1
|
Yuan D, Zhang X, Yang Y, Wei L, Li H, Zhao T, Guo M, Li Z, Huang Z, Wang M, Dai Z, Li P, Xia Q, Qian W, Cheng D. Schlank orchestrates insect developmental transition by switching H3K27 acetylation to trimethylation in the prothoracic gland. Proc Natl Acad Sci U S A 2024; 121:e2401861121. [PMID: 39167603 PMCID: PMC11363265 DOI: 10.1073/pnas.2401861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Insect developmental transitions are precisely coordinated by ecdysone and juvenile hormone (JH). We previously revealed that accumulated H3K27 trimethylation (H3K27me3) at the locus encoding JH signal transducer Hairy is involved in the larval-pupal transition in insects, but the underlying mechanism remains to be fully defined. Here, we show in Drosophila and Bombyx that Rpd3-mediated H3K27 deacetylation in the prothoracic gland during the last larval instar promotes ecdysone biosynthesis and the larval-pupal transition by enabling H3K27me3 accumulation at the Hairy locus to induce its transcriptional repression. Importantly, we find that the homeodomain transcription factor Schlank acts to switch active H3K27 acetylation (H3K27ac) to repressive H3K27me3 at the Hairy locus by directly binding to the Hairy promoter and then recruiting the histone deacetylase Rpd3 and the histone methyltransferase PRC2 component Su(z)12 through physical interactions. Moreover, Schlank inhibits Hairy transcription to facilitate the larval-pupal transition, and the Schlank signaling cascade is suppressed by JH but regulated in a positive feedback manner by ecdysone. Together, our data uncover that Schlank mediates epigenetic reprogramming of H3K27 modifications in hormone actions during insect developmental transition.
Collapse
Affiliation(s)
- Dongqin Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Xing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Yan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Hao Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Tujing Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Mengge Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zheng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zhu Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Min Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zongcai Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Peixin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Wenliang Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Daojun Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| |
Collapse
|
2
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Morgenstern E, Molthof C, Schwartz U, Graf J, Bruckmann A, Hombach S, Kretz M. lncRNA LINC00941 modulates MTA2/NuRD occupancy to suppress premature human epidermal differentiation. Life Sci Alliance 2024; 7:e202302475. [PMID: 38649186 PMCID: PMC11035861 DOI: 10.26508/lsa.202302475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.
Collapse
Affiliation(s)
- Eva Morgenstern
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Carolin Molthof
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- https://ror.org/01eezs655 NGS Analysis Center Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- https://ror.org/006thab72 Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Markus Kretz
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- https://ror.org/006thab72 Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Goradia N, Werner S, Mullapudi E, Greimeier S, Bergmann L, Lang A, Mertens H, Węglarz A, Sander S, Chojnowski G, Wikman H, Ohlenschläger O, von Amsberg G, Pantel K, Wilmanns M. Master corepressor inactivation through multivalent SLiM-induced polymerization mediated by the oncogene suppressor RAI2. Nat Commun 2024; 15:5241. [PMID: 38898011 PMCID: PMC11187106 DOI: 10.1038/s41467-024-49488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.
Collapse
Affiliation(s)
- Nishit Goradia
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Stefan Werner
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Mildred Scheel Cancer Career Center HaTriCS4, Martinistrasse 52, 20246, Hamburg, Germany
| | - Edukondalu Mullapudi
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Sarah Greimeier
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lina Bergmann
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andras Lang
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Haydyn Mertens
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Aleksandra Węglarz
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Sander
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Gunhild von Amsberg
- Martini Clinic, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Xu X, Liu Y, Hu H, Wang J, Cai Y, Xie J, Kang M, He F. Relationship between cancer stem cell-related SNPs and survival outcomes in patients with primary lung cancer. World J Surg Oncol 2023; 21:243. [PMID: 37563730 PMCID: PMC10416443 DOI: 10.1186/s12957-023-03064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Cancer stem cells may be the source of cancer-causing mutant cells and are closely related to the prognosis of cancer. Our study aimed to investigate the potential association between single-nucleotide polymorphisms (SNPs) of cancer stem cell-related genes and the prognosis of lung cancer patients. METHODS The SNP loci were genotyped by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), and the overall survival of subjects was analyzed by log-rank test after stratifying and adjusting their demographic data, clinical data, and genotypes. The correlation between survival time and quality of life of lung cancer under codominant, dominant, recessive, and additive genetic models was analyzed by the Cox regression model. The association between SNP polymorphism and the prognosis of lung cancer was analyzed by Stata16.0 software, and their heterogeneity was tested. Interaction analysis was performed using R software (version 4.2.0). RESULTS Stratified analysis unveiled that rs3740535 had recessive AA genotype and additive GG genotype; Rs3130932 dominant GT + GG genotype, additive TT genotype; Rs13409 additive TT genotype; Rs6815391 recessive CC genotype and additional TT genotype were associated with increased risk of lung cancer death. Rs3130932 recessive GG genotype was associated with a reduced risk of lung cancer death. CONCLUSION Rs3740535, rs3130932, rs13409, and rs6815391 are associated with the overall survival of lung cancer patients and may be valuable for the prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Xinying Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huiyi Hu
- Department of Labor Health, School of Public Health, China Medical University, Shenyang, China
| | - Jinshen Wang
- Department of Venereal Disease Prevention, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Cai
- Department of Health Toxicology, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Xie
- Sanming Dermatology Hospital, Sanming, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Jin J, Ren P, Li X, Zhang Y, Yang W, Ma Y, Lai M, Yu C, Zhang S, Zhang YL. Ovulatory signal-triggered chromatin remodeling in ovarian granulosa cells by HDAC2 phosphorylation activation-mediated histone deacetylation. Epigenetics Chromatin 2023; 16:11. [PMID: 37076890 PMCID: PMC10116676 DOI: 10.1186/s13072-023-00485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yinyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Chao Yu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G, Young DA. DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res 2023; 56:9. [PMID: 36890579 PMCID: PMC9996951 DOI: 10.1186/s40659-023-00417-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.
Collapse
Affiliation(s)
- Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain.
