1
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
2
|
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1649-1664. [PMID: 37039888 DOI: 10.1007/s00406-023-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
3
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. Int J Mol Sci 2023; 24:15339. [PMID: 37895019 PMCID: PMC10607243 DOI: 10.3390/ijms242015339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.
Collapse
Affiliation(s)
- Victoria Sook Keng Tung
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Michele T. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - Carlos N. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Davis KN, Qu PP, Ma S, Lin L, Plastini M, Dahl N, Plazzi G, Pizza F, O’Hara R, Wong WH, Hallmayer J, Mignot E, Zhang X, Urban AE. Mutations in human DNA methyltransferase DNMT1 induce specific genome-wide epigenomic and transcriptomic changes in neurodevelopment. Hum Mol Genet 2023; 32:3105-3120. [PMID: 37584462 PMCID: PMC10586194 DOI: 10.1093/hmg/ddad123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023] Open
Abstract
DNA methyltransferase type 1 (DNMT1) is a major enzyme involved in maintaining the methylation pattern after DNA replication. Mutations in DNMT1 have been associated with autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). We used fibroblasts, induced pluripotent stem cells (iPSCs) and induced neurons (iNs) generated from patients with ADCA-DN and controls, to explore the epigenomic and transcriptomic effects of mutations in DNMT1. We show cell type-specific changes in gene expression and DNA methylation patterns. DNA methylation and gene expression changes were negatively correlated in iPSCs and iNs. In addition, we identified a group of genes associated with clinical phenotypes of ADCA-DN, including PDGFB and PRDM8 for cerebellar ataxia, psychosis and dementia and NR2F1 for deafness and optic atrophy. Furthermore, ZFP57, which is required to maintain gene imprinting through DNA methylation during early development, was hypomethylated in promoters and exhibited upregulated expression in patients with ADCA-DN in both iPSC and iNs. Our results provide insight into the functions of DNMT1 and the molecular changes associated with ADCA-DN, with potential implications for genes associated with related phenotypes.
Collapse
Affiliation(s)
- Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Shining Ma
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Center for Narcolepsy, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Melanie Plastini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology Sciences for Life Laboratory, Uppsala University BMC, Uppsala 75122, Sweden
| | - Giuseppe Plazzi
- IRCCS—Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Fabio Pizza
- IRCCS—Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Center for Narcolepsy, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| |
Collapse
|
5
|
Parnell E, Culotta L, Forrest MP, Jalloul HA, Eckman BL, Loizzo DD, Horan KKE, Dos Santos M, Piguel NH, Tai DJC, Zhang H, Gertler TS, Simkin D, Sanders AR, Talkowski ME, Gejman PV, Kiskinis E, Duan J, Penzes P. Excitatory Dysfunction Drives Network and Calcium Handling Deficits in 16p11.2 Duplication Schizophrenia Induced Pluripotent Stem Cell-Derived Neurons. Biol Psychiatry 2022:S0006-3223(22)01718-8. [PMID: 36581494 PMCID: PMC10166768 DOI: 10.1016/j.biopsych.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold. METHODS To dissect the contribution of induced excitatory neurons (iENs) versus GABAergic (gamma-aminobutyric acidergic) neurons (iGNs) to SCZ pathophysiology, we induced iNs from CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 isogenic and SCZ patient-derived induced pluripotent stem cells and analyzed SCZ-related phenotypes in iEN monocultures and iEN/iGN cocultures. RESULTS In iEN/iGN cocultures, neuronal firing and synchrony were reduced at later, but not earlier, stages of in vitro development. These were fully recapitulated in iEN monocultures, indicating a primary role for iENs. Moreover, isogenic iENs showed reduced dendrite length and deficits in calcium handling. iENs from 16p11.2 duplication-carrying patients with SCZ displayed overlapping deficits in network synchrony, dendrite outgrowth, and calcium handling. Transcriptomic analysis of both iEN cohorts revealed molecular markers of disease related to the glutamatergic synapse, neuroarchitecture, and calcium regulation. CONCLUSIONS Our results indicate the presence of 16p11.2 duplication-dependent alterations in SCZ patient-derived iENs. Transcriptomics and cellular phenotyping reveal overlap between isogenic and patient-derived iENs, suggesting a central role of glutamatergic, morphological, and calcium dysregulation in 16p11.2 duplication-mediated pathogenesis. Moreover, excitatory dysfunction during early neurodevelopment is implicated as the basis of SCZ pathogenesis in 16p11.2 duplication carriers. Our results support network synchrony and calcium handling as outcomes directly linked to this genetic risk variant.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Lorenza Culotta
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Hiba A Jalloul
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Blair L Eckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Daniel D Loizzo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Katherine K E Horan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Nicolas H Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Derek J C Tai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H Lurie Childrens Hospital of Chicago, Chicago, Illinois; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dina Simkin
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Evangelos Kiskinis
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
6
|
Lee J, Song S, Lee J, Kang J, Choe EK, Lee TY, Chon MW, Kim M, Kim SW, Chun MS, Chang MS, Kwon JS. Impaired migration of autologous induced neural stem cells from patients with schizophrenia and implications for genetic risk for psychosis. Schizophr Res 2022; 246:225-234. [PMID: 35810486 DOI: 10.1016/j.schres.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
Stem cell technologies have presented explicit evidence of the neurodevelopmental hypothesis of schizophrenia. However, few studies investigated relevance of the schizophrenia genetic liability and the use of genetic reprogramming on pluripotent stem cells to the impaired neurodevelopment shown by stem cells. Therefore, this study sought to investigate the cellular phenotypes of induced neural stem cells (iNSCs) derived without genetic modification from patients with schizophrenia and from genetic high risk (GHR) individuals. Three patients with a diagnosis of schizophrenia, 3 GHR individuals who had two or more relatives with schizophrenia, and 3 healthy volunteers participated. iNSCs were derived using a small molecule-based lineage switch method, and their gene expression levels and migration capabilities were examined. Demographic characteristics were not different among the groups (age, χ2 = 5.637, P = .060; education, χ2 = 2.111, P = .348). All participants stayed well during the follow-up except one GHR individual who developed psychosis 1.5 years later. Migration capacity was impaired in iNSCs from patients with schizophrenia (SZ-iNSCs) compared to iNSCs from GHR individuals or controls (P < .001). iNSCs from a GHR individual who later developed schizophrenia showed migratory impairment that was similar to SZ-iNSCs. Gene expression levels of Sox2 in SZ-iNSCs were significantly lower than those in controls (P = .028). Defective migration in genetically unmodified SZ-iNSCs is the first direct demonstration of neurodevelopmental abnormalities in schizophrenia. Additionally, alterations in gene expression in SZ-iNSCs suggest mechanisms by which genetic liability leads to aberrant neurodevelopment.
