1
|
Yeh SHH, Tsai CJ, Yu TH, Chiang YH, Lin SZ, Peng NJ, Huang WS. 99mTc-TRODAT-1 SPECT Revealed That Striatal Dopamine Transport Availability Significantly Decreases in Late Mid-Aged Healthy Taiwanese and Then Remains Stable. Clin Nucl Med 2022; 47:201-208. [PMID: 35081059 PMCID: PMC8820763 DOI: 10.1097/rlu.0000000000004063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Neuroimaging studies in the past 20 years have documented an age-related decline in striatal dopamine transporters (DATs), which is a marker of dopaminergic neurodegeneration; however, concerns about ethnic variations in the decline in DAT with age have not been addressed. The purpose of this study was to assess the rate of striatal DAT loss in healthy Taiwanese adults using kit-based 99mTc-TRODAT-1, a radioligand for DAT SPECT. PATIENTS AND METHODS Fifty healthy subjects (mean age ± SD, 63 ± 12 years; range, 30-80 years) were studied. 99mTc-TRODAT-1 was prepared from a lyophilized kit. Brain DAT SPECT imaging was acquired between 165 and 195 minutes postinjection (~740 MBq or 20 mCi) using a dual-head camera equipped with fan-beam collimators (Helix SPX; GE). Specific uptake in the striatum (ST), caudate nucleus (CA), and putamen (PU) were calculated from reconstructed transaxial slices at the level of maximal striatal activity. Occipital cortices were used as reference areas. Data were presented as specific binding ratios. RESULTS Age had a significant moderate to large negative effect on striatal DAT, which declined by -25.7% ± 6.10% between the ages of 30 and 80 years, equivalent to 6.4% loss per decade. The rates of decline in the CA and PU were 6.9% and 7.3% per decade, respectively. CONCLUSIONS This study suggests ethnic variations may not significantly affect the age-related decline in DAT. The data generated in this study could also be used as a reference to estimate DAT loss/occupancy in patients with DAT-related diseases.
Collapse
Affiliation(s)
- Skye Hsin-Hsien Yeh
- From the Brain Research Center, National Yang Ming Chaio Tung University
- School of Medicine, National Defense Medical Center
| | - Chi-Jung Tsai
- Department of Nuclear Medicine, Taipei Medical University Hospital
- Department of Nuclear Medicine, Tri-Service General Hospital
| | - Tsung-Hsun Yu
- From the Brain Research Center, National Yang Ming Chaio Tung University
| | | | | | - Nan-Jing Peng
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital
- Department of Nuclear Medicine, Tri-Service General Hospital
| |
Collapse
|
2
|
Nogami T, Arakawa R, Sakayori T, Ikeda Y, Okubo Y, Tateno A. Effect of DL-Methylephedrine on Dopamine Transporter Using Positron Emission Tomography With [ 18F]FE-PE2I. Front Psychiatry 2022; 13:799319. [PMID: 35711596 PMCID: PMC9193582 DOI: 10.3389/fpsyt.2022.799319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Since ephedrine has a dopamine transporter (DAT) inhibitory effect similar to amphetamine, dl-methylephedrine, a derivative of ephedrine, is considered to have the characteristics of a central nervous system stimulant due to the DAT inhibitory effect. For example, the World Anti-Doping Agency categorizes dl-methylephedrine as a stimulant in the prohibited list for competitions. Assuming to have the same effect as ephedrine, the urinary concentration of dl-methylephedrine is regulated below 10 μg/mL, as is ephedrine. However, the extent to which dl-methylephedrine affects brain function is not yet fully understood. OBJECTIVES The purpose of this study was to evaluate DAT occupancy by a single oral administration of a daily dose of dl-methylephedrine using positron emission tomography (PET) with [18F]FE-PE2I to characterize its stimulatory effect on the central nervous system. METHODS Nine healthy male volunteers were enrolled in the study. The experiments were designed as a placebo-controlled randomized double-blind crossover comparative study. After the first PET scan in a drug-free state, the second and third PET scans were performed with randomized dosing at 60 mg of dl-methylephedrine or placebo. The plasma and urine concentrations of dl-methylephedrine were measured just before and after the PET scans, respectively. RESULTS Mean urine and plasma concentrations of dl-methylephedrine were 13.9 μg/mL and 215.2 ng/mL, respectively. Mean DAT occupancy in the caudate was 4.4% for dl-methylephedrine and 1.2% for placebo. Mean DAT occupancy in the putamen was 3.6% for dl-methylephedrine and 0.5% for placebo. There was no significant difference of DAT occupancies between the groups. CONCLUSION In this study, the urinary concentration of dl-methylephedrine (13.9 μg/mL) was higher than the prohibited reference value (10.0 μg/mL), and there was no significant difference in DAT occupancy between dl-methylephedrine and placebo. These findings suggest that a clinical daily dose of dl-methylephedrine may exceed the doping regulation value according to urine concentration; however, it was considered that at least the central excitatory effect mediated by DAT inhibition was not observed at the daily dose of dl-methylephedrine.
Collapse
Affiliation(s)
- Tsuyoshi Nogami
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Vala C, Mothes C, Chicheri G, Magadur P, Viot G, Deloye JB, Maia S, Bouvet Y, Dupont AC, Arlicot N, Guilloteau D, Emond P, Vercouillie J. Fully automated radiosynthesis of [ 18F]LBT999 on TRACERlab FX FN and AllinOne modules, a PET radiopharmaceutical for imaging the dopamine transporter in human brain. EJNMMI Radiopharm Chem 2020; 5:26. [PMID: 33196944 PMCID: PMC7669936 DOI: 10.1186/s41181-020-00105-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for the in vivo neuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 was produced on a TRACERlab FXFN for the Phase I study but for Phase III and a potent industrial production transfer, production was also implemented on an AllinOne (AIO) system requiring a single use cassette. Both production methods are reported herein. Results Automation of [18F]LBT999 radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n = 16), with a radiochemical purity higher than 99% and a molar activity of 158 GBq/μmol at the end of synthesis. The transfer to the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n = 5), with a radiochemical purity better than 98% and a molar activity above 154 GBq/μmol on average at the end of synthesis. Quality controls of both methods met the specification for clinical application. Conclusion Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time. The developments made on AIO, such as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements, make it an optimal approach for the potent industrial production of [18F]LBT999 and future wider use.
Collapse
Affiliation(s)
- Christine Vala
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Céline Mothes
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Gabrielle Chicheri
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Pauline Magadur
- Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | | | - Jean-Bernard Deloye
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France.,CERRP, 37100, Tours, France
| | - Serge Maia
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Yann Bouvet
- Zionexa, 75017, Paris, France.,Cyclopharma, 63360, Saint-Beauzire, France
| | - Anne-Claire Dupont
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Nicolas Arlicot
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Denis Guilloteau
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,INSERM CIC 1415, University Hospital, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Patrick Emond
- CERRP, 37100, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France.,CHRU de Tours, services de Médecine Nucléaire in vitro et in vivo, 37000, Tours, France
| | - Johnny Vercouillie
- CERRP, 37100, Tours, France. .,UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France. .,INSERM CIC 1415, University Hospital, 37000, Tours, France.