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Carole Proctor
- Campus for Ageing and Vitality, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Avda Reyes Católicos, Spain
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
8
|
The Intricate Interplay between the ZNF217 Oncogene and Epigenetic Processes Shapes Tumor Progression. Cancers (Basel) 2022; 14:cancers14246043. [PMID: 36551531 PMCID: PMC9776013 DOI: 10.3390/cancers14246043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor ZNF217 orchestrates several molecular signaling networks to reprogram integrated circuits governing hallmark capabilities within cancer cells. High levels of ZNF217 expression provide advantages to a specific subset of cancer cells to reprogram tumor progression, drug resistance and cancer cell plasticity. ZNF217 expression level, thus, provides a powerful biomarker of poor prognosis and a predictive biomarker for anticancer therapies. Cancer epigenetic mechanisms are well known to support the acquisition of hallmark characteristics during oncogenesis. However, the complex interactions between ZNF217 and epigenetic processes have been poorly appreciated. Deregulated DNA methylation status at ZNF217 locus or an intricate cross-talk between ZNF217 and noncoding RNA networks could explain aberrant ZNF217 expression levels in a cancer cell context. On the other hand, the ZNF217 protein controls gene expression signatures and molecular signaling for tumor progression by tuning DNA methylation status at key promoters by interfering with noncoding RNAs or by refining the epitranscriptome. Altogether, this review focuses on the recent advances in the understanding of ZNF217 collaboration with epigenetics processes to orchestrate oncogenesis. We also discuss the exciting burgeoning translational medicine and candidate therapeutic strategies emerging from those recent findings connecting ZNF217 to epigenetic deregulation in cancer.
Collapse
|
9
|
Ferrarese R, Izzo A, Andrieux G, Lagies S, Bartmuss JP, Masilamani AP, Wasilenko A, Osti D, Faletti S, Schulzki R, Yuan S, Kling E, Ribecco V, Heiland DH, Tholen S, Prinz M, Pelicci G, Kammerer B, Boerries M, Carro MS. ZBTB18 inhibits SREBP-dependent lipid synthesis by halting CTBPs and LSD1 activity in glioblastoma. Life Sci Alliance 2022; 6:6/1/e202201400. [PMID: 36414381 PMCID: PMC9684030 DOI: 10.26508/lsa.202201400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.
Collapse
Affiliation(s)
- Roberto Ferrarese
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Annalisa Izzo
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Johanna Paulina Bartmuss
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Anie Priscilla Masilamani
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Alix Wasilenko
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Daniela Osti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Rana Schulzki
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Shuai Yuan
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Valentino Ribecco
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Tholen
- Institute of Clinical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Giuliana Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy,Department of Translational Medicine, Piemonte Orientale University “Amedeo Avo-Gadro,” Novara, Italy
| | - Bernd Kammerer
- Center for Biological Systems Analysis, University of Freiburg, Breisgau, Germany,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany,BIOSS Centre of Biological Signaling Studies, University of Freiburg, Freiburg Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| |
Collapse
|
10
|
Shao T, Ji JF, Zheng JY, Li C, Zhu LY, Fan DD, Lin AF, Xiang LX, Shao JZ. Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2686-2701. [PMID: 35675955 DOI: 10.4049/jimmunol.2100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Chen Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Lv-Yun Zhu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Price JD, Lindtner S, Ypsilanti A, Binyameen F, Johnson JR, Newton BW, Krogan NJ, Rubenstein JLR. DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development 2022; 149:dev199508. [PMID: 35695185 PMCID: PMC9245191 DOI: 10.1242/dev.199508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2022] [Indexed: 09/27/2023]
Abstract
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Collapse
Affiliation(s)
- James D. Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Athena Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Billy W. Newton
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Bi CL, Cheng Q, Yan LY, Wu HY, Wang Q, Wang P, Cheng L, Wang R, Yang L, Li J, Tie F, Xie H, Fang M. A prominent gene activation role for C-terminal binding protein in mediating PcG/trxG proteins through Hox gene regulation. Development 2022; 149:275613. [DOI: 10.1242/dev.200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Collapse
Affiliation(s)
- Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
- Institute of Translational Medicine 2 , , , Yangzhou 225001 , China
- Medical College 2 , , , Yangzhou 225001 , China
- Yangzhou University 2 , , , Yangzhou 225001 , China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ling-Yue Yan
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Hong-Yan Wu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Qiang Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Lin Yang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Jian Li
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Feng Tie
- Case Western Reserve University 3 Department of Genetics and Genome Sciences , , Cleveland, OH 44106, USA
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University 1 , Nanjing 210096 , China
| |
Collapse
|
13
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
SETD2-mediated epigenetic regulation of noncanonical Wnt5A during osteoclastogenesis. Clin Epigenetics 2021; 13:192. [PMID: 34663428 PMCID: PMC8522097 DOI: 10.1186/s13148-021-01125-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 01/17/2023] Open
Abstract
To define the role of SETD2 in the WNT5a signaling in the context of osteoclastogenesis, we exploited two different models: in vitro osteoclast differentiation, and K/BxN serum-induced arthritis model. We found that SETD2 and WNT5a were upregulated during osteoclast differentiation and after induction of arthritis. Using gain- and loss-of-function approaches in the myeloid cell, we confirmed that SETD2 regulated the osteoclast markers, and WNT5a via modulating active histone marks by enriching H3K36me3, and by reducing repressive H3K27me3 mark. Additionally, during osteoclastic differentiation, the transcription of Wnt5a was also associated with the active histone H3K9 and H4K8 acetylations. Mechanistically, SETD2 directed induction of NF-κβ expression facilitated the recruitment of H3K9Ac and H4K8Ac around the TSS region of the Wnt5a gene, thereby, assisting osteoclast differentiation. Together these findings for the first time revealed that SETD2 mediated epigenetic regulation of Wnt5a plays a critical role in osteoclastogenesis and induced arthritis. Model for the Role of SETD2 dependent regulation of osteoclastic differentiation. A In monocyte cells SETD2-dependent H3K36 trimethylation help to create open chromatin region along with active enhancer mark, H3K27Ac. This chromatin state facilitated the loss of a suppressive H3K27me3 mark. B Additionally, SETD2 mediated induction of NF-κβ expression leads to the recruitment of histone acetyl transferases, P300/PCAF, to the Wnt5a gene and establish H3K9Ac and H4K8Ac marks. Along with other activation marks, these acetylation marks help in Wnt5a transcription which leads to osteoclastogenesis.
