMC9238106 DOI: 10.1186/s12964-022-00905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Youyi Peng
- Biomedical Informatics Shared Resources, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - Yash Patel
- Rutgers University, Piscataway, NJ, 08854, USA
| | | | | | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
24
|
Vora M, Mondal A, Jia D, Gaddipati P, Akel M, Gilleran J, Roberge J, Rongo C, Langenfeld J. Bone morphogenetic protein signaling regulation of AMPK and PI3K in lung cancer cells and C. elegans. Cell Biosci 2022; 12:76. [PMID: 35641992 PMCID: PMC9153151 DOI: 10.1186/s13578-022-00817-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.
Collapse
Affiliation(s)
- Mehul Vora
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Pranya Gaddipati
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute, Rutgers the State University of NJ, Piscataway, NJ, 08854, USA
| | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
25
|
BMP4 Exerts Anti-Neurogenic Effect via Inducing Id3 during Aging. Biomedicines 2022; 10:biomedicines10051147. [PMID: 35625884 PMCID: PMC9138880 DOI: 10.3390/biomedicines10051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to be intimately associated with adult neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ). Adult neurogenesis declines in aging rodents and primates. However, the role of BMP signaling in the age-related neurogenesis decline remains elusive and the effect of BMP4 on adult SVZ neurogenesis remains controversial. Here, the expression of BMP4 and its canonical effector phosphorylated-Smad1/5/8 (p-Smad1/5/8) in the murine SVZ and SGZ were found to be increased markedly with age. We identified Id3 as a major target of BMP4 in neuronal stem cells (NSCs) of both neurogenic regions, which exhibited a similar increase during aging. Intracerebroventricular infusion of BMP4 activated Smad1/5/8 phosphorylation and upregulated Id3 expression, which further restrained NeuroD1, leading to attenuated neurogenesis in both neurogenic regions and defective differentiation in the SGZ. Conversely, noggin, a potent inhibitor of BMP4, demonstrated opposing effects. In support of this, BMP4 treatment or lentiviral overexpression of Id3 resulted in decreased NeuroD1 protein levels in NSCs of both neurogenic regions and significantly inhibited neurogenesis. Thus, our findings revealed that the increased BMP4 signaling with age inhibited adult neurogenesis in both SVZ and SGZ, which may be attributed at least in part, to the changes in the Id3-NeuroD1 axis.
Collapse
|
26
|
Reinitz F, Chen EY, Nicolis di Robilant B, Chuluun B, Antony J, Jones RC, Gubbi N, Lee K, Ho WHD, Kolluru SS, Qian D, Adorno M, Piltti K, Anderson A, Monje M, Heller HC, Quake SR, Clarke MF. Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model. eLife 2022; 11:66037. [PMID: 35311644 PMCID: PMC9122497 DOI: 10.7554/elife.66037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.
Collapse
Affiliation(s)
- Felicia Reinitz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Elizabeth Y Chen
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Benedetta Nicolis di Robilant
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | | | - Jane Antony
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Neha Gubbi
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Karen Lee
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - William Hai Dang Ho
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Dalong Qian
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Maddalena Adorno
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Katja Piltti
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Aileen Anderson
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Michelle Monje
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Michael F Clarke
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
27
|
Tunc-Ozcan E, Brooker SM, Bonds JA, Tsai YH, Rawat R, McGuire TL, Peng CY, Kessler JA. Hippocampal BMP signaling as a common pathway for antidepressant action. Cell Mol Life Sci 2021; 79:31. [PMID: 34936033 PMCID: PMC8740160 DOI: 10.1007/s00018-021-04026-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA.
| | - Sarah M Brooker
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Jacqueline A Bonds
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| |
Collapse
|
28
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
29
|
Kramer J, Neves J, Koniikusic M, Jasper H, Lamba DA. Dpp/TGFβ-superfamily play a dual conserved role in mediating the damage response in the retina. PLoS One 2021; 16:e0258872. [PMID: 34699550 PMCID: PMC8547621 DOI: 10.1371/journal.pone.0258872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibition of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.
