1
|
Lee S, Ohn J, Kang BM, Hwang ST, Kwon O. Activation of mitochondrial aldehyde dehydrogenase 2 promotes hair growth in human hair follicles. J Adv Res 2024; 64:237-247. [PMID: 37972887 PMCID: PMC11464481 DOI: 10.1016/j.jare.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hair loss is a common phenomenon associated with various environmental and genetic factors. Mitochondrial dysfunction-induced oxidative stress has been recognized as a crucial determinant of hair follicle (HF) biology. Aldehyde dehydrogenase 2 (ALDH2) mitigates oxidative stress by detoxifying acetaldehyde. This study investigated the potential role of ALDH2 modulation in HF function and hair growth promotion. OBJECTIVES To evaluate the effects of ALDH2 activation on oxidative stress in HFs and hair growth promotion. METHODS The modulatory role of ALDH2 on HFs was investigated using an ALDH2 activator. ALDH2 expression in human HFs was evaluated through in vitro immunofluorescence staining. Ex vivo HF organ culture was employed to assess hair shaft elongation, while the fluorescence probe 2',7'- dichlorodihydrofluorescein diacetate was utilized to detect reactive oxygen species (ROS). An in vivo mouse model was used to determine whether ALDH2 activation induces anagen. RESULTS During the anagen phase, ALDH2 showed significantly higher intensity than that in the telogen phase, and its expression was primarily localized along the outer layer of HFs. ALDH2 activation promoted anagen phase induction by reducing ROS levels and enhancing reactive aldehyde clearance, which indicated that ALDH2 functions as a ROS scavenger within HFs. Moreover, ALDH2 activation upregulated Akt/GSK 3β/β-catenin signaling in HFs. CONCLUSIONS Our findings highlight the hair growth promotion effects of ALDH2 activation in HFs and its potential as a promising therapeutic approach for promoting anagen induction.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
2
|
Fauzi AA, Thamrin AMH, Permana AT, Ranuh IGMAR, Hidayati HB, Hamdan M, Wahyuhadi J, Suroto NS, Lestari P, Chandra PS. Comparison of the Administration Route of Stem Cell Therapy for Ischemic Stroke: A Systematic Review and Meta-Analysis of the Clinical Outcomes and Safety. J Clin Med 2023; 12:jcm12072735. [PMID: 37048818 PMCID: PMC10094955 DOI: 10.3390/jcm12072735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Stem cell treatment is emerging as an appealing alternative for stroke patients, but there still needs to be an agreement on the protocols in place, including the route of administration. This systematic review aimed to assess the efficacy and safety of the administration routes of stem cell treatment for ischemic stroke. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. A total of 21 publications on stem cell therapy for ischemic stroke were included. Efficacy outcomes were measured using the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Intracerebral administration showed a better outcome than other routes, but a greater number of adverse events followed due to its invasiveness. Adverse events were shown to be related to the natural history of stroke not to the treatment. However, further investigation is required, since studies have yet to compare the different administration methods directly.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Andhika Tomy Permana
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - I. G. M. Aswin R. Ranuh
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Hanik Badriyah Hidayati
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Muhammad Hamdan
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Joni Wahyuhadi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Poodipedi Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110608, India
| |
Collapse
|
3
|
Matsumoto A, Hara M, Ashenagar MS, Tokiya M, Sawada T, Iwasaka C, Furukawa T, Kitagawa K, Miyake Y, Hirota Y. Variant Allele of ALDH2, rs671, Associates with Attenuated Post-Vaccination Response in Anti-SARS-CoV-2 Spike Protein IgG: A Prospective Study in the Japanese General Population. Vaccines (Basel) 2022; 10:1035. [PMID: 35891198 PMCID: PMC9320019 DOI: 10.3390/vaccines10071035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Uncovering the predictors of vaccine immunogenicity is essential for infection control. We have reported that the most prevalent polymorphism of the aldehyde dehydrogenase 2 gene (ALDH2), rs671, may be associated with an attenuated immune system. To test the inverse relationship between rs671 and antibody production after COVID-19 vaccination, the levels of anti-SARS-CoV-2 Spike protein S1 subunit (S1) IgG were repeatedly measured for four months before and after vaccination with BNT162b2 or mRNA-1273, in 88 Japanese workers and students (including 45 females, aged 21-56 years, with an rs671 variant allele frequency of 0.3). The mixed model including fixed effects of the vaccine type, weeks post vaccination (categorical variable), sex, age, height, smoking status, ethanol intake, exercise habit, perceived stress, steroid use, allergic diseases, and dyslipidemia, indicated an inverse association between log-transformed anti-S1 IgG levels and the number of rs671 variant alleles (partial regression coefficient = -0.15, p = 0.002). Our study indicated for the first time that the variant allele of ALDH2, rs671, is associated with the attenuated immunogenicity of COVID-19 mRNA vaccines. Our finding may provide a basis for personalized disease prevention based on a genetic polymorphism that is prevalent among East Asians.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social and Environmental Medicine, School of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.S.A.); (M.T.)
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.H.); (C.I.); (T.F.)
| | - Mohammad Said Ashenagar
- Department of Social and Environmental Medicine, School of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.S.A.); (M.T.)
| | - Mikiko Tokiya
- Department of Social and Environmental Medicine, School of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.S.A.); (M.T.)
| | - Takeshi Sawada
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Chiharu Iwasaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.H.); (C.I.); (T.F.)
| | - Takuma Furukawa
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (M.H.); (C.I.); (T.F.)
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan;
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 840-8501, Japan;
| | - Yoshio Hirota
- SOUSEIKAI Medical Group, Clinical Epidemiology Research Center, Medical Co., LTA, 3-6-1 Kashii-Teriha, Higashi-Ku, Fukuoka 813-0017, Japan;
| |
Collapse
|
4
|
Kusuma GD, Georgiou HM, Perkins AV, Abumaree MH, Brennecke SP, Kalionis B. Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:115-127. [PMID: 35370491 PMCID: PMC8961706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Preeclampsia (PE) is a serious medically important disorder of human pregnancy, which features de novo pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation. The net effect is damage to the maternal vascular endothelium, which subsequently manifests as the clinical features of PE. Other than delivery of the fetus and placenta, curative treatments for PE have not yet been forthcoming, which reflects the complexity of the clinical syndrome. A major source of reactive oxygen species that contributes to the widespread maternal vascular endothelium damage is the PE-affected decidua. The role of decidua-derived mesenchymal stem/stromal cells (MSC) in normotensive and pathological placenta development is poorly understood. The ability to respond to an environment of oxidative damage is a "universal property" of MSC but the biological mechanisms that MSC employ in response to oxidative stress are compromised in PE. In this review, we discuss how MSC respond to oxidative stress in normotensive and pathological conditions. We also consider the possibility of manipulating the oxidative stress response of abnormal MSC as a therapeutic strategy to treat preeclampsia.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Harry M. Georgiou
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute
Queensland, Griffith University, Southport, Queensland, Australia
| | - Mohamed H. Abumaree
- Stem Cells and Regenerative Medicine Department, King
Abdullah International Medical Research Center, King Abdulaziz Medical City,
Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia,King Saud Bin Abdulaziz University for Health Sciences,
College of Science and Health Professions, King Abdulaziz Medical City, Ministry
of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shaun P. Brennecke
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Bill Kalionis
- The University of Melbourne, Department of Obstetrics
and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia,Pregnancy Research Centre, Department of Maternal-Fetal
Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia,To whom all correspondence should be addressed:
Dr. Bill Kalionis, Department of Maternal-Fetal Medicine Pregnancy Research
Centre Royal Women’s Hospital, Parkville, Victoria, Australia;
