1
|
Wei W, Deng L, Qiao C, Yin Y, Zhang Y, Li X, Yu H, Jian L, Li M, Guo W, Wang Q, Deng W, Ma X, Zhao L, Sham PC, Palaniyappan L, Li T. Neural variability in three major psychiatric disorders. Mol Psychiatry 2023; 28:5217-5227. [PMID: 37443193 DOI: 10.1038/s41380-023-02164-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Across the major psychiatric disorders (MPDs), a shared disruption in brain physiology is suspected. Here we investigate the neural variability at rest, a well-established behavior-relevant marker of brain function, and probe its basis in gene expression and neurotransmitter receptor profiles across the MPDs. We recruited 219 healthy controls and 279 patients with schizophrenia, major depressive disorder, or bipolar disorders (manic or depressive state). The standard deviation of blood oxygenation level-dependent signal (SDBOLD) obtained from resting-state fMRI was used to characterize neural variability. Transdiagnostic disruptions in SDBOLD patterns and their relationships with clinical symptoms and cognitive functions were tested by partial least-squares correlation. Moving beyond the clinical sample, spatial correlations between the observed patterns of SDBOLD disruption and postmortem gene expressions, Neurosynth meta-analytic cognitive functions, and neurotransmitter receptor profiles were estimated. Two transdiagnostic patterns of disrupted SDBOLD were discovered. Pattern 1 is exhibited in all diagnostic groups and is most pronounced in schizophrenia, characterized by higher SDBOLD in the language/auditory networks but lower SDBOLD in the default mode/sensorimotor networks. In comparison, pattern 2 is only exhibited in unipolar and bipolar depression, characterized by higher SDBOLD in the default mode/salience networks but lower SDBOLD in the sensorimotor network. The expression of pattern 1 related to the severity of clinical symptoms and cognitive deficits across MPDs. The two disrupted patterns had distinct spatial correlations with gene expressions (e.g., neuronal projections/cellular processes), meta-analytic cognitive functions (e.g., language/memory), and neurotransmitter receptor expression profiles (e.g., D2/serotonin/opioid receptors). In conclusion, neural variability is a potential transdiagnostic biomarker of MPDs with a substantial amount of its spatial distribution explained by gene expressions and neurotransmitter receptor profiles. The pathophysiology of MPDs can be traced through the measures of neural variability at rest, with varying clinical-cognitive profiles arising from differential spatial patterns of aberrant variability.
Collapse
Affiliation(s)
- Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Lihong Deng
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yubing Yin
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Lingqi Jian
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Karasawa Y, Miyano K, Yamaguchi M, Nonaka M, Yamaguchi K, Iseki M, Kawagoe I, Uezono Y. Therapeutic Potential of Orally Administered Rubiscolin-6. Int J Mol Sci 2023; 24:9959. [PMID: 37373107 DOI: 10.3390/ijms24129959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., Tokyo 105-0001, Japan
| | - Kanako Miyano
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Medical Affairs, Pfizer Japan Inc., Tokyo 151-8589, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Izumi Kawagoe
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, Chiba 277-8577, Japan
| |
Collapse
|
3
|
Yamada D, Saitoh A. [Neural mechanism underlying the regulation of emotional behavior via δ-opioid receptors]. Nihon Yakurigaku Zasshi 2022; 157:448-452. [PMID: 36328559 DOI: 10.1254/fpj.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The delta opioid receptor (DOP) belongs to the G protein-coupled receptor family and is abundant in the limbic system. In recent years, consistent with their distribution, they have been suggested to be involved in the regulation of emotional behavior. In particular, DOP agonists have been shown to exhibit antidepressant and anxiolytic-like effects, and clinical trials are underway as targets for the development of new psychotropic drugs with mechanisms of action different from those of existing monoamine drugs. In this article, we review the roles and mechanisms of DOP in emotion regulation that are being elucidated in basic studies using rodents, and also introduce the current status of its clinical application.
Collapse
Affiliation(s)
- Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
4
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
5
|
Jiang X, Zhang JJ, Song S, Li Y, Sui N. The duration of withdrawal affects the muscarinic signaling in the nucleus accumbens after chronic morphine exposure in neonatal rats. J Neurophysiol 2021; 125:2228-2236. [PMID: 33978485 DOI: 10.1152/jn.00441.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infants experience withdrawal from opiates, and time-dependent adaptations in neuronal activity of nucleus accumbens (NAc) may be crucial for this process. A key adaptation is an increased release of acetylcholine. The present study investigates muscarinic acetylcholine receptors (mAChRs) functions in the NAc at short-term (SWT) and long-term (LWT) withdrawal time following chronic morphine exposure in neonatal rats. The inhibitory role of presynaptic mAChRs activation in spontaneous excitatory postsynaptic currents (sEPSCs) in medium spiny neurons was decreased at LWT but not at SWT. Whereas, the excitatory role of post/extrasynaptic mAChRs activation in membrane currents was reduced at LWT but enhanced at SWT. Furthermore, the inhibitory effect of acute morphine on post/extrasynaptic mAChRs-mediated inward currents was enhanced at SWT but not at LWT. These results suggest that withdrawal from morphine leads to downregulation of presynaptic and post/extrasynaptic mAChRs functions in the NAc, which may coregulate the development of withdrawal in neonates.NEW & NOTEWORTHY We investigated for the first time how the duration of withdrawal affects mAChRs functions in the nucleus accumbens in neonatal rats. Compared with short-term withdrawal time, rats showed downregulation of presynaptic and post/extrasynaptic mAChRs functions during long-term withdrawal time. Our finding introduces a new possible correlation between the mAChRs dysfunction in the nucleus accumbens and the development of withdrawal in neonates.