Collapse
Affiliation(s)
- Joshua Kramer
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joana Neves
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Lisbon, Portugal
| | - Mia Koniikusic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States of America
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
30
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
31
|
Transcriptomic signatures of treatment response to the combination of escitalopram and memantine or placebo in late-life depression. Mol Psychiatry 2021; 26:5171-5179. [PMID: 32382137 PMCID: PMC9922535 DOI: 10.1038/s41380-020-0752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Drugs that target glutamate neuronal transmission, such as memantine, offer a novel approach to the treatment of late-life depression, which is frequently comorbid with cognitive impairment. The results of our recently published double-blind, randomized, placebo-controlled trial of escitalopram or escitalopram/memantine in late-life depression with subjective memory complaints (NCT01902004) indicated no differences between treatments in depression remission, but additional benefits in cognition at 12-month follow-up with combination treatment. To identify pathways and biological functions uniquely induced by combination treatment that may explain cognitive improvements, we generated transcriptional profiles of remission compared with non-remission from whole blood samples. Remitters to escitalopram compared with escitalopram/memantine combination treatment display unique patterns of gene expression at baseline and 6 months after treatment initiation. Functional enrichment analysis demonstrates that escitalopram-based remission associates to functions related to cellular proliferation, apoptosis, and inflammatory response. Escitalopram/memantine-based remission, however, is characterized by processes related to cellular clearance, metabolism, and cytoskeletal dynamics. Both treatments modulate inflammatory responses, albeit via different effector pathways. Additional research is needed to understand the implications of these results in explaining the observed superior effects of combination treatment on cognition observed with prolonged treatment.
Collapse
|
32
|
Khairy EY, Attia MM. Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci 2021; 24:650-659. [PMID: 31524100 DOI: 10.1080/1028415x.2019.1665854] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background/aim: Vitamin D has been hypothesized to be main regulator of the aging rate, alongside evidences support its role in neuroprotection. However, data about the protective role of vitamin D against neurophysiologic alterations associated with brain aging is limited. This study investigated the possible protective effects that vitamin D has on brain-derived neurotrophic factor (BDNF), cholinergic function, oxidative stress and apoptosis in aging rat brain.Methods: Male Wister albino rats aged 5 months (young), 12 months (middle aged) and 24 months (old) (n = 20 each) were used. Each age group subdivided to either vitamin D3 supplementation (500 IU/kg/day orally for 5 weeks) or no supplementation (control) group (n = 10 each). Serum 25-hydroxyvitamin D [25(OH)D], brain BDNF and malondialdehyde levels and activities of acetylcholinesterase (AChE), antioxidant enzymes (glutathione reductase, glutathione peroxidase and superoxide dismutase) and caspase-3 were quantified.Results: Vitamin D supplementation significantly mitigated the observed aging-related reduction in brain BDNF level and activities of AChE and antioxidant enzymes and elevation in malondialdehyde level and caspase-3 activity compared to control groups. Brain BDNF level correlated positively with serum 25(OH) D level and brain AChE activity and negatively with brain malondialdehyde level and caspase-3 activity in supplemented groups.Conclusion: Restoring vitamin D levels may, therefore, represent a useful strategy for healthy brain aging. Augmenting brain BDNF seems to be a key mechanism through which vitamin D counteracts age-related brain dysfunction.
Collapse
Affiliation(s)
- Eman Y Khairy
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maha M Attia
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Abstract
Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on dis-ease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and re-build the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fun-damental questions regarding adult neurogenesis, cell source, and mecha-nisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| |
Collapse
|
34
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
35
|
Kiprov D. Therapeutic plasma exchange (TPE) and blood products - Implications for longevity and disease. Transfus Apher Sci 2021; 60:103163. [PMID: 34074614 DOI: 10.1016/j.transci.2021.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Liu H, Han X, Yang H, Cao Y, Zhang C, Du J, Diao S, Fan Z. GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 2021; 62:325-336. [PMID: 32151168 DOI: 10.1080/03008207.2020.1736054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-β-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-β-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-β-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.
Collapse
Affiliation(s)
- Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shu Diao
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Tripathi SS, Kumar R, Arya JK, Rizvi SI. Plasma from Young Rats Injected into Old Rats Induce Antiaging Effects. Rejuvenation Res 2021; 24:206-212. [PMID: 33161876 DOI: 10.1089/rej.2020.2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An experimental novel antiaging intervention strategy is based on the concept of parabiosis, which involves long-term treatment with factors derived from young blood facilitating rejuvenation of old individuals. In this study, we employed blood plasma from young rats as an intervention strategy to evaluate whether this could impact aging biomarkers in aged rats. The biomarkers studied include: reactive oxygen species, the ferric reducing ability of plasma, plasma membrane redox system, reduced glutathione, malondialdehyde, protein carbonyl, and advanced oxidation protein products in blood. Additionally, the level of tumor necrosis factor-α and interleukin-6 were also estimated in blood. We found that old rats injected with plasma from young rats were protected from oxidative stress. Thus, this study provides some evidence of the rejuvenating effects of young plasma. We hypothesize that young plasma may contain certain "factors," which may be responsible for the observed effects. The mechanism of action is not clearly understood and is open to further studies.
