1
|
de Miranda AS, Macedo DS, Sanders LLO, Monte AS, Soares MVR, Teixeira AL. Unraveling the role of the renin-angiotensin system in severe mental illnesses: An insight into psychopathology and cognitive deficits. Cell Signal 2024; 124:111429. [PMID: 39306262 DOI: 10.1016/j.cellsig.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Severe mental illnesses (SMI), especially schizophrenia and bipolar disorder (BD), are associated with significant distress to patients, reduced life expectancy and a higher cost of care. There is growing evidence that SMI may increase the risk of dementia in later life, posing an additional challenge in the management of these patients. SMI present a complex and highly heterogeneous pathophysiology, which has hampered the understanding of its underlying pathological mechanisms and limited the success of the available therapies. Despite the advances in therapeutic approaches in psychiatry over the past decades, treatment resistance is still a common problem in clinical practice, highlighting the urgent need for novel therapeutic targets for SMI. The discovery that renin-angiotensin system (RAS) components are expressed in the central nervous system opened new possibilities for investigating a potential role for this system in the neurobiology of SMI. The safety and efficacy of AT1 receptor blockers and angiotensin-converting enzyme inhibitors in cardiovascular and metabolic diseases, common medical comorbidities among SMI patients and well-known risk factors for dementia, suggest the potential scalability of these strategies for the management of SMI outcomes including the risk of subsequent dementia. This review aimed to discuss the available evidence from animal models and human studies of the potential involvement of RAS in the pathophysiology of SMI. We also provided a reflection on drawbacks and perspectives that can foster the development of new related therapeutic strategies.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil; Centro Universitário Christus-Unichristus, Fortaleza, Brazil
| | - Aline S Monte
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony - UNILAB, Redenção, Brazil
| | - Michelle Verde Ramo Soares
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Moore GJ, Ridway H, Gadanec LK, Apostolopoulos V, Zulli A, Swiderski J, Kelaidonis K, Vidali VP, Matsoukas MT, Chasapis CT, Matsoukas JM. Structural Features Influencing the Bioactive Conformation of Angiotensin II and Angiotensin A: Relationship between Receptor Desensitization, Addiction, and the Blood-Brain Barrier. Int J Mol Sci 2024; 25:5779. [PMID: 38891966 PMCID: PMC11171751 DOI: 10.3390/ijms25115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine) not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII, allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis. Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent desensitization or resensitization. These considerations have provided information on the mechanisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction. In this regard sartans, which appear to cross the blood-brain barrier more readily than bisartans, are the preferred drug candidates.
Collapse
Affiliation(s)
- Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Harry Ridway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Jordan Swiderski
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - John M. Matsoukas
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- NewDrug/NeoFar PC, Patras Science Park, 26504 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Basmadjian OM, Occhieppo VB, Montemerlo AE, Rivas GA, Rubianes MD, Baiardi G, Bregonzio C. Angiotensin II involvement in the development and persistence of amphetamine-induced sensitization: Striatal dopamine reuptake implications. Eur J Neurosci 2024; 59:2450-2464. [PMID: 38480476 DOI: 10.1111/ejn.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María D Rubianes
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Cabrera RJ, Baiardi L, Bregonzio C. AT1 Receptor as a Potential Target in Amphetamine-induced Neuroinflammation. Protein Pept Lett 2022; 29:371-374. [DOI: 10.2174/0929866529666220330154218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ricardo Jorge Cabrera
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Mendoza, IMBECU–CONICET, Paseo Dr.