Collapse
Affiliation(s)
- Xiao Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sen Song
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
5-HT 2A receptor- and M 1 muscarinic acetylcholine receptor-mediated activation of Gα q/11 in postmortem dorsolateral prefrontal cortex of opiate addicts. Pharmacol Rep 2021; 73:1155-1163. [PMID: 33835465 DOI: 10.1007/s43440-021-00248-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chronic exposure to opiates causes the development of tolerance and physical dependence as well as persistent brain neuroplasticity. Despite a wealth of postmortem human studies for opiate addicts, little direct information regarding the functional status of serotonergic and cholinergic receptor-mediated signaling pathways in the human brain of opiate addicts is yet available. METHODS Functional activation of Gαq/11 proteins coupled to 5-HT2A and M1 type muscarinic acetylcholine receptor (mAChR) was assessed by using the method named [35S]GTPγS binding/immunoprecipitation in frontal cortical membrane preparations from postmortem human brains obtained from opiate addicts and matched controls. RESULTS Concentration-response curves for 5-HT and carbachol in individual subjects were analyzed according to a nonlinear regression model, which generated the values of maximum percent increase (%Emax), negative logarithm of the half-maximal effect (pEC50) and slope factor. As for 5-HT2A receptor-mediated Gαq/11 activation, the %Emax values were reduced significantly and the pEC50 values were decreased significantly in opiate addicts as compared to the control group. Regarding carbachol-induced Gαq/11 activation, no significant difference in %Emax or pEC50 values was detected between the both groups, whereas the slope factor was increased significantly in opiate addicts as compared to the control group. CONCLUSION Our data demonstrate that the signaling pathways mediated by Gαq/11 proteins coupled with 5-HT2A receptors and M1 mAChRs in prefrontal cortex are functionally altered in opiate addicts in comparison with control subjects. These alterations may underpin some aspects of addictive behavior to opiate as well as neuropsychological consequences or comorbid mental disorders associated with opioid use.
Collapse
|
7
|
Chang L, Kigar SL, Ho JH, Cuarenta A, Gunderson HC, Baldo BA, Bakshi VP, Auger AP. Early life stress alters opioid receptor mRNA levels within the nucleus accumbens in a sex-dependent manner. Brain Res 2018; 1710:102-108. [PMID: 30594547 DOI: 10.1016/j.brainres.2018.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/10/2018] [Accepted: 12/26/2018] [Indexed: 01/24/2023]
Abstract
Early life stress (ELS) strongly impacts mental health, but little is known about its interaction with biological sex and postnatal development to influence risk and resilience to psychopathologies. A number of psychiatric disorders, such as social anhedonia and drug addiction, involve dysfunctional opioid signaling; moreover, there is evidence for differential central opioid function in males vs. females. The present study examined opioid receptor gene expression in the nucleus accumbens (NAc) and amygdala of male and female rats subjected to a neonatal predator odor exposure (POE) paradigm to model ELS. Brain tissue was collected at two developmental time points: neonatal and juvenile. Results showed that, following the neonatal POE experience, opioid receptor mRNA levels in the NAc were differentially regulated at the neonatal and juvenile time points. POE downregulated neonatal mu- and kappa-opioid receptor mRNA levels in neonatal females, but upregulated mu- and delta-opioid receptor mRNA levels in juvenile females. Intriguingly, POE had no significant effect on NAc opioid receptor mRNA levels in males at either time point, indicating that the impact of POE on opioid system development is sex-dependent. Finally, POE failed to alter amygdalar opioid receptor gene expression in either sex at either time-point. The spatiotemporally- and sex-specific impact of ELS within the developing brain may confer differential risk or resilience for males and females to develop atypical opioid-regulated behaviors associated with conditions such as depression and addiction.
Collapse
Affiliation(s)
- Liza Chang
- Department of Psychology, University of Wisconsin-Madison, United States.
| | - Stacey L Kigar
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, United States
| | - Jasmine H Ho
- Department of Psychology, University of Wisconsin-Madison, United States
| | - Amelia Cuarenta
- Department of Psychology, University of Wisconsin-Madison, United States
| | - Haley C Gunderson
- Department of Psychology, University of Wisconsin-Madison, United States
| | - Brian A Baldo
- Department of Psychiatry, University of Wisconsin-Madison, United States; Neuroscience Training Program, University of Wisconsin-Madison, United States
| | - Vaishali P Bakshi
- Department of Psychiatry, University of Wisconsin-Madison, United States; Neuroscience Training Program, University of Wisconsin-Madison, United States
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, United States; Neuroscience Training Program, University of Wisconsin-Madison, United States.
| |
Collapse
|
8
|
Kropf E, Syan SK, Minuzzi L, Frey BN. From anatomy to function: the role of the somatosensory cortex in emotional regulation. ACTA ACUST UNITED AC 2018; 41:261-269. [PMID: 30540029 PMCID: PMC6794131 DOI: 10.1590/1516-4446-2018-0183] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
Since the pioneering work of Penfield and his colleagues in the 1930s, the somatosensory cortex, which is located on the postcentral gyrus, has been known for its central role in processing sensory information from various parts of the body. More recently, a converging body of literature has shown that the somatosensory cortex also plays an important role in each stage of emotional processing, including identification of emotional significance in a stimulus, generation of emotional states, and regulation of emotion. Importantly, studies conducted in individuals suffering from mental disorders associated with abnormal emotional regulation, such as major depression, bipolar disorder, schizophrenia, post-traumatic stress disorder, anxiety and panic disorders, specific phobia, obesity, and obsessive-compulsive disorder, have found structural and functional changes in the somatosensory cortex. Common observations in the somatosensory cortices of individuals with mood disorders include alterations in gray matter volume, cortical thickness, abnormal functional connectivity with other brain regions, and changes in metabolic rates. These findings support the hypothesis that the somatosensory cortex may be a treatment target for certain mental disorders. In this review, we discuss the anatomy, connectivity, and functions of the somatosensory cortex, with a focus on its role in emotional regulation.