Collapse
Affiliation(s)
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | | | |
Collapse
|
38
|
Li Puma DD, Piacentini R, Grassi C. Does Impairment of Adult Neurogenesis Contribute to Pathophysiology of Alzheimer's Disease? A Still Open Question. Front Mol Neurosci 2021; 13:578211. [PMID: 33551741 PMCID: PMC7862134 DOI: 10.3389/fnmol.2020.578211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
39
|
Mal’tsev DI, Podgornyi OV. Molecular and Cellular Mechanisms Regulating Quiescence and Division of Hippocampal Stem Cells. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Maden M, Serrano N, Bermudez M, Sandoval AGW. A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. J Anat 2020; 238:1191-1202. [PMID: 33277722 PMCID: PMC8053588 DOI: 10.1111/joa.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022] Open
Abstract
The vast majority of neural stem cell studies have been conducted on the brains of mice and rats, the classical model rodent. Non-model organisms may, however, give us some important insights into how to increase neural stem cell numbers for regenerative purposes and with this in mind we have characterized these cells in the brain of the spiny mouse, Acomys cahirinus. This unique mammal is highly regenerative and damaged tissue does not scar or fibrose. We find that there are more than three times as many stem cells in the SVZ and more than 3 times as many proliferating cells compared to the CD-1 outbred strain of lab mouse. These additional cells create thick stem cell regions in the wall of the SVZ and very obvious columns of cells moving into the rostral migratory stream. In the dentate gyrus, there are more than 10 times as many cells proliferating in the sub-granular layer and twice the number of doublecortin expressing neuroblasts. A preliminary analysis of some stem cell niche genes has identified Sox2, Notch1, Shh, and Noggin as up-regulated in the SVZ of Acomys and Bmp2 as being down-regulated. The highly increased neural stem cell numbers in Acomys may endow this animal with increased regenerative properties in the brain or improved physiological performance important for its survival.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Nicole Serrano
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Monica Bermudez
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aaron G W Sandoval
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Mehdipour M, Mehdipour T, Skinner CM, Wong N, Liu C, Chen CC, Jeon OH, Zuo Y, Conboy MJ, Conboy IM. Plasma dilution improves cognition and attenuates neuroinflammation in old mice. GeroScience 2020; 43:1-18. [PMID: 33191466 PMCID: PMC8050203 DOI: 10.1007/s11357-020-00297-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Our recent study has established that young blood factors are not causal, nor necessary, for the systemic rejuvenation of mammalian tissues. Instead, a procedure referred to as neutral blood exchange (NBE) that resets signaling milieu to a pro-regenerative state through dilution of old plasma, enhanced the health and repair of the muscle and liver, and promoted better hippocampal neurogenesis in 2-year-old mice (Mehdipour et al., Aging 12:8790–8819, 2020). Here we expand the rejuvenative phenotypes of NBE, focusing on the brain. Namely, our results demonstrate that old mice perform much better in novel object and novel texture (whisker discrimination) tests after a single NBE, which is accompanied by reduced neuroinflammation (less-activated CD68+ microglia). Evidence against attenuation/dilution of peripheral senescence-associated secretory phenotype (SASP) as the main mechanism behind NBE was that the senolytic ABT 263 had limited effects on neuroinflammation and did not enhance hippocampal neurogenesis in the old mice. Interestingly, peripherally acting ABT 263 and NBE both diminished SA-βGal signal in the old brain, demonstrating that peripheral senescence propagates to the brain, but NBE was more robustly rejuvenative than ABT 263, suggesting that rejuvenation was not simply by reducing senescence. Explaining the mechanism of the positive effects of NBE on the brain, our comparative proteomics analysis demonstrated that dilution of old blood plasma yields an increase in the determinants of brain maintenance and repair in mice and in people. These findings confirm the paradigm of rejuvenation through dilution of age-elevated systemic factors and extrapolate it to brain health and function.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Taha Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Nathan Wong
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Chia-Chien Chen
- Department of Molecular and Cellular Biology and QB3, UCSC, Santa Cruz, CA, USA
| | - Ok Hee Jeon
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, USA.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yi Zuo
- Department of Molecular and Cellular Biology and QB3, UCSC, Santa Cruz, CA, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA.
