1
|
Kämmerer W. Comparative pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine-A literature review. Hum Psychopharmacol 2024:e2910. [PMID: 39024047 DOI: 10.1002/hup.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To compare the pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine (LDX). METHODS A search of Medline and Embase was conducted to identify relevant articles for this literature review. RESULTS Dexamphetamine and LDX, a prodrug of dexamphetamine, are indicated for the treatment of attention-deficit/hyperactivity disorder. It has been suggested that LDX may have a reduced potential for oral abuse compared to immediate-release dexamphetamine. As a prodrug, LDX has the same pharmacodynamic properties as dexamphetamine. A study in healthy adults showed that the pharmacokinetic profile of dexamphetamine following oral administration of LDX is essentially identical to that of an equimolar dose of dexamphetamine administered 1 h later. In addition, dexamphetamine produced subjective drug liking effects comparable to those produced by LDX. LDX showed linear dose proportional pharmacokinetics up to a dose of 250 mg, indicating a lack of overdose protection at supratherapeutic doses. Furthermore, the exposure to dexamphetamine released from LDX may be prolonged by the consumption of alkalizing agents. CONCLUSIONS The available evidence from pharmacodynamic, pharmacokinetic and abuse liability studies suggests a comparable potential for oral abuse of dexamphetamine and LDX.
Collapse
|
2
|
Darcey VL, Guo J, Chi M, Chung ST, Courville AB, Gallagher I, Herscovitch P, Joseph PV, Howard R, LaNoire M, Milley L, Schick A, Stagliano M, Turner S, Urbanski N, Yang S, Zhai N, Zhou MS, Hall KD. Brain dopamine responses to ultra-processed milkshakes are highly variable and not significantly related to adiposity in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309440. [PMID: 39108535 PMCID: PMC11302720 DOI: 10.1101/2024.06.24.24309440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Ultra-processed foods high in fat and sugar may be addictive, in part, due to their purported ability to induce an exaggerated postingestive brain dopamine response akin to drugs of abuse. Using standard [11C]raclopride positron emission tomography (PET) displacement methods used to measure brain dopamine responses to addictive drugs, we measured postingestive striatal dopamine responses to an ultra-processed milkshake high in fat and sugar in 50 young, healthy adults over a wide body mass index range (BMI 20-45 kg/m2). Surprisingly, milkshake consumption did not result in significant postingestive dopamine response in the striatum (p=0.62) nor any striatal subregion (p>0.33) and the highly variable interindividual responses were not significantly related to adiposity (BMI: r=0.076, p=0.51; %body fat: r=0.16, p=0.28). Thus, postingestive striatal dopamine responses to an ultra-processed milkshake were likely substantially smaller than many addictive drugs and below the limits of detection using standard PET methods.
Collapse
Affiliation(s)
- Valerie L Darcey
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meible Chi
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber B Courville
- Human Energy and Body Weight Regulation Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Gallagher
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Paule V Joseph
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892, USA
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892, USA
- National Institute on Deafness and Other Communication Disorders, Smell and Taste Center, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892, USA
| | - Rebecca Howard
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa LaNoire
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Milley
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Schick
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Stagliano
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Urbanski
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhai
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Zhou
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. Neuroimage 2022; 255:119149. [PMID: 35367652 DOI: 10.1016/j.neuroimage.2022.119149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The dopamine system contributes to a multitude of functions ranging from reward and motivation to learning and movement control, making it a key component in goal-directed behavior. Altered dopaminergic function is observed in neurological and psychiatric conditions. Numerous factors have been proposed to influence dopamine function, but due to small sample sizes and heterogeneous data analysis methods in previous studies their specific and joint contributions remain unresolved. METHODS In this cross-sectional register-based study we investigated how age, sex, body mass index (BMI), as well as cerebral hemisphere and regional volume influence striatal type 2 dopamine receptor (D2R) availability in the human brain. We analyzed a large historical dataset (n=156, 120 males and 36 females) of [11C]raclopride PET scans performed between 2004 and 2018. RESULTS Striatal D2R availability decreased through age for both sexes (2-5 % in striatal ROIs per 10 years) and was higher in females versus males throughout age (7-8% in putamen). BMI and striatal D2R availability were weakly associated. There was no consistent lateralization of striatal D2R. The observed effects were independent of regional volumes. These results were validated using two different spatial normalization methods, and the age and sex effects also replicated in an independent sample (n=135). CONCLUSIONS D2R availability is dependent on age and sex, which may contribute to the vulnerability of neurological and psychiatric conditions involving altering D2R expression.
Collapse
|
4
|
Caravaggio F, Porco N, Kim J, Torres-Carmona E, Brown E, Iwata Y, Nakajima S, Gerretsen P, Remington G, Graff-Guerrero A. Measuring amphetamine-induced dopamine release in humans: A comparative meta-analysis of [ 11 C]-raclopride and [ 11 C]-(+)-PHNO studies. Synapse 2021; 75:e22195. [PMID: 33471400 DOI: 10.1002/syn.22195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
The radiotracers [11 C]-raclopride and [11 C]-(+)-PHNO are commonly used to measure differences in amphetamine-induced dopamine release between healthy persons and persons with neuropsychiatric diseases. As an agonist radiotracer, [11 C]-(+)-PHNO should theoretically be roughly 2.7 times more sensitive to displacement by endogenous dopamine than [11 C]raclopride. To date, only one study has been published comparing the sensitivity of these two radiotracers to amphetamine-induced dopamine release in healthy persons. Unfortunately, conflicting findings in the literature suggests that the dose of amphetamine they employed (0.3 mg/kg, p.o.) may not reliably reduce [11 C]-raclopride binding in the caudate. Thus, it is unclear whether the preponderance of evidence supports the theory that [11 C]-(+)-PHNO is more sensitive to displacement by amphetamine in humans than [11 C]-raclopride. In order to clarify these issues, we conducted a comparative meta-analysis summarizing the effects of amphetamine on [11 C]-raclopride and [11 C]-(+)-PHNO binding in healthy humans. Our analysis indicates that amphetamine given at 0.3 mg/kg, p.o. does not reliably reduce [11 C]-raclopride binding in the caudate. Second, the greater sensitivity of [11 C]-(+)-PHNO is evidenced at 0.5 mg/kg, p.o., but not at lower doses of amphetamine. Third, our analysis suggests that [11 C]-(+)-PHNO may be roughly 1.5 to 2.5 times more sensitive to displacement by amphetamine than [11 C]-raclopride in healthy persons. We recommend that future displacement studies with these radiotracers employ 0.5 mg/kg, p.o. of amphetamine with a dose, post-scan interval of at least 3 hr. Using this dose of amphetamine, [11 C]-raclopride studies should employ at least n = 34 participants per group, while [11 C]-(+)-PHNO studies should employ at least n = 6 participants per group, in order to be sufficiently powered (80%) to detect changes in radiotracer binding within the caudate.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natasha Porco
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Edgardo Torres-Carmona
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Eric Brown
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, Chuo, Japan
| | | | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Hansson AC, Gründer G, Hirth N, Noori HR, Spanagel R, Sommer WH. Dopamine and opioid systems adaptation in alcoholism revisited: Convergent evidence from positron emission tomography and postmortem studies. Neurosci Biobehav Rev 2019; 106:141-164. [DOI: 10.1016/j.neubiorev.2018.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
|
7
|
Deep TMS of the insula using the H-coil modulates dopamine release: a crossover [ 11C] PHNO-PET pilot trial in healthy humans. Brain Imaging Behav 2019; 12:1306-1317. [PMID: 29170944 DOI: 10.1007/s11682-017-9800-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulating the function of the insular cortex could be a novel therapeutic strategy to treat addiction to a variety of drugs of abuse as this region has been implicated in mediating drug reward and addictive processes. The recent advent of the H-coil has permitted the targeting of deeper brain structures which was not previously feasible. The goal of this study was to bilaterally target the insular region using the H-coil with repetitive Transcranial Magnetic Stimulation (rTMS) and subsequently measure changes in dopamine levels using Positron Emission Tomography (PET) with [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO). This was a within-subject, crossover, blinded and sham-controlled pilot study. Eight healthy, right-handed subjects, aged 19-45, participated in the investigation. All subjects underwent 3 PHNO-PET scans preceded by rTMS (sham, 1 Hz or 10 Hz), on 3 separate days. Low frequency rTMS (1 Hz), targeting the insular cortex, significantly decreased dopamine levels in the substantia nigra, sensorimotor striatum and associative striatum. Replicating this study in tobacco smokers or alcoholics would be a logical follow-up to assess whether H-coil stimulation of the bilateral insula can be employed as a treatment option for addiction. Trial registration: NCT02212405.