Collapse
|
15
|
Low CtBP2 expression is associated with a stem cell-like signature and adverse clinical outcome in childhood B-cell lymphoblastic leukemia. Leukemia 2021; 35:2684-2687. [PMID: 33580202 DOI: 10.1038/s41375-021-01151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/08/2022]
|
16
|
Colpaert RMW, Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics 2021; 113:540-551. [PMID: 33482325 DOI: 10.1016/j.ygeno.2020.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide. Besides environmental and genetic changes, these disorders can be influenced by processes which do not affect DNA sequence yet still play an important role in gene expression and which can be inherited. These so-called 'epigenetic' changes include DNA methylation, histone modifications, and ATP-dependent chromatin remodeling enzymes, which influence chromatin remodeling and gene expression. Next to these, microRNAs are non-coding RNA molecules that silence genes post-transcriptionally. Both epigenetic factors and microRNAs are known to influence cardiac development and homeostasis, in an individual fashion but also in a complex regulatory network. In this review, we will discuss how epigenetic factors and microRNAs interact with each other and how together they can influence cardiovascular diseases.
Collapse
Affiliation(s)
- Robin M W Colpaert
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands
| | - Martina Calore
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands.
| |
Collapse
|
17
|
Muranen TA, Khan S, Fagerholm R, Aittomäki K, Cunningham JM, Dennis J, Leslie G, McGuffog L, Parsons MT, Simard J, Slager S, Soucy P, Easton DF, Tischkowitz M, Spurdle AB, Schmutzler RK, Wappenschmidt B, Hahnen E, Hooning MJ, Singer CF, Wagner G, Thomassen M, Pedersen IS, Domchek SM, Nathanson KL, Lazaro C, Rossing CM, Andrulis IL, Teixeira MR, James P, Garber J, Weitzel JN, Jakubowska A, Yannoukakos D, John EM, Southey MC, Schmidt MK, Antoniou AC, Chenevix-Trench G, Blomqvist C, Nevanlinna H. Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer. NPJ Breast Cancer 2020; 6:44. [PMID: 32964118 PMCID: PMC7483417 DOI: 10.1038/s41523-020-00185-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023] Open
Abstract
Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in BRCA1 or BRCA2 genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of BRCA1 carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30, P = 3.1 × 10-9). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.
Collapse
Affiliation(s)
- Taru A. Muranen
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
| | - Rainer Fagerholm
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Julie M. Cunningham
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
| | - Joe Dennis
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Goska Leslie
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Lesley McGuffog
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Michael T. Parsons
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Jacques Simard
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
| | - Susan Slager
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | - Penny Soucy
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
| | - Douglas F. Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Marc Tischkowitz
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - kConFab Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Rita K. Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Barbara Wappenschmidt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Maartje J. Hooning
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - HEBON Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Christian F. Singer
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Gabriel Wagner
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Mads Thomassen
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
| | - Inge Sokilde Pedersen
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
| | - Susan M. Domchek
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | - Katherine L. Nathanson
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | - Conxi Lazaro
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
| | - Caroline Maria Rossing
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
| | - Manuel R. Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Paul James
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
| | - Judy Garber
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
| | | | - SWE-BRCA Investigators
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
- University of Turku and Åbo Akademi University, Turku Bioscience Centre, Turku, Finland
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
- CHU de Quebec Research Center, Genomics Center, Québec City, QC Canada
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
- Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark
- Aalborg University, Dept of Clinical Medicine, Aalborg, Denmark
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
- ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
- City of Hope, Clinical Cancer Genomics, Duarte, CA USA
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Drakoulis Yannoukakos
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Esther M. John
- Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology, Stanford, CA USA
| | - Melissa C. Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
| | - Marjanka K. Schmidt
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
| | - Antonis C. Antoniou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Carl Blomqvist
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
18
|
Holman HA, Wan Y, Rabbitt RD. Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris. iScience 2020; 23:101407. [PMID: 32771977 PMCID: PMC7415930 DOI: 10.1016/j.isci.2020.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum (EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology-Head & Neck Surgery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
20
|
Yamamoto M, Suwa Y, Sugiyama K, Okashita N, Kawaguchi M, Tani N, Matsubara K, Nakamura A, Seki Y. The PRDM14-CtBP1/2-PRC2 complex regulates transcriptional repression during the transition from primed to naïve pluripotency. J Cell Sci 2020; 133:jcs240176. [PMID: 32661086 DOI: 10.1242/jcs.240176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The pluripotency-associated transcriptional network is regulated by a core circuitry of transcription factors. The PR domain-containing protein PRDM14 maintains pluripotency by activating and repressing transcription in a target gene-dependent manner. However, the mechanisms underlying dichotomic switching of PRDM14-mediated transcriptional control remain elusive. Here, we identified C-terminal binding protein 1 and 2 (CtBP1 and CtBP2; generically referred to as CtBP1/2) as components of the PRDM14-mediated repressive complex. CtBP1/2 binding to PRDM14 depends on CBFA2T2, a core component of the PRDM14 complex. The loss of Ctbp1/2 impaired the PRDM14-mediated transcriptional repression required for pluripotency maintenance and transition from primed to naïve pluripotency. Furthermore, CtBP1/2 interacted with the PRC2 complexes, and the loss of Ctbp1/2 impaired Polycomb repressive complex 2 (PRC2) and H3K27me3 enrichment at target genes after Prdm14 induction. These results provide evidence that the target gene-dependent transcriptional activity of PRDM14 is regulated by partner switching to ensure the transition from primed to naïve pluripotency.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maiko Yamamoto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshiaki Suwa
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kohta Sugiyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Naoki Okashita
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Masanori Kawaguchi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kazumi Matsubara
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yoshiyuki Seki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
21
|
Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W, Yu H, Teng X, Yang Y, Feng W, Zhang T, Gao J, Zhang K, Qiu R, Wang Y. PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. SCIENCE ADVANCES 2020; 6:eaaz0356. [PMID: 32494608 PMCID: PMC7159910 DOI: 10.1126/sciadv.aaz0356] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
TUDOR domain-containing proteins (TDRDs) are chiefly responsible for recognizing methyl-lysine/arginine residue. However, how TDRD dysregulation contributes to breast tumorigenesis is poorly understood. Here, we report that TUDOR domain-containing PHF20L1 as a H3K27me2 reader exerts transcriptional repression by recruiting polycomb repressive complex 2 (PRC2) and Mi-2/nucleosome remodeling and deacetylase (NuRD) complex, linking PRC2-mediated methylation and NuRD-mediated deacetylation of H3K27. Furthermore, PHF20L1 was found to serve as a potential MYC and hypoxia-driven oncogene, promoting glycolysis, proliferation, and metastasis of breast cancer cells by directly inhibiting tumor suppressors such as HIC1, KISS1, and BRCA1. PHF20L1 expression was also strongly correlated with higher histologic grades of breast cancer and markedly up-regulated in several cancers. Meanwhile, Phf20l1 deletion not only induces growth retardation and mammary ductal outgrowth delay but also inhibits tumorigenesis in vivo. Our data indicate that PHF20L1 promotes tumorigenesis, supporting the pursuit of PHF20L1 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dongxue Su
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ying Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author.