Collapse
Affiliation(s)
- Junhee Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 03080 Seoul, Republic of Korea; Department of Psychiatry, Uijeongbu Eulji Medical Center, 11759 Uijeongbu, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea
| | - Juhee Lee
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea
| | - Jisoo Kang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea
| | - Eun Kyung Choe
- Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, 06236 Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
| | - Myong-Wuk Chon
- National Center for Mental Health, 04933 Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 05505 Seoul, Republic of Korea
| | - Myung-Suk Chun
- National Agenda Research Division, Korea Institute of Science and Technology, 02792 Seoul, Republic of Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University, 03080 Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 03080 Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea.
| |
Collapse
|
7
|
Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021; 99:1276-1307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure-prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro-engineer cell-scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to "Organ-on-chip" models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and "Organ-on-chip" systems have enabled new understanding of metabolic coupling and blood-brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro-pathophysiological systems, moving from "Organ-on-chip" to "Disease-on-chip." This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Melissa Barber
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Róisín M Owens
- Department Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anup D Sharma
- New Orleans BioInnovation Center, AxoSim Inc., New Orleans, LA, USA
| | - Wendy Rowan
- Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Eric Hill
- School of Life and Health sciences, Aston University, Birmingham, UK
| | - Michele Zagnoni
- Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
8
|
An H, Qin J, Fan H, Fan F, Tan S, Wang Z, Shi J, Yang F, Tan Y, Huang XF. Decreased serum NCAM is positively correlated with hippocampal volumes and negatively correlated with positive symptoms in first-episode schizophrenia patients. J Psychiatr Res 2020; 131:108-113. [PMID: 32950707 DOI: 10.1016/j.jpsychires.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neural cell adhesion molecule (NCAM) plays an important role in neurodevelopmental processes and regulates hippocampal plasticity. This study investigated the relationship between the serum NCAM concentrations and hippocampal volume and psychotic symptoms in first-episode drug naïve schizophrenia (FES) patients. METHODS Forty-four FES patients and forty-four healthy controls (HC) were recruited in this study. Serum concentrations of NCAM were measured by ELISA. Psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). Brain structural images were obtained using a 3T MRI Scanner and obtained T1 images were processed in order to determine hippocampal grey matter volumes. RESULTS Schizophrenia patients revealed significantly decreased serum NCAM concentrations (p = 0.017), which were positively correlated with the left (r = 0.523, p < 0.001) and right (r = 0.449, p = 0.041) hippocampal volumes, but negatively correlated with the PANSS positive symptom scores (r = -0.522 p = 0.001). However, no such correlations existed in the HC group. CONCLUSIONS This is the first time to report that decreased serum NCAM concentrations were associated with hippocampal volumes and symptom severity in FES patients. Our data indicate that the low NCAM is possible neuropathology that is associated with the decreased hippocampus in FES patients.
Collapse
Affiliation(s)
- Huimei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jun Qin
- Radiology Department, Civil Aviation General Hospital, Peking University, Beijing, China
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jing Shi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
9
|
McNeill RV, Ziegler GC, Radtke F, Nieberler M, Lesch KP, Kittel-Schneider S. Mental health dished up-the use of iPSC models in neuropsychiatric research. J Neural Transm (Vienna) 2020; 127:1547-1568. [PMID: 32377792 PMCID: PMC7578166 DOI: 10.1007/s00702-020-02197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006–2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient’s own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
10
|
Zhang Z, Chen G. A logical relationship for schizophrenia, bipolar, and major depressive disorder. Part 1: Evidence from chromosome 1 high density association screen. J Comp Neurol 2020; 528:2620-2635. [PMID: 32266715 DOI: 10.1002/cne.24921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was investigated systematically (Aukes et al., Genetics in Medicine, 2012, 14, 338-341) and any two or even three of these disorders could coexist in some families. Furthermore, evidence from symptomatology and psychopharmacology also imply the existence of intrinsic connections between these three major psychiatric disorders. A total of 71,445 SNPs on chromosome 1 were genotyped on 119 SCZ, 253 BPD (type-I), 177 MDD cases and 1000 controls and further validated in 986 SCZ patients in the population of Shandong province of China. Outstanding psychosis genes are systematically revealed( ATP1A4, ELTD1, FAM5C, HHAT, KIF26B, LMX1A, NEGR1, NFIA, NR5A2, NTNG1, PAPPA2, PDE4B, PEX14, RYR2, SYT6, TGFBR3, TTLL7, and USH2A). Unexpectedly, flanking genes for up to 97.09% of the associated SNPs were also replicated in an enlarged cohort of 986 SCZ patients. From the perspective of etiological rather than clinical psychiatry, bipolar, and major depressive disorder could be subtypes of schizophrenia. Meanwhile, the varied clinical feature and prognosis might be the result of interaction of genetics and epigenetics, for example, irreversible or reversible shut down, and over or insufficient expression of certain genes, which may gives other aspects of these severe mental disorders.
Collapse
Affiliation(s)
- Zhihua Zhang
- Shandong Mental Health Center, Jinan, Shandong, China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
11
|
Hoffmann A, Ziller M, Spengler D. Focus on Causality in ESC/iPSC-Based Modeling of Psychiatric Disorders. Cells 2020; 9:E366. [PMID: 32033412 PMCID: PMC7072492 DOI: 10.3390/cells9020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an increasing number of genetic variants that significantly associate with psychiatric disorders. Despite this wealth of information, our knowledge of which variants causally contribute to disease, how they interact, and even more so of the functions they regulate, is still poor. The availability of embryonic stem cells (ESCs) and the advent of patient-specific induced pluripotent stem cells (iPSCs) has opened new opportunities to investigate genetic risk variants in living disease-relevant cells. Here, we analyze how this progress has contributed to the analysis of causal relationships between genetic risk variants and neuronal phenotypes, especially in schizophrenia (SCZ) and bipolar disorder (BD). Studies on rare, highly penetrant risk variants have originally led the field, until more recently when the development of (epi-) genetic editing techniques spurred studies on cause-effect relationships between common low risk variants and their associated neuronal phenotypes. This reorientation not only offers new insights, but also raises issues on interpretability. Concluding, we consider potential caveats and upcoming developments in the field of ESC/iPSC-based modeling of causality in psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany; (A.H.); (M.Z.)
| |
Collapse
|
12
|
D'Alessio R, Koukouli F, Blanchard S, Catteau J, Raïs C, Lemonnier T, Féraud O, Bennaceur-Griscelli A, Groszer M, Maskos U. Long-term development of human iPSC-derived pyramidal neurons quantified after transplantation into the neonatal mouse cortex. Dev Biol 2020; 461:86-95. [PMID: 31982375 DOI: 10.1016/j.ydbio.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
One of the main obstacles for studying the molecular and cellular mechanisms underlying human neurodevelopment in vivo is the scarcity of experimental models. The discovery that neurons can be generated from human induced pluripotent stem cells (hiPSCs) paves the way for novel approaches that are stem cell-based. Here, we developed a technique to follow the development of transplanted hiPSC-derived neuronal precursors in the cortex of mice over time. Using post-mortem immunohistochemistry we quantified the differentiation and maturation of dendritic patterns of the human neurons over a total of six months. In addition, entirely hiPSC-derived neuronal parenchyma was followed over eight months using two-photon in vivo imaging through a cranial window. We found that transplanted hiPSC-derived neuronal precursors exhibit a "protracted" human developmental programme in different cortical areas. This offers novel possibilities for the sequential in vivo study of human cortical development and its alteration, followed in "real time".