Collapse
|
8
|
Gertler J, Tollefson S, Jordan R, Himes ML, Mason NS, Frankle WG, Narendran R. Failure to detect amphetamine-induced dopamine release in the cortex with [ 11 C]FLB 457 positron emission tomography (PET): Methodological considerations. Synapse 2018; 72:e22037. [PMID: 29876970 PMCID: PMC6230264 DOI: 10.1002/syn.22037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 11/06/2022]
Abstract
Studies in nonhuman primates and humans have demonstrated that amphetamine-induced dopamine release in the cortex can be measured with [11 C]FLB 457 and PET imaging. This technique has been successfully used in recent clinical studies to show decreased dopamine transmission in the prefrontal cortex in schizophrenia and alcohol dependence. Here, we present data from a cohort of twelve healthy controls in whom an oral amphetamine challenge (0.5 mg kg-1 ) did not lead to a significant reduction in [11 C]FLB 457 BPND (i.e., binding potential relative to non-displaceable uptake). Two factors that likely contributed to the inability to displace [11 C]FLB 457 BPND in this cohort relative to successful cohorts are: (a) the acquisition of the baseline and post-amphetamine scans on different days as opposed to the same day and (b) the initiation of the post-amphetamine [11 C]FLB 457 scan at ∼5 hours as opposed to ∼3 hours following oral amphetamine. Furthermore, we show [11 C]FLB 457 reproducibility data from a legacy dataset to support greater variability in cortical BPND when the test and retest scans are acquired on different days as compared to the same day. These results highlight the methodological challenges that continue to plague the field with respect to imaging dopamine release in the cortex.
Collapse
Affiliation(s)
- Joshua Gertler
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rehima Jordan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael L Himes
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W Gordon Frankle
- Department of Psychiatry, NYU Langone Medical Center, New York, New York
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Weinstein JJ, van de Giessen E, Rosengard RJ, Xu X, Ojeil N, Brucato G, Gil RB, Kegeles LS, Laruelle M, Slifstein M, Abi-Dargham A. PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol Psychiatry 2018; 23:1506-1511. [PMID: 28507321 PMCID: PMC5690884 DOI: 10.1038/mp.2017.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Recent genetic, molecular and post-mortem studies suggest impaired dopamine (DA)-D2 receptor (D2R) trafficking in patients with schizophrenia (SZ). Imaging and preclinical studies have shown agonist-induced D2R internalization can be imaged with positron emission tomography (PET) using D2R radiotracers combined with psychostimulant challenge. This is feasible if radiotracer binding is measured when postchallenge DA levels have returned to baseline, following the initial competition phase between DA and radiotracer for binding to D2R. Here we used 'late-phase' imaging after challenge to test the hypothesis that impaired D2R internalization in SZ leads to blunted late-phase displacement, or a faster return to baseline, in patients compared with healthy controls (HCs). We imaged 10 patients with SZ and 9 HCs with PET and [11C]raclopride at baseline and two times (3-5 and 6-10 h) following 0.5 mg kg-1 dextroamphetamine. We measured binding potential relative to non-displaceable compartment (BPND) and derived percent reduction from baseline (ΔBPND) for each postamphetamine scan. To test the hypothesis that time course of return of striatal BPND to baseline differed between SZ and HCs, we implemented a linear model with ΔBPND as dependent variable, time after amphetamine as repeated measure and time after amphetamine and diagnostic group as fixed effects. Neither diagnostic group nor interaction of diagnostic group-by-time after amphetamine significantly affected striatal ΔBPND (F=1.38, P=0.26; F=0.51, P=0.61). These results show similar pattern of return of BPND to baseline as a function of time in patients with SZ and HC, suggesting that striatal D2R internalization as measured by our imaging paradigm is normal in patients with SZ.
Collapse
Affiliation(s)
- Jodi J. Weinstein
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| | | | | | - Xiaoyan Xu
- New York State Psychiatric Institute, New York, New York
| | - Najate Ojeil
- New York State Psychiatric Institute, New York, New York
| | - Gary Brucato
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York,New York State Psychiatric Institute, New York, New York
| | - Roberto B. Gil
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York
| | - Lawrence S. Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York,New York State Psychiatric Institute, New York, New York
| | - Marc Laruelle
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
10
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Kish SJ, Boileau I, Callaghan RC, Tong J. Brain dopamine neurone 'damage': methamphetamine users vs. Parkinson's disease - a critical assessment of the evidence. Eur J Neurosci 2017; 45:58-66. [PMID: 27519465 PMCID: PMC5209286 DOI: 10.1111/ejn.13363] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved.
Collapse
Affiliation(s)
- Stephen J. Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Russell C. Callaghan
- Northern Medical Program, University of Northern British Columbia (UNBC), Prince George, British Columbia, Canada
| | - Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: effects of sleep deprivation. Transl Psychiatry 2016; 6:e828. [PMID: 27244237 PMCID: PMC5070053 DOI: 10.1038/tp.2016.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/09/2023] Open
Abstract
Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant effects requires a better understanding of dopamine's role in attention processing. Here we test the hypotheses that D2/D3 receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [(11)C]raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum.
Collapse
|
13
|
Weidner LD, Paris A, Frankle WG, Narendran R. Safety of Oral Amphetamine Administered during Positron Emission Tomography Scans in Medically Screened Humans. PLoS One 2015; 10:e0140647. [PMID: 26656737 PMCID: PMC4685985 DOI: 10.1371/journal.pone.0140647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
Changes in endogenous dopamine levels can be detected in humans using positron emission tomography scans by measuring the amount by which a specific D2/3 radioligand is displaced. In some cases, a challenge drug such as amphetamine is introduced to increase the amount of dopamine released into the synaptic cleft. Although intravenous amphetamine is often utilized, oral amphetamine has been shown to be just as effective in increasing endogenous dopamine levels. Based on our own use of oral amphetamine as a challenge drug, we have retroactively reviewed our study charts to determine the cardiovascular safety of 0.5 mg kg-1 oral d-amphetamine. Of 172 amphetamine administrations in 144 individuals, only 2.8% of subjects experienced any transient adverse effects. In addition, we found no clinically relevant differences in increases of vital signs between healthy controls and patients. We therefore reaffirm the safety of 0.5 mg kg-1 oral amphetamine in subjects previously screened for cardiovascular risk factors.