Emilio Descotte 720, 5500 Mendoza, Argentina
| | - Lucia Baiardi
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| |
Collapse
|
5
|
Schizophrenia-like endurable behavioral and neuroadaptive changes induced by ketamine administration involve Angiotensin II AT 1 receptor. Behav Brain Res 2022; 425:113809. [PMID: 35218792 DOI: 10.1016/j.bbr.2022.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a chronic disease affecting 1% worldwide population, of which 30% are refractory to the available treatments: thus, searching for new pharmacological targets is imperative. The acute and repeated ketamine administration are validated preclinical models that recreate the behavioral and neurochemical features of this pathology, including the parvalbumin-expressing interneurons dysfunction. Angiotensin II, through AT1 receptors (AT1-R), modulates the dopaminergic and GABAergic neurotransmission. We evaluated the AT1-R role in the long-term neuronal activation and behavioral alterations induced by repeated ketamine administration. Adult male Wistar rats received AT1-R antagonist candesartan/vehicle (days 1-10) and ketamine/saline (days 6-10). After 14 days of drug-free, neuronal activation and behavioral analysis were performed. Locomotor activity, social interaction and novel object recognition tests were assessed at basal conditions or after ketamine challenge. Immunostaining for c-Fos, GAD67 and parvalbumin were assessed after ketamine challenge in cingulate, insular, piriform, perirhinal, and entorhinal cortices, striatum, and hippocampus. Additionally, to evaluate the AT1-R involvement in acute ketamine psychotomimetic effects, the same behavioral tests were performed after 6 days of daily-candesartan and a single-ketamine administration. We found that ketamine-induced long-lasting schizophrenia-like behavioral alterations, and regional-dependent neuronal activation changes, involving the GABAergic neurotransmission system and the parvalbumin-expressing interneurons, were AT1-R-dependent. The AT1-R were not involved in the acute ketamine psychotomimetic effects. These results add new evidence to the wide spectrum of action of ketamine and strengthen the AT1-R involvement in endurable alterations induced by psychostimulants administration, previously proposed by our group, as well as their preponderant role in the development of psychiatric pathologies.
Collapse
|
6
|
Basmadjian OM, Occhieppo VB, Marchese NA, Silvero C MJ, Becerra MC, Baiardi G, Bregonzio C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT 1-R. Front Pharmacol 2021; 12:647747. [PMID: 34012397 PMCID: PMC8126693 DOI: 10.3389/fphar.2021.647747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Amphetamine (AMPH) alters neurons, glia and microvessels, which affects neurovascular unit coupling, leading to disruption in brain functions such as attention and working memory. Oxidative stress plays a crucial role in these alterations. The angiotensin type I receptors (AT1-R) mediate deleterious effects, such as oxidative/inflammatory responses, endothelial dysfunction, neuronal oxidative damage, alterations that overlap with those observed from AMPH exposure. Aims: The aim of this study was to evaluate the AT1-R role in AMPH-induced oxidative stress and glial and vascular alterations in the prefrontal cortex (PFC). Furthermore, we aimed to evaluate the involvement of AT1-R in the AMPH-induced short-term memory and working memory deficit. Methods: Male Wistar rats were repeatedly administered with the AT1-R blocker candesartan (CAND) and AMPH. Acute oxidative stress in the PFC was evaluated immediately after the last AMPH administration by determining lipid and protein peroxidation. After 21 off-drug days, long-lasting alterations in the glia, microvessel architecture and to cognitive tasks were evaluated by GFAP, CD11b and von Willebrand immunostaining and by short-term and working memory assessment. Results: AMPH induced acute oxidative stress, long-lasting glial reactivity in the PFC and a working memory deficit that were prevented by AT1-R blockade pretreatment. Moreover, AMPH induces transient angiogenesis in PFC via AT1-R. AMPH did not affect short-term memory. Conclusion: Our results support the protective role of AT1-R blockade in AMPH-induced oxidative stress, transient angiogenesis and long-lasting glial activation, preserving working memory performance.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Occhieppo VB, Basmadjian OM, Marchese NA, Silvero C MJ, Rodríguez A, Armonelli S, Becerra MC, Baiardi G, Bregonzio C. AT 1 -R is involved in the development of long-lasting, region-dependent and oxidative stress-independent astrocyte morphological alterations induced by Ketamine. Eur J Neurosci 2020; 54:5705-5716. [PMID: 32320503 DOI: 10.1111/ejn.14756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023]
Abstract
Astrocytes play an essential role in the genesis, maturation and regulation of the neurovascular unit. Multiple evidence support that astrocyte reactivity has a close relationship to neurovascular unit dysfunction, oxidative stress and inflammation, providing a suitable scenario for the development of mental disorders. Ketamine has been proposed as a single-use antidepressant treatment in major depression, and its antidepressant effects have been associated with anti-inflammatory properties. However, Ketamine long-lasting effects over the neurovascular unit components remain unclear. Angiotensin II AT1 receptor (AT1 -R) blockers have anti-inflammatory, antioxidant and neuroprotective effects. The present work aims to distinguish the acute and long-term Ketamine effects over astrocytes response extended to other neurovascular unit components, and the involvement of AT1 -R, in prefrontal cortex and ventral tegmental area. Male Wistar rats were administered with AT1 -R antagonist Candesartan/Vehicle (days 1-10) and Ketamine/Saline (days 6-10). After 14 days drug-free, at basal conditions or after Ketamine Challenge, the brains were processed for oxidative stress analysis, cresyl violet staining and immunohistochemistry for glial, neuronal activation and vascular markers. Repeated Ketamine administration induced long-lasting region-dependent astrocyte reactivity and morphological alterations, and neuroadaptative changes observed as exacerbated oxidative stress and neuronal activation, prevented by the AT1 -R blockade. Ketamine Challenge decreased microglial and astrocyte reactivity and augmented cellular apoptosis, independently of previous treatment. Overall, AT1 -R is involved in the development of neuroadaptative changes induced by repeated Ketamine administration but does not interfere with the acute effects supporting the potential use of AT1 -R blockers as a Ketamine complementary therapy in mental disorders.