Collapse
Affiliation(s)
- Rosa D'Alessio
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Fani Koukouli
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Stéphane Blanchard
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Julie Catteau
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Célia Raïs
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Thomas Lemonnier
- Institut du Fer à Moulin, Sorbonne Université, INSERM UMR-S 1270, 75005, Paris, France
| | - Olivier Féraud
- INSERM UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France; Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France; Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne Université, INSERM UMR-S 1270, 75005, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
13
|
Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neurosci Res 2019; 155:1-11. [PMID: 31586586 DOI: 10.1016/j.neures.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
The common marmoset (marmoset; Callithrix jacchus) harbors various desired features as a non-human primate (NHP) model for neuroscience research. Recently, efforts have been made to induce neural cells in vitro from marmoset pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are characterized by their capacity to differentiate into all cell types from the three germ layers. Successful generation of marmoset neural cells is not only invaluable for understanding neural development and for modeling neurodegenerative and psychiatric disorders, but is also necessary for the phenotypic screening of genetically-modified marmosets. However, differences in the differentiation propensity among PSC lines hamper the applicability and the reproducibility of differentiation methods. To overcome this limitation, we evaluated the efficacy of small molecules for neural differentiation of marmoset ESCs (cjESCs) and iPSCs using multiple differentiation methods. By immunochemical and transcriptomic analyses, we confirmed that our methods using the small molecules are efficient for various differentiation protocols by either enhancing the yield of a mixture of neural cells including both neurons and glial cells, or a pure population of neurons. Collectively, our findings optimized in vitro neural differentiation methods for marmoset PSCs, which would ultimately help enhance the utility of the animal model in neuroscience.
Collapse
|
14
|
Sarkar A, Mei A, Paquola ACM, Stern S, Bardy C, Klug JR, Kim S, Neshat N, Kim HJ, Ku M, Shokhirev MN, Adamowicz DH, Marchetto MC, Jappelli R, Erwin JA, Padmanabhan K, Shtrahman M, Jin X, Gage FH. Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro. Cell Stem Cell 2019; 22:684-697.e9. [PMID: 29727680 DOI: 10.1016/j.stem.2018.04.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/27/2022]
Abstract
Despite widespread interest in using human induced pluripotent stem cells (hiPSCs) in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a comprehensive and efficient differentiation paradigm for hiPSCs that generate multiple CA3 pyramidal neuron subtypes as detected by single-cell RNA sequencing (RNA-seq). This differentiation paradigm exhibits characteristics of neuronal network maturation, and rabies virus tracing revealed synaptic connections between stem cell-derived dentate gyrus (DG) and CA3 neurons in vitro recapitulating the neuronal connectivity within the hippocampus. Because hippocampal dysfunction has been implicated in schizophrenia, we applied DG and CA3 differentiation paradigms to schizophrenia-patient-derived hiPSCs. We detected reduced activity in DG-CA3 co-culture and deficits in spontaneous and evoked activity in CA3 neurons from schizophrenia-patient-derived hiPSCs. Our approach offers critical insights into the network activity aspects of schizophrenia and may serve as a promising tool for modeling diseases with hippocampal vulnerability. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Anindita Sarkar
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Arianna Mei
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Apua C M Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Lieber Institute for Brain Development, Johns Hopkins School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Shani Stern
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cedric Bardy
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory for Human Neurophysiology and Genetics, SAHMRI and College of Medicine and Public Health, Flinders University, Adelaide SA 5000, Australia
| | - Jason R Klug
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stacy Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Neda Neshat
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hyung Joon Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Psychiatry, Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | - Manching Ku
- Next Generation Sequencing Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David H Adamowicz
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maria C Marchetto
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Jappelli
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer A Erwin
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Lieber Institute for Brain Development, Johns Hopkins School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Krishnan Padmanabhan
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Matthew Shtrahman
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1606883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Grunwald LM, Stock R, Haag K, Buckenmaier S, Eberle MC, Wildgruber D, Storchak H, Kriebel M, Weißgraeber S, Mathew L, Singh Y, Loos M, Li KW, Kraushaar U, Fallgatter AJ, Volkmer H. Comparative characterization of human induced pluripotent stem cells (hiPSC) derived from patients with schizophrenia and autism. Transl Psychiatry 2019; 9:179. [PMID: 31358727 PMCID: PMC6663940 DOI: 10.1038/s41398-019-0517-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) provide an attractive tool to study disease mechanisms of neurodevelopmental disorders such as schizophrenia. A pertinent problem is the development of hiPSC-based assays to discriminate schizophrenia (SZ) from autism spectrum disorder (ASD) models. Healthy control individuals as well as patients with SZ and ASD were examined by a panel of diagnostic tests. Subsequently, skin biopsies were taken for the generation, differentiation, and testing of hiPSC-derived neurons from all individuals. SZ and ASD neurons share a reduced capacity for cortical differentiation as shown by quantitative analysis of the synaptic marker PSD95 and neurite outgrowth. By contrast, pattern analysis of calcium signals turned out to discriminate among healthy control, schizophrenia, and autism samples. Schizophrenia neurons displayed decreased peak frequency accompanied by increased peak areas, while autism neurons showed a slight decrease in peak amplitudes. For further analysis of the schizophrenia phenotype, transcriptome analyses revealed a clear discrimination among schizophrenia, autism, and healthy controls based on differentially expressed genes. However, considerable differences were still evident among schizophrenia patients under inspection. For one individual with schizophrenia, expression analysis revealed deregulation of genes associated with the major histocompatibility complex class II (MHC class II) presentation pathway. Interestingly, antipsychotic treatment of healthy control neurons also increased MHC class II expression. In conclusion, transcriptome analysis combined with pattern analysis of calcium signals appeared as a tool to discriminate between SZ and ASD phenotypes in vitro.
Collapse
Affiliation(s)
- Lena-Marie Grunwald
- 0000 0000 9457 1306grid.461765.7Department Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Ricarda Stock
- 0000 0000 9457 1306grid.461765.7Department Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Kathrina Haag
- 0000 0000 9457 1306grid.461765.7Department Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Sandra Buckenmaier
- 0000 0000 9457 1306grid.461765.7Department Cell Physiology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Mark-Christian Eberle
- 0000 0001 2190 1447grid.10392.39Department of Psychiatry, University of Tübingen, Osianderstrasse 24, 72076 Tübingen, Germany
| | - Dirk Wildgruber
- 0000 0001 2190 1447grid.10392.39Department of Psychiatry, University of Tübingen, Osianderstrasse 24, 72076 Tübingen, Germany
| | - Helena Storchak
- 0000 0001 2190 1447grid.10392.39Department of Psychiatry, University of Tübingen, Osianderstrasse 24, 72076 Tübingen, Germany
| | - Martin Kriebel
- 0000 0000 9457 1306grid.461765.7Department Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Stephanie Weißgraeber
- 0000 0004 6008 5552grid.498061.2CeGaT GmbH - Center for Genomics and Transcriptomics, Paul-Ehrlich-Str. 23, 72076 Tübingen, Germany
| | - Lisha Mathew
- 0000 0004 6008 5552grid.498061.2CeGaT GmbH - Center for Genomics and Transcriptomics, Paul-Ehrlich-Str. 23, 72076 Tübingen, Germany
| | - Yasmin Singh
- 0000 0004 6008 5552grid.498061.2CeGaT GmbH - Center for Genomics and Transcriptomics, Paul-Ehrlich-Str. 23, 72076 Tübingen, Germany
| | - Maarten Loos
- grid.426096.fSylics (Synaptologics BV), PO Box 71033, 1008 BA Amsterdam, The Netherlands
| | - Ka Wan Li
- grid.484519.5Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Udo Kraushaar
- 0000 0000 9457 1306grid.461765.7Department Cell Physiology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Andreas J. Fallgatter
- 0000 0001 2190 1447grid.10392.39Department of Psychiatry, University of Tübingen, Osianderstrasse 24, 72076 Tübingen, Germany
| | - Hansjürgen Volkmer
- Department Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany.