Collapse
Affiliation(s)
- Lora D. Weidner
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Antonio Paris
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W. Gordon Frankle
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bossong MG, Mehta MA, van Berckel BN, Howes OD, Kahn RS, Stokes PR. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology (Berl) 2015; 232:2723-9. [PMID: 25801289 PMCID: PMC4816196 DOI: 10.1007/s00213-015-3915-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. OBJECTIVES The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. METHODS We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. RESULTS THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. CONCLUSIONS In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.
Collapse
Affiliation(s)
- Matthijs G. Bossong
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
,Department of Psychosis Studies, Institute of Psychiatry, King’s College London, United Kingdom
| | - Mitul A. Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, United Kingdom
| | - Bart N.M. van Berckel
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
,Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, United Kingdom
,Psychiatry Group, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
| | - René S. Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Paul R.A. Stokes
- Psychiatry Group, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
,Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, United Kingdom
| |
Collapse
|
15
|
Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, Wong C, Casado V, Ferre S, Tomasi D. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry 2015; 5:e549. [PMID: 25871974 PMCID: PMC4462609 DOI: 10.1038/tp.2015.46] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/10/2015] [Indexed: 02/05/2023] Open
Abstract
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.
Collapse
Affiliation(s)
- N D Volkow
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA,Intramural Research Program, National Institute on Drug Abuse, 6001 Executive Boulevard, Room 5274, Bethesda, MD 20892, USA. E-mail:
| | - G-J Wang
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - J Logan
- Brookhaven National Laboratory, Upton, NY, USA
| | - D Alexoff
- Brookhaven National Laboratory, Upton, NY, USA
| | - J S Fowler
- Brookhaven National Laboratory, Upton, NY, USA
| | - P K Thanos
- Brookhaven National Laboratory, Upton, NY, USA
| | - C Wong
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - V Casado
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - S Ferre
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - D Tomasi
- Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
16
|
Reference region modeling approaches for amphetamine challenge studies with [11C]FLB 457 and PET. J Cereb Blood Flow Metab 2015; 35:623-9. [PMID: 25564239 PMCID: PMC4420880 DOI: 10.1038/jcbfm.2014.237] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/08/2022]
Abstract
Detecting fluctuations in synaptic dopamine levels in extrastriatal brain regions with [(11)C]FLB 457 and positron emission tomography (PET) is a valuable tool for studying dopaminergic dysfunction in psychiatric disorders. The evaluation of reference region modeling approaches would eliminate the need to obtain arterial input function data. Our goal was to explore the use of reference region models to estimate amphetamine-induced changes in [(11)C]FLB 457 dopamine D2/D3 binding. Six healthy tobacco smokers were imaged with [(11)C]FLB 457 at baseline and at 3 hours after amphetamine (0.4 to 0.5 mg/kg, per os) administration. Simplified reference tissue models, SRTM and SRTM2, were evaluated against the 2-tissue compartmental model (2TC) to estimate [(11)C]FLB 457 binding in extrastriatal regions of interest (ROIs), using the cerebellum as a reference region. No changes in distribution volume were observed in the cerebellum between scan conditions. SRTM and SRTM2 underestimated binding, compared with 2TC, in ROIs by 26% and 9%, respectively, with consistent bias between the baseline and postamphetamine scans. Postamphetamine, [(11)C]FLB 457 binding significantly decreased across several brain regions as measured with SRTM and SRTM2; no significant change was detected with 2TC. These data support the sensitivity of [(11)C]FLB 457 for measuring amphetamine-induced dopamine release in extrastriatal regions with SRTM and SRTM2.
Collapse
|
17
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
The influence of different cellular environments on PET radioligand binding: an application to D2/3-dopamine receptor imaging. Neuropharmacology 2014; 85:305-13. [PMID: 24910074 PMCID: PMC4109028 DOI: 10.1016/j.neuropharm.2014.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/01/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
Abstract
Various D2/3 receptor PET radioligands are sensitive to endogenous dopamine release in vivo. The Occupancy Model is generally used to interpret changes in binding observed in in vivo competition binding studies; an Internalisation Hypothesis may also contribute to these changes in signal. Extension of in vivo competition imaging to other receptor systems has been relatively unsuccessful. A greater understanding of the cellular processes underlying signal changes following endogenous neurotransmitter release may help translate this imaging paradigm to other receptor systems. To investigate the Internalisation Hypothesis we assessed the effects of different cellular environments, representative of those experienced by a receptor following agonist-induced internalisation, on the binding of three D2/3 PET ligands with previously reported sensitivities to endogenous dopamine in vivo, namely [3H]spiperone, [3H]raclopride and [3H]PhNO. Furthermore, we determined the contribution of each cellular compartment to total striatal binding for these D2/3 ligands. These studies suggest that sensitivity to endogenous dopamine release in vivo is related to a decrease in affinity in the endosomal environment compared with those found at the cell surface. In agreement with these findings we also demonstrate that ∼25% of total striatal binding for [3H]spiperone originates from sub-cellular, microsomal receptors, whereas for [3H]raclopride and [3H]PhNO, this fraction is lower, representing ∼14% and 17%, respectively. This pharmacological approach is fully translatable to other receptor systems. Assessment of affinity shifts in different cellular compartments may play a crucial role for understanding if a radioligand is sensitive to endogenous release in vivo, for not just the D2/3, but other receptor systems. The internalisation hypothesis was investigated in relation to D2/3 receptor PET ligand binding. KD and Bmax were determined for [3H]Raclopride, PhNO and Spiperone in different cellular buffers. The cellular distribution of [3H]Raclopride, PhNO and Spiperone binding was also determined. Reductions in KD were observed in the endosomal condition in the following order PhNO > Raclopride > Spiperone. KD shifts in different cellular compartments may predict sensitivity to neurotransmitter release in vivo.
Collapse
|
19
|
Measuring Dopamine Synaptic Transmission with Molecular Imaging and Pharmacological Challenges: The State of the Art. MOLECULAR IMAGING IN THE CLINICAL NEUROSCIENCES 2012. [DOI: 10.1007/7657_2012_45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Dinelle K, Ngo H, Blinder S, Vafai N, Topping G, Sossi V. Frame-to-frame image realignment assessment tool for dynamic brain positron emission tomography. Med Phys 2011; 38:773-81. [PMID: 21452715 DOI: 10.1118/1.3537289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Subject motion during positron emission tomography (PET) brain scans can reduce image quality and may lead to incorrect biological outcome measures, especially for data acquired with high resolution tomographs. A semiautomatic method for assessing the quality of frame-to-frame image realignments to compensate for subject motion in dynamic brain PET is proposed and evaluated. METHODS A test set of 256 11C-raclopride (a dopamine D2-type receptor antagonist) brain PET image frames was used to develop and evaluate the proposed method. The transformation matrix to be applied to each image to achieve a frame-to-frame realignment was calculated with two independent methods: Using motion data measured with the Polaris Vicra optical tracking device and using the image-based realignment algorithm AIR (automated image registration). The quality assessment method is based on the observation that there is a very low probability that two independent approaches to motion detection will produce equal, but incorrect results. Agreement between transformation matrices was taken to be a signature of an accurate motion determination and thus realignment. Each pair of realignment matrices was compared and used to calculate a metric describing the frame-to-frame image realignment accuracy. In order to determine the range of values of the metric that correspond to a successful realignment, a comparison was made to a detailed visual inspection of the frame-to-frame realigned images for each image in the test set. The threshold on the metric for realignment acceptance was then selected to optimize the numbers of true-positives (realignments accepted by both the protocol and the operator) and minimize the number of false-positives (accepted by the protocol but not the operator). RESULTS The proposed method categorized 53% of the image realignments in the test dataset as successful, of which 11% were incorrectly categorized (6% of the total dataset). Implementation of the proposed assessment tool resulted in a 45% time savings compared to the same visual inspection applied to all image realignments. CONCLUSIONS The frame-to-frame image realignment assessment tool presented here required less operator time to evaluate realignment success compared to a method requiring visual inspection of all realigned images, while maintaining the same level of accuracy in the realigned dataset. This practical method can be easily implemented at any center with motion monitoring capabilities or, for centers lacking this technology, methods of estimating image realignment parameters that use independent information. In addition, the procedure is flexible, allowing modifications to be made for different tracer types and/or downstream analysis goals.