Collapse
Affiliation(s)
- Victoria B Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo M Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Jazmin Silvero C
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Anahí Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Samanta Armonelli
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Becerra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET) Universidad Nacional de Córdoba Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Hurley SW, Beltz TG, Guo F, Xue B, Johnson AK. Amphetamine-induced sensitization of hypertension and lamina terminalis neuroinflammation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R649-R656. [PMID: 32048863 DOI: 10.1152/ajpregu.00233.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psychomotor stimulants are prescribed for many medical conditions, including obesity, sleep disorders, and attention-deficit/hyperactivity disorder. However, despite their acknowledged therapeutic utility, these stimulants are frequently abused, and their use can have both short- and long-term negative consequences. Although stimulants such as amphetamines acutely elevate blood pressure, it is unclear whether they cause any long-term effects on cardiovascular function after use has been discontinued. Previous work in our laboratory has demonstrated that physiological and psychosocial stressors will produce sensitization of the hypertensive response, a heightened pressor response to a hypertensinogenic stimulus delivered after stressor exposure. Here, we tested whether pretreatment with amphetamine for 1 wk can sensitize the hypertensive response in rats. We found that repeated amphetamine administration induced and maintained sensitization of the pressor response to angiotensin II following a 7-day delay after amphetamine injections were terminated. We also found that amphetamine pretreatment altered mRNA expression for molecular markers associated with neuroinflammation and renin-angiotensin-aldosterone system (RAAS) activation in the lamina terminalis, a brain region implicated in the control of sympathetic nervous system tone and blood pressure. The results indicated amphetamine upregulated mRNA expression underlying neuroinflammation and, to a lesser degree, message for components of the RAAS in the lamina terminalis. However, we found no changes in mRNA expression in the paraventricular nucleus. These results suggest that a history of stimulant use may predispose individuals to developing hypertension by promoting neuroinflammation and upregulating activity of the RAAS in the lamina terminalis.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.,Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa.,The François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Marchese NA, Occhieppo VB, Basmadjian OM, Casarsa BS, Baiardi G, Bregonzio C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur J Neurosci 2019; 51:1026-1041. [PMID: 31646669 DOI: 10.1111/ejn.14605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Amphetamine-induced neuroadaptations involve vascular damage, neuroinflammation, a hypo-functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1 -R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1 -R in the development of amphetamine-induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1 -R antagonist, candesartan, followed by repeated amphetamine. After one week drug-off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine-induced alterations were prevented by the AT1 -R blockade. Our results support the AT1 -R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Belén Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Solange Casarsa
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, Kong J, Luo L, Long H, Guo W, Tian J, Zhao Y, Cen X. Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Neurotherapeutics 2018; 15:500-510. [PMID: 29464572 PMCID: PMC5935642 DOI: 10.1007/s13311-018-0613-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methamphetamine (METH) abuse has become a major public health concern worldwide without approved pharmacotherapies. The brain renin-angiotensin system (RAS) is involved in the regulation of neuronal function as well as neurological disorders. Angiotensin II (Ang II), which interacts with Ang II type 1 receptor (AT1-R) in the brain, plays an important role as a neuromodulator in dopaminergic transmission. However, the role of brain RAS in METH-induced behavior is largely unknown. Here, we revealed that repeated METH administration significantly upregulated the expression of AT1-R in the striatum of mice, but downregulated dopamine D3 receptor (D3R) expression. A specific AT1-R blocker telmisartan, which can penetrate the brain-blood barrier (BBB), or genetic deletion of AT1-R was sufficient to attenuate METH-triggered hyperlocomotion in mice. However, intraperitoneal injection of AT1-R blocker losartan, which cannot penetrate BBB, failed to attenuate METH-induced behavior. Moreover, intra-striatum re-expression of AT1 with lentiviral virus expressing AT1 reversed the weakened locomotor activity of AT1-/- mice treated with METH. Losartan alleviated METH-induced cytotoxicity in SH-SY5Y cells in vitro, which was accompanied by upregulated expressions of D3R and dopamine transporter. In addition, intraperitoneal injection of perindopril, which is a specific ACE inhibitor and can penetrate BBB, significantly attenuated METH-induced hyperlocomotor activity. Collectively, our results show that blockade of brain RAS attenuates METH-induced hyperlocomotion and neurotoxicity possibly through modulation of D3R expression. Our findings reveal a novel role of Ang II-AT1-R in METH-induced hyperlocomotion.