; ORCID iD:
https://orcid.org/0000-0002-0132-9858
| |
Collapse
|
5
|
Abstract
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Collapse
Affiliation(s)
- Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Takahashi H, Nakashima T, Masuda T, Namba M, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Antifibrotic effect of lung-resident progenitor cells with high aldehyde dehydrogenase activity. Stem Cell Res Ther 2021; 12:471. [PMID: 34425896 PMCID: PMC8381511 DOI: 10.1186/s13287-021-02549-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
Background Aldehyde dehydrogenase (ALDH) is highly expressed in stem/progenitor cells in various tissues, and cell populations with high ALDH activity (ALDHbr) are associated with tissue repair. However, little is known about lung-resident ALDHbr. This study was performed to clarify the characteristics of lung-resident ALDHbr cells and to evaluate their possible use as a tool for cell therapy using a mouse model of bleomycin-induced pulmonary fibrosis. Methods The characteristics of lung-resident/nonhematopoietic (CD45−) ALDHbr cells were assessed in control C57BL/6 mice. The kinetics and the potential usage of CD45−/ALDHbr for cell therapy were investigated in bleomycin-induced pulmonary fibrosis. Localization of transferred CD45−/ALDHbr cells was determined using mCherry-expressing mice as donors. The effects of aging on ALDH expression were also assessed using aged mice. Results Lung CD45−/ALDHbr showed higher proliferative and colony-forming potential than cell populations with low ALDH activity. The CD45−/ALDHbr cell population, and especially its CD45−/ALDHbr/PDGFRα+ subpopulation, was significantly reduced in the lung during bleomycin-induced pulmonary fibrosis. Furthermore, mRNA expression of ALDH isoforms was significantly reduced in the fibrotic lung. When transferred in vivo into bleomycin-pretreated mice, CD45−/ALDHbr cells reached the site of injury, ameliorated pulmonary fibrosis, recovered the reduced expression of ALDH mRNA, and prolonged survival, which was associated with the upregulation of the retinol-metabolizing pathway and the suppression of profibrotic cytokines. The reduction in CD45−/ALDHbr/PDGFRα+ population was more remarkable in aged mice than in young mice. Conclusions Our results strongly suggest that the lung expression of ALDH and lung-resident CD45−/ALDHbr cells are involved in pulmonary fibrosis. The current study signified the possibility that CD45−/ALDHbr cells could find application as novel and useful cell therapy tools in pulmonary fibrosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02549-6.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masashi Namba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Taylor DA, Chacon-Alberty L, Sampaio LC, Del Hierro MG, Perin EC, Mesquita FCP, Henry TD, Traverse JH, Pepine CJ, Hare JM, Murphy MP, Yang PC, March KL, Vojvodic RW, Ebert RF, Bolli R. Recommendations for Nomenclature and Definition Of Cell Products Intended for Human Cardiovascular Use. Cardiovasc Res 2021; 118:2428-2436. [PMID: 34387303 DOI: 10.1093/cvr/cvab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Exogenous cell-based therapy has emerged as a promising new strategy to facilitate repair of hearts damaged by acute or chronic injury. However, the field of cell-based therapy is handicapped by the lack of standardized definitions and terminology, making comparisons across studies challenging. Even the term "stem cell therapy" is misleading because only a small percentage of cells derived from adult bone marrow, peripheral blood, or adipose tissue meets the accepted hematopoietic or developmental definition of stem cells. Furthermore, cells (stem or otherwise) are dynamic biological products, meaning that their surface marker expression, phenotypic and functional characteristics, and the products they secrete in response to their microenvironment can change. It is also important to point out that most surface markers are seldom specific for a cell type. In this article, we discuss the lack of consistency in the descriptive terminology used in cell-based therapies and offer guidelines aimed at standardizing nomenclature and definitions to improve communication among investigators and the general public.
Collapse
Affiliation(s)
- Doris A Taylor
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas.,RegenMedix Consulting LLC, Houston, Texas
| | | | - Luiz C Sampaio
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas
| | | | - Emerson C Perin
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas
| | | | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, Ohio
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, and University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Carl J Pepine
- University of Florida College of Medicine, Gainesville, Florida
| | - Joshua M Hare
- University of Miami School of Medicine, Miami, Florida
| | | | - Phillip C Yang
- Stanford University School of Medicine, Stanford, California
| | - Keith L March
- University of Florida College of Medicine, Gainesville, Florida
| | - Rachel W Vojvodic
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | | |
Collapse
|
9
|
Mah V, Elshimali Y, Chu A, Moatamed NA, Uzzell JP, Tsui J, Schettler S, Shakeri H, Wadehra M. ALDH1 expression predicts progression of premalignant lesions to cancer in Type I endometrial carcinomas. Sci Rep 2021; 11:11949. [PMID: 34099751 PMCID: PMC8184965 DOI: 10.1038/s41598-021-90570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
In type 1 endometrial cancer, unopposed estrogen stimulation is thought to lead to endometrial hyperplasia which precedes malignant progression. Recent data from our group and others suggest that ALDH activity mediates stemness in endometrial cancer, but while aldehyde dehydrogenase 1 (ALDH1) has been suggested as a putative cancer stem cell marker in several cancer types, its clinical and prognostic value in endometrial cancer remains debated. The aim of this study was to investigate the clinical value of ALDH1 expression in endometrial hyperplasia and to determine its ability to predict progression to endometrial cancer. Interrogation of the TCGA database revealed upregulation of several isoforms in endometrial cancer, of which the ALDH1 isoforms collectively constituted the largest group. To translate its expression, a tissue microarray was previously constructed which contained a wide sampling of benign and malignant endometrial samples. The array contained a metachronous cohort of samples from individuals who either developed or did not develop endometrial cancer. Immunohistochemical staining was used to determine the intensity and frequency of ALDH1 expression. While benign proliferative and secretory endometrium showed very low levels of ALDH1, slightly higher expression was observed within the stratum basalis. In disease progression, cytoplasmic ALDH1 expression showed a step-wise increase between endometrial hyperplasia, atypical hyperplasia, and endometrial cancer. ALDH1 was also shown to be an early predictor of EC development, suggesting that it can serve as an independent prognostic indicator of patients with endometrial hyperplasia with or without atypia who would progress to cancer (p = 0.012).
Collapse
Affiliation(s)
- Vei Mah
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | - Alison Chu
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Neda A Moatamed
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jamar P Uzzell
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jessica Tsui
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Stephen Schettler
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hania Shakeri
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
10
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
11
|
Furuhashi T, Ishii R, Onishi H, Ota S. Elucidation of Biochemical Pathways Underlying VOCs Production in A549 Cells. Front Mol Biosci 2020; 7:116. [PMID: 32695794 PMCID: PMC7338772 DOI: 10.3389/fmolb.2020.00116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular volatile organic compounds (VOCs) are unique compounds whose metabolic pathways remain enigmatic. To elucidate their metabolism, we investigated the VOCs of lung cancer A549 and 2 non-cancer lung cells (HLB; HBEpC). Neutral sugars and lactate in the medium were measured by colorimetric assay. VOCs were enriched by monotrap and profiled by GC-MS. To investigate the enzymes that change VOC metabolism in cells, we conducted ALDH activity assays and qPCR. ROS (reactive oxygen species) assays were conducted to assess oxidation stress. The colorimetric assay showed that especially A549 and HLB took up sugars from the medium and rapidly secreted lactate into the medium. The VOC profile (GC-MS) revealed a trans-2-hexenol increase, especially in A549 lung cancer cells. This is a novel lipid peroxidation product from animal cells. Based on the absolute quantification data, trans-2-hexenol increased in parallel with number of A549 cancer cells incubated. The qPCR data implies that ADH1c potentially plays an important role in the conversion into trans-2-hexenol.