Collapse
Affiliation(s)
- Katherine Dinelle
- Pacific Parkinson's Research Centre, Vancouver British Columbia V6T 1Z1, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|
22
|
Mitchell RA, Herrmann N, Lanctôt KL. The role of dopamine in symptoms and treatment of apathy in Alzheimer's disease. CNS Neurosci Ther 2010; 17:411-27. [PMID: 20560994 DOI: 10.1111/j.1755-5949.2010.00161.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a number of serious and debilitating behavioral and psychological symptoms of dementia (BPSD). The most common of these BPSD is apathy, which represents a major source of morbidity and premature institutionalization in the AD population. Many studies have identified discrete changes to the dopaminergic (DAergic) system in patients with AD. The DAergic system is closely related to the brain reward system (BRS) and some studies have suggested that dysfunction in the DAergic system may account for symptoms of apathy in the AD population. METHOD Changes to the dopamine (DA) system in AD will be reviewed, and evidence supporting the involvement of the DAergic system in the development of apathy will be examined. Additionally, some pharmacological interventions with DA activity have been identified. The utility of these treatments in the AD population will be reviewed, with a focus on apathy as an outcome. RESULTS Evidence presented in this review suggests that DA dysfunction in discrete brain areas is an important correlate of apathy in AD and that the DAergic system may be a rational target for pharmacological treatment of apathy.
Collapse
Affiliation(s)
- Robert A Mitchell
- Neuropsychopharmacology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | |
Collapse
|
23
|
Skinbjerg M, Liow JS, Seneca N, Hong J, Lu S, Thorsell A, Heilig M, Pike VW, Halldin C, Sibley DR, Innis RB. D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 2010; 50:1402-7. [PMID: 20097293 PMCID: PMC2838946 DOI: 10.1016/j.neuroimage.2010.01.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/14/2009] [Accepted: 01/14/2010] [Indexed: 11/18/2022] Open
Abstract
Dopamine released by amphetamine decreases the in vivo binding of PET radioligands to the dopamine D(2) receptor. Although concentrations of extracellular dopamine largely return to baseline within 1 to 2 h after amphetamine treatment, radioligand binding remains decreased for several hours. The purpose of this study was to determine whether the prolonged decrease of radioligand binding after amphetamine administration is caused by receptor internalization. To distinguish dopamine displacement from receptor internalization, we used wild-type and arrestin3 (arr3) knockout mice, which are incapable of internalizing D(2) receptors. In addition, we used both the D(2) selective agonist [(11)C]MNPA (which is thought to bind to the high affinity state of the receptor) and the D(2) selective antagonist [(18)F]fallypride (which does not differentiate between high and low affinity state). After an initial baseline scan, animals were divided in three groups for a second scan: either 30 min or 4 h after amphetamine administration (3 mg/kg, i.p.) or as retest. At 30 min, [(11)C]MNPA showed greater displacement than [(18)F]fallypride, but each radioligand gave similar displacement in knockout and wild-type mice. At 4 h, the binding of both radioligands returned to baseline in arr3 knockout mice, but remained decreased in wild-type mice. Radioligand binding was unaltered on retest scanning. Our results suggest that the prolonged decrease of radioligand binding after amphetamine is mainly due to internalization of the D(2) receptor rather than dopamine displacement. In addition, this study demonstrates the utility of small animal PET to study receptor trafficking in vivo in genetically modified mice.
Collapse
Affiliation(s)
- Mette Skinbjerg
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Nicholas Seneca
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Annika Thorsell
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Narendran R, Mason NS, Laymon CM, Lopresti BJ, Velasquez ND, May MA, Kendro S, Martinez D, Mathis CA, Frankle WG. A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11C](-)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Ther 2010; 333:533-9. [PMID: 20103586 DOI: 10.1124/jpet.109.163501] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(-)-N-Propyl-norapomorphine (NPA) is a full dopamine D(2/3) receptor agonist, and [(11)C]NPA is a suitable radiotracer to image D(2/3) receptors configured in a state of high affinity for agonists with positron emission tomography (PET). In this study, the vulnerability of the in vivo binding of [11C]NPA to acute fluctuation in synaptic dopamine was assessed with PET in healthy humans and compared with that of the reference D(2/3) receptor antagonist radiotracer [11C]raclopride. Ten subjects (eight females and two males) were studied on two separate days, a minimum of 1 week apart, both with [11C]raclopride and [11C]NPA at baseline and after the administration of 0.5 mg x kg(-1) oral d-amphetamine. Kinetic modeling with an arterial input function was used to derive the binding potential relative to nonspecific uptake (BPND) in the ventral striatum (VST), caudate (CAD), and putamen (PUT). [11C]Raclopride BPND was significantly reduced by 9.7 +/- 4.4, 8.4 +/- 4.2, and 14.7 +/- 4.8% after amphetamine administration in the VST, CAD, and PUT. [11C]NPA BPND was also reduced significantly, by 16.0 +/- 7.0, 16.1 +/- 6.1, and 21.9 +/- 4.9% after the same dose of amphetamine in the VST, CAD, and PUT. Although these results suggest that [11C]NPA is more vulnerable to endogenous competition by dopamine compared with [11C]raclopride by a factor of 1.49 to 1.90, the same data for a related outcome measure, binding potential relative to plasma concentration, was not significant. Nevertheless, these data add to the growing literature that suggests D(2/3) agonist radiotracers are more vulnerable to endogenous competition by dopamine than existing D(2/3) antagonist radiotracers.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh Medical Center Presbyterian, PET Facility, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Previous studies have shown that imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers that are specific for brain dopamine receptors can be used to indirectly image the change in the levels of neurotransmitters within the brain. Most of the studies in addiction have focused on dopamine, since the dopamine neurons that project to the striatum have been shown to play a critical role in mediating addictive behavior. These imaging studies have shown that increased extracellular dopamine produced by psychostimulants can be measured with PET and SPECT. However, there are some technical issues associated with imaging changes in dopamine, and these are reviewed in this chapter. Among these are the loss of sensitivity, the time course of dopamine pulse relative to PET and SPECT imaging, and the question of affinity state of the receptor. In addition, animal studies have shown that most drugs of abuse increase extracellular dopamine in the striatum, yet not all produce a change in neurotransmitter that can be measured. As a result, imaging with a psychostimulant has become the preferred method for imaging presynaptic dopamine transmission, and this method has been used in studies of addiction. The results of these studies suggest that cocaine and alcohol addiction are associated with a loss of dopamine transmission, and a number of studies show that this loss correlates with severity of disease.