| |
Collapse
|
22
|
Karaca E, Li X, Lewicki J, Neofytou C, Guérout N, Barnabé-Heider F, Hermanson O. The corepressor CtBP2 is required for proper development of the mouse cerebral cortex. Mol Cell Neurosci 2020; 104:103481. [PMID: 32169478 DOI: 10.1016/j.mcn.2020.103481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
The development of the cerebral cortex depends on numerous parameters, including extracellular cues and microenvironmental factors that also affect gene expression. C-Terminal Binding Proteins (CtBPs) 1 and 2 are transcriptional co-repressors which have been shown to be critically involved in embryonic development. CtBPs are oxygen sensing molecules, and we have previously demonstrated an important role for CtBP1 in integrating oxygen levels and BMP-signaling to influence neural progenitor fate choice. In turn, CtBP2 has been associated with neurodevelopment and neurological disease, and we have shown that CtBP2 acetylation and dimerization, required for proper transcriptional activity, are regulated by microenvironmental oxygen levels. Yet, the putative function of CtBP2 in mammalian cortical development and neurogenesis in vivo is still largely unknown. Here we show that CtBP2 was widely expressed by neural stem and progenitor cells (NSPCs) as well as neurons during cortical development in mice. By using in utero electroporation of siRNA to reduce the levels of CtBP2 mRNA and protein in the developing mouse brain, we found that the NSPC proliferation and migration were largely perturbed, while glial differentiation under these conditions remained unchanged. Our study provides evidence that CtBP2 is required for the maintenance and migration of the NSPCs during mouse cortical development.
Collapse
Affiliation(s)
- Esra Karaca
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Cardiothoracic Surgery, Stanford University, California, USA.
| | - Xiaofei Li
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jakub Lewicki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Nicolas Guérout
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Normandie Université, UNIROUEN, EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | | | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
CtBP-a targetable dependency for tumor-initiating cell activity and metastasis in pancreatic adenocarcinoma. Oncogenesis 2019; 8:55. [PMID: 31586042 PMCID: PMC6778071 DOI: 10.1038/s41389-019-0163-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/04/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ctbp2 is a uniquely targetable oncogenic transcriptional coregulator, exhibiting overexpression in most common solid tumors, and critical to the tumor-initiating cell (TIC) transcriptional program. In the “CKP” mouse pancreatic ductal adenocarcinoma (PDAC) model driven by mutant K-Ras, Ctbp2 haploinsufficiency prolonged survival, abrogated peritoneal metastasis, and caused dramatic downregulation of c-Myc, a known critical dependency for TIC activity and tumor progression in PDAC. A small-molecule inhibitor of CtBP2, 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) phenocopied Ctbp2 deletion, decreasing tumor burden similarly to gemcitabine, and the combination of 4-Cl-HIPP and gemcitabine further synergistically suppressed tumor growth. Pharmacodynamic monitoring revealed that the 4-Cl-HIPP/gemcitabine combination induced robust and synergistic tumor apoptosis and marked downregulation of the TIC marker CD133 in CKP PDAC tumors. Collectively, our data demonstrate that targeting CtBP represents a fruitful avenue for development of highly active agents in PDAC that cooperate with standard therapy to limit both primary and metastatic tumor burden.
Collapse
|
24
|
Kwak S, Kim TW, Kang BH, Kim JH, Lee JS, Lee HT, Hwang IY, Shin J, Lee JH, Cho EJ, Youn HD. Zinc finger proteins orchestrate active gene silencing during embryonic stem cell differentiation. Nucleic Acids Res 2019; 46:6592-6607. [PMID: 29846698 PMCID: PMC6061687 DOI: 10.1093/nar/gky454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/11/2018] [Indexed: 01/03/2023] Open
Abstract
Transcription factors and chromatin remodeling proteins control the transcriptional variability for ESC lineage commitment. During ESC differentiation, chromatin modifiers are recruited to the regulatory regions by transcription factors, thereby activating the lineage-specific genes or silencing the transcription of active ESC genes. However, the underlying mechanisms that link transcription factors to exit from pluripotency are yet to be identified. In this study, we show that the Ctbp2-interacting zinc finger proteins, Zfp217 and Zfp516, function as linkers for the chromatin regulators during ESC differentiation. CRISPR-Cas9-mediated knock-outs of both Zfp217 and Zfp516 in ESCs prevent the exit from pluripotency. Both zinc finger proteins regulate the Ctbp2-mediated recruitment of the NuRD complex and polycomb repressive complex 2 (PRC2) to active ESC genes, subsequently switching the H3K27ac to H3K27me3 during ESC differentiation for active gene silencing. We therefore suggest that some zinc finger proteins orchestrate to control the concise epigenetic states on active ESC genes during differentiation, resulting in natural lineage commitment.
Collapse
Affiliation(s)
- Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Byung-Hee Kang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jang-Seok Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Han-Teo Lee
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong-Hyuk Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
25
|
Goos JAC, Vogel WK, Mlcochova H, Millard CJ, Esfandiari E, Selman WH, Calpena E, Koelling N, Carpenter EL, Swagemakers SMA, van der Spek PJ, Filtz TM, Schwabe JWR, Iwaniec UT, Mathijssen IMJ, Leid M, Twigg SRF. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis. Hum Mol Genet 2019; 28:2501-2513. [PMID: 31067316 PMCID: PMC6644156 DOI: 10.1093/hmg/ddz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Departments of Plastic and Reconstructive Surgery and Hand Surgery
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Hana Mlcochova
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Elahe Esfandiari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Wisam H Selman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Sigrid M A Swagemakers
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
26
|
Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 2019; 9:9511. [PMID: 31266983 PMCID: PMC6606599 DOI: 10.1038/s41598-019-45777-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.