Collapse
Affiliation(s)
- Erika Kropf
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| | - Sabrina K Syan
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Canada
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Canada
| |
Collapse
|
9
|
Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomed Pharmacother 2018; 109:938-944. [PMID: 30551548 DOI: 10.1016/j.biopha.2018.10.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/07/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023] Open
Abstract
Social isolation stress (SIS) as a type of chronic stress could induce depressive- and anxiety-like behaviors. Our study evaluates the role of opioid system on negative behavioral impacts of SIS in male NMRI mice. We investigated effects of morphine, a nonselective opioid receptor (OR) agonist, naltrexone (NLX), an OR antagonist, naltrindole (NLT), a delta opioid receptor (DOR) antagonist, SNC80, a DOR agonist, U-69593, a kappa opioid receptor (KOR) agonist, nor-Binaltorphimine, a selective KOR antagonist and cyprodime hydrochloride a selective mu opioid receptor (MOR) antagonist on depressive- and anxiety-like behaviors. Using RT-PCR we evaluated ORs gene expression in mice brain. Our findings showed that SIS induced anxiety- and depressive-like behavior in the forced swimming test, open field test, splash test and hole-board test. Moreover, administration of SNC-80 significantly mitigated anxiety- and depressive-like behaviors. NLT decreased grooming-activity in the splash test. Excitingly, administration of agents affecting KOR failed to alter the negative effects of SIS. RT-PCR demonstrated that MOR and KOR gene expression decreased in socially isolated mice; however, SIS did not affect DORs expression. Our findings suggest that SIS at least in part, probably via altering endogenous opioids particularly MORs and KORs but not DORs mediated negative impacts on behavior; also, it could be concluded that DORs might be considered as a novel target for studying depression and anxiety.
Collapse
|
10
|
Rouine J, Callaghan CK, O'Mara SM. Opioid modulation of depression: A focus on imaging studies. PROGRESS IN BRAIN RESEARCH 2018; 239:229-252. [PMID: 30314568 DOI: 10.1016/bs.pbr.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depression is the leading cause of disability worldwide, with over 300 million people affected. Almost all currently available antidepressant treatments target monoamine neurotransmitter systems and have a delayed onset of action up to several weeks that can be associated with low rates of treatment response. The endogenous opioid system has been identified as a potential target for the development of novel antidepressants due to its high opioid receptor concentrations in central limbic areas that are also implicated in physiological processes including regulation of mood and emotion. Genetic depletion, pharmacological manipulation, and preclinical models have been widely used to characterize the role of opioid transmission in depressive states. Neuroimaging studies have been carried out in clinical populations to investigate opioid transmission in mood and emotion in an attempt to identify those regional anatomical and functional brain changes that are associated with depression. Great insight has been provided into the cerebral structural and functional changes associated with depression but there remains a need to tie the functional theories of depression to anatomical localization and further neuroimaging studies are best placed to do this.
Collapse
Affiliation(s)
- Jennifer Rouine
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | - Charlotte K Callaghan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice. Mol Neurobiol 2018; 55:8991-9000. [PMID: 29623611 DOI: 10.1007/s12035-018-1024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.
Collapse
|
12
|
Hill EM, Hunt L, Duryea DG. Evolved Vulnerability to Addiction: The Problem of Opiates. EVOLUTIONARY PSYCHOLOGY 2017. [DOI: 10.1007/978-3-319-60576-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Zolotarev YA, Kovalev GI, Kost NV, Voevodina ME, Sokolov OY, Dadayan AK, Kondrakhin EA, Vasileva EV, Bogachuk AP, Azev VN, Lipkin VM, Myasoedov NF. Anxiolytic activity of the neuroprotective peptide HLDF-6 and its effects on brain neurotransmitter systems in BALB/c and C57BL/6 mice. J Psychopharmacol 2016; 30:922-35. [PMID: 27464742 DOI: 10.1177/0269881116660705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study is focused on a new amide derivative of the peptide HLDF-6 (Thr-Gly-Glu-Asn-His-Arg). This hexapeptide is a fragment of Human Leukaemia Differentiation Factor (HLDF). It displays a broad range of nootropic and neuroprotective activities. We showed, for the first time, that the peptide HLDF-6-amide has high anxiolytic activity. We used 'open field' and 'elevated plus maze' tests to demonstrate anxiolytic effects of HLDF-6-amide (0.1 and 0.3 mg/kg intranasally), which were comparable to those of the reference drug diazepam (0.5 mg/kg). Five daily equipotent doses of HLDF-6-amide selectively mitigated anxiety and increased the density of NMDA receptors in the hippocampus of stress-susceptible BALB/c mice, and had no effect on stress-resilient C57BL/6 mice. The subchronic administration of HLDF-6-amide showed no effect on the density of GABAA and nicotine receptors but was accompanied by a nonselective decrease of the 5-HT2A serotonin receptor density in frontal cortex of both strains. The mechanism of the specific anxiolytic activity of HLDF-6-amide may include its action on the NMDA-glutamatergic receptor system of the hippocampus and on serotonin 5-HT2A-receptors in the prefrontal cortex. The psychotropic activity of HLDF-6-amide is promising for its introduction to medical practice as a highly effective anxiolytic medicine for mental and neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna P Bogachuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vyacheslav N Azev
- Branch of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS, Pushchino, Moscow Region, Russia
| | - Valery M Lipkin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
14
|
Muelbl MJ, Nawarawong NN, Clancy PT, Nettesheim CE, Lim YW, Olsen CM. Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice. Psychopharmacology (Berl) 2016; 233:2799-811. [PMID: 27256358 PMCID: PMC5095929 DOI: 10.1007/s00213-016-4323-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE Although leptin receptors are found in hypothalamic nuclei classically associated with homeostatic feeding mechanisms, they are also present in brain regions known to regulate hedonic-based feeding, natural reward processing, and responses to drugs of abuse. The ob/ob mouse is deficient in leptin signaling, and previous work has found altered mesolimbic dopamine signaling and sensitivity to the locomotor activating effects of amphetamine in these mice. OBJECTIVES We directly assessed responses to three drugs of abuse and non-drug rewards in the leptin-deficient ob/ob mouse. METHODS Ob/ob mice were tested in assays of sweet preference, novelty seeking, and drug reward/reinforcement. RESULTS In assays of novelty seeking, novel open field activity and operant sensation seeking were reduced in ob/ob mice, although novel object interaction and novel environment preference were comparable to wild types. We also found that ob/ob mice had specific phenotypes in regard to cocaine: conditioned place preference for 2.5 mg/kg was increased, while the locomotor response to 10 mg/kg was reduced, and cocaine self-administration was the same as wild types. Ob/ob mice also acquired self-administration of the potent opioid remifentanil, but breakpoints for the drug were significantly reduced. Finally, we found significant differences in ethanol drinking in ob/ob mice that correlated negatively with body weight and positively with operant sensation seeking. CONCLUSIONS In conclusion, ob/ob mice displayed task-specific deficits in novelty seeking and dissociable differences in reward/reinforcement associated with cocaine, remifentanil, and ethanol.