Collapse
|
26
|
Busto UE, Redden L, Mayberg H, Kapur S, Houle S, Zawertailo LA. Dopaminergic activity in depressed smokers: a positron emission tomography study. Synapse 2009; 63:681-9. [PMID: 19360907 DOI: 10.1002/syn.20646] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tobacco dependence is highly prevalent in depressed patients. We assessed changes in [(11)C]-raclopride binding potential (BP) using positron emission tomography (PET) before and after the oral administration of d-amphetamine in healthy controls and unmedicated patients with current depression with and without current tobacco dependence. Over a single study day 2 [(11)C]-raclopride positron emission tomography scans were taken in 38 subjects: at baseline and 2 h following oral d-amphetamine 30 mg. Twenty controls (9 smokers, 11 nonsmokers) and 18 subjects with current major depressive episode (8 smokers, 10 non-smokers). Striatal [(11)C]-raclopride binding potential was measured before and after d-amphetamine administration. Depressed smokers had a lower baseline [(11)C]-raclopride binding potential compared with both control non-smokers (P < 0.007) and depressed non-smokers (P < 0.001). There was a main effect of smoking status on amphetamine-induced change in [(11)C]-raclopride binding potential (P < 0.02), but no main effect of depression. This may be due to a floor effect because of the low BP at baseline. Depressed subjects reported significant increase of positive mood after d-amphetamine administration compared with controls (depressed smokers vs. control smokers: P < 0.05; depressed non-smokers vs. controls: P < 0.055). Tobacco dependence appears to decrease d-amphetamine-induced changes in [(11)C]-raclopride binding potential as measured by positron emission tomography. Comorbid major depression and tobacco dependence exacerbates this effect, suggesting an altered dopamine system in comorbid patients.
Collapse
Affiliation(s)
- Usoa E Busto
- Clinical Neuroscience Section, Neuroscience Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE, Vora S, Litschge M, Kendro S, Cooper TB, Mathis CA, Laruelle M. Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride. Synapse 2009; 63:447-61. [PMID: 19217025 DOI: 10.1002/syn.20628] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of PET and SPECT endogenous competition binding techniques has contributed to the understanding of the role of dopamine in several neuropsychiatric disorders. An important limitation of these imaging studies is the fact that measurements of acute changes in synaptic dopamine have been restricted to the striatum. The ligands previously used, such as [(11)C]raclopride and [(123)I]IBZM, do not provide sufficient signal to noise ratio to quantify D(2) receptors in extrastriatal areas, such as cortex, where the concentration of D(2) receptors is much lower than in the striatum. Given the importance of cortical DA function in cognition, a method to measure cortical dopamine function in humans would be highly desirable. The goal of this study was to compare the ability of two high affinity DA D(2) radioligands [(11)C]FLB 457 and [(11)C]fallypride to measure amphetamine-induced changes in DA transmission in the human cortex. D(2) receptor availability was measured in the cortical regions of interest with PET in 12 healthy volunteers under control and postamphetamine conditions (0.5 mg kg(-1), oral), using both [(11)C]FLB 457 and [(11)C]fallypride (four scans per subjects). Kinetic modeling with an arterial input function was used to derive the binding potential (BP(ND)) in eight cortical regions. Under controlled conditions, [(11)C]FLB 457 BP(ND) was 30-70% higher compared with [(11)C]fallypride BP(ND) in cortical regions. Amphetamine induced DA release led to a significant decrease in [(11)C]FLB 457 BP(ND) in five out the eight cortical regions evaluated. In contrast, no significant decrease in [(11)C]fallypride BP(ND) was detected in cortex following amphetamine. The difference between [(11)C]FLB 457 and [(11)C]fallypride ability to detect changes in the cortical D(2) receptor availability following amphetamine is related to the higher signal to noise ratio provided by [(11)C]FLB 457. These findings suggest that [(11)C]FLB 457 is superior to [(11)C]fallypride for measurement of changes in cortical synaptic dopamine.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Finnema SJ, Halldin C, Bang-Andersen B, Gulyás B, Bundgaard C, Wikström HV, Farde L. Dopamine D(2/3) receptor occupancy of apomorphine in the nonhuman primate brain--a comparative PET study with [11C]raclopride and [11C]MNPA. Synapse 2009; 63:378-89. [PMID: 19173265 DOI: 10.1002/syn.20615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Binding studies in vitro have demonstrated that the dopamine D2 receptor may exist in two affinity states for agonists. The high affinity state is thought to represent the functional state of the receptor and proportions might alter during disease. In vitro studies further indicate that agonists induce measurable D(2) receptor occupancy at clinically relevant concentrations but only when measured at the high affinity state. Recently developed PET-radioligands, such as [11C]MNPA, have now made it possible to directly study agonist binding in vivo. The aim of this study was to compare the inhibition by apomorphine of agonist and antagonist radioligand binding to D(2/3) receptors in vivo. A total of 36 PET measurements were performed with the D(2/3) antagonist [11C]raclopride or the D(2/3) agonist [11C]MNPA in two cynomolgus monkeys. On each study day, a baseline measurement was followed by two consecutive pretreatment studies with rising doses of apomorphine (0.01, 0.05, 0.15, 0.5, 1.0, and 3.0 mg/kg). Binding potential (BP(ND)) values were calculated for the striatum with cerebellum as reference region. Apomorphine inhibited [11C]raclopride and [11C]MNPA binding in a dose-dependent manner and to a similar extent. ID(50) and K(i) values were 0.26 mg/kg and 29 ng/ml for [11C]raclopride and 0.50 mg/kg and 31 ng/ml for [11C]MNPA. The present observations do not support the existence of two affinity states in vivo. It might thus be speculated that all D(2/3) receptors are in the high affinity state at in vivo conditions.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bossong MG, van Berckel BNM, Boellaard R, Zuurman L, Schuit RC, Windhorst AD, van Gerven JMA, Ramsey NF, Lammertsma AA, Kahn RS. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009; 34:759-66. [PMID: 18754005 DOI: 10.1038/npp.2008.138] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influence of cannabis on mental health receives growing scientific and political attention. An increasing demand for treatment of cannabis dependence has refueled the discussion about the addictive potential of cannabis. A key feature of all addictive drugs is the ability to increase synaptic dopamine levels in the striatum, a mechanism involved in their rewarding and motivating effects. However, it is currently unknown if cannabis can stimulate striatal dopamine neurotransmission in humans. Here we show that Delta 9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, induces dopamine release in the human striatum. Using the dopamine D(2)/D(3) receptor tracer [(11)C]raclopride and positron emission tomography in seven healthy subjects, we demonstrate that THC inhalation reduces [(11)C]raclopride binding in the ventral striatum and the precommissural dorsal putamen but not in other striatal subregions. This is consistent with an increase in dopamine levels in these regions. These results suggest that THC shares a potentially addictive property with other drugs of abuse. Further, it implies that the endogenous cannabinoid system is involved in regulating striatal dopamine release. This allows new directions in research on the effects of THC in neuropsychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Matthijs G Bossong
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ginovart N. Imaging the dopamine system with in vivo [11C]raclopride displacement studies: understanding the true mechanism. Mol Imaging Biol 2008; 7:45-52. [PMID: 15912275 DOI: 10.1007/s11307-005-0932-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in diseases and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on D(2)-radioligand binding. However, the transfer of this hypothesis to a proven mechanism has not been fully achieved yet and an accumulating number of studies challenge it. In addition, new evidence suggests that DA exerts a noncompetitive inhibition on D(2)-radioligand binding under amphetamine conditions. This article reviews the theoretical basis for the DA competition hypothesis, the in vivo and in vitro evidences supporting a noncompetitive action of DA on D(2)-radioligand binding under amphetamine conditions, and discusses possible mechanisms underlying this noncompetitive interaction. Finally, we propose that such noncompetitive interactions may have important implications for how one interprets findings obtained from radioligand-displacement PET studies in neuropsychiatric diseases, especially in schizophrenia in which a dysregulation of the DA-promoted internalization of D(2) receptors was recently suggested.