Collapse
Affiliation(s)
- Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xue Shao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Jueying Kong
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Li Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, 264003, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai, 264003, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu, 610041, China.
| |
Collapse
|
11
|
Occhieppo VB, Marchese NA, Rodríguez ID, Basmadjian OM, Baiardi G, Bregonzio C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1receptor activation. Eur J Neurosci 2017; 45:1586-1593. [DOI: 10.1111/ejn.13594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Victoria Belén Occhieppo
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Iara Diamela Rodríguez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología (IIBYT-CONICET); Universidad Nacional de Córdoba Facultad de Ciencias Químicas; Universidad Católica de Córdoba; Córdoba Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología; Facultad de Ciencias Químicas Universidad Nacional de Córdoba; Edificio Nuevo de Ciencias I Ciudad Universitaria Córdoba; Haya de la Torre S/N, esquina Medina Allende Córdoba Argentina
| |
Collapse
|
12
|
Marchese NA, Paz MC, Caeiro X, Dadam FM, Baiardi G, Perez MF, Bregonzio C. Angiotensin II AT 1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine. Neuroscience 2016; 340:521-529. [PMID: 27856342 DOI: 10.1016/j.neuroscience.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022]
Abstract
A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output.
Collapse
Affiliation(s)
- N A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M C Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET) Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M F Perez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
13
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
14
|
Verrico CD, Haile CN, De La Garza R, Grasing K, Kosten TR, Newton TF. Subjective and Cardiovascular Effects of Intravenous Methamphetamine during Perindopril Maintenance: A Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2016; 19:pyw029. [PMID: 27207905 PMCID: PMC4966279 DOI: 10.1093/ijnp/pyw029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our pilot study suggested that the angiotensin-converting enzyme inhibitor perindopril might reduce some subjective effects produced by i.v. methamphetamine. We characterized the impact of a wider range of perindopril doses on methamphetamine-induced effects in a larger group of non-treatment-seeking, methamphetamine-using volunteers. METHODS Before treatment, participants received 30mg methamphetamine. After 5 to 7 days of perindopril treatment (0, 4, 8, or 16mg/d), participants received 15 and 30mg of methamphetamine on alternate days. Before and after treatment, participants rated subjective effects and cardiovascular measures were collected. RESULTS Prior to treatment with perindopril, there were no significant differences between treatment groups on maximum or peak subjective ratings or on peak cardiovascular effects. Following perindopril treatment, there were significant main effects of treatment on peak subjective ratings of "anxious" and "stimulated"; compared to placebo treatment, treatment with 8mg perindopril significantly reduced peak ratings of both anxious (P=.0009) and stimulated (P=.0070). There were no significant posttreatment differences between groups on peak cardiovascular effects. CONCLUSIONS Moderate doses of perindopril (8mg) significantly reduced peak subjective ratings of anxious and stimulated as well as attenuated many other subjective effects produced by methamphetamine, likely by inhibiting angiotensin II synthesis. Angiotensin II is known to facilitate the effects of norepinephrine, which contributes to methamphetamine's subjective effects. The lack of a classic dose-response function likely results from either nonspecific effects of perindopril or from between-group differences that were not accounted for in the current study (i.e., genetic variations and/or caffeine use). The current findings suggest that while angiotensin-converting enzyme inhibitors can reduce some effects produced by methamphetamine, more consistent treatment effects might be achieved by targeting components of the renin-angiotensin system that are downstream of angiotensin-converting enzyme.