| |
Collapse
|
4
|
Silberbauer LR, Gryglewski G, Berroterán-Infante N, Rischka L, Vanicek T, Pichler V, Hienert M, Kautzky A, Philippe C, Godbersen GM, Vraka C, James GM, Wadsak W, Mitterhauser M, Hacker M, Kasper S, Hahn A, Lanzenberger R. Serotonin Transporter Binding in the Human Brain After Pharmacological Challenge Measured Using PET and PET/MR. Front Mol Neurosci 2019; 12:172. [PMID: 31354428 PMCID: PMC6639732 DOI: 10.3389/fnmol.2019.00172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/27/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: In-vivo quantification of the serotonin transporter (SERT) guided our understanding of many neuropsychiatric disorders. A recently introduced bolus plus constant infusion protocol has been shown to allow the reliable determination of SERT binding with reduced scan time. In this work, the outcomes of two methods, a bolus injection paradigm on a GE PET camera, and a bolus plus infusion paradigm on a combined Siemens PET/MR camera were compared. Methods: A total of seven healthy subjects underwent paired PET and paired PET/MR scans each with intravenous double-blind application of 7.5 mg citalopram or saline in a randomized cross-over study design. While PET scans were performed according to standard protocols and non-displaceable binding potentials (BPND) were calculated using the multi-linear reference tissue model, during PET/MR measurements [11C]DASB was applied as bolus plus constant infusion, and BPND was calculated using the steady state method and data acquired at tracer equilibrium. Occupancies were calculated as the relative decrease in BPND between saline and citalopram scans. Results: During placebo scans, a mean difference in BPND of -0.08 (-11.71%) across all ROIs was found between methods. PET/MR scans resulted in higher BPND estimates than PET scans in all ROIs except the midbrain. A mean difference of -0.19 (-109.40%) across all ROIs between methods was observed for citalopram scans. PET/MR scans resulted in higher BPND estimates than PET scans in all ROIs. For occupancy, a mean difference of 23.12% (21.91%) was observed across all ROIs. PET/MR scans resulted in lower occupancy compared to PET scans in all ROIs except the temporal cortex. While for placebo, BPND of high-binding regions (thalamus and striatum) exhibited moderate reliability (ICC = 0.66), during citalopram scans ICC decreased (0.36-0.46). However, reliability for occupancy remained high (0.57-0.82). Conclusion: Here, we demonstrated the feasibility of reliable and non-invasive SERT quantification using a [11C]DASB bolus plus constant infusion protocol at a hybrid PET/MR scanner, which might facilitate future pharmacological imaging studies. Highest agreement with established methods for quantification of occupancy and SERT BPND at baseline was observed in subcortical high-binding regions.
Collapse
Affiliation(s)
- Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marius Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Simple and rapid quantification of serotonin transporter binding using [ 11C]DASB bolus plus constant infusion. Neuroimage 2017; 149:23-32. [PMID: 28119137 DOI: 10.1016/j.neuroimage.2017.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [11C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. METHODS [11C]DASB bolus/infusion optimization was performed on data acquired after [11C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [11C]DASB bolus plus constant infusion with Kbol 160-179min and one scan after [11C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (VT) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (VT-70 for 60-70min after start of tracer infusion, VT-90 for 75-90min, VT-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BPND) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. RESULTS A Kbol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. VT-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for VT-90 and 0.77-0.93 for VT-120 in these regions. BPND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0.74-0.87; BPND-120 had ICCs of 0.73-0.90. Low-binding cortical regions and cerebellar gray matter showed a positive bias of ~8% and ICCs 0.57-0.68 at VT-90. Cortical BPND suffered from high variability and bias, best results were obtained for olfactory cortex and anterior cingulate cortex with ICC=0.74-0.75 for BPND-90. High-density regions amygdala and midbrain had a negative bias of -5.5% and -22.5% at VT-90 with ICC 0.70 and 0.63, respectively. CONCLUSIONS We have optimized the equilibrium method with [11C]DASB bolus plus constant infusion and demonstrated good inter-method reliability with accepted standard methods and for SERT quantification using both VT and BPND in a range of different brain regions. With as little as 10-15min of scanning valid estimates of SERT VT and BPND in thalamus, amygdala, striatal and high-binding cortical regions could be obtained. Blood sampling seems vital for valid quantification of SERT in low-binding cortical regions. These methods allow the investigation of up to three subjects with a single radiosynthesis.
Collapse
|
6
|
Matsuoka K, Yasuno F, Shinkai T, Miyasaka T, Takahashi M, Kiuchi K, Kosaka J, Inoue M, Kichikawa K, Hasegawa M, Kishimoto T. Test-retest reproducibility of extrastriatal binding with 123I-FP-CIT SPECT in healthy male subjects. Psychiatry Res Neuroimaging 2016; 258:10-15. [PMID: 27814458 DOI: 10.1016/j.pscychresns.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
123I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT) is used to assess striatal dopamine transporter (DAT) expression, but it can also quantify extrastriatal serotonin transporter (SERT) expressions. While FP-CIT uptake in extrastriatal regions has been quantified, no information exists on the reproducibility of the 123I-FP-CIT specific uptake ratio (SUR) in extrastriatal regions. We investigated test-retest reproducibility of 123I-FP-CIT binding in the striatum, the midbrain, and cortical regions in eight healthy male subjects. All subjects underwent two 123I-FP-CIT SPECT scans, and SUR was calculated using the cerebellum as the reference. We found good test-retest reproducibility of 123I-FP-CIT SUR in the midbrain, and in the lateral frontal/temporal cortex and combined cortical regions. The overall variability and intraclass correlation of SUR were, respectively, 4.9-7.8% and 0.90-0.96 in striatal regions, 8.6% and 0.79 in the midbrain, and 3.6-9.1% and 0.84-0.95 in the lateral frontal/temporal cortex and combined cortical regions. Our results provide evidence that 123I-FP-CIT SPECT is a valid technique for analyzing striatal DAT, as well as extrastriatal SERT in areas such as the SERT-enriched midbrain. In addition, our data suggest that 123I-FP-CIT could be used for analyzing SERT in regions with relatively low SERT expression (e.g., temporal or frontal cortices).
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan.
| | - Takayuki Shinkai
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | | | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kuniaki Kiuchi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Jun Kosaka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Makoto Inoue
- Department of Psychiatry, National Hospital Organization Yamato Mental Medical Center, Yamatokoriyama, Japan
| | | | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
7
|
Yen CH, Shih MC, Cheng CY, Ma KH, Lu RB, Huang SY. Incongruent reduction of dopamine transporter availability in different subgroups of alcohol dependence. Medicine (Baltimore) 2016; 95:e4048. [PMID: 27537550 PMCID: PMC5370777 DOI: 10.1097/md.0000000000004048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dopamine transporter (DAT) plays a crucial role in the pathogenesis of alcohol dependence (AD) and major depression (MD), and males have more risk factors for the development of AD. However, imaging studies on brain DAT availability in males with AD comorbid with MD (AD/MD) are limited, and the association of DAT availability with cognitive function and depressive scores in patients with AD/MD has not been analyzed. Hence, this study examined the relationship between brain DAT availability, cognitive function, and depressive symptoms in different subgroups of males with AD.Single-photon emission computed tomography imaging with Tc-TRODAT-1 as a ligand was used to measure striatal DAT availability in 49 patients with AD (28 pure AD and 21 AD/MD) and 24 age- and sex-matched healthy volunteers. The Wisconsin Card Sorting Test (WCST) and 17-item Hamilton Depression Rating Scale were used to assess neurocognitive function and depressive scores, respectively. Patients with AD showed a significant reduction of DAT availability in 3 brain regions (P < 0.001), and this reduction was more pronounced in the patients with pure AD compared to healthy controls. The patients with AD showed significantly poorer performance on the WCST, but only in the control group was DAT availability significantly negatively correlated with total errors and perseverative errors (P < 0.001).These preliminary findings suggest that DAT availability is associated with neurocognitive function, and incongruent reduction of DAT may play a pathophysiological role in different subgroups of AD. In addition, decreased DAT availability may be associated with the severity of depressive symptoms in patients with AD/MD.