Collapse
|
27
|
Ibrutinib induces chromatin reorganisation of chronic lymphocytic leukaemia cells. Oncogenesis 2019; 8:32. [PMID: 31076570 PMCID: PMC6510766 DOI: 10.1038/s41389-019-0142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in Western countries. It has recently been shown that the homogeneity of the chromatin landscape between CLL cells contrasts with the important observed genetic heterogeneity of the disease. To gain further insight into the consequences of disease evolution on the epigenome's plasticity, we monitored changes in chromatin structure occurring in vivo in CLL cells from patients receiving continuous Ibrutinib treatment. Ibrutinib, an oral inhibitor of the Bruton's tyrosine kinase (BTK) has proved to be remarkably efficient against treatment naïve (TN), heavily pre-treated and high-risk chronic lymphocytic leukaemia (CLL), with limited adverse events. We established that the chromatin landscape is significantly and globally affected in response to Ibrutinib. However, we observed that prior to treatment, CLL cells show qualitative and quantitative variations in chromatin structure correlated with both EZH2 protein level and cellular response to external stimuli. Then, under prolonged exposure to Ibrutinib, a loss of the two marks associated with lysine 27 (acetylation and trimethylation) was observed. Altogether, these data indicate that the epigenome of CLL cells from the peripheral blood change dynamically in response to stimuli and suggest that these cells might adapt to the Ibrutinib "hit" in a process leading toward a possible reduced sensitivity to treatment.
Collapse
|
28
|
Association of Single-Nucleotide Polymorphism REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 with Primary Lung Cancer Susceptibility: A Case-Control Study in a Chinese Population. DISEASE MARKERS 2019. [DOI: 10.1155/2019/4150263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the current study is to explore the contribution of single-nucleotide polymorphisms (SNPs) of REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 to the risk of lung cancer. A questionnaire survey was used to obtain basic information of the included subjects. A case control study was performed in 1121 patients and 1121 controls. All subjects were subjected to blood sampling for genomic DNA extraction and genotyping of the cancer stem cell-associated gene SNPs, including REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 by real-time PCR. The association with the risk of primary lung cancer and interaction with environmental factors were assessed using unconditional logistic regression for the odds ratios and corresponding 95% confidence intervals. The genotype frequency distribution of OCT4 rs13409 loci was statistically significant, but there was no significant difference in the rest of the loci between lung cancer patients and healthy controls. The OCT4 gene was also related with lung cancer susceptibility in the genetic model after adjusting for lung cancer-related factors. Despite the presence of the dominant or recessive model, the four loci polymorphisms were associated with pollution near the place of residence, house type, worse ventilation situation, smoking, passive smoking, cooking oil fumes (COF), and family history of cancer, which increased the risk of lung cancer. Nonmarried status, 18.5≤BMI, COF, smoking, passive smoking, family history of cancer, and history of lung disease were independent risk factors of lung cancer susceptibility. Additionally, college degree or above, no pollution near the place of residence, protective genotype 1 or 2, and well ventilation can reduce the occurrence of lung cancer. There is an interaction between the four loci and environmental factors, and OCT4 rs13409 is a risk factor of primary lung cancer.
Collapse
|
29
|
Arthur SA, Blaydes JP, Houghton FD. Glycolysis Regulates Human Embryonic Stem Cell Self-Renewal under Hypoxia through HIF-2α and the Glycolytic Sensors CTBPs. Stem Cell Reports 2019; 12:728-742. [PMID: 30880076 PMCID: PMC6450050 DOI: 10.1016/j.stemcr.2019.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Glycolysis and hypoxia are key regulators of human embryonic stem cell (hESC) self-renewal, but how changes in metabolism affect gene expression is poorly understood. C-terminal binding proteins (CTBPs) are glycolytic sensors that through NADH binding link the metabolic state of the cell to its gene expression, by acting as transcriptional corepressors, or coactivators. However, the role of CTBPs in hESCs has not previously been investigated. A direct interaction between hypoxia-inducible factor 2α (HIF-2α) and the CTBP proximal promoters in hESCs cultured only under hypoxia was demonstrated. Decreasing the rate of flux through glycolysis in hESCs maintained under hypoxia resulted in a reduction of CTBPs, OCT4, SOX2, and NANOG, but also in the expression of HIF-2α. Silencing CTBP expression resulted in the loss of pluripotency marker expression demonstrating that CTBPs are involved in hESC maintenance. These data suggest that under hypoxia, glycolysis regulates self-renewal through HIF-2α and the induction of the metabolic sensors CTBPs.