| |
Collapse
|
42
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
43
|
Kobayashi T, Kageyama R. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. FEBS J 2020; 288:3082-3093. [PMID: 32902139 PMCID: PMC8246936 DOI: 10.1111/febs.15555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Quiescence is a cellular strategy for maintaining somatic stem cells in a specific niche in a low metabolic state without senescence for a long period of time. During development, neural stem cells (NSCs) actively proliferate and self-renew, and their progeny differentiate into both neurons and glial cells to form mature brain tissues. On the other hand, most NSCs in the adult brain are quiescent and arrested in G0/G1 phase of the cell cycle. Quiescence is essential in order to avoid the precocious exhaustion of NSCs, ensuring a sustainable source of available stem cells in the brain throughout the lifespan. After receiving activation signals, quiescent NSCs reenter the cell cycle and generate new neurons. This switching between quiescence and proliferation is tightly regulated by diverse signaling pathways. Recent studies suggest significant involvement of cellular proteostasis (homeostasis of the proteome) in the quiescent state of NSCs. Proteostasis is the result of integrated regulation of protein synthesis, folding, and degradation. In this review, we discuss regulation of quiescence by multiple signaling pathways, especially bone morphogenetic protein and Notch signaling, and focus on the functional involvement of the lysosome, an organelle governing cellular degradation, in quiescence of adult NSCs.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
45
|
Audesse AJ, Webb AE. Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 2020; 191:111323. [PMID: 32781077 DOI: 10.1016/j.mad.2020.111323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of neural stem cell function is vital to ensure neurogenesis throughout adulthood. During aging, there is a significant reduction in adult neurogenesis that correlates with a decline in cognitive function. Although recent studies have revealed novel extrinsic and intrinsic mechanisms that regulate the adult neural stem cell (NSC) pool and lineage progression, the precise molecular mechanisms that drive dysregulation of adult neurogenesis in the context of aging are only beginning to emerge. Recent studies have shed light on mechanisms that regulate the earliest step of adult neurogenesis, the activation of quiescent NSCs. Interestingly, the ability of NSCs to enter the cell cycle in the aged brain significantly declines suggesting a deepend state of quiescence. Given the likely contribution of adult neurogenesis to supporting cognitive function in humans, enhancing neurogenesis may be a strategy to combat age-related cognitive decline. This review highlights the mechanisms that regulate the NSC pool throughout adulthood and discusses how dysregulation of these processes may contribute to the decline in neurogenesis and cognitive function throughout aging.
Collapse
Affiliation(s)
- Amanda J Audesse
- Graduate Program in Neuroscience, Brown University, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
46
|
Harkins D, Cooper HM, Piper M. The role of lipids in ependymal development and the modulation of adult neural stem cell function during aging and disease. Semin Cell Dev Biol 2020; 112:61-68. [PMID: 32771376 DOI: 10.1016/j.semcdb.2020.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023]
Abstract
Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
47
|
Bonafina A, Paratcha G, Ledda F. Deciphering New Players in the Neurogenic Adult Hippocampal Niche. Front Cell Dev Biol 2020; 8:548. [PMID: 32714932 PMCID: PMC7346873 DOI: 10.3389/fcell.2020.00548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
In the mammalian adult hippocampus, new neurons are continuously generated throughout life in the subgranular zone of the dentate gyrus. Increasing evidence point out the contribution of adult-born hippocampal granule cells (GCs) to cognitive processes such as learning and memory, indicating the relevance of understanding the molecular mechanisms that control the development of these new neurons in the preexisting hippocampal circuits. Cell proliferation and functional integration of adult-born GCs is a process highly regulated by different intrinsic and extrinsic factors. In this review, we discuss recent advances related with cellular components and extrinsic signals of the hippocampal neurogenic niche that support and modulate neurogenesis under physiological conditions.