Collapse
Affiliation(s)
- Che-Hung Yen
- Graduate Institute of Medical Sciences, National Defense Medical Center
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center
| | - Mei-Chen Shih
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Kuo-Hsing Ma
- Department of Anatomy and Biology, National Defense Medical Center, Taipei
| | - Ru-Band Lu
- Institute of Behavior Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
- Correspondence: San-Yuan Huang, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No. 325, Cheng-Kung Road, Sec. 2, Nei-Hu, Taipei 11490, Taiwan, ROC (e-mail: )
| |
Collapse
|
8
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
9
|
Brain dopaminergic system changes in drug addiction: a review of positron emission tomography findings. Neurosci Bull 2014; 30:765-76. [PMID: 25260796 DOI: 10.1007/s12264-014-1469-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022] Open
Abstract
Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction remains unclear. Positron emission tomography (PET) is the first technology used for in vivo measurement of components of the dopaminergic system in the human brain. In this article, we review the major findings from PET imaging studies on the involvement of DA in drug addiction, including presynaptic DA synthesis, vesicular monoamine transporter 2, the DA transporter, and postsynaptic DA receptors. These results have corroborated the role of DA in addiction and increased the understanding of its underlying mechanisms.
Collapse
|
10
|
In vivo activity of modafinil on dopamine transporter measured with positron emission tomography and [¹⁸F]FE-PE2I. Int J Neuropsychopharmacol 2014; 17:697-703. [PMID: 24451483 DOI: 10.1017/s1461145713001612] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Modafinil, a wake-promoting drug used to treat narcolepsy, is a dopamine transporter inhibitor and is said to have very low abuse liability; this, however, is still up for debate. We conducted a dopamine transporter (DAT) occupancy study with modafinil (200 or 300 mg) in ten healthy volunteers using positron emission tomography (PET) with [¹⁸F]FE-PE2I, a new PET radioligand with high affinity and selectivity for the dopamine transporter, to characterize its relation to abuse liability. Mean striatal DAT occupancies were 51.4% at 200 mg and 56.9% at 300 mg. There was a significant correlation between occupancy and plasma concentration, indicating dose dependency of DAT inhibition by modafinil in the striatum, and especially in the nucleus accumbens. This study showed that DAT occupancy by modafinil was close to that of methylphenidate, indicating that modafinil may be near the same level as methylphenidate in relation to abuse liability in terms of dopaminergic transmission.
Collapse
|
11
|
Serotonin transporter availability in early stage Parkinson's disease and multiple system atrophy. ISRN NEUROLOGY 2014; 2014:345132. [PMID: 24693450 PMCID: PMC3945177 DOI: 10.1155/2014/345132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/23/2013] [Indexed: 11/21/2022]
Abstract
Background. Differentiating Parkinson's disease (PD) from multiple system atrophy (MSA) can be challenging especially early in the course of the disease. Previous studies have shown that midbrain serotonin transporter (SERT) availability in patients with established MSA was significantly lower compared to PD. It is unknown if this is also true for early-stage patients. Methods. 77 early-stage, untreated PD patients were recruited between 1995 and 1998, underwent [123I]β-CIT SPECT imaging, and were followed for at least five years. 16 patients were lost to followup, and in 4 the diagnosis was changed to another atypical parkinsonian syndrome, but not in MSA. In 50 patients, the PD diagnosis was unchanged at followup. In seven patients, the diagnosis was changed to MSA at followup. We retrospectively assessed baseline midbrain SERT availability as well as midbrain SERT-to-striatal dopamine transporter (DAT) ratios.
Results. No difference in baseline [123I]β-CIT SERT availability was found. The midbrain SERT-to-striatal DAT ratio for whole striatum was significantly lower in patients with PD compared to MSA (P = 0.049). However, when adjusting for the disease duration at imaging this difference is not significant (P = 0.070). Conclusion. Midbrain SERT availability is not different between early-stage PD and MSA. Therefore, SERT imaging is not useful to differentiate between early PD and MSA.
Collapse
|
12
|
Camardese G, Di Giuda D, Di Nicola M, Cocciolillo F, Giordano A, Janiri L, Guglielmo R. Imaging studies on dopamine transporter and depression: a review of literature and suggestions for future research. J Psychiatr Res 2014; 51:7-18. [PMID: 24433847 DOI: 10.1016/j.jpsychires.2013.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/08/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
We review the conflicting results from imaging studies of dopamine transporter availability in depressed patients and also discuss the heterogeneity of the variables involved. Major depression includes diverse clinical manifestations and in recent years there has been an increasing interest in the identification of homogeneous phenotypes and different clinical subtypes of depression, e.g. anhedonic depression, retarded depression, etc. In addition, the use of different radioligands and imaging techniques, diverse rating scales, together with the lack of control of clinical variables (clinical course, recent or past use of substances of abuse, etc.) make it difficult to clearly identify neuronal regions or networks with consistently abnormal structures or functions in major depressive disorder. It is probably necessary to build a shared approach between clinicians and researchers in order to identify standardized procedures to better understand the role of the dopamine transporter in depression. We outline a list of major issues and also suggest some standardized procedures in collecting clinical and imaging data on major depressed patients. Our aim is to delineate a possible "modus operandi" that would be a proposal for neuroreceptor studies on major depression.
Collapse
Affiliation(s)
- G Camardese
- Institute of Psychiatry, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy.
| | - D Di Giuda
- Institute of Nuclear Medicine, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| | - M Di Nicola
- Institute of Psychiatry, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| | - F Cocciolillo
- Institute of Nuclear Medicine, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| | - A Giordano
- Institute of Nuclear Medicine, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| | - L Janiri
- Institute of Psychiatry, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| | - R Guglielmo
- Institute of Psychiatry, Catholic University of the Sacred Heart, L.go A. Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
13
|
Age-related decline in dopamine transporter in human brain using PET with a new radioligand [¹⁸F]FE-PE2I. Ann Nucl Med 2014; 28:220-6. [PMID: 24385293 DOI: 10.1007/s12149-013-0798-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Dopamine transporter (DAT) density is considered as a marker of pre-synaptic function. Numerous neuroimaging studies have consistently demonstrated an age-related decrease in DAT density in normal human brain. However, the precise degree of the regional decline is not yet clear. The purpose of this study was to evaluate the effect of the normal aging process on DAT densities in human-specific brain regions including the substantia nigra and thalamus using positron emission tomography (PET) with [(18)F]FE-PE2I, a new PET radioligand with high affinity and selectivity for DAT. METHODS Thirty-six healthy volunteers ranging in age from 22 to 80 years were scanned with PET employing [(18)F]FE-PE2I for measuring DAT densities. Region of interest (ROI)-based analysis was used, and ROIs were manually defined for the caudate, putamen, substantia nigra, thalamus, and cerebellar cortex. DAT binding was quantified using a simplified reference tissue model, and the cerebellum was used as reference region. Estimations of binding potential in the caudate, putamen, substantia nigra, and thalamus were individually regressed according to age using simple regression analysis. Estimates of DAT loss per decade were obtained using the values from the regression slopes. RESULTS There were 7.6, 7.7, and 3.4% per-decade declines in DAT in the caudate, putamen, and substantia nigra, respectively. By contrast, there was no age-related decline of DAT in the thalamus. CONCLUSIONS [(18)F]FE-PE2I allowed reliable quantification of DAT, not only in the caudate and putamen but also in the substantia nigra. From the results, we demonstrated the age-related decline in the caudate and putamen as reported in previous studies, and additionally for those in the substantia nigra for the first time.