Collapse
Affiliation(s)
- Nathalie Ginovart
- PET Centre, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, M5T 1R8, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Boecker H, Henriksen G, Sprenger T, Miederer I, Willoch F, Valet M, Berthele A, Tölle TR. Positron emission tomography ligand activation studies in the sports sciences: Measuring neurochemistry in vivo. Methods 2008; 45:307-18. [DOI: 10.1016/j.ymeth.2008.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/28/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022] Open
|
32
|
Abstract
OBJECTIVE To assess the role of the dopaminergic brain reward system (BRS) in apathy associated with Alzheimer disease (AD). DESIGN BRS function was probed in 20 AD patients using dextroamphetamine (d-amph) challenge. After baseline behavioral testing, patients were given a single 10 mg dose of d-amph. The time course of the subjective response to d-amph was assessed at hourly intervals for 4 hours. SETTING Three outpatient dementia clinics associated with a university-affiliated hospital. PARTICIPANTS Twenty AD patients aged 77 +/- 8 years with Neuropsychiatric Inventory (NPI) apathy scores of 3.4 +/- 3.5 and Mini-Mental State Examination scores of 20.4 +/- 5.1. MEASUREMENTS Patients were classified as apathetic based on an NPI apathy subscore of > or =4. Apathy severity was assessed using the Apathy Evaluation Scale (AES). The subjective and behavioral responses to d-amph were assessed using computerized versions of the Addiction Research Centre Inventory (ARCI), Profile of Mood States and Connor's Continuous Performance Task. RESULTS Repeated measures ANOVA revealed a significant interaction between the presence of apathy and the peak subjective response to d-amph on the ARCI, such that while nonapathetic AD patients were responsive to the rewarding effects of d-amph, apathetic patients were not (F(1,17) = 4.93, p = 0.04). Continuous AES scores were predicted by peak ARCI positive effects scores and baseline overall behavioral disturbances (NPI total) in a backward linear regression analysis using the entire study sample (F(2,17) = 10.00, p = 0.01, R(2) = 0.49). CONCLUSIONS Apathy in AD is associated with a blunted subjective response to d-amph, which may be indicative of dysfunction in the BRS.
Collapse
|
33
|
Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, Seeman P, Wilson AA, Kapur S. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology 2008; 33:279-89. [PMID: 17406650 DOI: 10.1038/sj.npp.1301400] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imaging the competition between D(2/3) radioligands and endogenous dopamine is so far the only way to measure dopamine release in the living human brain. The dopamine D(2) receptor exists in a high (D(2)(high)) and a low-affinity state for dopamine. Under physiological conditions, dopamine is expected to bind to D(2)(high) only. [(11)C]-(+)-4-propyl-9-hydroxynaphthoxazine ((+)-PHNO) is the first D(2/3) agonist radioligand for positron emission tomography (PET) imaging in humans. Since [(11)C]-(+)-PHNO is expected to bind preferentially to D(2)(high), it should be particularly vulnerable to competition with endogenous dopamine. Nine healthy subjects participated in two PET scans, one after administration of d-amphetamine and one after placebo. [(11)C]-(+)-PHNO PET test re-test variability was determined in 11 healthy subjects. Binding potentials (BPs) were calculated for caudate, putamen, ventral striatum, and globus pallidus. d-Amphetamine led to a significant decrease of [(11)C]-(+)-PHNO BPs in caudate (-13.2%), putamen (-20.8%), and ventral striatum (-24.9%), but not in globus pallidus (-6.5%). d-Amphetamine-induced displacement correlated with serum d-amphetamine levels in all regions but caudate. This is the first report on competition between endogenous dopamine and a D(2/3) agonist radioligand in humans. [(11)C]-(+)-PHNO PET might be a superior measure for release of endogenous dopamine than PET employing conventional D(2/3) antagonist radioligands.
Collapse
Affiliation(s)
- Matthäus Willeit
- Positron Emission Tomography Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner A, Ryu YH, Sprague KE, Pike VW, Fujita M. Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans. Synapse 2008; 62:399-408. [DOI: 10.1002/syn.20506] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Pedersen K, Simonsen M, Østergaard SD, Munk OL, Rosa-Neto P, Olsen AK, Jensen SB, Møller A, Cumming P. Mapping the amphetamine-evoked changes in [11C]raclopride binding in living rat using small animal PET: Modulation by MAO-inhibition. Neuroimage 2007; 35:38-46. [PMID: 17223363 DOI: 10.1016/j.neuroimage.2006.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/24/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022] Open
Abstract
The performance of small animal PET for neuroreceptor studies in a psychopharmacological challenge paradigm is not yet well-described. Therefore, we used microPET and [(11)C]raclopride to map the availability of dopamine D(2/3) receptors in brain of anesthetized rats, first in a baseline condition, and again after challenge with saline or d-amphetamine. Parametric maps of the specific binding (binding potential, pB) were calculated using a reference tissue input from cerebellum, and spatially normalized to a digitized stereotaxic coordinate system for rat brain. In volumes of interest (VOIs), the mean baseline pB (n=6) was 2.05 in dorsal striatum (caudate-putamen), and 1.34 in ventral striatum (nucleus accumbens), and did not significantly differ upon retest 2 h later. The availability of [(11)C]raclopride binding sites at baseline was 8% higher in the right striatum. Challenge with amphetamine sulfate (1 mg/kg, i.v., n=4) decreased pB by 19% in both ventral and dorsal striatum. We have earlier predicted that blockade of monoamine oxidase (MAO) should potentiate the amphetamine-evoked dopamine release, thus enhancing the displacement of [(11)C]raclopride binding in vivo. However, pretreatment of rats with pargyline hydrochloride (4 mg/kg, n=4; 20 mg/kg, n=4) 1 day prior to PET did not potentiate the amphetamine-evoked reduction in dopamine receptor availability within the extended striatum. We conclude that small animal PET can be used to investigate stimulant-induced dopamine release, but that the spatial resolution is insufficient to detect differences between relative changes in dorsal vs. ventral divisions of the rat striatum. Furthermore, the present results do not reveal potentiation of the amphetamine-evoked release of dopamine in rats with MAO inhibition.
Collapse
Affiliation(s)
- Kasper Pedersen
- Centre for Functionally Integrative Neuroscience, Aarhus University, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fan X, Hess EJ. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD. Neurobiol Dis 2006; 26:201-11. [PMID: 17291774 PMCID: PMC1876677 DOI: 10.1016/j.nbd.2006.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/05/2006] [Accepted: 12/20/2006] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying the effects of psychostimulants in attention deficit hyperactivity disorder (ADHD) are not well understood, but indirect evidence implicates D2 dopamine receptors. Here we dissect the components of dopaminergic neurotransmission in the hyperactive mouse mutant coloboma to identify pre- and postsynaptic elements essential for the effects of amphetamine in these mice. Amphetamine treatment reduced locomotor activity in coloboma mice, but induced a robust increase in dopamine overflow suggesting that abnormal regulation of dopamine efflux does not account for the behavioral effect. However, the D2-like dopamine receptor antagonists haloperidol and raclopride, but not the D1-like dopamine receptor antagonist SCH23390, blocked the amphetamine-induced reduction in locomotor activity in coloboma mice, providing direct evidence that D2-like dopamine receptors mediate the effect of amphetamine in these mice. With the precedent established that it is possible to directly antagonize this response, this strategy should prove useful for identifying novel therapeutics in ADHD.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ellen J. Hess
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
37
|
Papakostas GI. Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 2006; 16:391-402. [PMID: 16413172 DOI: 10.1016/j.euroneuro.2005.12.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 11/22/2005] [Accepted: 12/01/2005] [Indexed: 01/11/2023]
Abstract
The serendipitous discovery of the precursors of two of the major contemporary antidepressant families during the late 1950s, iproniazid for the monoamine oxidase inhibitors (MAOIs) and imipramine for the tricyclic antidepressants (TCAs), has guided the subsequent development of antidepressant compounds with predominantly serotonergic, noradrenergic or combined serotonergic and noradrenergic activity. Unfortunately, however, many depressed patients continue to remain symptomatic despite adequate treatment with pharmacologic agents currently available. When one reviews the list of pharmacologic agents currently approved for the treatment of Major Depressive Disorder (MDD), it is apparent that relatively few treatments with dopaminergic activity have been developed to date. Therefore, developing effective antidepressant treatments with pro-dopaminergic properties which also possess a relatively wide safety margin may further improve the standard of care for depression. In the present article we will briefly review studies focusing on the role of dopamine in depression followed by a comprehensive review of pharmacotherapies for depression with pro-dopaminergic activity.