Collapse
Affiliation(s)
- Matthew J. Muelbl
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Natalie N. Nawarawong
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Patrick T. Clancy
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Catherine E. Nettesheim
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yi Wei Lim
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christopher M. Olsen
- Neuroscience Research Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Wang Q, Long Y, Hang A, Zan GY, Shu XH, Wang YJ, Liu JG. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice. Psychopharmacology (Berl) 2016; 233:2411-8. [PMID: 27113225 DOI: 10.1007/s00213-016-4292-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/01/2016] [Indexed: 01/21/2023]
Abstract
RATIONALE Opioid receptors are implicated in the regulation of motivation and emotion. However, animal studies show that activation of κ opioid receptor produces contrasting mood-altering effects in models of anxiety-like and depressive-like behaviors, and consequently, the role of κ receptor in mood control remains unsettled. The effect of κ/μ opioid combination in emotion regulation was unexplored. OBJECTIVES The aim of the study was to investigate the effects of (-)-3-N-ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a novel κ agonist and μ partial agonist, in regulating emotional responses. METHODS The emotional responses of ATPM-ET were detected in the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST). Selective κ antagonist nor-binaltorphimine (nor-BNI) and μ antagonist β-funaltrexamine (β-FNA) were applied to determine the type of receptor involved. The conditioned place aversion model was used to evaluate the effects on aversive emotion. RESULTS In the EPM and OFT, ATPM-ET (1 and 2 mg/kg, s.c.) significantly increased the time spent in the open arm and in the central area, respectively. In the FST and TST, ATPM-ET (0.5 and 1 mg/kg, s.c.) significantly reduced the duration of immobility. These effects were prevented by nor-BNI (10 mg/kg, i.p., -24 h), but not by β-FNA (10 and20 mg/kg, i.p., -24 h) pretreatment. At the dose of 2 mg/kg, ATPM-ET did not induce conditioned place aversion. CONCLUSIONS ATPM-ET, at doses from 0.5 to 2 mg/kg, produced anxiolytic- and antidepressant-like effects without inducing aversive emotion. These effects were more closely mediated by activation of κ receptor than μ receptor.
Collapse
Affiliation(s)
- Qian Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yu Long
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ai Hang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Hong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
16
|
Smith CJW, Wilkins KB, Mogavero JN, Veenema AH. Social Novelty Investigation in the Juvenile Rat: Modulation by the μ-Opioid System. J Neuroendocrinol 2015. [PMID: 26212131 DOI: 10.1111/jne.12301] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The drive to approach and explore novel conspecifics is inherent to social animals and may promote optimal social functioning. Juvenile animals seek out interactions with novel peers more frequently and find these interactions to be more rewarding than their adult counterparts. In the present study, we aimed to establish a behavioural paradigm to measure social novelty-seeking in juvenile rats and to determine the involvement of the opioid, dopamine, oxytocin and vasopressin systems in this behaviour. To this end, we developed the social novelty preference test to assess the preference of a juvenile rat to investigate a novel over a familiar (cage mate) conspecific. We show that across the juvenile period both male and female rats spend more time investigating a novel conspecific than a cage mate, independent of subject sex or repeated exposure to the test. We hypothesised that brain systems subserving social information processing and social motivation/reward (i.e. the opioid, dopamine, oxytocin, vasopressin systems) might support social novelty preference. To test this, receptor antagonists of each of these systems were administered i.c.v. prior to exposure to the social novelty preference test and, subsequently, to the social preference test, to examine the specificity of these effects. We find that μ-opioid receptor antagonism reduces novel social investigation in both the social novelty preference and social preference tests while leaving the investigation of a cage mate (social novelty preference test) or an object (social preference test) unaffected. In contrast, central blockade of dopamine D2 receptors (with eticlopride), oxytocin receptors (with des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) or vasopressin V1a receptors [with (CH2)5Tyr(Me2)AVP] failed to alter social novelty preference or social preference. Overall, we have established a new behavioural test to study social novelty-seeking behaviour in the juvenile rat and show that the μ-opioid system facilitates this behaviour, possibly by reducing risk avoidance and enhancing the hedonic and/or motivational value of social novelty.