Collapse
Affiliation(s)
| | - Ryuga Ishii
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - Haruka Onishi
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | | |
Collapse
|
12
|
Ho CM, Chen YH, Chien CS, Ho SL, Chen HL, Hu RH, Lee PH. Hepatocyte and mesenchymal stem cell co-transplantation in rats with acute liver failure. KOREAN JOURNAL OF TRANSPLANTATION 2020; 34:100-108. [PMID: 35769351 PMCID: PMC9187042 DOI: 10.4285/kjt.2020.34.2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Hui Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Sung Chien
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Li Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Alda-1, an Aldehyde Dehydrogenase 2 Agonist, Improves Cutaneous Wound Healing by Activating Epidermal Keratinocytes via Akt/GSK-3β/β-Catenin Pathway. Aesthetic Plast Surg 2020; 44:993-1005. [PMID: 31953581 DOI: 10.1007/s00266-020-01614-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cutaneous wound healing process mainly comprises re-epithelialization, fibrosis, and neovascularization. Impaired wound healing is common but tricky in plastic surgery. Aldehyde dehydrogenase 2 (ALDH2), the most effective subset of the ALDH enzyme family, is known to exert a major role in detoxification of aldehydes. Activation of ALDH2 by Alda-1 (a specific agonist) has been found to protect against cardiovascular diseases. However, no research has paid attention to the potential of ALDH2 activation in regulating wound healing. The previous studies suggested a high expression of ALDH2 in normal skin tissue. The aim of this study was to investigate if Alda-1 may ameliorate wound healing. METHODS A full-thickness excisional wound model was established in vivo. Adult male C57BL/6 mice were randomly divided into DMSO and Alda-1 groups. Mice received an intraperitoneal injection of DMSO or 10 mg/mL Alda-1 (10 mg/kg body weight, dissolved in DMSO) for 7 days. The wound healing rate was measured at 0, 3, 5, and 7 days. Distribution of ALDH2 in wound tissue was showed. ALDH2 enzymatic activity was examined at 3, 5, and 7 days. The elongation of epithelial tongue was detected by hematoxylin-eosin staining, and collagen deposition was analyzed by Masson's trichrome staining at 7 days. Expressions of alpha-smooth muscle actin (alpha-SMA), transforming growth factor beta (TGF-beta), CD31, collagen 1, collagen 3, and elastin were stained by immunohistochemistry at 5 and 7 days. The HaCaT cell line was applied in vitro. Proliferation and migration were tested using CCK8 and wound healing assay separately. The level of TGF-β was examined by ELISA. Protein levels of the Akt/glycogen synthase kinase-3 beta (GSK-3 beta)/beta-catenin pathway were determined by western blotting. RESULTS Alda-1 accelerated wound healing rates. ALDH2 activity in wound sites was restored. Alda-1 promoted the length of the epithelial tongue, collagen deposition, as well as expressions of alpha-SMA, TGF-beta, collagen 1/3, elastin, but did not affect CD31. Proliferation, migration, and TGF-β secretion were promoted by Alda-1 and deregulated by CVT-10216 (an ALDH2 inhibitor). Protein variations of the Akt/GSK-3β/β-catenin pathway were found to accord with ALDH2 changes. CONCLUSIONS Alda-1, an ALDH2 agonist, improves cutaneous wound healing in a full-thickness excisional wound model. Alda-1 activates proliferation, migration, and TGF-β secretion of HaCaT (epidermal keratinocytes) by regulating the Akt/GSK-3β/β-catenin pathway. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
15
|
Ye Z, Wu Y, Ul Haq Muhammad Z, Yan W, Yu J, Zhang J, Yao G, Hu X. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island. PLoS One 2020; 15:e0226888. [PMID: 32027663 PMCID: PMC7004384 DOI: 10.1371/journal.pone.0226888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
Camellia oleifera Abel. (C. oleifera), as an important woody tree species producing edible oils in China, has attracted enormous attention due to its abundant unsaturated fatty acids and their associated benefits to human health. To reveal novel insights into the characters during the maturation period of this plant as well as the molecular basis of fatty acid biosynthesis and degradation, we conducted a conjoint analysis of the transcriptome and proteome of C. oleifera seeds from Hainan Island. Using RNA sequencing (RNA-seq) technology and shotgun proteomic method, 59,391 transcripts and 40,500 unigenes were obtained by TIGR Gene Indices Clustering Tools (TGICL), while 1691 protein species were identified from Mass Spectrometry (MS). Subsequently, all genes and proteins were employed in euKaryotic Orthologous Groups (KOG) classification, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to investigate their essential functions. The results indicated that the most abundant pathways were biological metabolic processes. There were 946 unigenes associated with lipid metabolism at the transcriptome level, with 116 proteins at the proteome level; among these, 38 specific proteins were involved in protein-protein interactions, with the majority being related to fatty acid catabolic process. The expression levels of 21 candidate unigenes encoding target proteins were further detected by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, Gas Chromatography Mass Spectrometry (GC-MS) was carried out to determine the fatty acid composition of C. oleifera oil. These findings not only deepened our understanding about the molecular mechanisms of fatty acid metabolism but also offered new evidence concerning the roles of relevant proteins in oil-bearing crops. Furthermore, the lipid-associated proteins recognized in this research might be helpful in providing a reference for the synthetic regulation of C. oleifera oil quality by genetic engineering techniques, thus resulting in potential application in agriculture.
Collapse
Affiliation(s)
- Zhouchen Ye
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Yougen Wu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Zeeshan Ul Haq Muhammad
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Wuping Yan
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Jing Yu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Junfeng Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Guanglong Yao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| | - Xinwen Hu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
16
|
Yang C, Chen Y, Zhong L, You M, Yan Z, Luo M, Zhang B, Yang B, Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Biochem Cell Biol 2019; 98:415-425. [PMID: 31794246 DOI: 10.1139/bcb-2019-0253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have proven powerful potential for cell-based therapy both in regenerative medicine and disease treatment. Human umbilical cords and exfoliated deciduous teeth are the main sources of MSCs with no donor injury or ethical issues. The goal of this study was to investigate the differences in the biological characteristics of human umbilical cord mesenchymal stem cells (UCMSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). UCMSCs and SHEDs were identified by flow cytometry. The proliferation, differentiation, migration, chemotaxis, paracrine, immunomodulatory, neurite growth-promoting capabilities, and acetaldehyde dehydrogenase (ALDH) activity were comparatively studied between these two MSCs in vitro. The results showed that both SHEDs and UCMSCs expressed cell surface markers characteristic of MSCs. Furthermore, SHEDs exhibited better capacity for proliferation, migration, promotion of neurite growth, and chondrogenic differentiation. Meanwhile, UCMSCs showed more outstanding adipogenic differentiation and chemotaxy. Additionally, there were no significant differences in osteogenic differentiation, immunomodulatory capacity, and the proportion of ALDHBright compartment. Our findings indicate that although both UCMSCs and SHEDs are mesenchymal stem cells and presented some similar biological characteristics, they also have differences in many aspects, which might be helpful for developing future clinical cellular therapies.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Liwu Zhong
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Zhiling Yan
- Department of Stomatology, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Bo Zhang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Benyanzi Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
17
|
Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer. Proc Natl Acad Sci U S A 2019; 116:20679-20688. [PMID: 31548432 DOI: 10.1073/pnas.1901075116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The presence of progenitor or stem cells in the adult pancreas and their potential involvement in homeostasis and cancer development remain unresolved issues. Here, we show that mouse centroacinar cells can be identified and isolated by virtue of the mitochondrial enzyme Aldh1b1 that they uniquely express. These cells are necessary and sufficient for the formation of self-renewing adult pancreatic organoids in an Aldh1b1-dependent manner. Aldh1b1-expressing centroacinar cells are largely quiescent, self-renew, and, as shown by genetic lineage tracing, contribute to all 3 pancreatic lineages in the adult organ under homeostatic conditions. Single-cell RNA sequencing analysis of these cells identified a progenitor cell population, established its molecular signature, and determined distinct differentiation pathways to early progenitors. A distinct feature of these progenitor cells is the preferential expression of small GTPases, including Kras, suggesting that they might be susceptible to Kras-driven oncogenic transformation. This finding and the overexpression of Aldh1b1 in human and mouse pancreatic cancers, driven by activated Kras, prompted us to examine the involvement of Aldh1b1 in oncogenesis. We demonstrated genetically that ablation of Aldh1b1 completely abrogates tumor development in a mouse model of KrasG12D-induced pancreatic cancer.
Collapse
|
18
|
Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, de Sousa Lopes SMC, Roost MS, Bonner-Weir S, Engelse MA, Rabelink TJ, Heimberg H, Vries RGJ, van Oudenaarden A, Carlotti F, Clevers H, de Koning EJP. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports 2019. [PMID: 29539434 PMCID: PMC5918840 DOI: 10.1016/j.stemcr.2018.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.