Collapse
|
14
|
Synthesis, radiosynthesis and first in vitro evaluation of novel PET-tracers for the dopamine transporter: [11C]IPCIT and [18F]FE@IPCIT. Bioorg Med Chem 2013; 21:7562-9. [DOI: 10.1016/j.bmc.2013.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
|
15
|
Stehouwer JS, Goodman MM. 11C and18F PET radioligands for the serotonin transporter (SERT). J Labelled Comp Radiopharm 2013; 56:114-9. [DOI: 10.1002/jlcr.3011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/29/2012] [Accepted: 11/20/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Jeffrey S. Stehouwer
- Center for Systems Imaging, Department of Radiology and Imaging Sciences; Emory University; Atlanta; GA; USA
| | - Mark M. Goodman
- Center for Systems Imaging, Department of Radiology and Imaging Sciences; Emory University; Atlanta; GA; USA
| |
Collapse
|
16
|
Klomp A, den Hollander B, de Bruin K, Booij J, Reneman L. The effects of ecstasy (MDMA) on brain serotonin transporters are dependent on age-of-first exposure in recreational users and animals. PLoS One 2012; 7:e47524. [PMID: 23115651 PMCID: PMC3480359 DOI: 10.1371/journal.pone.0047524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022] Open
Abstract
Rationale and Objective Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin) exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure. Methods 5-HT transporter (SERT) densities in the frontal cortex and midbrain were assessed with [123I]β-CIT single photon emission computed tomography in 33 users of ecstasy. Subjects were stratified for early-exposed users (age-at-first exposure 14–18 years; developing brain), and late-exposed users (age-at-first exposure 18–36 years; mature brain). In parallel, we investigated the effects of age experimentally with MDMA in early-exposed (adolescent) rats and late-exposed (adult) rats using the same radioligand. Results On average, five years after first exposure, we found a strong inverse relationship, wherein age-at-first exposure predicted 79% of the midbrain SERT variability in early (developing brain) exposed ecstasy users, whereas this was only 0.3% in late (mature brain) exposed users (p = 0.007). No such effect was observed in the frontal cortex. In rats, a significant age-BY-treatment effect (p<0.01) was observed as well, however only in the frontal cortex. Conclusions These age-related effects most likely reflect differences in the maturational stage of the 5-HT projection fields at age-at-first exposure and enhanced outgrowth of the 5-HT system due to 5-HT’s neurotrophic effects. Ultimately, our findings stress the need for more knowledge on the effects of pharmacotherapies that alter brain 5-HT levels in the pediatric population.
Collapse
Affiliation(s)
- Anne Klomp
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Kora de Bruin
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Sasaki T, Ito H, Kimura Y, Arakawa R, Takano H, Seki C, Kodaka F, Fujie S, Takahata K, Nogami T, Suzuki M, Fujiwara H, Takahashi H, Nakao R, Fukumura T, Varrone A, Halldin C, Nishikawa T, Suhara T. Quantification of Dopamine Transporter in Human Brain Using PET with 18F-FE-PE2I. J Nucl Med 2012; 53:1065-73. [DOI: 10.2967/jnumed.111.101626] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Hou H, Tian M, Zhang H. Positron emission tomography molecular imaging of dopaminergic system in drug addiction. Anat Rec (Hoboken) 2012; 295:722-33. [PMID: 22467195 DOI: 10.1002/ar.22457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/01/2012] [Indexed: 12/27/2022]
Abstract
Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction.
Collapse
Affiliation(s)
- Haifeng Hou
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
19
|
Odano I, Varrone A, Savic I, Ciumas C, Karlsson P, Jucaite A, Halldin C, Farde L. Quantitative PET analyses of regional [11C]PE2I binding to the dopamine transporter — Application to juvenile myoclonic epilepsy. Neuroimage 2012; 59:3582-93. [DOI: 10.1016/j.neuroimage.2011.10.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022] Open
|
20
|
Talkowski ME, McCann KL, Chen M, McClain L, Bamne M, Wood J, Chowdari KV, Watson A, Prasad KM, Kirov G, Georgieva L, Toncheva D, Mansour H, Lewis DA, Owen M, O’Donovan M, Papasaikas P, Sullivan P, Ruderfer D, Yao JK, Leonard S, Thomas P, Miyajima F, Quinn J, Lopez AJ, Nimgaonkar VL. Fine-mapping reveals novel alternative splicing of the dopamine transporter. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1434-47. [PMID: 20957647 PMCID: PMC4575812 DOI: 10.1002/ajmg.b.31125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/04/2010] [Indexed: 01/14/2023]
Abstract
The dopamine transporter gene (SLC6A3, DAT) has been implicated in the pathogenesis of numerous psychiatric and neurodevelopmental disorders, including schizophrenia (SZ). We previously detected association between SZ and intronic SLC6A3 variants that replicated in two independent Caucasian samples, but had no obvious function. In follow-up analyses, we sequenced the coding and intronic regions of SLC6A3 to identify complete linkage disequilibrium patterns of common variations. We genotyped 78 polymorphisms, narrowing the potentially causal region to two correlated clusters of associated SNPs localized predominantly to introns 3 and 4. Our computational analysis of these intronic regions predicted a novel cassette exon within intron 3, designated E3b, which is conserved among primates. We confirmed alternative splicing of E3b in post-mortem human substantia nigra (SN). As E3b introduces multiple in-frame stop codons, the SLC6A3 open reading frame is truncated and the spliced product may undergo nonsense mediated decay. Thus, factors that increase E3b splicing could reduce the amount of unspliced product available for translation. Observations consistent with this prediction were made using cellular assays and in post-mortem human SN. In mini-gene constructs, the extent of splicing is also influenced by at least two common haplotypes, so the alternative splicing was evaluated in relation to SZ risk. Meta-analyses across genome-wide association studies did not support the initial associations and further post-mortem studies did not suggest case-control differences in splicing. These studies do not provide a compelling link to schizophrenia. However, the impact of the alternative splicing on other neuropsychiatric disorders should be investigated. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Michael E. Talkowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Kathleen L. McCann
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Michael Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mikhil Bamne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kodavali V. Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Annie Watson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Lyudmilla Georgieva
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Hader Mansour
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Panagiotis Papasaikas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Patrick Sullivan
- Department of Genetics & Carolina Center for Genome Science, University of North Carolina, Chapel Hill, North Carolina
| | - Douglas Ruderfer
- Center for Human Genetic Research, Massachusetts General Hospital and Broad Institute, Boston, Massachusetts
| | - Jeffrey K Yao
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado at Denver, Aurora, Colorado
| | - Pramod Thomas
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fabio Miyajima
- Division of Human Anatomy and Cell Biology School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | - John Quinn
- Division of Human Anatomy and Cell Biology School of Biomedical Sciences, University of Liverpool, Liverpool, UK
| | - A. Javier Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania,Correspondence: Vishwajit L. Nimgaonkar, Department of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine and Graduate School of Public Health, WPIC, Room 441, 3811 O’Hara St, Pittsburgh, PA 15213
| |
Collapse
|
21
|
XIIth international symposium on radiopharmaceutical chemistry: Abstracts and programme. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.2580400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Comparison of 2beta-carbomethoxy-3beta-(4-[18F]fluorophenyl)tropane and N-(3-[18F]fluoropropyl)-2beta-carbomethoxy-3beta-(4-fluorophenyl)nortropane, tracers for imaging dopamine transporter in rat. Mol Imaging Biol 2009; 12:269-77. [PMID: 19949983 DOI: 10.1007/s11307-009-0278-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 06/14/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE This study compares 2beta-carbomethoxy-3beta-(4-[(18)F]fluorophenyl)tropane ([(18)F]beta-CFT) and N-(3-[(18)F]fluoropropyl)-2beta-carbomethoxy-3beta-(4-fluorophenyl)nortropane ([(18)F]beta-CFT-FP) as radiotracers for imaging the dopamine transporter (DAT) in rat. PROCEDURES Biodistribution, specificity and selectivity of the radiotracers were studied ex vivo in rats pre-treated with specific antagonists for DAT, serotonin transporter (SERT) and noradrenalin transporter (NET) and in control rats. Positron emission tomography (PET) studies were performed using an HRRT scanner. Radiolabelled metabolites were analyzed with thin-layer chromatography. RESULTS [(18)F]beta-CFT showed slow kinetics with a maximum striatum/cerebellum uptake ratio of 9.2 at 120 min. [(18)F]beta-CFT-FP showed fast kinetics with a maximum ratio of 3.1 at 5 min. Both tracers bound to DAT. [(18)F]beta-CFT also bound to NET. [(18)F]beta-CFT was more resistant to metabolism than [(18)F]beta-CFT-FP. CONCLUSIONS Structural modifications of [(18)F]beta-CFT significantly changed its biological properties, as shown by [(18)F]beta-CFT-FP. [(18)F]beta-CFT is a suitable tracer for both preclinical and human PET studies, but [(18)F]beta-CFT-FP is less suitable as a PET tracer.