Collapse
Affiliation(s)
- C J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - K B Wilkins
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - J N Mogavero
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - A H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
17
|
Wang FR, Qiao MQ, Xue L, Wei S. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:452412. [PMID: 25821488 PMCID: PMC4363683 DOI: 10.1155/2015/452412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/24/2022]
Abstract
Recently μ opioid receptor (MOR) has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants.
Collapse
Affiliation(s)
- Fu-rong Wang
- Department of Pharmacology, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ming-qi Qiao
- Key Laboratory for Classical Theory of Traditional Chinese Medicine of Education Ministry, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Xue
- Key Laboratory for Classical Theory of Traditional Chinese Medicine of Education Ministry, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Sheng Wei
- Key Laboratory for Classical Theory of Traditional Chinese Medicine of Education Ministry, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
18
|
Van't Veer A, Carlezon WA. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 2013; 229:435-52. [PMID: 23836029 PMCID: PMC3770816 DOI: 10.1007/s00213-013-3195-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of motivation and emotion. These findings have stimulated interest in the development of KOR-targeted ligands as therapeutic agents. As one example, it has been suggested that KOR antagonists might have a wide range of indications, including the treatment of depressive, anxiety, and addictive disorders, as well as conditions characterized by co-morbidity of these disorders (e.g., post-traumatic stress disorder) A general effect of reducing the impact of stress may explain how KOR antagonists can have efficacy in such a variety of animal models that would appear to represent different disease states. OBJECTIVE Here, we review evidence that disruption of KOR function attenuates prominent effects of stress. We will describe behavioral and molecular endpoints including those from studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress itself, as well as on the effects of exogenously delivered corticotropin-releasing factor, a brain peptide that mediates key effects of stress. CONCLUSION Collectively, available data suggest that KOR disruption produces anti-stress effects and under some conditions can prevent the development of stress-induced adaptations. As such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Anxiety Disorders/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Corticotropin-Releasing Hormone/metabolism
- Dynorphins/genetics
- Dynorphins/metabolism
- Humans
- Ligands
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Ashlee Van't Veer
- Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
19
|
Anxiolytic effects of Julibroside C1 isolated from Albizzia julibrissin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:184-92. [PMID: 23481219 DOI: 10.1016/j.pnpbp.2013.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/08/2013] [Accepted: 02/21/2013] [Indexed: 11/24/2022]
Abstract
Julibroside C1 is a saponin-containing compound isolated from Albizzia julibrissin Durazz. In this study, we investigated the putative anxiolytic effects of Julibroside C1 using the elevated plus maze (EPM) in mice. Julibroside C1 at doses of 0.5 and 1 mg/kg significantly increased the time spent in the open arms and the number of entries into the open arms of the EPM compared to the control group. Moreover, the anxiolytic-like effects of Julibroside C1 (0.5 mg/kg) were blocked by WAY-100635 (5-HT1A receptor antagonist), bicuculline (GABA(A) receptor antagonist), and flumazenil (antagonist of the GABA(A) receptor benzodiazepine site). However, Julibroside C1 did not change locomotor activity or induce myorelaxant effects. We used quantitative receptor autoradiography to investigate the effects of Julibroside C1 on alterations in mouse brain receptors. After acute treatment with Julibroside C1 (0.5 mg/kg), [(3)H]-8-OH-DPAT binding was significantly decreased in the CA1 region of the hippocampus and [(3)H]-flunitrazepam binding was decreased remarkably in the cingulate cortex region. However, [(3)H]-muscimol binding did not show a significant change in any brain region. Taken together, our findings suggest that Julibroside C1 shows anxiolytic-like effects, which might be mediated by the 5-HT1A and GABA(A)-benzodiazepine receptor systems.
Collapse
|
20
|
Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci 2012; 36:195-206. [PMID: 23219016 DOI: 10.1016/j.tins.2012.11.002] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/20/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022]
Abstract
The roles of opioid receptors in pain and addiction have been extensively studied, but their function in mood disorders has received less attention. Accumulating evidence from animal research reveals that mu, delta and kappa opioid receptors (MORs, DORs and KORs, respectively) exert highly distinct controls over mood-related processes. DOR agonists and KOR antagonists have promising antidepressant potential, whereas the risk-benefit ratio of currently available MOR agonists as antidepressants remains difficult to evaluate, in addition to their inherent abuse liability. To date, both human and animal studies have mainly examined MORs in the etiology of depressive disorders, and future studies will address DOR and KOR function in established and emerging neurobiological aspects of depression, including neurogenesis, neurodevelopment, and social behaviors.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de Recherche Scientifique (CNRS), Strasbourg, France
| | | |
Collapse
|
21
|
Gonzales KL, Chapleau JD, Pierce JP, Kelter DT, Williams TJ, Torres-Reveron A, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus. Front Endocrinol (Lausanne) 2011; 2:00018. [PMID: 22468144 PMCID: PMC3316303 DOI: 10.3389/fendo.2011.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022] Open
Abstract
Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.