Collapse
Affiliation(s)
- Cindy J M Loomans
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nerys Williams Giuliani
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jeetindra Balak
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Femke Ringnalda
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Léon van Gurp
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Meritxell Huch
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge CB2 1QN, UK
| | - Sylvia F Boj
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Toshiro Sato
- Department of Gastroenterology, Keio University, Tokyo 108-8345, Japan
| | - Lennart Kester
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Susan Bonner-Weir
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Robert G J Vries
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hans Clevers
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Eelco J P de Koning
- Hubrecht Institute/KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
19
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Aldehyde dehydrogenase activity of Wharton jelly mesenchymal stromal cells: isolation and characterization. Cytotechnology 2019; 71:427-441. [PMID: 30610510 PMCID: PMC6368491 DOI: 10.1007/s10616-018-0283-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising tools in regenerative medicine and targeted therapies. Although different origins have been described, there is still huge need to find a valuable source harboring specific subpopulations of MSCs with precise therapeutic functions. Here, we isolated by fluorescence activated cell sorting technique, two populations of Wharton's jelly (WJ)-MSCs based on their aldehyde dehydrogenase (ALDH) activity. Two different ALDH activities (low vs. high) were thus observed. We then analyzed their gene expression profile for stemness, phenotype, response to hypoxia, angiogenesis, hematopoietic support, immunomodulation and multilineage differentiation abilities (osteogenesis, adipogenesis, and chondrogenesis). According to ALDH activity, many differences in the mRNA expression of these populations were noticed. In conclusion, we provide evidences that WJ harbors two distinct populations of MSCs with different ALDH activity. These populations seem to display specific functional competences that may be interesting for concise therapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik no 808, 1070, Brussels, Belgium
| |
Collapse
|
20
|
Savitz SI, Yavagal D, Rappard G, Likosky W, Rutledge N, Graffagnino C, Alderazi Y, Elder JA, Chen PR, Budzik RF, Tarrel R, Huang DY, Hinson JM. A Phase 2 Randomized, Sham-Controlled Trial of Internal Carotid Artery Infusion of Autologous Bone Marrow–Derived ALD-401 Cells in Patients With Recent Stable Ischemic Stroke (RECOVER-Stroke). Circulation 2019; 139:192-205. [DOI: 10.1161/circulationaha.117.030659] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S., Y.A.)
| | | | - George Rappard
- The Brain and Spine Research Institute, Los Angeles, CA (G.R.)
| | | | | | | | - Yazan Alderazi
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S., Y.A.)
| | | | - Peng R. Chen
- Department of Neurosurgery, McGovern Medical School, Houston, TX (P.R.C.)
| | | | | | - David Y. Huang
- Department of Neurology, University of North Carolina, Chapel Hill (D.Y.H.)
| | | | | |
Collapse
|
21
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Aldehyde Dehydrogenase Activity in Adipose Tissue: Isolation and Gene Expression Profile of Distinct Sub-population of Mesenchymal Stromal Cells. Stem Cell Rev Rep 2018; 14:599-611. [PMID: 29333563 DOI: 10.1007/s12015-017-9777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thanks to their relative abundance and easier collection, adipose tissue (AT) is considered an alternative source for the isolation of mesenchymal stromal cells (MSCs). MSCs have great therapeutic values and are thus under investigations for several clinical indications such as regenerative medicine and immunomodulation. In this work, we aimed to identify, isolate and characterize AT-MSCs based on their aldehyde dehydrogenase (ALDH) activity known to be a classical feature of stem cells. FACS technology allowed to isolate two different populations of AT-MSCs according to their ALDH activity (referred as ALDH+ and ALDH-). Depending on their ALDH activity, the transcriptome analysis of both cell populations demonstrated a differential pattern of genes related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis, immunomodulation). Based on these profiling, both AT-MSC populations could differ in terms of biological responses and functionalities. Collectively, the use of ALDH for isolating and identifying sub-populations of MSCs with specific gene profile may represent an alternative method to provide solutions for targeted therapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium
| |
Collapse
|
22
|
Li X, He P, Wang XL, Zhang S, Devejian N, Bennett E, Cai C. Sulfiredoxin-1 enhances cardiac progenitor cell survival against oxidative stress via the upregulation of the ERK/NRF2 signal pathway. Free Radic Biol Med 2018; 123:8-19. [PMID: 29772252 PMCID: PMC5999586 DOI: 10.1016/j.freeradbiomed.2018.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
Abstract
Cardiac stem/progenitor cells (CPCs) have recently emerged as a potentially transformative regenerative medicine to repair the infarcted heart. However, the limited survival of donor cells is one of the major challenges for CPC therapy. Our recent research effort on preconditioning human CPCs (hCPCs) with cobalt protoporphyrin (CoPP) indicated that sulfiredoxin-1 (SRXN1) is upregulated upon preconditioning aldehyde dehydrogenase bright hCPCs (ALDHbr-hCPCs) with CoPP. Further studies demonstrated that overexpressing SRXN1 enhanced the survival capacity for ALDHbr-hCPCs. This was associated with the up-regulation of anti-apoptotic factors, including BCL2 and BCL-xL. Meanwhile, overexpressing SRXN1 decreased the ROS generation and mitochondrial membrane potential, concomitant with the up-regulated primary antioxidant systems, such as PRDX1, PRDX3, TXNRD1, Catalase and SOD2. It was also observed that overexpressing SRXN1 increased the migration, proliferation, and cardiac differentiation of ALDHbr-hCPCs. Interestingly, SRXN1 activated the ERK/NRF2 cell survival signaling pathway, which may be the underlying mechanism through which overexpressing SRXN1 lead to protection of hCPCs against oxidative stress-induced apoptosis. Taken together, these results provide a rationale for the exploration of SRXN1 as a novel molecular target that can be used to enhance the effectiveness of cardiac stem/progenitor cell therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Xiuchun Li
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Pan He
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA; Laboratory for Cancer Signal Transduction, Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Liang Wang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Shuning Zhang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Chuanxi Cai
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
23
|
Puttini S, Plaisance I, Barile L, Cervio E, Milano G, Marcato P, Pedrazzini T, Vassalli G. ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Front Cardiovasc Med 2018; 5:90. [PMID: 30087899 PMCID: PMC6066537 DOI: 10.3389/fcvm.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
High aldehyde dehydrogenase (ALDHhi) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDHhi cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDHhi and ALDHlo atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. Methods and Results: Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDHhi activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34+). Depending on their ALDH activity, RT-PCR analysis of ALDHhi and ALDHlo cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDHhi cells, but not ALDHlo cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDHhi cells gave rise to a higher number of cardiomyocytes compared with ALDHlo cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDHhi atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDHhi cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDHlo cells. Conclusions: ALDH1A3 is the key isoform responsible for ALDH activity in ALDHhi atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects in vitro proliferation of these cells.
Collapse
Affiliation(s)
- Stefania Puttini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Isabelle Plaisance
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Lucio Barile
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Elisabetta Cervio
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Giuseppina Milano
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Paola Marcato
- Departments of Pathology, Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Thierry Pedrazzini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
24
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 2018; 8:3932-3948. [PMID: 30083271 PMCID: PMC6071523 DOI: 10.7150/thno.25541] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the pathology of various tumors, including colorectal cancer (CRC). The crosstalk between carcinoma- associated fibroblasts (CAFs) and cancer cells in the tumor microenvironment promotes tumor development and confers chemoresistance. In this study, we further investigated the underlying tumor-promoting roles of CAFs and the molecular mediators involved in these processes. Methods: The AOM/DSS-induced colitis-associated cancer (CAC) mouse model was established, and RNA sequencing was performed. Small interfering RNA (siRNA) sequences were used to knock down H19. Cell apoptosis was measured by flow cytometry. SW480 cells with H19 stably knocked down were used to establish a xenograft model. The indicated protein levels in xenograft tumor tissues were confirmed by immunohistochemistry assay, and cell apoptosis was analyzed by TUNEL apoptosis assay. RNA-FISH and immunofluorescence assays were performed to assess the expression of H19 in tumor stroma and cancer nests. The AldeRed ALDH detection assay was performed to detect intracellular aldehyde dehydrogenase (ALDH) enzyme activity. Isolated exosomes were identified by transmission electron microscopy, nanoparticle tracking and Western blotting. Results: H19 was highly expressed in the tumor tissues of CAC mice compared with the expression in normal colon tissues. The up-regulation of H19 was also confirmed in CRC patient samples at different tumor node metastasis (TNM) stages. Moreover, H19 was associated with the stemness of colorectal cancer stem cells (CSCs) in CRC specimens. H19 promoted the stemness of CSCs and increased the frequency of tumor-initiating cells. RNA-FISH showed higher expression of H19 in tumor stroma than in cancer nests. Of note, H19 was enriched in CAF-derived conditioned medium and exosomes, which in turn promoted the stemness of CSCs and the chemoresistance of CRC cells in vitro and in vivo. Furthermore, H19 activated the β-catenin pathway via acting as a competing endogenous RNA sponge for miR-141 in CRC, while miR-141 significantly inhibited the stemness of CRC cells. Conclusion: CAFs promote the stemness and chemoresistance of CRC by transferring exosomal H19. H19 activated the β-catenin pathway via acting as a competing endogenous RNA sponge for miR-141, while miR-141 inhibited the stemness of CRC cells. Our findings indicate that H19 expressed by CAFs of the colorectal tumor stroma contributes to tumor development and chemoresistance.