Collapse
|
23
|
|
24
|
Loss of thalamic serotonin transporters in early drug-naïve Parkinson's disease patients is associated with tremor: an [(123)I]beta-CIT SPECT study. J Neural Transm (Vienna) 2008; 115:721-9. [PMID: 18335163 PMCID: PMC2440940 DOI: 10.1007/s00702-007-0015-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 12/17/2007] [Indexed: 12/25/2022]
Abstract
In vitro studies revealed serotonin transporter (5-HTT) decline in Parkinson’s disease (PD). Yet, few studies investigated thalamic 5-HTT in vivo and its effect on PD heterogeneity. We analyzed thalamic [123I]β-CIT binding (mainly reflecting 5-HTT binding) in 32 drug-naïve PD patients and 13 controls with SPECT. Twenty-six patients were examined twice (17 months apart). Based on UPDRS scores, we identified subgroups of patients with moderate/severe tremor (PDT) and without tremor (PDWT) at the time of clinical diagnosis. Additionally, depressive symptoms were evaluated using the Beck Depression Inventory (BDI) at baseline. Mean thalamic specific to non-specific [123I]β-CIT binding ratio was lower in patients when compared to controls, and further decreased during follow-up. At baseline, average thalamic ratio was significantly lower in the PDT than in the PDWT subgroup. No correlation was found between BDI scores and thalamic binding ratios. Our findings show decline of [123I]β-CIT binding to thalamic 5-HTT in PD and its possible contribution to tremor onset.
Collapse
|
25
|
Koivula T, Marjamäki P, Haaparanta M, Fagerholm V, Grönroos T, Lipponen T, Perhola O, Vepsäläinen J, Solin O. Ex vivo evaluation of N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl)nortropane in rats. Nucl Med Biol 2008; 35:177-83. [DOI: 10.1016/j.nucmedbio.2007.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
|
26
|
Zitterl W, Aigner M, Stompe T, Zitterl-Eglseer K, Gutierrez-Lobos K, Schmidl-Mohl B, Wenzel T, Demal U, Zettinig G, Hornik K, Thau K. [123I]-beta-CIT SPECT imaging shows reduced thalamus-hypothalamus serotonin transporter availability in 24 drug-free obsessive-compulsive checkers. Neuropsychopharmacology 2007; 32:1661-8. [PMID: 17192774 DOI: 10.1038/sj.npp.1301290] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Numerous findings indicate alterations in brain serotonin systems in obsessive-compulsive disorder (OCD). We investigated the in vivo availability of thalamus-hypothalamus serotonin transporters (SERT) in patients with DSM-IV OCD who displayed prominent behavioral checking compulsions (OC-checkers). Four hours after injection of [(123)I]-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane ([(123)I]-beta-CIT), single photon emission computed tomography (SPECT) scans were performed in 24 medication-free non-depressed OC-checkers and 24 age- and gender-matched healthy controls. For quantification of brain serotonin transporter availability, a ratio of specific to non-displaceable [(123)I]-beta-CIT brain binding was used (V''(3)=(thalamus and hypothalamus-cerebellum)/cerebellum). Drug-free non-depressed OC-checkers showed an 18% reduced brain serotonin transporter availability in the thalamus and hypothalamus, as compared with healthy control subjects (1.38+/-0.19 vs 1.69+/-0.21; p<0.001). There was a strong negative correlation between severity of OC symptomatology (Y-BOCS scores) and SERT availability (r=-0.80; p<0.001). Moreover, we found a significant positive correlation between illness duration and serotonin transporter availability (r=0.43; p<0.05). This first report of significantly reduced [(123)I]-beta-CIT binding in the thalamus-hypothalamus region in OC-checkers suggests reduced brain serotonin transporter availability, which is more pronounced with increased severity of OC symptomatology and short duration of illness. The results provide direct evidence for an involvement of the serotonergic system in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Werner Zitterl
- Department of Psychiatry, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tupala E, Halonen P, Tiihonen J. Visualization of the cortical dopamine transporter in type 1 and 2 alcoholics with human whole hemisphere autoradiography. Eur Neuropsychopharmacol 2006; 16:552-60. [PMID: 16626947 DOI: 10.1016/j.euroneuro.2006.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 02/15/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
We measured cortical dopamine transporter (DAT) in Cloninger type 1 and 2 alcoholics by using [(125)I]PE2I as a radioligand in human postmortem whole hemispheric autoradiography, and evaluated the putative correlations of DAT between cortical areas and nucleus accumbens. There was a low, but distinct cortical binding in the cryosections. The mean binding was generally higher in both groups of alcoholics compared to controls, and the results reached statistical significance with a large effect size (1.25) in the temporal cortex of type 2 alcoholics. This is surprising, because several studies have reported lower DAT densities in the striatum among alcoholics compared to controls. Moreover, the density of DAT had a statistically significant positive correlation between temporal cortex and nucleus accumbens in controls, whereas among type 2 alcoholics the correlation was statistically significantly negative, which may suggest some pathology relating to the antisocial behaviour of these alcoholics.
Collapse
Affiliation(s)
- Erkki Tupala
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
28
|
Stepanov V, Järv J. Slow isomerization step in the interaction between mouse dopamine transporter and dopamine re-uptake inhibitor N-(3-iodoprop-2E-enyl)-2beta-carbo-[3H]methoxy-3beta-(4'-methylphenyl)nortropane. Neurosci Lett 2006; 410:218-21. [PMID: 17074440 DOI: 10.1016/j.neulet.2006.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 11/21/2022]
Abstract
The kinetics of the association and dissociation of the tritium-labeled selective and potent dopamine transporter inhibitor N-(3-iodoprop-2E-enyl)-2beta-carbo-[3H]methoxy-3beta-(4'-methylphenyl)nortropane ([3H]PE2I) with the transporter of mouse striatal membranes was studied. The analysis revealed that the specific binding of [3H]PE2I occurs within a homogeneous population of binding sites in these membranes. The relatively slow binding process was characterized by the pseudo-first-order rate constant kobs. The plot of these rate constants versus free radioligand concentration was hyperbolic, demonstrating that at least two kinetically distinguishable steps can be identified in the interaction of dopamine transporter with this inhibitor. The fast and reversible binding step, characterized by dissociation constant KA = 51 +/- 23 nM, is followed by a slow but also reversible isomerization step of the complex, characterized by the isomerization rate constant ki = (7 +/- 2)10(-2) s(-1) and by the rate constant k(-i) = (3.9 +/- 0.5)10(-3) s(-1) for the reverse process. This isomerization step increases the apparent affinity of the ligand and probably consists of a conformational transition of the transporter protein, induced by the inhibitor molecule.
Collapse
Affiliation(s)
- Vladimir Stepanov
- Institute of Organic and Bioorganic Chemistry, University of Tartu, 2 Jakobi Str, 51014 Tartu, Estonia
| | | |
Collapse
|
29
|
Müller L, Halldin C, Swahn CG, Foged C. Alternative labelling of the cocaine analogue isomers α-CIT and β-CIT by direct iodination with no-carrier-added Na125I. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580341105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Reneman L, de Win MML, van den Brink W, Booij J, den Heeten GJ. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects. J Psychopharmacol 2006; 20:164-75. [PMID: 16510475 DOI: 10.1177/0269881106061515] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.