Collapse
Affiliation(s)
- Antonela Bonafina
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
48
|
Mehdipour M, Skinner C, Wong N, Lieb M, Liu C, Etienne J, Kato C, Kiprov D, Conboy MJ, Conboy IM. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY) 2020; 12:8790-8819. [PMID: 32474458 PMCID: PMC7288913 DOI: 10.18632/aging.103418] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Heterochronic blood sharing rejuvenates old tissues, and most of the studies on how this works focus on young plasma, its fractions, and a few youthful systemic candidates. However, it was not formally established that young blood is necessary for this multi-tissue rejuvenation. Here, using our recently developed small animal blood exchange process, we replaced half of the plasma in mice with saline containing 5% albumin (terming it a "neutral" age blood exchange, NBE) thus diluting the plasma factors and replenishing the albumin that would be diminished if only saline was used. Our data demonstrate that a single NBE suffices to meet or exceed the rejuvenative effects of enhancing muscle repair, reducing liver adiposity and fibrosis, and increasing hippocampal neurogenesis in old mice, all the key outcomes seen after blood heterochronicity. Comparative proteomic analysis on serum from NBE, and from a similar human clinical procedure of therapeutic plasma exchange (TPE), revealed a molecular re-setting of the systemic signaling milieu, interestingly, elevating the levels of some proteins, which broadly coordinate tissue maintenance and repair and promote immune responses. Moreover, a single TPE yielded functional blood rejuvenation, abrogating the typical old serum inhibition of progenitor cell proliferation. Ectopically added albumin does not seem to be the sole determinant of such rejuvenation, and levels of albumin do not decrease with age nor are increased by NBE/TPE. A model of action (supported by a large body of published data) is that significant dilution of autoregulatory proteins that crosstalk to multiple signaling pathways (with their own feedback loops) would, through changes in gene expression, have long-lasting molecular and functional effects that are consistent with our observations. This work improves our understanding of the systemic paradigms of multi-tissue rejuvenation and suggest a novel and immediate use of the FDA approved TPE for improving the health and resilience of older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Colin Skinner
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Nathan Wong
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Michael Lieb
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Jessy Etienne
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Cameron Kato
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Dobri Kiprov
- California Pacific Medical Center, Apheresis Care Group, San-Francisco, CA 94115, USA
| | - Michael J. Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| | - Irina M. Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Chen MB, Yang AC, Yousef H, Lee D, Chen W, Schaum N, Lehallier B, Quake SR, Wyss-Coray T. Brain Endothelial Cells Are Exquisite Sensors of Age-Related Circulatory Cues. Cell Rep 2020; 30:4418-4432.e4. [PMID: 32234477 PMCID: PMC7292569 DOI: 10.1016/j.celrep.2020.03.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Brain endothelial cells (BECs) are key constituents of the blood-brain barrier (BBB), protecting the brain from pathogens and restricting access of circulatory factors. Yet, because circulatory proteins have prominent age-related effects on adult neurogenesis, neuroinflammation, and cognitive function in mice, we wondered whether BECs receive and potentially relay signals between the blood and brain. Using single-cell RNA sequencing of hippocampal BECs, we discover that capillary BECs-compared with arterial and venous BECs-undergo the greatest transcriptional changes in normal aging, upregulating innate immunity and oxidative stress response pathways. Short-term infusions of aged plasma into young mice recapitulate key aspects of this aging transcriptome, and remarkably, infusions of young plasma into aged mice exert rejuvenation effects on the capillary transcriptome. Together, these findings suggest that the transcriptional age of BECs is exquisitely sensitive to age-related circulatory cues and pinpoint the BBB itself as a promising therapeutic target to treat brain disease.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Hanadie Yousef
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Davis Lee
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Winnie Chen
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA.
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA; Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
50
|
Identification of Methylated Gene Biomarkers in Patients with Alzheimer's Disease Based on Machine Learning. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8348147. [PMID: 32309439 PMCID: PMC7139879 DOI: 10.1155/2020/8348147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder and characterized by the cognitive impairments. It is essential to identify potential gene biomarkers for AD pathology. Methods DNA methylation expression data of patients with AD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated sites were identified. The functional annotation analysis of corresponding genes in the differentially methylated sites was performed. The optimal diagnostic gene biomarkers for AD were identified by using random forest feature selection procedure. In addition, receiver operating characteristic (ROC) diagnostic analysis of differentially methylated genes was performed. Results A total of 10 differentially methylated sites including 5 hypermethylated sites and 5 hypomethylated sites were identified in AD. There were a total of 8 genes including thioredoxin interacting protein (TXNIP), noggin (NOG), regulator of microtubule dynamics 2 (FAM82A1), myoneurin (MYNN), ankyrin repeat domain 34B (ANKRD34B), STAM-binding protein like 1, ALMalpha (STAMBPL1), cyclin-dependent kinase inhibitor 1C (CDKN1C), and coronin 2B (CORO2B) that correspond to 10 differentially methylated sites. The cell cycle (FDR = 0.0284087) and TGF-beta signaling pathway (FDR = 0.0380372) were the only two significantly enriched pathways of these genes. MYNN was selected as optimal diagnostic biomarker with great diagnostic value. The random forests model could effectively predict AD. Conclusion Our study suggested that MYNN could be served as optimal diagnostic biomarker of AD. Cell cycle and TGF-beta signaling pathway may be associated with AD.
Collapse
|