Collapse
|
25
|
Elgamal RM, Bell GI, Krause SCT, Hess DA. BMS 493 Modulates Retinoic Acid-Induced Differentiation During Expansion of Human Hematopoietic Progenitor Cells for Islet Regeneration. Stem Cells Dev 2018; 27:1062-1075. [PMID: 29737242 DOI: 10.1089/scd.2018.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular therapies are emerging as a novel treatment strategy for diabetes. Thus, the induction of endogenous islet regeneration in situ represents a feasible goal for diabetes therapy. Umbilical cord blood-derived hematopoietic progenitor cells (HPCs), isolated by high aldehyde dehydrogenase activity (ALDHhi), have previously been shown to reduce hyperglycemia after intrapancreatic (iPan) transplantation into streptozotocin (STZ)-treated nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. However, these cells are rare and require ex vivo expansion to reach clinically applicable numbers for human therapy. Therefore, we investigated whether BMS 493, an inverse retinoic acid receptor agonist, could prevent retinoic acid-induced differentiation and preserve islet regenerative functions during expansion. After 6-day expansion, BMS 493-treated cells showed a twofold increase in the number of ALDHhi cells available for transplantation compared with untreated controls. Newly expanded ALDHhi cells showed increased numbers of CD34 and CD133-positive cells, as well as a reduction in CD38 expression, a marker of hematopoietic cell differentiation. BMS 493-treated cells showed similar hematopoietic colony-forming capacity compared with untreated cells, with ALDHhi subpopulations producing more colonies than low aldehyde dehydrogenase activity subpopulations for expanded cells. To determine if the secreted proteins of these cells could augment the survival and/or proliferation of β-cells in vitro, conditioned media (CM) from cells expanded with or without BMS 493 was added to human islet cultures. The total number of proliferating β-cells was increased after 3- or 7-day culture with CM generated from BMS 493-treated cells. In contrast to freshly isolated ALDHhi cells, 6-day expansion with or without BMS 493 generated progeny that were unable to reduce hyperglycemia after iPan transplantation into STZ-treated NOD/SCID mice. Further strategies to reduce retinoic acid differentiation during HPC expansion is required to expand ALDHhi cells without the loss of islet regenerative functions.
Collapse
Affiliation(s)
- Ruth M Elgamal
- 1 Department of Physiology and Pharmacology, The University of Western Ontario , London, Canada
| | - Gillian I Bell
- 2 Krembil Centre for Stem Cell Biology, Robarts Research Institute, The University of Western Ontario , London, Canada
| | - Sarah C T Krause
- 2 Krembil Centre for Stem Cell Biology, Robarts Research Institute, The University of Western Ontario , London, Canada
| | - David A Hess
- 1 Department of Physiology and Pharmacology, The University of Western Ontario , London, Canada .,2 Krembil Centre for Stem Cell Biology, Robarts Research Institute, The University of Western Ontario , London, Canada
| |
Collapse
|
26
|
Takashima S, Shinohara T. Culture and transplantation of spermatogonial stem cells. Stem Cell Res 2018; 29:46-55. [DOI: 10.1016/j.scr.2018.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
|
27
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: isolation and gene profiling. BMC Cell Biol 2018; 19:4. [PMID: 29625551 PMCID: PMC5889569 DOI: 10.1186/s12860-018-0157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) become an attractive research topic because of their crucial roles in tissue repair and regenerative medicine. Foreskin is considered as a valuable tissue source containing immunotherapeutic MSCs (FSK-MSCs). Results In this work, we used aldehyde dehydrogenase activity (ALDH) assay (ALDEFLUOR™) to isolate and therefore characterize subsets of FSK-MSCs. According to their ALDH activity, we were able to distinguish and sort by fluorescence activated cell sorting (FACS) two subsets of FSK-MSCs (referred as ALDH+ and ALDH−). Consequently, these subsets were characterized by profiling the gene expression related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis and immunomodulation). We thus demonstrated by Real Time PCR several relevant differences in gene expression based on their ALDH activity. Conclusion Taken together, this preliminary study suggests that distinct subsets of FSK-MSCs with differential gene expression profiles depending of ALDH activity could be identified. These populations could differ in terms of biological functionalities involving the selection by ALDH activity as useful tool for potent therapeutic applications. However, functional studies should be conducted to confirm their therapeutic relevance. Electronic supplementary material The online version of this article (10.1186/s12860-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
28
|
Münzel T, Daiber A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 2018; 22:217-231. [PMID: 29431026 DOI: 10.1080/14728222.2018.1439922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is lost. Thus, ALDH-2 activity represents a useful marker for cardiovascular oxidative stress, a concept, which has been meanwhile supported by a number of animal disease models. Mechanistic studies on the protective role of ALDH-2 in different disease processes identified the detoxification of 4-hydroxynonenal by ALDH-2 as a fundamental process of cardiovascular, cerebral and antioxidant protection. Expert opinion: The most recent therapeutic exploitation of ALDH-2 includes activators of the enzyme such as Alda-1 but also cell-based therapies (ALDH-bright cells) that deserve further clinical characterization in the future.
Collapse
Affiliation(s)
- Thomas Münzel
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| | - Andreas Daiber
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| |
Collapse
|
29
|
Najar M, Dollé L, Crompot E, Verhulst S, van Grunsven LA, Busser H, Lagneaux L. Isolation and Characterization of Bone Marrow Mesenchymal Stromal Cell Subsets in Culture Based on Aldehyde Dehydrogenase Activity. Tissue Eng Part C Methods 2018; 24:89-98. [PMID: 29241418 DOI: 10.1089/ten.tec.2017.0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have particular properties that allow their use as therapeutic strategies for several cell-based applications. Historically, bone marrow (BM)-MSCs are isolated by culture adherence since specific cell surface markers are yet to be developed. This original work aimed to identify and characterize isolating expanded BM-MSCs based on their aldehyde dehydrogenase (ALDH) activity known to be a hallmark of stem cells and relevant for their isolation. We thus isolated by fluorescence-activated cell sorting technology two functionally different populations of BM-MSCs depending on their ALDH activity (ALDH+ and ALDH-). Transcriptome analysis and profiling clearly demonstrated that both populations of BM-MSCs present distinct pattern of genes related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis, immunomodulation) in an ALDH activity dependent manner. Both BM-MSC populations look to significantly differ in terms of biological responses and functionalities. More functional analyses are needed to understand and characterize the properties of these ALDH populations. Collectively, our results highlight ALDH activity as a potential feature for isolating and segregating functional and/or competent subset of BM-MSC populations, which may account for better and more efficient therapeutic issue.
Collapse
Affiliation(s)
- Mehdi Najar
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Laurent Dollé
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Emerence Crompot
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Stefaan Verhulst
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- 2 Department of Cell Biology (CYTO-VUB), Liver Cell Biology Laboratory, Vrije Universiteit Brussel , Brussels, Belgium
| | - Hélène Busser
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| | - Laurence Lagneaux
- 1 Department of Haematology, Laboratory of Clinical Cell Therapy (LTCC), Jules Bordet Institute , Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels, Belgium
| |
Collapse
|
30
|
Socorro M, Criscimanna A, Riva P, Tandon M, Prasadan K, Guo P, Humar A, Husain SZ, Leach SD, Gittes GK, Esni F. Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas. Sci Rep 2017; 7:17539. [PMID: 29235528 PMCID: PMC5727523 DOI: 10.1038/s41598-017-17884-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1+/CD90−/Ecad− cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).