Collapse
Affiliation(s)
- Liesbeth Reneman
- Graduate School of Neurosciences, Department of Radiology, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Halldin C, Lundberg J, Sóvágó J, Gulyás B, Guilloteau D, Vercouillie J, Emond P, Chalon S, Tarkiainen J, Hiltunen J, Farde L. [(11)C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 2006; 58:173-83. [PMID: 16138320 DOI: 10.1002/syn.20189] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to explore the potential of a new selective serotonin transporter (5-HTT) inhibitor, N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine (MADAM, K(i)=1.65 nM), as a PET radioligand for examination of 5-HTT in the nonhuman primate brain. MADAM was radiolabeled by an N-methylation reaction using [(11)C]methyl triflate and the binding was characterized by PET in four cynomolgus monkeys. Metabolite levels in plasma were measured by gradient high-performance liquid chromatography (HPLC). The radiochemical incorporation yield of [(11)C]MADAM was 75-80% and the specific radioactivity at the time of administration was 34-652 GBq/micromol (n=8). The highest uptake of radioactivity was observed in striatum, thalamus, mesencephalon, and the lower brainstem. Lower binding was detected in neocortex and the lowest radioactive uptake was found in the cerebellum. This distribution is in accordance with the known expression of 5-HTT in vitro. The fraction of the total radioactivity in monkey plasma representing unchanged [(11)C]MADAM was 20% at 45 min after injection, as measured by gradient HPLC. Pretreatment measurements, using unlabeled citalopram, GBR 12909, and maprotiline, as well as a displacement measurement, using unlabeled MADAM, confirmed that [(11)C]MADAM binds selectively and reversibly to 5-HTT, and support the use of the cerebellum as reference region. The present characterization of binding in the monkey brain suggests that [(11)C]MADAM is a potential PET radioligand for quantitative studies of 5-HTT binding in the human brain.
Collapse
Affiliation(s)
- Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cavanagh J, Patterson J, Pimlott S, Dewar D, Eersels J, Dempsey MF, Wyper D. Serotonin transporter residual availability during long-term antidepressant therapy does not differentiate responder and nonresponder unipolar patients. Biol Psychiatry 2006; 59:301-8. [PMID: 16197922 DOI: 10.1016/j.biopsych.2005.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/03/2005] [Accepted: 06/23/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Serotonin transporters (SERT) are a major target for antidepressant medication, although there have been limited in vivo studies of SERT availability in patients being treated with antidepressants. It is not known whether SERT availability differs in treatment-responsive and -nonresponsive patients receiving long-term treatment. In this study, we used single photon emission computed tomography (SPECT) to compare SERT residual availability in unipolar responders and nonresponders during long-term antidepressant treatment. Dopamine transporter (DAT) availability was also assessed in the same patients to examine the relationship between the two transporter systems. METHODS Twenty-four medicated unipolar patients were recruited, of whom 11 were responders and 13 were nonresponders. All patients underwent SPECT with [123I] beta-carbomethoxy-3-beta-(4 iodophenyl)tropane. Brain SERT was measured in the brain stem and diencephalon, and DAT was measured in the striatum. Residual availability was calculated as a ratio of specific to nonspecific uptake, with the occipital region used as the nonspecific reference region. RESULTS There was no difference between responders and nonresponders in SERT availability. Dopamine transporter availability was similar in responders and nonresponders, and there was no association between SERT and DAT availability. CONCLUSIONS Serotonin transporter availability does not discriminate responders and nonresponders during long-term treatment with antidepressants.
Collapse
Affiliation(s)
- Jonathan Cavanagh
- Division of Community Based Sciences, Institute of Neurological Sciences, Southern General Hospital, Glasgow, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
33
|
Herold N, Uebelhack K, Franke L, Amthauer H, Luedemann L, Bruhn H, Felix R, Uebelhack R, Plotkin M. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm (Vienna) 2006; 113:659-70. [PMID: 16465456 DOI: 10.1007/s00702-005-0429-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Accepted: 12/03/2005] [Indexed: 11/30/2022]
Abstract
We studied the midbrain SERT availability in patients with major depression and assessed the relation of SERT occupancy by citalopram to the treatment response. 21 non-medicated patients with major depression and 13 healthy controls were examined by [(123)I]-ADAM SPECT. The midbrain SERT availability (SERT V(3)'') was calculated using individual MRI scans. In 13/21 patients SPECT was repeated 7 days after oral medication with citalopram (10 mg/day). We found no significant difference in the mean midbrain SERT availability between the studied patients with major depression and healthy controls (0.86 +/- 0.27 vs. 0.71 +/- 0.44, p = 0.069). The mean SERT occupancy accounted to 61%. The degree of SERT blockade by citalopram did not correlate with the reduction in HAMD total score. Treatment with low-dosed citalopram caused individually variable occupancy of the midbrain-SERT and a rapid clinical improvement in 54% of the investigated patients.
Collapse
Affiliation(s)
- N Herold
- Department of Radiology, Nuclear Medicine and Radiooncology, Campus Virchow, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dollé F, Emond P, Mavel S, Demphel S, Hinnen F, Mincheva Z, Saba W, Valette H, Chalon S, Halldin C, Helfenbein J, Legaillard J, Madelmont JC, Deloye JB, Bottlaender M, Guilloteau D. Synthesis, radiosynthesis and in vivo preliminary evaluation of [11C]LBT-999, a selective radioligand for the visualisation of the dopamine transporter with PET. Bioorg Med Chem 2006; 14:1115-25. [PMID: 16219467 DOI: 10.1016/j.bmc.2005.09.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/05/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
LBT-999 (8-((E)-4-fluoro-but-2-enyl)-3beta-p-tolyl-8-aza-bicyclo[3.2.1]octane-2beta-carboxylic acid methyl ester), a cocaine derivative belonging to a new generation of highly selective dopamine transporter (DAT) ligands, and its corresponding carboxylic acid derivative, the latter used as precursor for labelling both with tritium and the positron-emitter carbon-11 (half-life: 20.38 min), were synthesized from (R)-cocaine. [(3)H]LBT-999 (>99% radiochemically pure, specific radioactivity of 3.1 TBq/mmol) was prepared from [(3)H]methyl iodide, allowing its in vitro pharmacological evaluation (K(D): 9 nM for DAT and IC(50) > 1000 nM for SERT and NET). Routine production batches of 4.5-9.0 GBq of iv injectable solutions of [(11)C]LBT-999 (with specific radioactivities ranging from 30 to 45 GBq/mumol) were prepared in 25-30 min (HPLC purification and formulation included) using the efficient methylation reagent [(11)C]methyl triflate. The preliminary in vivo pharmacological evaluation of [(11)C]LBT-999, using both biodistributions in rats and brain imaging in monkeys with positron emission tomography (PET), clearly illustrates that this ligand is an excellent candidate for quantification with PET of DAT in humans.