Collapse
Affiliation(s)
- Keith L. Gonzales
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jeanette D. Chapleau
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Joseph P. Pierce
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - David T. Kelter
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Tanya J. Williams
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD ProgramNew York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | | | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | - Teresa A. Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| |
Collapse
|
22
|
Komatsu H, Ohara A, Sasaki K, Abe H, Hattori H, Hall FS, Uhl GR, Sora I. Decreased response to social defeat stress in μ-opioid-receptor knockout mice. Pharmacol Biochem Behav 2011; 99:676-82. [PMID: 21703297 DOI: 10.1016/j.pbb.2011.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/12/2011] [Accepted: 06/08/2011] [Indexed: 01/26/2023]
Abstract
Substantial evidence exists that opioid systems are involved in stress response and that changes in opioid systems in response to stressors affect both reward and analgesia. Reportedly, mice suffering chronic social defeat stress subsequently show aversion to social contact with unfamiliar mice. To further examine the role of opioid systems in stress response, the behavioral and neurochemical effects of chronic social defeat stress (psychosocial stress) were evaluated in μ-opioid-receptor knockout (MOR-KO) mice. Aversion to social contact was induced by chronic social defeat stress in wild-type mice but was reduced in MOR-KO mice. Moreover, basal expression of brain-derived neurotrophic factor (BDNF) mRNA in MOR-KO mice hippocampi was significantly lower than in wild-type mice. Psychosocial stress significantly decreased BDNF mRNA expression in wild-type mice but did not affect BDNF expression in MOR-KO mice; no difference in basal levels of plasma corticosterone was observed. These results suggest that the μ-opioid receptor is involved in the behavioral sequelae of psychosocial stress and consequent regulation of BDNF expression in the hippocampus, and may play an important role in psychiatric disorders for which stress is an important predisposing or precipitating factor, such as depression, posttraumatic stress disorder, and social anxiety disorder.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoo JH, Bailey A, Ansonoff M, Pintar JE, Matifas A, Kieffer BL, Kitchen I. Lack of genotype effect on D1, D2 receptors and dopamine transporter binding in triple MOP-, DOP-, and KOP-opioid receptor knockout mice of three different genetic backgrounds. Synapse 2010; 64:520-7. [PMID: 20196137 DOI: 10.1002/syn.20757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated D1, D2 receptors and dopamine transporter (DAT) binding levels in mice lacking all three opioid receptors and wild-type (WT) mice on three different genetic backgrounds. Quantitative autoradiography was used to determine the level of radioligand binding to the D1 and D2 receptors and DAT labeled with [(3)H]SCH23390, [(3)H]raclopride, and [(3)H]mazindol, respectively in triple-opioid receptor knockout (KO) and WT maintained on C57BL/6 (B6) and 129/SvEvTac (129) as well as C57BL/6 x 129/SvPas (B6 x 129) strains. No significant genotype effect was observed in D1, D2 receptors and DAT binding in any regions analyzed in any of the strains studied, suggesting that a lack of all three opioid receptors does not influence D1, D2 receptors and DAT expression, irrespective of their genetic strain background. However, strain differences were observed in D1 binding between the three strains of mice studied. Lower levels of D1 binding were observed in the substantia nigra of B6 x 129 WT mice compared with the 129 WT mice and in the olfactory tubercle of B6 x 129 WT compared with B6 WT and 129 WT mice. Lower levels of D1 binding were observed in the caudate putamen of B6 x 129 KO mice compared with 129 KO mice. In contrast, no significant strain differences were observed in D2 and DAT binding between the three strains of mice in any regions analyzed. Overall, these results indicate a lack of modulation of the dopaminergic system by the deletion of all three opioid receptors regardless of different background strains.
Collapse
Affiliation(s)
- Ji-Hoon Yoo
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen G, Henter ID, Manji HK. Translational research in bipolar disorder: emerging insights from genetically based models. Mol Psychiatry 2010; 15:883-95. [PMID: 20142820 PMCID: PMC2999816 DOI: 10.1038/mp.2010.3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bipolar disorder (BPD) is characterized by vulnerability to episodic depression and mania and spontaneous cycling. Because of marked advances in candidate-gene and genome-wide association studies, the list of risk genes for BPD is growing rapidly, creating an unprecedented opportunity to understand the pathophysiology of BPD and to develop novel therapeutics for its treatment. However, genetic findings are associated with major unresolved issues, including whether and how risk variance leads to behavioral abnormalities. Although animal studies are key to resolving these issues, consensus is needed regarding how to define and monitor phenotypes related to mania, depression and mood swing vulnerability in genetically manipulated rodents. In this study we discuss multiple facets of this challenging area, including theoretical considerations, available tests, limitations associated with rodent behavioral modeling and promising molecular-behavioral findings. These include CLOCK, glycogen synthase kinase 3beta (GSK-3beta), glutamate receptor 6 (GluR6), extracellular signal-regulated kinase-1 (ERK1), p11 (or S100A10), vesicular monoamine transporter 2 (VMAT2 or SLC18A2), glucocorticoid receptors (GRs), Bcl-2-associated athanogene-1 (BAG1) and mitochondrial DNA polymerase-gamma (POLG). Some mutant rodent strains show behavioral clusters or activity patterns that cross-species phenocopy objective/observable facets of mood syndromes, and changes in these clustered behaviors can be used as outcome measures in genetic-behavioral research in BPD.
Collapse
Affiliation(s)
- G Chen
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - ID Henter
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - HK Manji
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,Johnson and Johnson Pharmaceutical Research and Development, Titusville, NJ, USA
| |
Collapse
|
25
|
Correll JA, Noel DM, Sheppard AB, Thompson KN, Li Y, Yin D, Brown RW. Nicotine sensitization and analysis of brain-derived neurotrophic factor in adolescent beta-arrestin-2 knockout mice. Synapse 2009; 63:510-9. [PMID: 19224602 DOI: 10.1002/syn.20625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotine sensitization and levels of brain-derived neurotrophic factor (BDNF) were analyzed in adolescent beta-arrestin-2 knockout (betaA-2 KO) and wild type (WT) mice. The beta-arrestin-2 protein has been shown to be important in G-protein hydrolysis and receptor internalization. Four- to five-week-old adolescent betaA-2 KO and WT C57/Bl6 mice were administered either nicotine (0.5 mg/kg free base) or saline 10 min before being placed into a locomotor arena on each of 7 (Experiment 1) or 14 (Experiment 2) consecutive days. A nicotine challenge was given 7 days after sensitization was complete. In Experiment 1, betaA-2 KO mice administered nicotine or saline and WT mice administered nicotine demonstrated significant hypoactivity during early in testing, and neither WT nor betaA-2 KO mice administered nicotine demonstrated sensitization. On the nicotine challenge, WT mice administered nicotine demonstrated significantly higher activity levels compared to all groups, and this same group demonstrated significantly higher levels of accumbal BDNF compared to all groups. In Experiment 2, betaA-2 KO mice were again hypoactive compared to WT mice, whereas WT mice administered nicotine demonstrated significant hypoactivity during initial testing and significantly higher levels of activity compared to all other groups late in testing. On the nicotine challenge, WT mice that received nicotine demonstrated a significant increase in activity compared to all groups, and showed increased accumbal BDNF compared to all groups. These results show that the beta-arrestin-2 protein is important in induction and expression of nicotine sensitization as well as nicotine's effects on accumbal BDNF.