Collapse
Affiliation(s)
- Mairobys Socorro
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Angela Criscimanna
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Patricia Riva
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Manuj Tandon
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Krishna Prasadan
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Ping Guo
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4621, Houston, Texas, 77054, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Sohail Z Husain
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, 15244, USA
| | - Steven D Leach
- Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George K Gittes
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA.,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA
| | - Farzad Esni
- Department of Surgery, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA. .,Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Drive, 4401 Penn Avenue, Rangos Research Center, Pittsburgh, PA, 15244, USA. .,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15244, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15244, USA. .,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15123, USA.
| |
Collapse
|
31
|
Gençer EB, Yurdakul P, Dalva K, Beksaç M. Flow Cytometric Aldehyde Dehydrogenase Assay Enables a Fast and Accurate Human Umbilical Cord Blood Hematopoietic Stem Cell Assessment. Turk J Haematol 2017; 34:314-320. [PMID: 27956370 PMCID: PMC5774350 DOI: 10.4274/tjh.2016.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Colony-forming units of granulocytes/macrophages (CFU-GM) analysis is the most widely used method to determine the hematopoietic stem cell (HSC) content of human umbilical cord blood (CB) for prediction of engraftment potential. The measurement of aldehyde dehydrogenase (ALDH) activity is a more recent method for HSC qualification. Our aim was to correlate phenotypic and functional assays to find the most predictive method. Materials and Methods: In this study, flow cytometric quantitation of CD34+ cells and ALDH positivity along with CFU-GM capacity were assessed in fresh and post-thaw CB units. Results: Among 30 post-processing samples, for each CB unit the mean total number of nucleated cells (TNCs) was (93.8±30.1)x107, CD34+ cells were (3.85±2.55)x106, ALDH+ cells were (3.14±2.55)x106, and CFU-GM count was (2.64±1.96)x105. Among an additional 19 post-thaw samples the cell counts were as follows: TNCs, (32.79±17.27)x107; CD34+, (2.18±3.17)x106; ALDH+, (2.01±2.81)x106; CFU-GM, (0.74±0.92)x105. Our findings showed that in fresh samples TNCs, CD34+ cells, and ALDH correlated highly with counts of CFU-GM, CFU-erythroids/granulocytes-macrophages/megakaryocytic cells (GEMM), and burst forming units of erythroids (BFU-E) as follows: TNCs, r=0.47, r=0.35, r=0.41; CD34+, r=0.44, r=0.54, r=0.41; and ALDH, r=0.63, r=0.45, r=0.6, respectively. In terms of post-thaw samples, the correlations were as follows: TNCs, r=0.59, r=0.46, r=0.56; CD34+, r=0.67, r=0.48, r=0.61; and ALDH, r=0.61, r=0.67, r=0.67, for CFU-GM, CFU-GEMM, and BFU-E, respectively. All correlations were statistically significant. Conclusion: In our experience, HSC assessment by ALDH activity yields the highest correlation with conventional analytical methods, particularly for post-thaw samples. Thus, this fast, inexpensive method has the potential to overcome the weaknesses of other techniques.
Collapse
Affiliation(s)
- Emine Begüm Gençer
- Ankara University Faculty of Medicine, Cord Blood Bank, Ankara, Turkey,Ankara University Faculty of Medicine, Biotechnology Institute, Ankara, Turkey
| | - Pınar Yurdakul
- Ankara University Faculty of Medicine, Cord Blood Bank, Ankara, Turkey,TOBB Economics Technology and University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Klara Dalva
- Ankara University Faculty of Medicine, Stem Cell Research Institute, Ankara, Turkey
| | - Meral Beksaç
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| |
Collapse
|
32
|
Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Eto S, Hiyama M, Iseri T, Itoh Y, Nakaichi M, Sakai Y, Tani K, Taura Y, Itamoto K. Aldehyde dehydrogenase activity helps identify a subpopulation of murine adipose-derived stem cells with enhanced adipogenic and osteogenic differentiation potential. World J Stem Cells 2017; 9:179-186. [PMID: 29104736 PMCID: PMC5661130 DOI: 10.4252/wjsc.v9.i10.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs).
METHODS ADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis.
RESULTS Approximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDHHi subpopulations than in ALDHLo. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDHHi subpopulation.
CONCLUSION High ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.
Collapse
Affiliation(s)
- Harumichi Itoh
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Shimpei Nishikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomoya Haraguchi
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yu Arikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masato Hiyama
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yoshiki Itoh
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yusuke Sakai
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yasuho Taura
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
33
|
Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Hiyama M, Eto S, Iseri T, Itoh Y, Tani K, Nakaichi M, Taura Y, Itamoto K. Aldehyde dehydrogenase activity identifies a subpopulation of canine adipose-derived stem cells with higher differentiation potential. J Vet Med Sci 2017; 79:1540-1544. [PMID: 28579596 PMCID: PMC5627324 DOI: 10.1292/jvms.16-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are abundant and readily obtained, and have been studied for their clinical applicability in regenerative medicine. Some surface antigens have been identified as markers of different ADSC
subpopulations in mice and humans. However, it is unclear whether functionally distinct subpopulations exist in dogs. To address this issue, we evaluated aldehyde dehydrogenase (ALDH) activity—a widely used stem cell marker in
mice and humans—by flow cytometry. Approximately 20% of bulk ADSCs showed high ALDH activity. Compared to cells with low activity (ALDHLo), the high-activity (ALDHHi) subpopulation exhibited a higher capacity
for adipogenic and osteogenic differentiation. This is the first report of distinct ADSC subpopulations in dogs that differ in terms of adipogenic and osteogenic differentiation potential.
Collapse
Affiliation(s)
- Harumichi Itoh
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Shimpei Nishikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Tomoya Haraguchi
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yu Arikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Masato Hiyama
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yoshiki Itoh
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yasuho Taura
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| |
Collapse
|
34
|
Matsumine H, Numakura K, Tsunoda S, Wang H, Matsumine R, Climov M, Giatsidis G, Sukhatme VP, Orgill DP. Adipose-derived aldehyde dehydrogenase-expressing cells promote dermal regenerative potential with collagen-glycosaminoglycan scaffold. Wound Repair Regen 2017; 25:109-119. [DOI: 10.1111/wrr.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hajime Matsumine
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Kazuyuki Numakura
- The Department of Pathology, Brigham and Women's Hospital; Harvard Medical School
| | - Satoshi Tsunoda
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Huan Wang
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Rui Matsumine
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Mihail Climov
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Giorgio Giatsidis
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Vikas P. Sukhatme
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Dennis P. Orgill
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| |
Collapse
|
35
|
Vilquin JT, Etienne J. [Cell therapies for cardiopathies: the shift of paradigms]. Med Sci (Paris) 2016; 32 Hors série n°2:30-39. [PMID: 27869075 DOI: 10.1051/medsci/201632s209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heart failure is a major concern for public health systems, and several approaches of cellular therapy are being investigated with the goal of improving the function of these failing hearts. Many cell types have been used (skeletal myoblasts, hematopoietic, endothelial or mesenchymal progenitors, cardiac cells…), most often in the indication of post-ischemic heart failure rather than in the indication of genetic dilated cardiomyopathy. It is easier, indeed, to target a restricted area than the whole myocardium. Several clinical trials have reported slight but encouraging functional benefits, but their interpretations were frequently limited by the small sizes of cohorts, and by the biological variabilities inherent to the patients status and to the biology of the cells. These trials also shed light on unexpected mechanisms of action of the cells, which are changing the concepts and methodologies of the studies. The functional benefits observed would be due, indeed, to the secretion of trophic factors by the cells, instead of their true structural and mechanical integration within the myocardial tissue. Accordingly, the new generations of clinical trials aim at improving the size and homogeneity of the patient cohorts to increase the statistical power. On the other hand, several studies are associating or conditionning cells with biomaterials or cocktails of cytokines to improve their survival and their biological efficacy. In parallel, bio-engineering investigates several ways to support cells in vitro and in vivo, to sustain the architectural structure of the failing myocardium, to produce ex vivo some true substitutive cardiac tissue, or to purely replace the cells by their active secreted products. Several therapeutic devices should emerge from these researches, and the choice of their respective use will be ultimately guided by the medical indication.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jessy Etienne
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
36
|
Sharrow AC, Perkins B, Collector MI, Yu W, Simons BW, Jones RJ. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy. Gynecol Oncol 2016; 142:341-8. [PMID: 27017984 DOI: 10.1016/j.ygyno.2016.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. METHODS We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. RESULTS ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. CONCLUSIONS Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes.