| |
Collapse
|
17
|
Vigilante A, Laddach A, Moens N, Meleckyte R, Leha A, Ghahramani A, Culley OJ, Kathuria A, Hurling C, Vickers A, Wiseman E, Tewary M, Zandstra PW, Durbin R, Fraternali F, Stegle O, Birney E, Luscombe NM, Danovi D, Watt FM. Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Rep 2019; 26:2078-2087.e3. [PMID: 30784590 PMCID: PMC6381787 DOI: 10.1016/j.celrep.2019.01.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior.
Collapse
Affiliation(s)
- Alessandra Vigilante
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anna Laddach
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Nathalie Moens
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ruta Meleckyte
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Leha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Arsham Ghahramani
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver J Culley
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Annie Kathuria
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Chloe Hurling
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Erika Wiseman
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Richard Durbin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Franca Fraternali
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
18
|
Hirayama M. Advances in Functional Restoration of the Lacrimal Glands. Invest Ophthalmol Vis Sci 2018; 59:DES174-DES182. [PMID: 30481824 DOI: 10.1167/iovs.17-23528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The lacrimal glands produce tears to support a healthy homeostatic environment on the ocular surface. The lacrimal gland dysfunction characteristic of dry eye disease causes ocular discomfort and visual disturbances and in severe cases can result in a loss of vision. The demand for adequate restoration of lacrimal gland function has been intensified due to advances in stem cell biology, developmental biology, and bioengineering technologies. In addition to conventional therapies, including artificial tears, tear alternatives (such as autologous serum eye drops) and salivary gland transplantation, a regenerative medicine approach has been identified as a novel strategy to restore the function of the lacrimal gland. Recent studies have demonstrated the potential of progenitor cell injection therapy to repair the tissue of the lacrimal glands. A current three-dimensional (3D) tissue engineering technique has been shown to regenerate a secretory gland structure by reproducing reciprocal epithelial-mesenchymal interactions during ontogenesis in vitro and in vivo. A novel direct reprogramming method has suggested a possibility to induce markers in the lacrimal gland developmental process from human pluripotent stem cells. The development of this method is supported by advances in our understanding of gene expression and regulatory networks involved in the development and differentiation of the lacrimal glands. Engineering science has proposed a medical device to stimulate tearing and a bio-hybrid scaffold to reconstruct the 3D lacrimal gland structure. In this review, we will summarize recent bioengineering advances in lacrimal gland regeneration toward the functional restoration of the lacrimal glands as a future dry eye therapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States
| |
Collapse
|
19
|
Narla ST, Decker B, Sarder P, Stachowiak EK, Stachowiak MK. Induced Pluripotent Stem Cells Reveal Common Neurodevelopmental Genome Deprograming in Schizophrenia. Results Probl Cell Differ 2018; 66:137-162. [PMID: 30209658 DOI: 10.1007/978-3-319-93485-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by complex aberrations in the structure, wiring, and chemistry of multiple neuronal systems. The abnormal developmental trajectory of the brain is established during gestation, long before clinical manifestation of the disease. Over 200 genes and even greater numbers of single nucleotide polymorphisms and copy number variations have been linked with schizophrenia. How does altered function of such a variety of genes lead to schizophrenia? We propose that the protein products of these altered genes converge on a common neurodevelopmental pathway responsible for the development of brain neural circuit and neurotransmitter systems. The results of a multichanneled investigation using induced pluripotent stem cell (iPSCs)- and embryonic stem cell (ESCs)-derived neuronal committed cells (NCCs) indicate an early (preneuronal) developmental-genomic etiology of schizophrenia and that the dysregulated developmental gene networks are common to genetically unrelated cases of schizophrenia. The results support a "watershed" mechanism in which mutations within diverse signaling pathways affect the common pan-ontogenic mechanism, integrative nuclear (n)FGFR1 signaling (INFS). Dysregulation of INFS in schizophrenia NCCs deconstructs coordinated gene networks and leads to formation of new networks by the dysregulated genes. This genome deprograming affects critical gene programs and pathways for neural development and functions. Studies show that the genomic deprograming reflect an altered nFGFR1-genome interactions and deregulation of miRNA genes by nFGFR1. In addition, changes in chromatin topology imposed by nFGFR1 may play a role in coordinate gene dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Sridhar T Narla
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA
| | - Brandon Decker
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, State University of New York, Buffalo, NY, USA
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA.,Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, NY, USA
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, NY, USA. .,Department of Biomedical Engineering, State University of New York, Buffalo, NY, USA. .,Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
20
|
Xie Y, Schutte RJ, Ng NN, Ess KC, Schwartz PH, O'Dowd DK. Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Res 2017; 26:84-94. [PMID: 29272856 PMCID: PMC5899925 DOI: 10.1016/j.scr.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/22/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
The use of human induced pluripotent stem cell (hiPSC)-derived neuronal cultures to study the mechanisms of neurological disorders is often limited by low efficiency and high variability in differentiation of functional neurons. Here we compare the functional properties of neurons in cultures prepared with two hiPSC differentiation protocols, both plated on astroglial feeder layers. Using a protocol with an expandable intermediate stage, only a small percentage of cells with neuronal morphology were excitable by 21-23days in culture. In contrast, a direct differentiation strategy of the same hiPSC line produced cultures in which the majority of neurons fired action potentials as early as 4-5days. By 35-38days over 80% of the neurons fired repetitively and many fired spontaneously. Spontaneous post-synaptic currents were observed in ~40% of the neurons at 4-5days and in ~80% by 21-23days. The majority (75%) received both glutamatergic and GABAergic spontaneous postsynaptic currents. The rate and degree of maturation of excitability and synaptic activity was similar between multiple independent platings from a single hiPSC line, and between two different control hiPSC lines. Cultures of rapidly functional neurons will facilitate identification of cellular mechanisms underlying genetically defined neurological disorders and development of novel therapeutics.