Collapse
Affiliation(s)
- Christopher D Verrico
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing).
| | - Colin N Haile
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Richard De La Garza
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Kenneth Grasing
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| | - Thomas F Newton
- Menninger Department of Psychiatry and Behavioral Sciences (Drs Verrico, Haile, De La Garza, Kosten, and Newton), Department of Pharmacology (Drs Verrico, De La Garza, Kosten, and Newton), and Department of Neuroscience (Drs De La Garza and Kosten), Baylor College of Medicine, Houston, TX; Department of Veterans Affairs Medical Center, Kansas City, Missouri (Dr Grasing); University of Kansas School of Medicine, Kansas City, Missouri (Dr Grasing)
| |
Collapse
|
15
|
Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain Angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology (Berl) 2016; 233:795-807. [PMID: 26613735 DOI: 10.1007/s00213-015-4153-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023]
Abstract
RATIONALE Angiotensin II, by activation of its brain AT1-receptors, plays an active role as neuromodulator in dopaminergic transmission. These receptors participate in the development of amphetamine-induced behavioral and dopamine release sensitization. Dopamine is involved in cognitive processes and provides connectivity between brain areas related to these processes. Amphetamine by its mimetic activity over dopamine neurotransmission elicits differential responses after acute administration or after re-exposure following long-term withdrawal periods in different cognitive processes. OBJECTIVE The purpose of this study is to evaluate the AT1-receptor involvement in the acute and long-term amphetamine-induced alterations in long-term memory and in cellular-related events. METHODS Male Wistar rats (250-300 g) were used in this study. Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was administered after post-training in the inhibitory avoidance (IA) response. The AT1-receptor blocker Losartan was administered i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.). Long-term effects: The AT1-receptors blocker Candesartan (3 mg/kg p.o.) was administered for 5 days followed by 5 consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The neuroadaptive changes were evidenced after 1 week of withdrawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA response, the neuronal activation pattern, and the hippocampal synaptic transmission were evaluated. RESULTS The impairing effect in the IA response of post-training acute amphetamine was partially prevented by Losartan. The long-term changes induced by repeated amphetamine (resistance to acute amphetamine interference in the IA response, neurochemical altered response, and increased hippocampal synaptic transmission) were prevented by AT1-receptors blockade. CONCLUSIONS AT1-receptors are involved in the acute alterations and in the neuroadaptations induced by repeated amphetamine associated with neurocognitive processes.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emilce Artur de laVillarmois
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Fernanda Perez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET) Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Stankiewicz AM, Goscik J, Dyr W, Juszczak GR, Ryglewicz D, Swiergiel AH, Wieczorek M, Stefanski R. Novel candidate genes for alcoholism--transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of Warsaw alcohol-preferring and non-preferring rats. Pharmacol Biochem Behav 2015; 139:27-38. [PMID: 26455281 DOI: 10.1016/j.pbb.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wanda Dyr
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Danuta Ryglewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA71130, USA.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Roman Stefanski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
17
|
Casarsa BS, Marinzalda MÁ, Marchese NA, Paz MC, Vivas L, Baiardi G, Bregonzio C. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience 2015; 307:1-13. [PMID: 26299338 DOI: 10.1016/j.neuroscience.2015.