Collapse
Affiliation(s)
- Allison C Sharrow
- Department of Pathology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Brandy Perkins
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Michael I Collector
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA
| | - Wayne Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Brian W Simons
- Departments of Pathology and Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| | - Richard J Jones
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD, USA.
| |
Collapse
|
37
|
Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. Int J Biochem Cell Biol 2016; 77:120-128. [PMID: 27276244 DOI: 10.1016/j.biocel.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases participate in a variety of cellular homeostatic mechanisms like metabolism, proliferation, differentiation, apoptosis, whereas recently, they have been implicated in normal and cancer cell stemness. We explored roles for ALDH3A1 in conferring resistance to chemotherapeutics/radiation/oxidative stress and whether ectopic overexpression of ALDH3A1 could lead to alterations of gene expression profile associated with cancer stem cell-like phenotype. MCF-7 cells were stably transfected either with an empty vector (mock) or human aldehyde dehydrogenase 3A1 cDNA. The expression of aldehyde dehydrogenase 3A1 in MCF-7 cells was associated with altered cell proliferation rate and enhanced cell resistance against various chemotherapeutic drugs (4-hydroxyperoxycyclophosphamide, doxorubicin, etoposide, and 5-fluorouracil). Aldehyde dehydrogenase 3A1 expression also led to increased tolerance of MCF-7 cells to gamma radiation and hydrogen peroxide-induced stress. Furthermore, aldehyde dehydrogenase 3A1-expressing MCF-7 cells exhibited gene up-regulation of cyclins A, B1, B2, and down-regulation of cyclin D1 as well as transcription factors p21, CXR4, Notch1, SOX2, SOX4, OCT4, and JAG1. When compared to mock cells, no changes were observed in mRNA levels of ABCA2 and ABCB1 protein pumps with only a minor decrease of the ABCG2 pump in the aldehyde dehydrogenase 3A1-expressing cells. Also, the adhesion molecules EpCAM and CD49F were also found to be up-regulated in aldehyde dehydrogenase 3A1expressing cells. Taken together, ALDH3A1 confers a multi-modality resistance phenotype in MCF-7 cells associated with slower growth rate, increased clonogenic capacity, and altered gene expression profile, underlining its significance in cell homeostasis.
Collapse
|
38
|
Sekine A, Nishiwaki T, Nishimura R, Kawasaki T, Urushibara T, Suda R, Suzuki T, Takayanagi S, Terada J, Sakao S, Tada Y, Iwama A, Tatsumi K. Prominin-1/CD133 expression as potential tissue-resident vascular endothelial progenitor cells in the pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1130-42. [PMID: 27059286 DOI: 10.1152/ajplung.00375.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular endothelial cells could contribute to maintain homeostasis in adult lung vasculature. "Tissue-resident" endothelial progenitor cells (EPCs) play pivotal roles in postnatal vasculogenesis, vascular repair, and tissue regeneration; however, their local pulmonary counterparts remain to be defined. To determine whether prominin-1/CD133 expression can be a marker of tissue-resident vascular EPCs in the pulmonary circulation, we examined the origin and characteristics of prominin-1/CD133-positive (Prom1(+)) PVECs considering cell cycle status, viability, histological distribution, and association with pulmonary vascular remodeling. Prom1(+) PVECs exhibited high steady-state transit through the cell cycle compared with Prom1(-) PVECs and exhibited homeostatic cell division as assessed using the label dilution method and mice expressing green fluorescent protein. In addition, Prom1(+) PVECs showed more marked expression of putative EPC markers and drug resistance genes as well as highly increased activation of aldehyde dehydrogenase compared with Prom1(-) PVECs. Bone marrow reconstitution demonstrated that tissue-resident cells were the source of >98% of Prom1(+) PVECs. Immunofluorescence analyses revealed that Prom1(+) PVECs preferentially resided in the arterial vasculature, including the resistant vessels of the lung. The number of Prom1(+) PVECs was higher in developing postnatal lungs. Sorted Prom1(+) PVECs gave rise to colonies and formed fine vascular networks compared with Prom1(-) PVECs. Moreover, Prom1(+) PVECs increased in the monocrotaline and the Su-5416 + hypoxia experimental models of pulmonary vascular remodeling. Our findings indicated that Prom1(+) PVECs exhibited the phenotype of tissue-resident EPCs. The unique biological characteristics of Prom1(+) PVECs predominantly contribute to neovasculogenesis and maintenance of homeostasis in pulmonary vascular tissues.
Collapse
Affiliation(s)
- Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan; and
| |
Collapse
|
39
|
Analysis of volatile organic compounds liberated and metabolised by human umbilical vein endothelial cells (HUVEC) in vitro. Cell Biochem Biophys 2016; 71:323-9. [PMID: 25123840 PMCID: PMC4289529 DOI: 10.1007/s12013-014-0201-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gas chromatography with mass spectrometric detection combined with head-space needle trap extraction as the pre-concentration technique was applied to identify and quantify volatile organic compounds released or metabolised by human umbilical vein endothelial cells. Amongst the consumed species there were eight aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, n-hexanal, benzaldehyde, n-octanal and n-nonanal) and n-butyl acetate. Further eight compounds (ethyl acetate, ethyl propanoate, ethyl butyrate, 3-heptanone, 2-octanone, 2-nonanone, 2-methyl-5-(methylthio)-furan and toluene) were found to be emitted by the cells under study. Possible metabolic pathways leading to the uptake and release of these compounds by HUVEC are proposed and discussed. The uptake of aldehydes by endothelial cells questions the reliability of species from this chemical class as breath or blood markers of disease processes in human organism. The analysis of volatiles released or emitted by cell lines is shown to have a potential for the identification and assessment of enzymes activities and expression.
Collapse
|
40
|
Adas G, Koc B, Adas M, Duruksu G, Subasi C, Kemik O, Kemik A, Sakiz D, Kalayci M, Purisa S, Unal S, Karaoz E. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg 2016; 401:725-40. [PMID: 27094936 DOI: 10.1007/s00423-016-1380-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The study aims to determine the effects of mesenchymal stem cell (MSC) therapy and a combination therapy of MSCs transfected with vascular endothelial growth factor (VEGF) for liver regeneration after major resection. METHODS Thirty-eight rats were divided into four groups: group 1: control (sham operation); group 2: control (70 % hepatic resection); group 3: 70 % hepatic resection + systemically transplanted MSCs; and group 4: 70 % hepatic resection + systemically transplanted MSCs transfected with the VEGF gene. MSCs were injected via the portal vein route in study groups 3 and 4. Expression levels of VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor (TGF), hepatocyte growth factor (HGF), and augmenter of liver regeneration (ALR) were analyzed in the remnant liver tissue. We investigated the levels of angiogenic factors, VEGF-receptor, angiopoietin-1 (Angpt1) and Angpt2. Biochemical parameters of liver function in blood samples were measured and a histologic assessment of the livers was performed. The postoperative liver weight and volume of each rat were measured 14 days after surgery. RESULTS The expression levels of all measured growth factors were significantly increased in groups 3 and 4 compared to the control groups. The levels of Angpt1 and Angpt2 correlated with levels of VEGF and thus were also significantly higher in the study groups. There were significant differences between the estimated liver weights and volumes of group 4 and the resected controls in group 2. With the exception of portal inflammation, levels of all histological parameters were observed to be higher in MSC-treated groups when compared with the resected controls in group 2. CONCLUSIONS Transplanted stem cells and MSCs transfected with VEGF significantly accelerated many parameters of the healing process following major hepatic resection. After the injection of MSCs and VEGF-transfected MSCs into the portal vein following liver resection, they were engrafted in the liver. They increased bile duct and liver hepatocyte proliferation, and secreted many growth factors including HGF, TGFβ, VEGF, PDGF, EGF, and FGF via paracrine effects. These effects support liver function, regeneration, and liver volume/weight.
Collapse
Affiliation(s)
- Gokhan Adas
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Bora Koc
- Faculty of Medicine, Istanbul Training Hospital, Department of Surgery, Baskent University, Oymaci Sok. No:7, 34662, Altunizade Uskudar, Istanbul, Turkey.