Collapse
Affiliation(s)
- Yunyao Xie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ryan J Schutte
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Nathan N Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Philip H Schwartz
- Children's Hospital of Orange County Research Institute, Orange, CA, United States
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
21
|
Prytkova I, Brennand KJ. Prospects for Modeling Abnormal Neuronal Function in Schizophrenia Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2017; 11:360. [PMID: 29217999 PMCID: PMC5703699 DOI: 10.3389/fncel.2017.00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Excitatory dopaminergic neurons, inhibitory GABAergic neurons, microglia, and oligodendrocytes have all been implicated in schizophrenia (SZ) network pathology. Still, SZ has been a difficult disorder to study, not only because of the limitations of animal models in capturing the complexity of the human mind, but also because it is greatly polygenic, with high rates of variability across the population. The advent of patient-derived pluripotent stem cells and induced neural and glial cultures has brought hope for modeling the molecular dysfunction underlying SZ pathology in a patient-specific manner. Here I review the successes of the patient-specific induced cultures in generating different cell types for the study of SZ, with special emphasis on the utility of co-culture techniques, both two- and three-dimensional, for modeling network dysfunction in disease.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, line>New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, line>New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
|
23
|
Tcw J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin E, Machlovi SI, Abdelaal R, Karch CM, Phatnani H, Slesinger PA, Zhang B, Goate AM, Brennand KJ. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 9:600-614. [PMID: 28757165 PMCID: PMC5550034 DOI: 10.1016/j.stemcr.2017.06.018] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 11/24/2022] Open
Abstract
Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (<30 days) method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Julia Tcw
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Anna A Pimenova
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kathryn R Bowles
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Emre Lacin
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Saima I Machlovi
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Rawan Abdelaal
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hemali Phatnani
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Paul A Slesinger
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Alison M Goate
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| | - Kristen J Brennand
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
24
|
Narla ST, Lee YW, Benson C, Sarder P, Brennand K, Stachowiak E, Stachowiak M. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophr Res 2017; 185:17-32. [PMID: 28094170 PMCID: PMC5507209 DOI: 10.1016/j.schres.2016.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
The watershed-hypothesis of schizophrenia asserts that over 200 different mutations dysregulate distinct pathways that converge on an unspecified common mechanism(s) that controls disease ontogeny. Consistent with this hypothesis, our RNA-sequencing of neuron committed cells (NCCs) differentiated from established iPSCs of 4 schizophrenia patients and 4 control subjects uncovered a dysregulated transcriptome of 1349 mRNAs common to all patients. Data reveals a global dysregulation of developmental genome, deconstruction of coordinated mRNA networks, and the formation of aberrant, new coordinated mRNA networks indicating a concerted action of the responsible factor(s). Sequencing of miRNA transcriptomes demonstrated an overexpression of 16 miRNAs and deconstruction of interactive miRNA-mRNA networks in schizophrenia NCCs. ChiPseq revealed that the nuclear (n) form of FGFR1, a pan-ontogenic regulator, is overexpressed in schizophrenia NCCs and overtargets dysregulated mRNA and miRNA genes. The nFGFR1 targeted 54% of all human gene promoters and 84.4% of schizophrenia dysregulated genes. The upregulated genes reside within major developmental pathways that control neurogenesis and neuron formation, whereas downregulated genes are involved in oligodendrogenesis. Our results indicate (i) an early (preneuronal) genomic etiology of schizophrenia, (ii) dysregulated genes and new coordinated gene networks are common to unrelated cases of schizophrenia, (iii) gene dysregulations are accompanied by increased nFGFR1-genome interactions, and (iv) modeling of increased nFGFR1 by an overexpression of a nFGFR1 lead to up or downregulation of selected genes as observed in schizophrenia NCCs. Together our results designate nFGFR1 signaling as a potential common dysregulated mechanism in investigated patients and potential therapeutic target in schizophrenia.
Collapse
Affiliation(s)
- S. T. Narla
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Y-W. Lee
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - C.A. Benson
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - P. Sarder
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - K. Brennand
- Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
| | - E.K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - M.K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA,Correspondence should be addressed to Michal K. Stachowiak Department of Pathology and Anatomical Sciences, SUNY, 3435 Main Street, 206A Farber Hall, Buffalo, N.Y. 14214, tel. (716) 829 3540
| |
Collapse
|
25
|
Cao SY, Hu Y, Chen C, Yuan F, Xu M, Li Q, Fang KH, Chen Y, Liu Y. Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Sci Rep 2017; 7:3282. [PMID: 28607372 PMCID: PMC5468244 DOI: 10.1038/s41598-017-03519-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) play important role in studying the function of human glutamatergic neurons and related disease pathogenesis. However, the current hPSC-derived cortical system produced a significant number of inhibitory GABAergic neurons that reduced the purity of excitatory neurons. In this study, we established a robust hPSC-derived cortical neurogenesis system by applying the SHH inhibitor cyclopamine. Cyclopamine specified the dorsal cortical fate in a dose-dependent manner and enhanced the generation of cortical glutamatergic neurons, expressing PAX6, TBR1, TBR2, CTIP2, SATB2, and vesicular glutamate transporters (vGLUT). In contrast, the ventral patterning was inhibited and the GABAergic neurons were significantly reduced to 12% with the treatment of cyclopamine. In addition, we applied our current method to generate trisomy 21 iPSC-derived glutamatergic neurons that showed a robust reduction of vesicular glutamate transporters in the glutamatergic neurons with trisomy 21, revealing the developmental deficits in cortical glutamatergic neurons. Our method enriched the generation of cortical glutamatergic neurons which may facilitate the study of human neurological diseases and cell therapy.
Collapse
Affiliation(s)
- Shi-Ying Cao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Student Affairs, Kangda college of Nanjing Medical University, Lianyungang, China
| | - Yao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cheng Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Qi Li
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yaoyu Chen
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 2017; 13:265-278. [PMID: 28418023 DOI: 10.1038/nrneurol.2017.45] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We currently have a poor understanding of the pathogenesis of neurodevelopmental disorders, owing to the fact that postmortem and imaging studies can only measure the postnatal status quo and offer little insight into the processes that give rise to the observed outcomes. Human induced pluripotent stem cells (hiPSCs) should, in principle, prove powerful for elucidating the pathways that give rise to neurodevelopmental disorders. hiPSCs are embryonic-stem-cell-like cells that can be derived from somatic cells. They retain the unique genetic signature of the individual from whom they were derived, and thus enable researchers to recapitulate that individual's idiosyncratic neural development in a dish. In the case of individuals with disease, we can re-enact the disease-altered trajectory of brain development and examine how and why phenotypic and molecular abnormalities arise in these diseased brains. Here, we review hiPSC biology and possible experimental designs when using hiPSCs to model disease. We then discuss existing hiPSC models of neurodevelopmental disorders. Our hope is that, as some studies have already shown, hiPSCs will illuminate the pathophysiology of developmental disorders of the CNS and lead to therapeutic options for the millions that are affected by these conditions.