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/29/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED Previous results from our laboratory showed that angiotensin II AT1 receptors (AT1-R) are involved in the neuroadaptative changes induced by amphetamine. The aim of the present work was to study functional and neurochemical responses to angiotensin II (ANG II) mediated by AT1-R activation in animals previously exposed to amphetamine. For this purpose male Wistar rats (250-320 g) were treated with amphetamine (2.5mg/kg/day intraperitoneal) or saline for 5 days and implanted with intracerebroventricular (i.c.v.) cannulae. Seven days after the last amphetamine administration the animals received ANG II (400 pmol) i.c.v. One group was tested in a free choice paradigm for sodium (2% NaCl) and water intake and sacrificed for Fos immunoreactivity (Fos-IR) determinations. In a second group of rats, urine and plasma samples were collected for electrolytes and plasma renin activity determination and then they were sacrificed for Fos-IR determination in Oxytocinergic neurons (Fos-OT-IR). RESULTS Repeated amphetamine exposure (a) prevented the increase in sodium intake and Fos-IR cells in caudate-putamen and accumbens nucleus induced by ANG II i.c.v. (b) potentiated urinary sodium excretion and Fos-OT-IR in hypothalamus and (c) increased the inhibitory response in plasma renin activity, in response to ANG II i.c.v. Our results indicate a possible functional desensitisation of AT1-R in response to ANG II, induced by repeated amphetamine exposure. This functional AT1-R desensitisation allows to unmask the effects of ANG II i.c.v. mediated by oxytocin. We conclude that the long lasting changes in brain AT1-R functionality should be considered among the psychostimulant-induced neuroadaptations.
Collapse
Affiliation(s)
- B S Casarsa
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M Á Marinzalda
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - N A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M C Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Baiardi
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - C Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
18
|
Neural Plasticity in Common Forms of Chronic Headaches. Neural Plast 2015; 2015:205985. [PMID: 26366304 PMCID: PMC4558449 DOI: 10.1155/2015/205985] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/02/2015] [Indexed: 01/03/2023] Open
Abstract
Headaches are universal experiences and among the most common disorders. While headache may be physiological in the acute setting, it can become a pathological and persistent condition. The mechanisms underlying the transition from episodic to chronic pain have been the subject of intense study. Using physiological and imaging methods, researchers have identified a number of different forms of neural plasticity associated with migraine and other headaches, including peripheral and central sensitization, and alterations in the endogenous mechanisms of pain modulation. While these changes have been proposed to contribute to headache and pain chronification, some findings are likely the results of repetitive noxious stimulation, such as atrophy of brain areas involved in pain perception and modulation. In this review, we provide a narrative overview of recent advances on the neuroimaging, electrophysiological and genetic aspects of neural plasticity associated with the most common forms of chronic headaches, including migraine, cluster headache, tension-type headache, and medication overuse headache.
Collapse
|
19
|
Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, Cancela LM, Bregonzio C. Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res 2014; 272:314-23. [PMID: 25046593 DOI: 10.1016/j.bbr.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
A single or repeated exposure to psychostimulants induces long-lasting neuroadaptative changes. Different neurotransmitter systems are involved in these responses including the neuropeptide angiotensin II. Our study tested the hypothesis that the neuroadaptative changes induced by amphetamine produce alterations in brain RAS components that are involved in the expression of the locomotor sensitization to the psychostimulant drug. Wistar male rats, pretreated with amphetamine were used 7 or 21 days later to study AT1 receptors by immunohistochemistry and western blot and also angiotensinogen mRNA and protein in caudate putamen and nucleus accumbens. A second group of animals was used to explore the possible role of Ang II AT1 receptors in the expression of behavioral sensitization. In these animals treated in the same way, bearing intra-cerebral cannula, the locomotor activity was tested 21 days later, after an amphetamine challenge injection and the animals received an AT1 blocker, losartan, or saline 5min before the amphetamine challenge. An increase of AT1 receptor density induced by amphetamine was found in both studied areas and a decrease in angiotensinogen mRNA and protein only in CPu at 21 days after treatment; meanwhile, no changes were established in NAcc. Finally, the increased locomotor activity induced by amphetamine challenge was blunted by losartan administration in CPu. No differences were detected in the behavioral sensitization when the AT1 blocker was injected in NAcc. Our results support the hypothesis of a key role of brain RAS in the neuroadaptative changes induced by amphetamine.