| | - Mine Adas
- Department of Endocrinology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Cansu Subasi
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Ozgur Kemik
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ahu Kemik
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Damlanur Sakiz
- Department of Pathology, Bakirköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kalayci
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Sevim Purisa
- Faculty of Medicine, Department of Statistics, Istanbul University, Istanbul, Turkey
| | - Seda Unal
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, Istanbul, Turkey
| |
Collapse
|
41
|
Kusuma GD, Abumaree MH, Pertile MD, Perkins AV, Brennecke SP, Kalionis B. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity. Stem Cell Rev Rep 2016; 12:285-97. [DOI: 10.1007/s12015-016-9649-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Seneviratne AK, Bell GI, Sherman SE, Cooper TT, Putman DM, Hess DA. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions. Stem Cells 2016; 34:873-87. [DOI: 10.1002/stem.2268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Ayesh K. Seneviratne
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Gillian I. Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Stephen E. Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - Tyler T. Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - David M. Putman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| | - David A. Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; The University of Western Ontario; London Ontario Canada
| |
Collapse
|
43
|
Anastasiou V, Ninou E, Alexopoulou D, Stertmann J, Müller A, Dahl A, Solimena M, Speier S, Serafimidis I, Gavalas A. Aldehyde dehydrogenase activity is necessary for beta cell development and functionality in mice. Diabetologia 2016; 59:139-150. [PMID: 26518685 PMCID: PMC4670456 DOI: 10.1007/s00125-015-3784-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells maintain glucose homeostasis and beta cell dysfunction is a major risk factor in developing diabetes. Therefore, understanding the developmental regulatory networks that define a fully functional beta cell is important for elucidating the genetic origins of the disease. Aldehyde dehydrogenase activity has been associated with stem/progenitor cells and we have previously shown that Aldh1b1 is specifically expressed in pancreas progenitor pools. Here we address the hypothesis that Aldh1b1 may regulate the timing of the appearance and eventual functionality of beta cells. METHODS We generated an Aldh1b1-knockout mouse line (Aldh1b1 (tm1lacZ)) and used this to study pancreatic development, beta cell functionality and glucose homeostasis in the absence of Aldh1b1 function. RESULTS Differentiation in the developing pancreas of Aldh1b1 (tm1lacZ) null mice was accelerated. Transcriptome analyses of newborn and adult islets showed misregulation of key beta cell transcription factors and genes crucial for beta cell function. Functional analyses showed that glucose-stimulated insulin secretion was severely compromised in islets isolated from null mice. Several key features of beta cell functionality were affected, including control of oxidative stress, glucose sensing, stimulus-coupling secretion and secretory granule biogenesis. As a result of beta cell dysfunction, homozygous mice developed glucose intolerance and age-dependent hyperglycaemia. CONCLUSIONS/INTERPRETATION These findings show that Aldh1b1 influences the timing of the transition from the pancreas endocrine progenitor to the committed beta cell and demonstrate that changes in the timing of this transition lead to beta cell dysfunction and thus constitute a diabetes risk factor later in life. Gene Expression Omnibus (GEO) accession: GSE58025.
Collapse
Affiliation(s)
- Vivian Anastasiou
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Elpiniki Ninou
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, BIOTEChnology Center (BioZ), TU Dresden, Dresden, Germany
| | - Julia Stertmann
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Andreas Müller
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, BIOTEChnology Center (BioZ), TU Dresden, Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
| | - Stephan Speier
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- DZD - German Centre for Diabetes Research, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ioannis Serafimidis
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece.
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- DZD - German Centre for Diabetes Research, Germany, .
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece.
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Savitz SI, Parsha K. Enhancing Stroke Recovery with Cellular Therapies. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
|
46
|
Wang L, Li ZS, Zhang HR. Bone marrow mesenchymal stem cells for treatment of liver cirrhosis. Shijie Huaren Xiaohua Zazhi 2015; 23:4522-4528. [DOI: 10.11569/wcjd.v23.i28.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver disease is a frequently occurring disease worldwide. In China, the incidence of hepatitis and liver cirrhosis is high, and has increased year by year. The progression of chronic liver disease can lead to upper gastrointestinal bleeding, liver cancer and other malignant diseases, posing a serious threat to the health and quality of life of patients. Before progression to liver cirrhosis, choosing an effective treatment method can reverse the disease, improve the prognosis and reduce mortality. Bone marrow mesenchymal stem cells (BMSCs) are the most popular seed cells in the development of new methods for treating cirrhosis. They can not only differentiate into hepatocytes in vivo, but also reduce the inflammatory response, inhibit cell apoptosis, improve liver function and so on. BMSCs are expected to be a new strategy for the treatment of liver cirrhosis and liver failure.
Collapse
|
47
|
Kawasaki T, Nishiwaki T, Sekine A, Nishimura R, Suda R, Urushibara T, Suzuki T, Takayanagi S, Terada J, Sakao S, Tatsumi K. Vascular Repair by Tissue-Resident Endothelial Progenitor Cells in Endotoxin-Induced Lung Injury. Am J Respir Cell Mol Biol 2015; 53:500-12. [PMID: 25719275 DOI: 10.1165/rcmb.2014-0185oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular disruption is one of the pathological hallmarks in acute respiratory distress syndrome. Bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) and lung tissue-resident EPCs have been considered to play a pivotal role in pulmonary vascular repair; however, which population is predominant in local pulmonary vasculogenesis remains to be clarified. We therefore examined the origin of EPCs participating in the regenerative process of pulmonary vascular endothelial cells (PVECs) in experimental acute respiratory distress syndrome. Lung samples from mice administered LPS intratracheally were investigated for cell dynamics and EPC functions. Quantitative flow cytometric analysis demonstrated that the number of PVECs decreased by roughly 20% on Day 1 and then recovered on Day 7 of LPS challenge. Bromodeoxyuridine-incorporation assays and immunofluorescence microscopy demonstrated that proliferating PVECs preferentially located in the capillary vessels. Experiments using BM chimera mice revealed that most of the regenerating PVECs were tissue-resident cells, and BM-derived cells hardly engrafted as PVECs. The population of circulating putative phenotypical EPCs decreased during the first week after LPS challenge. The regenerating PVECs were characterized by high colony-forming and vasculogenic capacities, intracellular reactive oxygen species scavenging and aldehyde dehydrogenase activites, and enhanced gene expression of Abcb1b (a drug-resistant gene), suggesting that the population of PVECs included tissue-resident EPCs activated during regenerative process of PVECs. The proliferating PVECs expressed CD34, Flk-1/KDR, and c-kit more strongly and Prom1/CD133 less strongly on the surface than nonproliferating PVECs. Our findings indicated that lung tissue-resident EPCs predominantly contribute to pulmonary vascular repair after endotoxin-induced injury.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsu Nishiwaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Sekine
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Rika Suda
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Urushibara
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
48
|
Rich IN. Improving Quality and Potency Testing for Umbilical Cord Blood: A New Perspective. Stem Cells Transl Med 2015; 4:967-73. [PMID: 26160959 DOI: 10.5966/sctm.2015-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED This article critically reviews current methods to test and characterize umbilical cord blood (UCB) for hematopoietic stem cell transplantation. These tests include total nucleated cell (TNC) count, viability, viable CD34-positive content, and the colony-forming unit assay. It is assumed that the data obtained are sufficient to perform a UCB stem cell transplant without actually determining the quality and potency of the stem cells responsible for engraftment. This assumption has led not only to a high graft failure rate attributed to low or lack of potency, but also to noncompliance with present statutes that require UCB stem cells to be of high quality and, indeed, potency for a transplant to be successful. New evidence now calls into question the quality of the data, based on the UCB processed TNC fraction because using this impure fraction masks and significantly underestimates the functionality of the stem cells in both the segment and the unit. It is proposed that UCB units should be processed to the mononuclear cell fraction and that new cost-effective technology that measures the quality and potency of UCB stem cells be implemented to achieve better practices in UCB testing. These changes would provide the transplant physician with the assurance that the stem cells will perform as intended and would reduce risk and increase safety and efficacy for the patient. SIGNIFICANCE Current stem cell transplantation of umbilical cord blood cells requires testing that includes four basic parameters that do not determine whether the stem cells are of high quality, as required by the Stem Cell Therapeutic and Research Act of 2005. No cord blood units collected or transplanted so far have been tested for stem cell quality or potency. New scientific evidence calls into question cord blood processing and testing practices required by regulatory agencies and standards organizations. A new perspective is described that includes stem cell quality and potency testing that could reduce graft failure rates.
Collapse
Affiliation(s)
- Ivan N Rich
- HemoGenix, Inc., Colorado Springs, Colorado, USA
| |
Collapse
|
49
|
Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population. Mol Cell Endocrinol 2015; 408:178-84. [PMID: 25575455 DOI: 10.1016/j.mce.2014.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Fernandez Rubin de Celis
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute of Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Androutsellis-Theotokis
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Division of Stem Cell Biology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Division of Molecular Endocrinology, Medical Clinic III, Carl Gustav Carus University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
50
|
Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells 2015; 33:2085-92. [PMID: 25873269 DOI: 10.1002/stem.2039] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid-derived suppressor cells, and cytokines, for example, IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs.
Collapse
Affiliation(s)
- Qin Pan
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shuang Liu
- Department of Neurosurgery, Navy General Hospital, Beijing, People's Republic of China
| | - Ning Ning
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yingxin Xu
- Department of General Surgery, General Hospital of PLA, Beijing, People's Republic of China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|