Collapse
Affiliation(s)
- Frédéric Dollé
- Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, CEA/DSV, Orsay, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de Win MML, Habraken JBA, Reneman L, van den Brink W, den Heeten GJ, Booij J. Validation of [(123)I]beta-CIT SPECT to assess serotonin transporters in vivo in humans: a double-blind, placebo-controlled, crossover study with the selective serotonin reuptake inhibitor citalopram. Neuropsychopharmacology 2005; 30:996-1005. [PMID: 15770240 DOI: 10.1038/sj.npp.1300683] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disturbances in the serotonin (5-HT) system are associated with various neuropsychiatric disorders. The 5-HT system can be studied in vivo by measuring 5-HT transporter (SERT) densities using (123)iodine-labeled 2beta-carbomethoxy-3beta(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission computed tomography (SPECT). Validation of this technique is important because [(123)I]beta-CIT does not bind selectively to SERTs. Some studies have validated this technique in vivo in the human brain in SERT-rich areas, but the technique has not been validated yet in SERT-low cortical areas. The aim of this study was to further validate [(123)I]beta-CIT SPECT in assessing SERTs in vivo in humans in both SERT-rich and SERT-low areas. A double-blind, placebo-controlled, crossover design was used with the selective 5-HT reuptake inhibitor (SSRI) citalopram. Six male subjects underwent two [(123)I]beta-CIT SPECT sessions: one after pretreatment with citalopram and one after placebo. Scans were acquired 4 h and 22-27 h p.i., and both region-of-interest and voxel-by-voxel analyses were performed. Citalopram reduced [(123)I]beta-CIT binding ratios in SERT-rich midbrain and (hypo)thalamus. Binding ratios were also lower after citalopram in SERT-low cortical areas, but statistical significance was only reached in several cortical areas using voxel-by-voxel analysis. In addition, citalopram increased binding ratios in the DAT-rich striatum and increased absolute uptake in the cerebellum. The results show that [(123)I]beta-CIT SPECT is a valid technique to study SERT binding in vivo in human brain in SERT-rich areas. Although we provide some evidence that [(123)I]beta-CIT SPECT may be used to measure SERTs in SERT-low cortical areas, these measurements must be interpreted with caution.
Collapse
Affiliation(s)
- Maartje M L de Win
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Koivula T, Perhola O, Kämäräinen EL, Lipponen T, Vepsäläinen J, Solin O. Simplified synthesis ofN-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl)nortropane ([18F]β-CFT-FP) using [18F]fluoropropyl tosylate as the labelling reagent. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Scott Mason N, Mathis CA. Positron Emission Tomography Agents for Central Nervous System Drug Development Applications. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
38
|
Reivich M, Amsterdam JD, Brunswick DJ, Shiue CY. PET brain imaging with [11C](+)McN5652 shows increased serotonin transporter availability in major depression. J Affect Disord 2004; 82:321-7. [PMID: 15488265 DOI: 10.1016/j.jad.2003.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Alterations in the brain serotonin (5-HT) system have been found in patients with depression. We used the selective 5-HT transporter site ligand [11C](+)McN5652 and positron emission tomography (PET) to examine the hypothesis that alterations in 5-HT transporter levels may be present in selected regions of the brain in depressed patients. METHODS Four drug free depressed patients and four healthy control subjects were studied using [11C](+)McN5652 and PET. The distribution volume (DV) ratio of the PET ligand in selected regions of interest (ROIs) compared to cerebellum were calculated for the ROIs. RESULTS Patients showed significantly larger DV ratios in the left frontal cortex (P=0.013) and right cingulate cortex (P=0.043) compared to control subjects. LIMITATION The sample size was modest with gender differences between the subject groups. The PET agent, [11C](+)McN5652, may have a lower binding affinity for the 5-HT transporter in the cortical regions compared to other brain regions. CONCLUSION These findings suggest that 5-HT transporter sites may be increased in the frontal and cingulate cortices of depressed patients. These alterations in 5-HT transporter sites may be of pathophysiologic significance in the etiology of depression and its treatment.
Collapse
Affiliation(s)
- Martin Reivich
- Cerebrovascular Research Center, Department of Neurology, University of Pennsylvania School of Medicine, Room 415 Stemmler Hall, Philadelphia, PA 19104-6063, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Techniques such as positron emission tomography and single photon emission computed tomography allow for the imaging of neurotransmitter receptors and transporters in the brain. These tools have been used to investigate serotonergic, dopaminergic, and opioidergic function in healthy subjects as well as in patients with major depressive disorder, bipolar disorder, and other mood disorders. Pharmacologic challenges, such as amphetamine challenge, and physiologic stressors, such as pain challenge, have been used to further examine the function of these neurotransmitter systems. Neuroimaging of patient populations before and after medication treatment may be useful to understand changes in neurotransmission that accompany disease remission. As new radiotracers with higher selectivity for the various receptors and transporters are developed, imaging techniques may provide new insights into the pathophysiology of mood disorders, leading to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Susan E Kennedy
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
40
|
Harada N, Ohba H, Fukumoto D, Kakiuchi T, Tsukada H. Potential of [18F]?-CFT-FE (2?-carbomethoxy-3?-(4-fluorophenyl)-8-(2-[18F]fluoroethyl)nortropane) as a dopamine transporter ligand: A PET study in the conscious monkey brain. Synapse 2004; 54:37-45. [PMID: 15300883 DOI: 10.1002/syn.20059] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A dopamine transporter (DAT) ligand 2beta-carbomethoxy-3beta-(4-fluoro-phenyl)-8-(2-[(18)F]fluoroethyl)nortropane ([(18)F]beta-CFT-FE) was synthesized and evaluated in comparison with [(11)C]beta-CFT in monkey brain using animal positron emission tomography (PET). [(18)F]beta-CFT-FE and [(11)C]beta-CFT were injected intravenously to conscious monkeys for a 91-min PET scan with arterial blood sampling for metabolite analysis. In the conscious state, [(18)F]beta-CFT-FE provided a peak about 20 min after the injection and declined thereafter in the striatum of monkey brain, while [(11)C]beta-CFT continuously increased with time up to 91 min after injection. Metabolite analysis revealed that [(18)F]beta-CFT-FE was more rapidly metabolized in plasma than [(11)C]beta-CFT. The striatal binding of both ligands was dose-dependently displaced by preadministration of a specific DAT inhibitor, GBR12909, at doses of 0.5 and 5 mg/kg; however, the displacement degree of [(11)C]beta-CFT-FE was higher than that of [(18)F]beta-CFT. The effects of the anesthetics, ketamine and isoflurane, on binding were more prominent in [(11)C]beta-CFT than [(18)F]beta-CFT-FE. Specificity and affinity of beta-CFT-FE to DAT were evaluated in an in vitro assay using cloned human DAT, serotonin transporter, and norepinephrine transporter in comparison with other conventional DAT ligands, showing that beta-CFT-FE had lower affinity and higher specificity to DAT than beta-CFT and beta-CIT. These results suggested that [(18)F]beta-CFT-FE could be a potential imaging agent for DAT, providing excellent selectivity and tracer kinetics for quantitative PET imaging.
Collapse
Affiliation(s)
- Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Shizuoka 434-8601, Japan
| | | | | | | | | |
Collapse
|
41
|
Halldin C, Erixon-Lindroth N, Pauli S, Chou YH, Okubo Y, Karlsson P, Lundkvist C, Olsson H, Guilloteau D, Emond P, Farde L. [(11)C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain. Eur J Nucl Med Mol Imaging 2003; 30:1220-30. [PMID: 12811422 DOI: 10.1007/s00259-003-1212-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 04/04/2003] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore the potential of a new selective dopamine transporter (DAT) compound as a radioligand for positron emission tomography (PET) examination of DAT in the human brain. The high affinity DAT compound N-(3-iodoprop-2 E-enyl)-2beta-carbomethoxy-3beta-(4-methylphenyl)nortropane (PE2I) was radiolabelled by the O-methylation approach and the binding was characterised by PET in cynomolgus monkeys and a healthy man. Metabolite levels in plasma were measured by gradient high-performance liquid chromatography. O-methylation of the corresponding free acid precursor with [(11)C]methyl triflate gave high radiochemical yield (80%) and specific radioactivity (55 GBq/ microM). [(11)C]PE2I binding in cynomolgus monkeys was nine times higher in the striatum than in the cerebellum at peak equilibrium, which appeared 55-65 min after injection. Displacement and pretreatment measurements using unlabelled beta-CIT, GBR 12909, cocaine, citalopram and maprotiline confirmed that [(11)C]PE2I binds selectively to DAT. In a preliminary study in one human subject the radioactivity ratios of the striatum and substantia nigra to the cerebellum were 10 and 1.8, respectively, at peak equilibrium, which appeared at 40-50 min and 20 min, respectively, after injection. The fraction of the total radioactivity in monkey and human plasma representing unchanged [(11)C]PE2I was 15-20% at 40 min after injection. The present characterisation of binding in monkey and man suggests that [(11)C]PE2I is a suitable PET radioligand for quantitative regional examination of DAT in man.