Collapse
Affiliation(s)
- Jennifer A Correll
- Department of Psychology, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Trigo JM, Zimmer A, Maldonado R. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin. Neuropharmacology 2009; 56:1147-53. [PMID: 19376143 DOI: 10.1016/j.neuropharm.2009.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
Abstract
The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.
Collapse
Affiliation(s)
- José M Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
27
|
Bersudsky Y, Shaldubina A, Agam G, Berry GT, Belmaker RH. Homozygote inositol transporter knockout mice show a lithium-like phenotype. Bipolar Disord 2008; 10:453-9. [PMID: 18452441 DOI: 10.1111/j.1399-5618.2007.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lithium inhibits inositol monophosphatase and also reduces inositol transporter function. To determine if one or more of these mechanisms might underlie the behavioral effects of lithium, we studied inositol transporter knockout mice. We previously reported that heterozygous knockout mice with reduction of 15-37% in brain inositol had no abnormalities of pilocarpine sensitivity or antidepressant-like behavior in the Porsolt forced swim test. We now report on studies of homozygous inositol transporter knockout mice. METHODS Homozygote knockout mice were rescued by 2% inositol supplementation to the drinking water of the dam mice through pregnancy and lactation. Genotyping was carried out by polymerase chain reaction followed by agarose electrophoresis. Brain free myo-inositol levels were determined gas-chromatographically. Motor activity and coordination were assessed by the rotarod test. Behavior of the mice was studied in lithium-pilocarpine seizure models for lithium action and in the Porsolt forced swim test model for depression. RESULTS In homozygote knockout mice, free inositol levels were reduced by 55% in the frontal cortex and by 60% in the hippocampus. There were no differences in weight or motor coordination by the rotarod test. They behaved similarly to lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced swimming test model of depression. CONCLUSIONS Reduction of brain inositol more than 15-37% may be required to elicit lithium-like neurobehavioral effects.
Collapse
Affiliation(s)
- Yuly Bersudsky
- Stanley Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | |
Collapse
|
28
|
Bilkei-Gorzo A, Racz I, Michel K, Mauer D, Zimmer A, Klingmüller D, Zimmer A. Control of hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology 2008; 33:425-36. [PMID: 18280051 DOI: 10.1016/j.psyneuen.2007.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/20/2007] [Accepted: 12/23/2007] [Indexed: 12/01/2022]
Abstract
Regulations of hormonal stress responses entail the initiation, amplitude and termination of the reaction, as well as its integration with other stress response systems. This study investigates the role of endogenous opioids in the regulation and integration of behavioral, thermal and hormonal stress responses, as these neuromodulators and their receptors are expressed in limbic structures responsible for stress responses. For this purpose, we subjected mice with selective deletion of beta-endorphin, enkephalin or dynorphin to the zero-maze test, a mildly stressful situation, and registered behaviors and stress hormone levels. Behavioral stress reactivity was assessed using zero-maze, light-dark and startle-reactivity paradigms. Animals lacking enkephalin displayed increased anxiety-related behavioral responses in each three, dynorphin knockouts in two models, whereas the responses of beta-endorphin knockouts indicated lower anxiety level in the zero-maze test. All knockout strains showed marked changes in hormonal stress reactivity. Increase in ACTH level after zero-maze test situation, unlike in wild type animals, failed to reach the level of significance in Penk1(-/-) and Pdyn(-/-) mice. Corticosterone plasma levels rapidly increased in all strains, with a lower peak response in knockouts. In wild-type and beta-endorphin-deficient mice, corticosterone levels returned to baseline within 60min after stress exposure. In contrast, mice lacking dynorphin and enkephalin showed longer-lasting elevated corticosterone levels, indicating a delayed termination of the stress reaction. Importantly, the behavioral and hormonal responses correlated in wild-type but not in knockout mice. Hyperthermia elicited by stress was reduced in animals lacking dynorphin and absent in Penk1(-/-) mice, despite of the heightened behavioral anxiety level of these strains. These results demonstrate an important role on the endogenous opioid system in the integration of behavioral and hormonal stress responses.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Esmaeili B, Basseda Z, Dehpour AR. Antagonism of muscarinic M1 receptors by dicyclomine inhibits the consolidation of morphine-associated contextual memory. Brain Res Bull 2008; 76:380-7. [PMID: 18502314 DOI: 10.1016/j.brainresbull.2008.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/13/2008] [Accepted: 02/04/2008] [Indexed: 11/29/2022]
Abstract
M1 muscarinic receptor has been shown to be involved in cognitive functions of the brain. Conditioned place preference (CPP) paradigm involves memory for the association between environmental stimuli and the rewarding properties produced by a treatment. Using a balanced CPP design, we studied the possible involvement of M1 muscarinic receptors on the acquisition, expression and consolidation of morphine place conditioning in male mice. Subcutaneous administration of morphine sulphate-induced CPP in a dose-dependent manner. Using a 6-day schedule of conditioning, it was found that dicyclomine, an M1 muscarinic antagonist, significantly reduced the time spent by mice in the morphine compartment when given immediately, but not 6h, after each conditioning session (consolidation). It had no effect when administered 30 min before each conditioning session during CPP training period (acquisition) or 30 min before testing for place preference in the absence of morphine (expression). It is concluded that M1 muscarinic receptors may play a time-dependent role in the consolidation of reward-related memory of morphine.