Collapse
Affiliation(s)
- Maria Constanza Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Natalia Andrea Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Maria Mercedes Stroppa
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, Argentina
| | | | - Hans Imboden
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT- CONICET), Universidad Nacional de Córdoba. Facultad de Ciencias Quimicas, Universidad Católica de Córdoba
| | - Liliana Marina Cancela
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
20
|
Hutchinson AJ, Ma J, Liu J, Hudson RL, Dubocovich ML. Role of MT1 melatonin receptors in methamphetamine-induced locomotor sensitization in C57BL/6 mice. Psychopharmacology (Berl) 2014; 231:257-67. [PMID: 23934259 PMCID: PMC4696604 DOI: 10.1007/s00213-013-3228-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 07/26/2013] [Indexed: 02/07/2023]
Abstract
RATIONALE Melatonin modifies physiological and behavioral responses to psychostimulants, with the MT₁ and MT₂ melatonin receptors specifically implicated in facilitating methamphetamine (METH)-induced sensitization in melatonin-proficient mice. OBJECTIVE The objective of the study is to assess differences in locomotor sensitization after a single dose of methamphetamine in low-melatonin-expressing C57BL/6 wild-type and MT₁ receptor knockout (MT₁KO) mice, comparing with melatonin-expressing C3H/HeN mice. METHODS Mice received a vehicle or methamphetamine (1.2 mg/kg, i.p.) pretreatment (day 1) during the light (ZT5-9) or dark (ZT 19-21) periods in novel test arenas. Locomotor sensitization was assessed by methamphetamine challenge after an eight-day abstinence (day 9). TH protein expression was evaluated by immunofluorescence and Western blot analysis. RESULTS Methamphetamine pretreatment induced statistically significant locomotor sensitization upon challenge after eight-day abstinence in C3H and C57 wild-type mice during the light period. The magnitude of sensitization in C57 mice was diminished in the dark period and completely abrogated in MT₁KO mice. No differences were observed in tyrosine hydroxylase immunoreactivity in the mesolimbic dopamine system. Additional exposures to the test arenas after methamphetamine pretreatment (nights 2-6) enhanced sensitization. CONCLUSIONS Deletion of the MT₁ melatonin receptor abolishes sensitization induced by a single METH pretreatment. The magnitude of sensitization is also altered by time of day and contextual cues. We conclude that the MT₁ melatonin receptor is emerging as a novel target of therapeutic intervention for drug abuse disorders.
Collapse
Affiliation(s)
- Anthony J. Hutchinson
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, 3435 Main Street, University at Buffalo, Buffalo, NY 14221
| | - Jason Ma
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, 3435 Main Street, University at Buffalo, Buffalo, NY 14221
| | - Jiabei Liu
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, 3435 Main Street, University at Buffalo, Buffalo, NY 14221
| | - Randall L. Hudson
- Department of Physiology & Biophysics, School of Medicine and Biomedical Sciences, 3435 Main Street, University at Buffalo, Buffalo, NY 14221
| | - Margarita L. Dubocovich
- Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, 3435 Main Street, University at Buffalo, Buffalo, NY 14221
- Corresponding Author. Margarita L. Dubocovich, Ph.D., Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, 3435 Main Street (Farber Hall 102), University at Buffalo; Buffalo, NY 14221, Phone: 1-716-829-3048, Fax: 1-716-829-2801,
| |
Collapse
|
21
|
Angiotensin II AT₁ receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. BIOMED RESEARCH INTERNATIONAL 2013; 2013:534817. [PMID: 24089683 PMCID: PMC3780567 DOI: 10.1155/2013/534817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022]
Abstract
It was already found that Ang II AT1 receptors are involved in the neuroadaptative changes induced by a single exposure to amphetamine, and such changes are related to the development of behavioral and neurochemical sensitization. The induction of the immediately early gene c-fos has been used to define brain activated areas by amphetamine. Our aim was to evaluate the participation of AT1 receptors in the neuronal activation induced by amphetamine sensitization. The study examined the c-fos expression in mesocorticolimbic areas induced by amphetamine challenge (0.5 mg/kg i.p) in animals pretreated with candesartan, a selective AT1 receptor blocker (3 mg/kg p.o × 5 days), and amphetamine (5 mg/kg i.p) 3 weeks before the challenge. Increased c-fos immunoreactivity was found in response to the amphetamine challenge in the dorsomedial caudate-putamen and nucleus accumbens, and both responses were blunted by the AT1 receptor blocker pretreatment. In the infralimbic prefrontal cortex, increased c-fos immunoreactivity was found in response to amphetamine and saline challenge, and both were prevented by the AT1 receptor blocker. No differences were found neither in ventral tegmental area nor prelimbic cortex between groups. Our results indicate an important role for brain Ang II in the behavioral and neuronal sensitization induced by amphetamine.