Collapse
Affiliation(s)
- Sophie A Arthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
30
|
Mordaunt CE, Kieffer DA, Shibata NM, Członkowska A, Litwin T, Weiss KH, Zhu Y, Bowlus CL, Sarkar S, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin 2019; 12:10. [PMID: 30709419 PMCID: PMC6357467 DOI: 10.1186/s13072-019-0255-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Wilson disease (WD) is an autosomal recessive disease caused by mutations in ATP7B encoding a copper transporter. Consequent copper accumulation results in a variable WD clinical phenotype involving hepatic, neurologic, and psychiatric symptoms, without clear genotype-phenotype correlations. The goal of this study was to analyze alterations in DNA methylation at the whole-genome level in liver and blood from patients with WD to investigate epigenomic alterations associated with WD diagnosis and phenotype. We used whole-genome bisulfite sequencing (WGBS) to examine distinct cohorts of WD subjects to determine whether DNA methylation could differentiate patients from healthy subjects and subjects with other liver diseases and distinguish between different WD phenotypes. RESULTS WGBS analyses in liver identified 969 hypermethylated and 871 hypomethylated differentially methylated regions (DMRs) specifically identifying patients with WD, including 18 regions with genome-wide significance. WD-specific liver DMRs were associated with genes enriched for functions in folate and lipid metabolism and acute inflammatory response and could differentiate early from advanced fibrosis in WD patients. Functional annotation revealed that WD-hypermethylated liver DMRs were enriched in liver-specific enhancers, flanking active liver promoters, and binding sites of liver developmental transcription factors, including Hepatocyte Nuclear Factor 4 alpha (HNF4A), Retinoid X Receptor alpha (RXRA), Forkhead Box A1 (FOXA1), and FOXA2. DMRs associated with WD progression were also identified, including 15 with genome-wide significance. However, WD DMRs in liver were not related to large-scale changes in proportions of liver cell types. DMRs detected in blood differentiated WD patients from healthy and disease control subjects, and distinguished between patients with hepatic and neurologic WD manifestations. WD phenotype DMRs corresponded to genes enriched for functions in mental deterioration, abnormal B cell physiology, and as members of the polycomb repressive complex 1 (PRC1). 44 DMRs associated with WD phenotype tested in a small validation cohort had a predictive value of 0.9. CONCLUSIONS We identified a disease-mechanism relevant epigenomic signature of WD that reveals new insights into potential biomarkers and treatments for this complex monogenic disease.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl-Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Souvik Sarkar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Mohamed R Ali
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
31
|
Kraushaar DC, Chen Z, Tang Q, Cui K, Zhang J, Zhao K. The gene repressor complex NuRD interacts with the histone variant H3.3 at promoters of active genes. Genome Res 2018; 28:1646-1655. [PMID: 30254051 PMCID: PMC6211640 DOI: 10.1101/gr.236224.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The histone variant H3.3 is deposited across active genes, regulatory regions, and telomeres. It remains unclear how H3.3 interacts with chromatin modifying enzymes and thereby modulates gene activity. In this study, we performed a co-immunoprecipitation-mass spectrometry analysis of proteins associated with H3.3-containing nucleosomes and identified the nucleosome remodeling and deacetylase complex (NuRD) as a major H3.3-interactor. We show that the H3.3-NuRD interaction is dependent on the H3.3 lysine 4 residue and that NuRD binding occurs when lysine 4 is in its unmodified state. The majority of NuRD binding colocalizes with H3.3 and directly correlates with gene activity. H3.3 depletion led to reduced levels of NuRD at sites previously occupied by H3.3, as well as a global decrease in histone marks associated with gene activation. Our results demonstrate the importance of H3.3 in the maintenance of the cellular epigenetic landscape and reveal a highly prevalent interaction between the histone variant H3.3 and the multiprotein complex NuRD.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zuozhou Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qingsong Tang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 57:1-9. [PMID: 30213688 DOI: 10.1016/j.semcancer.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor initiation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 83:596-604. [PMID: 30208341 DOI: 10.1016/j.semcancer.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor imitation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
34
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Zuo Q, Zhang C, Jin K, Jing J, Sun C, Ahmed MF, Song J, Zhang Y, Chen G, Li B. NICD-mediated notch transduction regulates the different fate of chicken primordial germ cells and spermatogonial stem cells. Cell Biosci 2018; 8:40. [PMID: 29951200 PMCID: PMC6009047 DOI: 10.1186/s13578-018-0238-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Notch signaling is mainly regulated by Notch1 during development of chicken germ stem cells; however, the molecular mechanisms that contribute to generation of these germ stem cells have not been thoroughly investigated. Results In our studies, Overexpression of the Notch1 NICD promoted development of the reproductive ridge, but inhibited the formation of seminiferous tubules. The formation efficiency of PGCs in the reproductive ridge following overexpression of NICD (7.5% ± 0.11) was significantly higher than that (4.9% ± 0.17, p < 0.05) following inhibition of NICD, While the formation efficiency of spermatogonial stem cells (SSCs) in the testes (12.7% ± 0.08) was significantly lower after NICD overexpression than that after inhibition of NICD (16.3% ± 0.16, p < 0.05). Using co-immunoprecipitation, we found that this anomaly stemmed from the reversal of dissociation of the Notch-regulated transcription factor CBF-1/RBP co-suppression complex during the differentiation of PGCs into SSCs. This dissociation of the CBF-1/RBP co-suppressing complex during the differentiation of ESCs into PGCs resulted in the release of HDAC1 and HDAC2 and the recruitment of mastermind-like 1 to form a coactive complex to promote the expression of the downstream transcription suppressor hairy/enhancer of split-1. Dynamic expression of transducin-like enhancer of split 3, TLE4, and C-terminal binding protein 2 during further differentiation of PGCs inhibited the dissociation of the CBF-1/RBP co-suppression complex and inhibited the expression of the downstream genes. Conclusions In summary, Notch signaling plays diametrically opposing roles during normal development of chicken PGCs and SSCs, and these functions was determined by the expression of NICD, changes in the CBF-1/RBP complex composition, and histone modification.