Collapse
Affiliation(s)
- George I Papakostas
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, Anderson S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin R, Kessler R. Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 2006; 31:1016-26. [PMID: 16237395 DOI: 10.1038/sj.npp.1300916] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study examined D-amphetamine (D-AMPH)-induced displacements of [18F] fallypride in striatal and extrastriatal regions and the correlations of these displacements with cognition, affect, and sensation-seeking behavior. In all, 14 normal subjects, six females and eight males (ages 21-32, mean age 25.9 years), underwent positron emission tomography (PET) with [18F]fallypride before and 3 h after a 0.43 mg/kg oral dose of D-AMPH. Levels of dopamine (DA) D2 receptor density were calculated with the reference region method of Lammerstma. Percent displacements in striatal and extrastriatal regions were calculated for the caudate, putamen, ventral striatum, medial thalamus, amygdala, substantia nigra, and temporal cortex. Correlations of changes in cognition, affect, and sensation seeking with parametric images of D-AMPH-induced DA release were computed. Significant displacements were seen in the caudate, putamen, ventral striatum substantia nigra, and temporal cortex with a trend level change in the amygdala. Greatest displacements were seen in striatal subdivisions-5.6% in caudate, 11.2% in putamen, 7.2% in ventral striatum, and 6.6% in substantia nigra. Lesser decrements were seen in amygdala-4.4%, temporal cortex-3.7%, and thalamus-2.8%. Significant clusters of correlations of regional DA release with cognition and sensation-seeking behavior were observed. The current study demonstrates that [18F]fallypride PET studies using oral D-AMPH (0.43 mg/kg) can be used to study D-AMPH-induced DA release in the striatal and extrastriatal regions in humans, and their relationship with cognition and sensation-seeking behavior.
Collapse
Affiliation(s)
- Patrizia Riccardi
- Department of Radiology, Vanderbilt University, Nashville, TN 37232-2675, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, Houle S, Kapur S, Wilson AA. Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem 2006; 97:1089-103. [PMID: 16606355 DOI: 10.1111/j.1471-4159.2006.03840.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[11C]-(+)-PHNO (4-propyl-9-hydroxynaphthoxazine) is a new agonist radioligand that provides a unique opportunity to measure the high-affinity states of the D2 receptors (D2-high) using positron emission tomography (PET). Here we report on the distribution, displaceablity, specificity and modeling of [11C]-(+)-PHNO and compare it with the well characterized antagonist D2 radioligand, [11C]raclopride, in cat. [11C]-(+)-PHNO displayed high uptake in striatum with a mean striatal binding potential (BP) of 3.95 +/- 0.85. Pre-treatment with specific D1 (SCH23390), D2 (raclopride, haloperidol) and D3 receptor (SB-277011) antagonists indicated that [11C]-(+)-PHNO binding in striatum is specific to D2 receptors. Within-subject comparisons showed that [11C]-(+)-PHNO BP in striatum was almost 2.5-fold higher than that measured with [11C]-(-)-NPA ([11C]-(-)-N-propyl-norapomorphine). Comparison of the dose-effect of amphetamine (0.1, 0.5 and 2 mg/kg; i.v.) showed that [11C]-(+)-PHNO was more sensitive to the dopamine releasing effect of amphetamine than [11C]raclopride. Amphetamine induced up to 83 +/- 4% inhibition of [11C]-(+)-PHNO BP and only up to 56 +/- 8% inhibition of [11C]raclopride BP. Scatchard analyses of [11C]-(+)-PHNO and [11C]raclopride bindings in two cats showed that the Bmax obtained with the agonist (29.6 and 32.9 pmol/mL) equalled that obtained with the antagonist (30.6 and 33.4 pmol/mL). The high penetration of [11C]-(+)-PHNO in brain, its high signal-to-noise ratio, its favorable in vivo kinetics and its high sensitivity to amphetamine shows that [11C]-(+)-PHNO has highly suitable characteristics for probing the D2-high with PET.
Collapse
Affiliation(s)
- Nathalie Ginovart
- The Vivian Rakoff Positron Emission Tomography Unit, Center for Addiction and Mental Health, Toronto, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Narendran R, Slifstein M, Hwang DR, Hwang Y, Scher E, Reeder S, Martinez D, Laruelle M. Amphetamine-induced dopamine release: Duration of action as assessed with the D2/3 receptor agonist radiotracer (––)-N-[11C]propyl-norapomorphine ([11C]NPA) in an anesthetized nonhuman primate. Synapse 2006; 61:106-9. [PMID: 17117423 DOI: 10.1002/syn.20346] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rajesh Narendran
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rosa-Neto P, Lou HC, Cumming P, Pryds O, Karrebaek H, Lunding J, Gjedde A. Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage 2005; 25:868-76. [PMID: 15808987 DOI: 10.1016/j.neuroimage.2004.11.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 11/22/2004] [Accepted: 11/29/2004] [Indexed: 11/24/2022] Open
Abstract
Abnormal central dopamine (DA) neurotransmission has been implicated in the impulsivity, inattention, and hyperactivity of attention deficit hyperactivity disorder (ADHD). We hypothesized that a pharmacological challenge with methylphenidate (MP) at a therapeutic dose increases extracellular DA concentrations in proportion to the severity of these specific ADHD symptoms. To test this hypothesis, we measured by PET the effect of acute challenge with MP on the availability of striatal binding sites for [11C]raclopride (pB), an index of altered interstitial DA concentration, in nine unmedicated adolescents (1 female, 8 males; age 13.7 +/- 1.8 years) with a current diagnosis of ADHD. We estimated the pB of [11C]raclopride for brain dopamine D2/3 receptors first in a baseline resting condition, and again after an acute challenge with MP (0.3 mg/kg, p.o.), and calculated the percentage change in (%DeltapB) in left and right striatum. On another day, measurements of impulsivity and inattention were performed using a computerized continuous performance test. There was a significant correlation between the magnitude of %DeltapB in the right striatum and the severity of inattention and impulsivity. MP-evoked %DeltapB correlated with standard scores for impulse control (r = 0.68; P = 0.02), attention (r = 0.81; P = 0.005), information processing (r = 0.66; P = 0.02), and consistency of attention, or variability (r = 0.60; P = 0.04). In conclusion, the results link inattention and impulsivity with sensitivity of brain DA receptor availability to an MP challenge, corroborating the hypothesis that MP serves to potentiate decreased DA neurotransmission in ADHD.