Collapse
|
22
|
de Góis Queiroz AI, Medeiros CD, Ribeiro BMM, de Lucena DF, Macêdo DS. Angiotensin receptor blockers for bipolar disorder. Med Hypotheses 2012; 80:259-63. [PMID: 23265360 DOI: 10.1016/j.mehy.2012.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
Abstract
Studies have suggested that the brain renin angiotensin system (RAS) regulates cerebral flow, autonomic and hormonal systems, stress, innate immune response and behavior, being implicated in several brain disorders such as major depression, Parkinson's and Alzheimer's disease. The angiotensin II receptor subtype 1 (AT1R) is distributed in brain regions responsible for the control of stress response through peripheral and central sympathetic hyperactivation as well as in the hypothalamic paraventricular region, areas known for the release of several neurotransmitters related to inflammatory response facilitation. This relationship leads to the assumption that AT1R might be the receptor most related to the central deleterious actions of angiotensin II. New evidences from clinical studies have shown a possible role for RAS in the pathogenesis of bipolar disorder (BD), a multifactorial disorder with acknowledged presence of neuronal damage via oxidative stress in brain areas such as hippocampus, prefrontal cortex and striatum. Given the studies highlighting AT1R activation as a central pro-inflammatory pathway and, conversely, the involvement of inflammatory response in the pathogenesis of BD; this paper hypothesizes the use of AT1R antagonists for BD management and prevention of its neuroprogression, due to their anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Ana Isabelle de Góis Queiroz
- Neuropharmacology Laboratory, Postgraduate Pharmacology Program, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | |
Collapse
|
23
|
Di Lorenzo C, Coppola G, Currà A, Grieco G, Santorelli FM, Lepre C, Porretta E, Pascale E, Pierelli F. Cortical response to somatosensory stimulation in medication overuse headache patients is influenced by angiotensin converting enzyme (ACE) I/D genetic polymorphism. Cephalalgia 2012; 32:1189-97. [PMID: 23053304 DOI: 10.1177/0333102412461890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Medication overuse headache (MOH) is a disabling health problem. Convincing evidence attributes a pathophysiologic role to central sensitization. By recording somatosensory evoked potentials (SSEPs) in patients with MOH, we observed increased sensitization and deficient habituation to repetitive sensory stimuli consistent with drug overuse. The renin-angiotensin system in the brain seems to play a relevant role in neural plasticity and dependence behavior. We therefore sought differences in SSEP sensitization and habituation in patients with MOH who underwent angiotensin converting enzyme (ACE) I/D polymorphism analysis. METHODS We recorded median-nerve SSEPs (two blocks of 100 sweeps) in 43 patients with MOH. We measured N20-P25 amplitudes, and assessed sensitization using the first block amplitudes, and habituation using amplitude changes between the two sequential blocks. According to their genotype, subjects were divided into three groups: "D/D", "D/I" and "I/I" carriers. RESULTS The habituation slope of the two SSEP block amplitudes was significantly increased in the D/D subgroup (n = 16) with respect to that of the I/I subgroup (n = 6), with the D/I subgroup (n = 21) falling in between. In D/D carriers, the habituation slope correlated positively with the duration of the overuse headache, and the first SSEP block amplitudes, a measure of sensitization, increased in strict relationship with the type of overused medication in the MOH patients overall and in the D/D subgroup; this was not so in the D/I and I/I subgroups. CONCLUSION In patients with MOH, the homozygote D/D ACE polymorphism influences habituation and sensitization to repeated sensory stimuli in strict relationship with medication overuse. We suggest that angiotensin peptides influence neuronal mechanisms of plasticity by interacting with central monoaminergic synaptic transmission.
Collapse
|