Collapse
Affiliation(s)
- Qisheng Zuo
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Chen Zhang
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Kai Jin
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Jin Jing
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Changhua Sun
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Mahmoud F Ahmed
- 3College of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Jiuzhou Song
- 2Department of Animal & Avian Sciences, University of Maryland, Baltimore, MD 20741 USA
| | - Yani Zhang
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Guohong Chen
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| | - Bichun Li
- 1Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu 225009 People's Republic of China.,4Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 88 South University Ave, Yangzhou, 225009 Jiangsu People's Republic of China
| |
Collapse
|
36
|
Suh MY, Kim TW, Lee HT, Shin J, Kim JH, Jang H, Kim HJ, Kim ST, Cho EJ, Youn HD. Abundance of C-terminal binding protein isoform is a prerequisite for exit from pluripotency in mouse embryonic stem cells. FASEB J 2018; 32:fj201700837RRRR. [PMID: 29894668 DOI: 10.1096/fj.201700837rrrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unlike lower organisms, mammals have 2 C-terminal binding protein (Ctbp) isoforms, Ctbp1 and Ctbp2. Ctbp2 is revealed as a key factor involved in determining cell fate decisions by regulating the epigenetic state in active embryonic stem cell (ESC) genes. However, the molecular mechanism underlying how Ctbp1 and Ctbp2 have different roles remains elusive. Here we demonstrate that Ctbp isoform abundance is important for mouse embryonic ESCs (mESCs) to exit from pluripotency. Temporal expression patterns of Ctbp isoforms were quite different; Ctbp2 is more highly expressed in mESCs and decreases during differentiation, while Ctbp1 is constantly expressed at a lower level. Ctbp2 knockdown, but not Ctbp1 knockdown, in mESCs resulted in impaired exit from pluripotency. Interestingly, Ctbp1 and Ctbp2 overexpression in Ctbp2-knockdown mESCs leads to exiting from pluripotency in a manner similar to that of wild-type mESCs. Quantification of Ctbp1 and Ctbp2 revealed that differentiation ability correlates with abundance of Ctbp isoform in undifferentiated mESCs, suggesting that a sufficient amount of Ctbp isoform is a prerequisite for exiting from pluripotency. The results support the contention that 2 redundant Ctbp isoforms regulate elaborate differentiation via temporally distinctive regulatory patterns in mESCs.-Suh, M. Y., Kim, T. W., Lee, H.-T., Shin, J., Kim, J.-H., Jang, H., Kim, H. J., Kim, S.-T., Cho, E.-J., Youn, H.-D. Abundance of C-terminal binding protein isoform is a prerequisite for exit from pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Min Young Suh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Teo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea
| | - Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, South Korea
| | - Hye Ji Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Sungkyunkwan University College of Medicine, Suwon, South Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hong-Duk Youn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, South Korea
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Zhang Y, Kwok JSL, Choi PW, Liu M, Yang J, Singh M, Ng SK, Welch WR, Muto MG, Tsui SK, Sugrue SP, Berkowitz RS, Ng SW. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget 2017; 7:11397-411. [PMID: 26871283 PMCID: PMC4905481 DOI: 10.18632/oncotarget.7242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Unlike many other human solid tumors, ovarian tumors express many epithelial markers at a high level for cell growth and local invasion. The phosphoprotein Pinin plays a key role in epithelial cell identity. We showed that clinical ovarian tumors and ovarian cancer cell lines express a high level of Pinin when compared with normal ovarian tissues and immortalized normal ovarian surface epithelial cell lines. Pinin co-localized and physically interacted with transcriptional corepressor C-terminal binding proteins, CtBP1 and CtBP2, in the nuclei of cancer cells. Knockdown of Pinin in ovarian cancer cells resulted in specific reduction of CtBP1 protein expression, cell adhesion, anchorage-independent growth, and increased drug sensitivity. Whole transcriptomic comparison of next-generation RNA sequencing data between control ovarian cancer cell lines and cancer cell lines with respective knockdown of Pinin, CtBP1, and CtBP2 expression also showed reduced expression of CtBP1 mRNA in the Pinin knockdown cell lines. The Pinin knockdown cell lines shared significant overlap of differentially expressed genes and RNA splicing aberrations with CtBP1 knockdown and in a lesser degree with CtBP2 knockdown cancer cells. Hence, Pinin and CtBP are oncotargets that closely interact with each other to regulate transcription and pre-mRNA alternative splicing and promote cell adhesion and other epithelial characteristics of ovarian cancer cells.
Collapse
Affiliation(s)
- Yanli Zhang
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Jamie Sui-Lam Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Pui-Wah Choi
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Junzheng Yang
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Margit Singh
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Meadowbrook, Australia
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael G Muto
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen Kw Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Stephen P Sugrue
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ross S Berkowitz
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shu-Wing Ng
- Laboratory of Gynecologic Oncology, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Exp Mol Med 2017; 49:e385. [PMID: 29026198 PMCID: PMC5668466 DOI: 10.1038/emm.2017.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
The canonical Wnt pathway is critical for embryonic stem cell (ESC) pluripotency and aberrant control of β-catenin leads to failure of exit from pluripotency and lineage commitments. Hence, maintaining the appropriate level of β-catenin is important for the decision to commit to the appropriate lineage. However, how β-catenin links to core transcription factors in ESCs remains elusive. C-terminal-binding protein (CtBP) in Drosophila is essential for Wnt-mediated target gene expression. In addition, Ctbp acts as an antagonist of β-catenin/TCF activation in mammals. Recently, Ctbp2, a core Oct4-binding protein in ESCs, has been reported to play a key role in ESC pluripotency. However, the significance of the connection between Ctbp2 and β-catenin with regard to ESC pluripotency remains elusive. Here, we demonstrate that C-terminal-binding protein 2 (Ctbp2) associates with major components of the β-catenin destruction complex and limits the accessibility of β-catenin to core transcription factors in undifferentiated ESCs. Ctbp2 knockdown leads to stabilization of β-catenin, which then interacts with core pluripotency-maintaining factors that are occupied by Ctbp2, leading to incomplete exit from pluripotency. These findings suggest a suppressive function for Ctbp2 in reducing the protein level of β-catenin, along with priming its position on core pluripotency genes to hinder β-catenin deposition, which is central to commitment to the appropriate lineage.
Collapse
|
39
|
Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development 2017; 143:2882-97. [PMID: 27531948 DOI: 10.1242/dev.128892] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
40
|
Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes (Basel) 2017; 8:genes8080196. [PMID: 28783137 PMCID: PMC5575660 DOI: 10.3390/genes8080196] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed “epigenetics”. These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.