Collapse
Affiliation(s)
- Pedro Rosa-Neto
- Center for Functionally Integrative Neuroscience, Aarhus University and PET Center, Aarhus University Hospitals, 44 Nørrebrogade, Building 10, Aarhus C 8000, Denmark
| | | | | | | | | | | | | |
Collapse
|
42
|
Lind NM, Olsen AK, Moustgaard A, Jensen SB, Jakobsen S, Hansen AK, Arnfred SM, Hemmingsen RP, Gjedde A, Cumming P. Mapping the amphetamine-evoked dopamine release in the brain of the Göttingen minipig. Brain Res Bull 2005; 65:1-9. [PMID: 15680539 DOI: 10.1016/j.brainresbull.2004.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 08/14/2004] [Indexed: 10/26/2022]
Abstract
The availability of dopamine D(2/3) binding sites in brain of six male and six female Göttingen minipigs was measured in a baseline condition and after challenge with amphetamine sulfate (1mg/kg, i.v.) in PET studies with [(11)C]raclopride. Maps of the binding potential (pB; B(max)/K(d)) of [(11)C]raclopride were spatially normalized and co-registered to a common stereotaxic coordinate system for pig brain. The pB maps were then analyzed by volume of interest and voxel-wise comparisons of gender and condition. The mean baseline pB tended to be 10-20% higher in striatum of the female group, but this gender difference was not significant. Variance of the mean baseline pB was higher in the males (44%) than in females (30%), but there was no correlation between pB and individual plasma cortisol or testosterone concentrations. Using statistical parametric mapping, we detected a focus in the right posterior putamen where the magnitude of the amphetamine-evoked decrease in pB was greater in the male than in the female group. Thus, the spatial pattern of reactivity of dopamine D(2/3) receptor availability to amphetamine challenge is not identical in male and female pigs. Within the entire population, the decline in pB evoked by amphetamine (Delta pB) was greater in the ventral striatum (-28%) than in the caudate nucleus (-17%), consistent with earlier reports in monkeys and humans. The magnitude of Delta pB correlated highly with the baseline pB values in all divisions of the striatum. Based upon the principles of competitive binding, the slope of this empirical relationship, f(i), is equal to the fraction of [(11)C]raclopride binding sites sensitive to endogenous dopamine; the magnitude of this fraction ranged from 0.29 in the caudate to 0.36 in the ventral striatum.
Collapse
Affiliation(s)
- Nanna Marie Lind
- Department of Psychiatry, University Hospital of Copenhagen, Bispebjerg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jayaram-Lindström N, Wennberg P, Hurd YL, Franck J. Effects of naltrexone on the subjective response to amphetamine in healthy volunteers. J Clin Psychopharmacol 2004; 24:665-9. [PMID: 15538132 DOI: 10.1097/01.jcp.0000144893.29987.e5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While dopaminergic mechanisms in amphetamine-taking behavior have been extensively studied, the contribution of the endogenous opioid system is less clear. We assessed the effects of an opioid antagonist, naltrexone (50 mg), on the subjective response to an oral dose of dexamphetamine (30 mg) in 12 healthy volunteers in a double-blind, placebo-controlled design. Volunteers received a total of 4 combinations of the study preparation (placebo-naltrexone, placebo-amphetamine) over 4 occasions with 1-week intervals. The primary objective of the study was to evaluate the effect of pretreatment with naltrexone on the subjective response to amphetamine. This was measured using a Visual Analog Scale, assessing the subjective effects over 7 hours. The secondary objective was to measure the effects of naltrexone on behavioral and physiologic responses to amphetamine. This was measured by blood pressure, heart rate, skin conductance, and speed of reading at the end of each session. Amphetamine produced significant effects on subjective arousal when compared to placebo after 1 hour (P < 0.001) and continued to be evident until 7 hours. Pretreatment with naltrexone significantly attenuated the subjective effects of amphetamine (P < 0.05), and this effect was time-dependent with a reduction from the 3-hour time point. Naltrexone did not influence the behavioral and physiologic effects of amphetamine in this sample. The results provide preliminary evidence that naltrexone may reduce the reinforcing effects of amphetamine via modulation of the opioid system. The potential of naltrexone as an adjunct pharmaceutical for the treatment of amphetamine dependence is promising and needs to be investigated further.
Collapse
Affiliation(s)
- Nitya Jayaram-Lindström
- Section of Alcohol and Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
44
|
Breitenstein C, Wailke S, Bushuven S, Kamping S, Zwitserlood P, Ringelstein EB, Knecht S. D-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology 2004; 29:1704-14. [PMID: 15114342 DOI: 10.1038/sj.npp.1300464] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
D-Amphetamine (AMPH) was effective in a number of studies on motor and language recovery after stroke, but given safety concerns, its general use after stroke is still debated. Most stroke patients are excluded from treatment because of a significant risk of cardiovascular dysregulation. AMPH acts on multiple transmitter systems, and mainly the noradrenergic actions are related to the cardiovascular effects. If AMPH's cardiovascular and arousal effects were correlated with its plasticity-enhancing effects in humans, this would imply that desired and undesired effects are inevitably tied. If not, improved cerebral reorganization may not be mediated by AMPH's arousing effects and could be achieved with substances lacking the undesired cardiovascular effects. As a model for language recovery after stroke, we used a prospective, randomized, double-blind, placebo-controlled design and taught 40 healthy male subjects an artificial vocabulary of 50 concrete nouns over the course of five consecutive training days (high-frequency training). The associative learning principle involved higher co-occurrences of 'correct' picture-pseudoword pairings as compared to 'incorrect' pairings. Subjects received either AMPH (0.25 mg/kg) or placebo 90 min prior to training on each day. Novel word learning was significantly faster and better in the AMPH as compared to the placebo group. Increased learning success was maintained 1 month post-training. No correlation was found between training success and drug-induced increases in blood pressure, heart rate, or a facilitation of simple motor reaction time. Our data show that AMPH's plasticity-enhancing effect in humans is not related to its cardiovascular arousal. This suggests that the beneficial effects in stroke patients could also be obtained by less cardiovascular active drugs.
Collapse
|
45
|
Ginovart N, Wilson AA, Houle S, Kapur S. Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a [11C]raclopride positron emission tomography study in cats. Biol Psychiatry 2004; 55:1188-94. [PMID: 15184038 DOI: 10.1016/j.biopsych.2004.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/10/2004] [Accepted: 02/19/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in disease and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on radioligand binding. To test this, we used PET and a Scatchard approach to investigate whether the decrease in [11C]raclopride binding following amphetamine results from competitive or noncompetitive interactions with DA. METHODS Scatchard analyses of [11C]raclopride/PET data were used to quantify changes in apparent D2-receptor density (Bmax) and radioligand apparent affinity (K'D) at baseline and after amphetamine pretreatment (2 mg/kg; intravenous) in cats. RESULTS Amphetamine induced a 46% decrease in [11C]raclopride binding in the striatum of five cats. Scatchard analyses revealed that this decrease in binding was due to a 28% decrease in Bmax and a concomitant 35% increase in K'D. CONCLUSIONS Competition with DA is an insufficient explanation for the decrease in [11C]raclopride binding observed after amphetamine. Noncompetitive interactions, likely representing D2-receptor internalization, also play an important role in this phenomenon. This finding may have important implications for the interpretation of amphetamine-raclopride PET studies in schizophrenia because dysregulation of the agonist-induced internalization of D2 receptors was recently suggested in this disorder.
Collapse
Affiliation(s)
- Nathalie Ginovart
- Positron Emission Tomography Centre, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|