Collapse
Affiliation(s)
- Behnaz Esmaeili
- Department of Pharmacology, School of Medicine, Medical Sciences/University of Tehran, Iran
| | | | | |
Collapse
|
30
|
Masana MI, Sumaya IC, Becker-Andre M, Dubocovich ML. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2357-67. [PMID: 17303680 DOI: 10.1152/ajpregu.00687.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports for the first time the effects of retinoid-related orphan receptors [RORbeta; receptor gene deletion RORbeta(C3H)(-/-)] in C3H/HeN mice on behavioral and circadian phenotypes. Pineal melatonin levels showed a robust diurnal rhythm with high levels at night in wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice. The RORbeta(C3H)(-/-) mice displayed motor ("duck gait," hind paw clasping reflex) and olfactory deficits, and reduced anxiety and learned helplessness-related behaviors. Circadian rhythms of wheel-running activity in all genotypes showed entrainment to the light-dark (LD) cycle, and free running in constant dark, with RORbeta(C3H)(-/-) mice showing a significant increase in circadian period (tau). Melatonin administration (90 microg/mouse sc for 3 days) at circadian time (CT) 10 induced phase advances, while exposure to a light pulse (300 lux) at CT 14 induced phase delays of circadian activity rhythms of the same magnitude in all genotypes. In RORbeta(C3H)(-/-) mice a light pulse at CT 22 elicited a larger phase advance in activity rhythms and a slower rate of reentrainment after a 6-h advance in the LD cycle compared with (+/+) mice. Yet, the rate of reentrainment was significantly advanced by melatonin administration at the new dark onset in both (+/+) and (-/-) mice. We conclude that the RORbeta nuclear receptor is not involved in either the rhythmic production of pineal melatonin or in mediating phase shifts of circadian rhythms by melatonin, but it may regulate clock responses to photic stimuli at certain time domains.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Adaptation, Physiological/radiation effects
- Animals
- Behavior, Animal/physiology
- Behavior, Animal/radiation effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Dose-Response Relationship, Radiation
- Light
- Melatonin/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Pineal Gland/metabolism
- Pineal Gland/radiation effects
- Radiation Dosage
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Monica I Masana
- Department of Molecular Pharmacology and Biological Chemistry Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|
31
|
Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B. Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience 2006; 141:67-76. [PMID: 16677771 DOI: 10.1016/j.neuroscience.2006.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
The nucleus accumbens may play a role in acquisition and expression of behavioral depression as measured using the inescapable swim test. Previous work shows that a local injection of a cholinergic muscarinic-1 receptor agonist increases immobility and a specific muscarinic-1 antagonist acts as an antidepressant-like drug by increasing swimming escape efforts. The present study used microdialysis to monitor extracellular acetylcholine levels in the accumbens, fluorescent labeled toxins to monitor changes in acetylcholinesterase and muscarinic-1 receptors, and semiquantitative-polymerase chain reaction to detect changes in gene expression for the muscarinic-1 receptor. Microdialysis showed that acetylcholine levels did not change while an animal was swimming; however, a significant transient decrease occurred when the rat was returned to the dialysis cage, followed by a long-lasting increase that reached a maximum three hours after the test. Acetylcholine levels stayed high even 24 h after the initial test as evidenced by a significant elevation in basal level prior to the second swim. This increase in neurotransmitter may have been partially compensated by a significant increase in the degradative enzyme, acetylcholinesterase, and by a decrease in muscarinic-1 receptors and their gene expression. These results further demonstrate the importance of accumbens cholinergic function in the appearance of a depression-like state.
Collapse
Affiliation(s)
- P Rada
- Laboratory of Behavioral Physiology, Medical School, University of Los Andes, Merida, Venezuela.
| | | | | | | | | |
Collapse
|
32
|
Yoo HK, Kim MJ, Kim SJ, Sung YH, Sim ME, Lee YS, Song SY, Kee BS, Lyoo IK. Putaminal gray matter volume decrease in panic disorder: an optimized voxel-based morphometry study. Eur J Neurosci 2005; 22:2089-94. [PMID: 16262646 DOI: 10.1111/j.1460-9568.2005.04394.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Our study aimed to identify gray matter volume differences between panic disorder patients and healthy volunteers using optimized voxel-based morphometry. Gray matter volume was compared between 18 panic subjects and 18 healthy volunteers. Panic disorder severity scale (PDSS) and Zung self-rating anxiety scale (Z-SAS) were administered. Gray matter volumes of bilateral putamen were decreased in panic subjects relative to healthy comparison subjects (corrected P < 0.05). Decreased gray matter volume was also observed in the right precuneus, right inferior temporal gyrus, right inferior frontal gyrus, left superior temporal gyrus, and left superior frontal gyrus at a less conservative level of significance. PDSS score negatively correlated with gray matter volume in the left putamen, right putamen, right inferior frontal gyrus, and left superior frontal gyrus in panic subjects. The duration of illness negatively correlated with left putaminal gray matter volume. There was also a negative correlation between gray matter volume in right putamen and Z-SAS score in panic subjects. The current study reports a putaminal gray matter volume decrease in panic subjects, which may be related to the clinical severity of panic disorder.
Collapse
Affiliation(s)
- Hanik K Yoo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|