Collapse
Affiliation(s)
- Karthikeyan Ardhanareeswaran
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Gianfilippo Coppola
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.,Department of Neuroscience, Yale Kavli Institute for Neuroscience, Yale University School of Medicine, 200 South Frontage Road, New Haven, Connecticut 06510, USA
| |
Collapse
|
27
|
Sauerzopf U, Sacco R, Novarino G, Niello M, Weidenauer A, Praschak‐Rieder N, Sitte H, Willeit M, Bolam P. Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. Eur J Neurosci 2017; 45:45-57. [PMID: 27690184 PMCID: PMC5811827 DOI: 10.1111/ejn.13418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Since 2006, reprogrammed cells have increasingly been used as a biomedical research technique in addition to neuro-psychiatric methods. These rapidly evolving techniques allow for the generation of neuronal sub-populations, and have sparked interest not only in monogenetic neuro-psychiatric diseases, but also in poly-genetic and poly-aetiological disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). This review provides a summary of 19 publications on reprogrammed adult somatic cells derived from patients with SCZ, and five publications using this technique in patients with BPD. As both disorders are complex and heterogeneous, there is a plurality of hypotheses to be tested in vitro. In SCZ, data on alterations of dopaminergic transmission in vitro are sparse, despite the great explanatory power of the so-called DA hypothesis of SCZ. Some findings correspond to perturbations of cell energy metabolism, and observations in reprogrammed cells suggest neuro-developmental alterations. Some studies also report on the efficacy of medicinal compounds to revert alterations observed in cellular models. However, due to the paucity of replication studies, no comprehensive conclusions can be drawn from studies using reprogrammed cells at the present time. In the future, findings from cell culture methods need to be integrated with clinical, epidemiological, pharmacological and imaging data in order to generate a more comprehensive picture of SCZ and BPD.
Collapse
Affiliation(s)
- Ulrich Sauerzopf
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Roberto Sacco
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Gaia Novarino
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marco Niello
- Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Ana Weidenauer
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Nicole Praschak‐Rieder
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | - Harald Sitte
- Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Matthäus Willeit
- Department of Psychiatry and PsychotherapyMedical University of ViennaWähringer Gürtel 18‐201090ViennaAustria
| | | |
Collapse
|
28
|
Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 2016; 21:1167-79. [PMID: 27240529 PMCID: PMC4995546 DOI: 10.1038/mp.2016.89] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
Major programs in psychiatric genetics have identified >150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes.
Collapse
|
29
|
Spitalieri P, Talarico RV, Botta A, Murdocca M, D'Apice MR, Orlandi A, Giardina E, Santoro M, Brancati F, Novelli G, Sangiuolo F. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cell Reprogram 2016; 17:275-87. [PMID: 26474030 DOI: 10.1089/cell.2015.0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.
Collapse
Affiliation(s)
- Paola Spitalieri
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Rosa V Talarico
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Annalisa Botta
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Michela Murdocca
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | | | - Augusto Orlandi
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Emiliano Giardina
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,3 Molecular Genetics Laboratory UILDM , Santa Lucia Foundation, Rome, 00142, Italy
| | | | - Francesco Brancati
- 2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Giuseppe Novelli
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Federica Sangiuolo
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| |
Collapse
|
30
|
Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016; 10:1148-1158. [DOI: 10.1002/prca.201600021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Juliana M. Nascimento
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Sheila Garcia
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Verônica M. Saia-Cereda
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Aline G. Santana
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Caroline Brandao-Teles
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Giuliana S. Zuccoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danielle G. Junqueira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Paulo A. Baldasso
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Juliana S. Cassoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
31
|
Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A, Solís-Chagoyán H. The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: Implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci 2016; 73:84-95. [PMID: 26837043 DOI: 10.1016/j.mcn.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023] Open
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are highly inheritable chronic mental disorders with a worldwide prevalence of around 1%. Despite that many efforts had been made to characterize biomarkers in order to allow for biological testing for their diagnoses, these disorders are currently detected and classified only by clinical appraisal based on the Diagnostic and Statistical Manual of Mental Disorders. Olfactory neuroepithelium-derived neuronal precursors have been recently proposed as a model for biomarker characterization. Because of their peripheral localization, they are amenable to collection and suitable for being cultured and propagated in vitro. Olfactory neuroepithelial cells can be obtained by a non-invasive brush-exfoliation technique from neuropsychiatric patients and healthy subjects. Neuronal precursors isolated from these samples undergo in vitro the cytoskeletal reorganization inherent to the neurodevelopment process which has been described as one important feature in the etiology of both diseases. In this paper, we will review the current knowledge on microtubular organization in olfactory neurons of patients with SZ and with BD that may constitute specific cytoskeletal endophenotypes and their relation with alterations in L-type voltage-activated Ca(2+) currents. Finally, the potential usefulness of neuronal precursors for pharmacological screening will be discussed.
Collapse
Affiliation(s)
- G Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico.
| | - M Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - C Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, C.P. 14370, Tlalpan, Distrito Federal, Mexico
| | - T Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - J Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - S Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - A Lora-Castellanos
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| | - H Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Mexico
| |
Collapse
|
32
|
Zhang B, Tran L, Emilsson V, Zhu J. Characterization of Genetic Networks Associated with Alzheimer's Disease. Methods Mol Biol 2016; 1303:459-77. [PMID: 26235085 DOI: 10.1007/978-1-4939-2627-5_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
At the molecular level, the genetics of complex disease such as Alzheimer's disease (AD) manifests itself as series of alterations in the molecular interactions in pathways and networks that define biological processes underlying the pathophysiological states of disease. While large-scale genome-wide association (GWA) studies of late-onset alzheimer's disease (LOAD) have uncovered prominent genomic regions linked to the disease, the cause for the vast majority of LOAD cases still remains unknown. Increasingly available large-scale genomic and genetic data related to LOAD has made it possible to comprehensively uncover the mechanisms causally lined to LOAD in a completely data-driven manner. Here we review the various aspects of systems/network biology approaches and methodology in constructing genetic networks associated with AD from large sampling of postmortem brain tissues. We describe in detail a multiscale network modeling approach (MNMA) that integrates interaction and causal gene networks to analyze large-scale DNA, gene expression and pathophysiological data from multiple post-mortem brain regions of LOAD patients as well non-demented normal controls. MNMA first employs weighted gene co-expression network analysis (WGCNA) to construct multi-tissue networks that simultaneously capture intra-tissue and inter-tissue gene-gene interactions and then quantifies the change in connectivity among highly co-expressed genes in LOAD with respect to the normal state. Co-expressed gene modules are then rank ordered by relevance to pathophysiological traits and enrichment of genes differentially expressed in LOAD. Causal regulatory relationships among the genes in each module are then determined by a Bayesian network inference framework that is used to formally integrate genetic and gene expression information. MNMA has uncovered a massive remodeling of network structures in LOAD and identified novel subnetworks and key regulators that are causally linked to LOAD. In the end, we will outline the challenges in systems/network approaches to LOAD.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY, 10029, USA,
| | | | | | | |
Collapse
|
33
|
Russo FB, Cugola FR, Fernandes IR, Pignatari GC, Beltrão-Braga PCB. Induced pluripotent stem cells for modeling neurological disorders. World J Transplant 2015; 5:209-221. [PMID: 26722648 PMCID: PMC4689931 DOI: 10.5500/wjt.v5.i4.209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/23/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism.