Collapse
|
41
|
Guo J, Cheng X, Zhang L, Wang L, Mao Y, Tian G, Xu W, Wu Y, Ma Z, Qin J, Tian M, Jin G, Shi W, Zhang X. Exploration of the Brn4-regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing. J Neurosci Res 2017; 95:2071-2079. [PMID: 28213929 DOI: 10.1002/jnr.24043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022]
Abstract
Adult hippocampal neurogenesis is essential for learning and memory, and its dysfunction is involved in neurodegenerative diseases. However, the molecular mechanisms underlying adult hippocampal neurogenesis are still largely unknown. Our previous studies indicated that the transcription factor Brn4 was upregulated and promoted neuronal differentiation of neural stem cells (NSCs) in the surgically denervated hippocampus in rats. In this study, we use high-throughput RNA sequencing to explore the molecular mechanisms underlying the enhancement of adult hippocampal neurogenesis induced by lentivirus-mediated Brn4 overexpression in vivo. After 10 days of the lentivirus injection, we found that the expression levels of genes related to neuronal development and maturation were significantly increased and the expression levels of genes related to NSC maintenance were significantly decreased, indicating enhanced neurogenesis in the hippocampus after Brn4 overexpression. Through RNA sequencing, we found that 658 genes were differentially expressed in the Brn4-overexpressed hippocampi compared with GFP-overexpressed controls. Many of these differentially expressed genes are involved in NSC division and differentiation. By using quantitative real-time PCR, we validated the expression changes of three genes, including Ctbp2, Notch2, and Gli1, all of which are reported to play key roles in neuronal differentiation of NSCs. Importantly, the expression levels of Ctbp2 and Notch2 were also significantly changed in the hippocampus of Brn4 KO mice, which indicates that the expression levels of Ctbp2 and Notch2 may be directly regulated by Brn4. Our current study provides a solid foundation for further investigation and identifies Ctbp2 and Notch2 as possible downstream targets of Brn4. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Xiang Cheng
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Linmei Wang
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Yongxin Mao
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Guixiang Tian
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Wenhao Xu
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Yuhao Wu
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Zhi Ma
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Jianbing Qin
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Meiling Tian
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China
| | - Guohua Jin
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wei Shi
- Neurosurgery Department, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinhua Zhang
- Department of Anatomy, Nantong University, Nantong, Jiangsu, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Jammula S, Pasini D. EpiMINE, a computational program for mining epigenomic data. Epigenetics Chromatin 2016; 9:42. [PMID: 27708717 PMCID: PMC5043526 DOI: 10.1186/s13072-016-0095-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background In epigenetic research, both the increasing ease of high-throughput sequencing and a greater interest in genome-wide studies have resulted in an exponential flooding of epigenetic-related data in public domain. This creates an opportunity for exploring data outside the limits of any specific query-centred study. Such data have to undergo standard primary analyses that are accessible with multiple well-stabilized programs. Further downstream analyses, such as genome-wide comparative, correlative and quantitative analyses, are critical in deciphering key biological features. However, these analyses are only accessible for computational researchers and completely lack platforms capable of handling, analysing and linking multiple interdisciplinary datasets with efficient analytical methods. Results Here, we present EpiMINE, a program for mining epigenomic data. It is a user-friendly, stand-alone computational program designed to support multiple datasets, for performing genome-wide correlative and quantitative analysis of ChIP-seq and RNA-seq data. Using data available from the ENCODE project, we illustrated several features of EpiMINE through different biological scenarios to show how easy some known observations can be verified. These results highlight how these approaches can be helpful in identifying novel biological features. Conclusions EpiMINE performs different kinds of genome-wide quantitative and correlative analyses, using ChIP-seq- and RNA-seq-related datasets. Its framework enables it to be used by both experimental and computational researchers. EpiMINE can be downloaded from https://sourceforge.net/projects/epimine/. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0095-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- SriGanesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
43
|
Lundberg SM, Tu WB, Raught B, Penn LZ, Hoffman MM, Lee SI. ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data. Genome Biol 2016; 17:82. [PMID: 27139377 PMCID: PMC4852466 DOI: 10.1186/s13059-016-0925-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
A cell's epigenome arises from interactions among regulatory factors-transcription factors and histone modifications-co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative approaches. We experimentally validated one of the previously unreported interactions, MYC-HCFC1. An interactive visualization tool is available at http://chromnet.cs.washington.edu.
Collapse
Affiliation(s)
- Scott M Lundberg
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - William B Tu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Michael M Hoffman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Su-In Lee
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Bushehri A, Barez MRM, Mansouri SK, Biglarian A, Ohadi M. Genome-wide identification of human- and primate-specific core promoter short tandem repeats. Gene 2016; 587:83-90. [PMID: 27108803 DOI: 10.1016/j.gene.2016.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 12/12/2022]
Abstract
Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation.
Collapse
Affiliation(s)
- A Bushehri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M R Mashhoudi Barez
- Cell and Molecular Biology Research Center, Department of Anatomy and Biology, Faculty of Medicine, Shahid Beheshti University, Velenjak, Tehran, Iran
| | - S K Mansouri
- Clinical Psychology Department, Faculty of Science and Research, Qazvin Azad University, Qazvin, Iran
| | - A Biglarian
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
45
|
Histone H3 globular domain acetylation identifies a new class of enhancers. Nat Genet 2016; 48:681-6. [PMID: 27089178 PMCID: PMC4886833 DOI: 10.1038/ng.3550] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered.
Collapse
|
46
|
Shin J, Kim TW, Kim H, Kim HJ, Suh MY, Lee S, Lee HT, Kwak S, Lee SE, Lee JH, Jang H, Cho EJ, Youn HD. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells. eLife 2016; 5:e10877. [PMID: 26880562 PMCID: PMC4798952 DOI: 10.7554/elife.10877] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.
Collapse
Affiliation(s)
- Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunsoo Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Ji Kim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Young Suh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Sangho Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Han-Teo Lee
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Eun Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong-Hyuk Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Xu M, Hu T, Smith MR, Poethig RS. Epigenetic Regulation of Vegetative Phase Change in Arabidopsis. THE PLANT CELL 2016; 28:28-41. [PMID: 26704382 PMCID: PMC4746683 DOI: 10.1105/tpc.15.00854] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/09/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
Vegetative phase change in flowering plants is regulated by a decrease in the level of miR156. The molecular mechanism of this temporally regulated decrease in miR156 expression is still unknown. Most of the miR156 in Arabidopsis thaliana shoots is produced by MIR156A and MIR156C. We found that the downregulation of these genes during vegetative phase change is associated with an increase in their level of histone H3 lysine 27 trimethylation (H3K27me3) and requires this chromatin modification. The increase in H3K27me3 at MIR156A/MIR156C is associated with an increase in the binding of PRC2 to these genes and is mediated redundantly by the E(z) homologs SWINGER and CURLY LEAF. The CHD3 chromatin remodeler PICKLE (PKL) promotes the addition of H3K27me3 to MIR156A/MIR156C but is not responsible for the temporal increase in this chromatin mark. PKL is bound to the promoters of MIR156A/MIR156C, where it promotes low levels of H3K27ac early in shoot development and stabilizes the nucleosome at the +1 position. These results suggest a molecular mechanism for the initiation and maintenance of vegetative phase change in plants.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael R Smith
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
48
|
Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 2015; 16:1609-19. [PMID: 26553936 DOI: 10.15252/embr.201541011] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 11/09/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri-methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3-enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as "bivalency". While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage-specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP-dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable "bivalent specificity", often selectively acting on, or selectively depleted from, bivalent domains.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
49
|
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81. [PMID: 26474904 PMCID: PMC4641500 DOI: 10.15252/embr.201540945] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|