Collapse
|
34
|
Abstract
Migraine is a common multifactorial episodic brain disorder with strong genetic basis. Monogenic subtypes include rare familial hemiplegic migraine, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, familial advanced sleep-phase syndrome (FASPS), and retinal vasculopathy with cerebral leukodystrophy. Functional studies of disease-causing mutations in cellular and/or transgenic models revealed enhanced (glutamatergic) neurotransmission and abnormal vascular function as key migraine mechanisms. Common forms of migraine (both with and without an aura), instead, are thought to have a polygenic makeup. Genome-wide association studies have already identified over a dozen genes involved in neuronal and vascular mechanisms. Here, we review the current state of molecular genetic research in migraine, also with respect to functional and pathway analyses. We will also discuss how novel experimental approaches for the identification and functional characterization of migraine genes, such as next-generation sequencing, induced pluripotent stem cell, and optogenetic technologies will further our understanding of the molecular pathways involved in migraine pathogenesis.
Collapse
|
35
|
Hirabayashi J, Tateno H, Onuma Y, Ito Y. A Novel Probe as Surface Glycan Marker of Pluripotent Stem Cells: Research Outcomes and Application to Regenerative Medicine. Adv Healthc Mater 2015; 4:2520-9. [PMID: 25872477 DOI: 10.1002/adhm.201400837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022]
Abstract
Human pluripotent stem cells (hPSCs), represented by embryonic stem (hESCs) and induced pluripotent stem cells (hiPSCs), are attracting increasing attention in various research fields. However, their application in a clinical scenario must overcome an important hurdle given that these cells are potentially tumorigenic. This inherent problem becomes more significant as the number of transplanted cells becomes larger. In this Progress Report, recent findings concerning a novel glycan marker for hPSCs are described, as well as attempts made in relation to its practical application to regenerative medicine. In line with current thinking in the glycoscience field, it is assumed that cellular glycomes are closely related to cell functions. Based on this premise, hESCs and hiPSCs are analyzed by an advanced glycan profiling technology--the high-density lectin microarray. It is found that all human iPSCs derived from different tissular origins show essentially the same glycan profiles, which are typified by several characteristic structural features. In addition, a recombinant lectin probe, rBC2LCN, which shows rigorous specificity to H type 1 and 3 glycan structures, is found to serve as an excellent probe for hPSCs.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology; Central-2, 1-1-1, Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology; Central-2, 1-1-1, Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Yasuko Onuma
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology; Central-2, 1-1-1, Umezono Tsukuba Ibaraki 305-8568 Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering; National Institute of Advanced Industrial Science and Technology; Central-2, 1-1-1, Umezono Tsukuba Ibaraki 305-8568 Japan
| |
Collapse
|
36
|
Abstract
Schizophrenia is a devastating and prevalent psychiatric illness. Progress in understanding the basic pathophysiological processes underlying this disorder has been hindered by the lack of appropriate models. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to generate live neurons in vitro from somatic tissue of schizophrenia patients. Despite its several limitations, this revolutionary technology has already helped to advance our understanding of schizophrenia. The phenotypic insights garnered with iPSC models of schizophrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and neurodevelopmental abnormalities. Potential pitfalls of this work include the possibility of introducing random genetic mutations during the reprogramming process, the inadequacy of using neurons from other patients as controls, the inability to capture the complex environmental contribution to schizophrenia pathogenesis, the difficulty in modelling neurodevelopment, and the difficulty in modelling the interaction of multiple neuronal and non-neuronal cell types. However, with the increasing sophistication of available reprogramming techniques, co-culture technology, and gene correction strategies, iPSC-derived neurons will continue to elucidate how neuronal function is disrupted in schizophrenia.
Collapse
|
37
|
|
38
|
Passeri E, Wilson AM, Primerano A, Kondo MA, Sengupta S, Srivastava R, Koga M, Obie C, Zandi PP, Goes FS, Valle D, Rapoport JL, Sawa A, Kano SI, Ishizuka K. Enhanced conversion of induced neuronal cells (iN cells) from human fibroblasts: Utility in uncovering cellular deficits in mental illness-associated chromosomal abnormalities. Neurosci Res 2015; 101:57-61. [PMID: 26260244 DOI: 10.1016/j.neures.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/01/2015] [Accepted: 07/18/2015] [Indexed: 01/05/2023]
Abstract
The novel technology of induced neuronal cells (iN cells) is promising for translational neuroscience, as it allows the conversion of human fibroblasts into cells with postmitotic neuronal traits. However, a major technical barrier is the low conversion rate. To overcome this problem, we optimized the conversion media. Using our improved formulation, we studied how major mental illness-associated chromosomal abnormalities may impact the characteristics of iN cells. We demonstrated that our new iN cell culture protocol enabled us to obtain more precise measurement of neuronal cellular phenotypes than previous iN cell methods. Thus, this iN cell culture provides a platform to efficiently obtain possible cellular phenotypes caused by genetic differences, which can be more thoroughly studied in research using other human cell models such as induced pluripotent stem cells.
Collapse
Affiliation(s)
- Eleonora Passeri
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Ashley M Wilson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Amedeo Primerano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Mari A Kondo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Srona Sengupta
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Rupali Srivastava
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Cassandra Obie
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins School of Public Health, 624 N. Broadway, Baltimore, MD 21287, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - David Valle
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Judith L Rapoport
- NIMH, Branch of Child Psychiatry, 10 Center Drive, Bethesda, MD 20892, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Ho SM, Topol A, Brennand KJ. From "directed differentiation" to "neuronal induction": modeling neuropsychiatric disease. Biomark Insights 2015; 10:31-41. [PMID: 26045654 PMCID: PMC4444490 DOI: 10.4137/bmi.s20066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022] Open
Abstract
Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.
Collapse
Affiliation(s)
- Seok-Man Ho
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Aaron Topol
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
40
|
Gurung R, Prata DP. What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med 2015; 45:2461-2480. [PMID: 25858580 DOI: 10.1017/s0033291715000537] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
Collapse
Affiliation(s)
- R Gurung
- Department of Psychosis Studies,Institute of Psychiatry,King's College London,UK
| | - D P Prata
- Centre for Neuroimaging Sciences,Institute of Psychiatry,King's College London,UK
| |
Collapse
|
41
|
Crook JM, Wallace G, Tomaskovic-Crook E. The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Rev Neurother 2015; 15:295-304. [PMID: 25664599 DOI: 10.1586/14737175.2015.1013096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Collapse
Affiliation(s)
- Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | |
Collapse
|
42
|
Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing. Neurosci Bull 2015; 31:113-27. [PMID: 25575480 DOI: 10.1007/s12264-014-1488-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies (GWASs) of SZ have identified >100 risk loci. However, the causal variants/genes and the causal mechanisms remain largely unknown, which hinders the translation of GWAS findings into disease biology and drug targets. Most risk variants are noncoding, thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling, and open chromatin is a versatile predictor of regulatory sequences. MicroRNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specific to cell type and/or developmental stage. The emerging genome-editing technology enables the creation of isogenic iPSCs and neurons to efficiently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic, glutamatergic, and GABAergic neurotransmissions. SZ GWAS findings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.
Collapse
|
43
|
Li X, Teng S. RNA Sequencing in Schizophrenia. Bioinform Biol Insights 2015; 9:53-60. [PMID: 27053919 PMCID: PMC4818022 DOI: 10.4137/bbi.s28992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a serious psychiatric disorder that affects 1% of general population and places a heavy burden worldwide. The underlying genetic mechanism of SCZ remains unknown, but studies indicate that the disease is associated with a global gene expression disturbance across many genes. Next-generation sequencing, particularly of RNA sequencing (RNA-Seq), provides a powerful genome-scale technology to investigate the pathological processes of SCZ. RNA-Seq has been used to analyze the gene expressions and identify the novel splice isoforms and rare transcripts associated with SCZ. This paper provides an overview on the genetics of SCZ, the advantages of RNA-Seq for transcriptome analysis, the accomplishments of RNA-Seq in SCZ cohorts, and the applications of induced pluripotent stem cells and RNA-Seq in SCZ research.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, Howard University, Washington, DC, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC, USA
| |
Collapse
|
44
|
Fass DM, Schroeder FA, Perlis RH, Haggarty SJ. Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 2014; 264:112-30. [PMID: 23376737 PMCID: PMC3830721 DOI: 10.1016/j.neuroscience.2013.01.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/19/2013] [Indexed: 12/22/2022]
Abstract
Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzymes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and beneficially impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencing (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent cell (iPSC) and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticity. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
Collapse
Affiliation(s)
- D M Fass
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - F A Schroeder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, USA
| | - R H Perlis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA
| | - S J Haggarty
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18:1067-76. [PMID: 23732879 DOI: 10.1038/mp.2013.67] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/19/2013] [Accepted: 04/08/2013] [Indexed: 02/08/2023]
Abstract
One of the prevailing hypotheses suggests schizophrenia as a neurodevelopmental disorder, involving dysfunction of dopaminergic and glutamatergic systems. Accumulating evidence suggests mitochondria as an additional pathological factor in schizophrenia. An attractive model to study processes related to neurodevelopment in schizophrenia is reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and differentiating them into different neuronal lineages. iPSCs from three schizophrenia patients and from two controls were reprogrammed from hair follicle keratinocytes, because of their accessibility and common ectodermal origin with neurons. iPSCs were differentiated into Pax6(+)/Nestin(+) neural precursors and then further differentiated into β3-Tubulin(+)/tyrosine hydroxylase(+)/DAT(+) dopaminergic neurons. In addition, iPSCs were differentiated through embryonic bodies into β3-Tubulin(+)/Tbox brain1(+) glutamatergic neurons. Schizophrenia-derived dopaminergic cells showed severely impaired ability to differentiate, whereas glutamatergic cells were unable to maturate. Mitochondrial respiration and its sensitivity to dopamine-induced inhibition were impaired in schizophrenia-derived keratinocytes and iPSCs. Moreover, we observed dissipation of mitochondrial membrane potential (Δψm) and perturbations in mitochondrial network structure and connectivity in dopaminergic along the differentiation process and in glutamatergic cells. Our data unravel perturbations in neural differentiation and mitochondrial function, which may be interconnected, and of relevance to dysfunctional neurodevelopmental processes in schizophrenia.
Collapse
|
46
|
Williamson A, Singh S, Fernekorn U, Schober A. The future of the patient-specific Body-on-a-chip. LAB ON A CHIP 2013; 13:3471-80. [PMID: 23685915 DOI: 10.1039/c3lc50237f] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As significant advancements in technology focused on Organ-on-a-chip continue, it is feasible to consider the future of Body-on-a-chip technology. With serious work being done to realize functioning artificial livers, kidneys, hearts, and lungs on chips, the next step is not only to interconnect these organs but also to consider the integration of stem cell technology to create interconnected patient-specific organs. Such a patient-specific Body-on-a-chip requires a sophisticated set of tools for micropattering cell cultures in 3D to create interconnected tissue-like organ structures. This review discusses advanced methods of the past two years in on-Chip organs, the complex 3D patterning of cultures and state-of-the-art scaffolding, and discusses some of the most relevant advancements in human-induced pluripotent stem cell (hiPSC) research applied to these organs and scaffolds for the future of a patient-specific Body-on-a-chip. We anticipate that such a technology would have a wide area of application, primarily benefiting drug development, chemical safety testing, and disease modeling.
Collapse
Affiliation(s)
- Adam Williamson
- Department of Nano-Biosystem Technology, Technische Universität Ilmenau, Germany
| | | | | | | |
Collapse
|
47
|
Lin W, Buccella D, Lippard SJ. Visualization of peroxynitrite-induced changes of labile Zn2+ in the endoplasmic reticulum with benzoresorufin-based fluorescent probes. J Am Chem Soc 2013; 135:13512-20. [PMID: 23902285 PMCID: PMC3791137 DOI: 10.1021/ja4059487] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zn(2+) plays essential roles in biology, and the homeostasis of Zn(2+) is tightly regulated in all cells. Subcellular distribution and trafficking of labile Zn(2+), and its inter-relation with reactive nitrogen species, are poorly understood due to the scarcity of appropriate imaging tools. We report a new family of red-emitting fluorescent sensors for labile Zn(2+), ZBR1-3, based on a benzoresorufin platform functionalized with dipicolylamine or picolylamine-derived metal binding groups. In combination, the pendant amines and fluorophore afford an [N3O] binding motif that resembles that of previously reported fluorescein-based sensors of the Zinpyr family, reproducing well their binding capabilities and yielding comparable Kd values in the sub-nanomolar and picomolar ranges. The ZBR sensors display up to 8.4-fold emission fluorescence enhancement upon Zn(2+) binding in the cuvette, with similar responses obtained in live cells using standard wide-field fluorescence microscopy imaging. The new sensors localize spontaneously in the endoplasmic reticulum (ER) of various tested cell lines, allowing for organelle-specific monitoring of zinc levels in live cells. Study of ER zinc levels in neural stem cells treated with a peroxynitrite generator, Sin-1, revealed an immediate decrease in labile Zn(2+) thus providing evidence for a direct connection between ER stress and ER Zn(2+) homeostasis.
Collapse
Affiliation(s)
- Wei Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniela Buccella
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacol Sin 2013; 34:755-64. [PMID: 23685955 PMCID: PMC3674515 DOI: 10.1038/aps.2013.63] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the general decline of pharmaceutical research productivity, there are concerns that many components of the drug discovery process need to be redesigned and optimized. For example, the human immortalized cell lines or animal primary cells commonly used in traditional drug screening may not faithfully recapitulate the pathological mechanisms of human diseases, leading to biases in assays, targets, or compounds that do not effectively address disease mechanisms. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, provide a new paradigm for drug screening by permitting the use of human cells with the same genetic makeup as the patients without the typical quantity constraints associated with patient primary cells. In this article, we will review the progress made to date on cellular disease models using human stem cells, with a focus on patient-specific iPSCs for neurological diseases. We will discuss the key challenges and the factors that associated with the success of using stem cell models for drug discovery through examples from monogenic diseases, diseases with various known genetic components, and complex diseases caused by a combination of genetic, environmental and other factors.
Collapse
|
49
|
Abstract
Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jacqueline N Crawley
- Robert Chason Chair in Translational Research, M.I.N.D. Institute Professor of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
50
|
Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM. Pearls and pitfalls in genetic studies of migraine. Cephalalgia 2013; 33:614-25. [DOI: 10.1177/0333102413484988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose of review Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Summary Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Conclusions Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| |
Collapse
|