Collapse
Affiliation(s)
- Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Hospital, 17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Of the designer drugs, the amphetamine analogues are the most popular and extensively studied, ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in particular. They are used recreationally with increasing popularity despite animal studies showing neurotoxic effects to serotonin (5-HT) and/or dopamine (DA) neurones. However, few detailed assessments of risks of these drugs exist in humans. Previously, there were no methods available for directly evaluating the neurotoxic effects of amphetamine analogues in the living human brain. However, development of in vivo neuroimaging tools have begun to provide insights into the effects of MDMA in human brain. In this review, contributions of brain imaging studies on the potential 5-HT and/or DA neurotoxic effects of amphetamine analogues will be highlighted in order to delineate the risks these drugs engender in humans, focusing on MDMA. An overview will be given of PET, SPECT and MR Spectroscopy studies employed in human users of these drugs. Most of these studies provide suggestive evidence that MDMA is neurotoxic to 5-HT neurones, and (meth)amphetamine to DA neurones in humans. These effects seem to be dose-related, leading to functional impairments such as memory loss, and are reversible in several brain regions. However most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causative links can be implied between drug use and neurotoxicity. Therefore, at this moment, it cannot be ascertained that humans are susceptible to MDMA-induced 5-HT injury or (meth)amphetamine-induced DA injury. Finally, although little is known about other amphetamine analogues there are important questions as to the safety of these designer drugs as well, in view of the fact that they are chemically closely related to MDMA and some have been shown to be 5-HT neurotoxins in animals.
Collapse
Affiliation(s)
- L Reneman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Reneman L, Booij J, Habraken JBA, De Bruin K, Hatzidimitriou G, Den Heeten GJ, Ricaurte GA. Validity of [123I]beta-CIT SPECT in detecting MDMA-induced serotonergic neurotoxicity. Synapse 2002; 46:199-205. [PMID: 12325046 DOI: 10.1002/syn.10130] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent [123I]beta-CIT single-photon emission computed tomography (SPECT) studies revealed decreased serotonin transporters (SERT) density in the brain of humans with a history of MDMA ("Ecstasy") use. However, [123I]beta-CIT SPECT has until now not been validated as a method for detecting such serotonergic lesions. Therefore, the present study was undertaken. Following baseline [123I]beta-CIT SPECT scans, a rhesus monkey was treated with MDMA (5 mg/kg, s.c. twice daily for 4 consecutive days). SPECT studies 4, 10, and 31 days after MDMA treatment revealed decreases in [123I]beta-CIT binding ratios in the SERT-rich brain region studied (hypothalamic/midbrain region), with SERT density reduced by 39% in this brain region 31 days after treatment. Data obtained with SPECT studies correlated well with SERT density determined with autoradiography after sacrifice of the animal (-34%). In addition, ex vivo [123I]beta-CIT binding studies in rats 1 week after treatment with neurotoxic doses of MDMA (20 mg/kg s.c. twice daily for 4 consecutive days) revealed significant reductions in [123I]beta-CIT binding in SERT-rich regions (including the hypothalamus) when compared to saline-treated rats. The combined results of these studies indicate that SPECT imaging of SERT with [123I]beta-CIT can detect changes in SERT density secondary to MDMA-induced neurotoxicity in the hypothalamic/midbrain region, and possibly other brain regions.
Collapse
Affiliation(s)
- Liesbeth Reneman
- Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lucignani G, Gobbo C, Moresco RM, Antonini A, Panzacchi A, Bonaldi L, Carpinelli A, Caraceni T, Fazio F. The feasibility of statistical parametric mapping for the analysis of positron emission tomography studies using 11C-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)-tropane in patients with movement disorders. Nucl Med Commun 2002; 23:1047-55. [PMID: 12411832 DOI: 10.1097/00006231-200211000-00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Movement disorders, including Parkinson's disease and parkinsonian syndromes, e.g. progressive supranuclear palsy, multiple system atrophy, and Lewy body dementia, may be difficult to differentiate among each other at an early stage, since they may share similar clinical features and response to dopaminergic drugs. As new tracers for imaging the dopamine transporters become available, the use of positron emission tomography (PET) for the differential diagnosis of movement disorders is gaining clinical relevance. Visual interpretation is generally used for PET image analysis. However, the use of some form of less subjective analysis is desirable in order to detect subtle changes that may be difficult to identify by visual interpretation and to achieve an operator independent analysis. To this end this study was aimed at assessing the feasibility of using statistical parametric mapping (SPM) for the clinical evaluation of single PET scans performed with 2-beta-carbomethoxy-3-beta-(4-fluorophenyl)-tropane ( C-beta-CIT-FE). Eleven healthy volunteers and five patients with movement disorders (Parkinson's disease, essential tremor, PSP and Lewy body dementia) were included in this study. Each subject underwent a PET study after i.v. injection of C-beta-CIT-FE. The PET images of C-beta-CIT-FE distribution acquired between 60 and 90 min were spatially fitted into the Talairach and Tournoux space. A template of normal C-beta-CIT-FE distribution was derived from studies in the 11 normal control subjects. Different patterns of reduction of the uptake of the tracer were detected in the basal ganglia of the five patients, in relation to each pathological condition. The patterns of distribution were all consistent with the severity and type of disease. The results of this study demonstrate the feasibility of differentiating among different states of dopaminergic impairment, due to Parkinson's disease and parkinsonian syndromes, by using PET scans with C-beta-CIT-FE and by using the SPM procedure for analysis of the data.
Collapse
Affiliation(s)
- G Lucignani
- Università di Milano, Ospedale L. Sacco, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hwang JJ, Liao MH, Yen TC, Wey SP, Lin KJ, Pan WHT, Chen JC, Ting G. Biodistribution study of [99mTc] TRODAT-1 alone or combined with other dopaminergic drugs in mice with macroautoradiography. Appl Radiat Isot 2002; 57:35-42. [PMID: 12137024 DOI: 10.1016/s0969-8043(01)00253-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A 99mTc labeled tropane derivative, [99mTc] TRODAT-1 (2beta-((N,N'-bis(2-mercaptoethyl) ethylene diamino)methyl), 3beta-(4-chlorophenyl) tropane), is a potential dopamine transporter (DAT) imaging agent for the central nervous system. To better understand the binding localization of [99mTc] TRODAT-1 both in the brain and the body, whole-body macroautoradiography (WBAR) was used in this study. The effect of DAT competing drugs, such as levadopa (L-DOPA), N-methyl-2beta-carbomethoxy-3beta-(4fluorophenyl)tropane (CFT, WIN 35,428) and methylphenidate, on the biodistribution of [99mTc] TRODAT-1 were also included in this study. Doses of 150 MBq [99mTc] TRODAT-1 were injected into normal male ICR mice through the caudal veins. For comparison, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), L-DOPA, methylphenidate and CFT, respectively, were also investigated under the similar protocols. One and a half hours after [99mTc] TRODAT-1 injection, the mice were sacrificed. Whole-body autoradiography was performed immediately after sacrifice. Both frontal and sagittal sections showed that the liver and mucosa of stomach had the highest uptake of [99mTc] TRODAT-1. Other binding sites included the periphery of the spinal cord and the epithelium of the intestine. In the brain, autoradiographic imaging obtained from frontal sections showed symmetrical uptakes of [99mTc] TRODAT-1 in bilateral striata. Remaining binding sites include olfactory bulbs, thyroid gland, and salivary gland. The autoradiographic imaging obtained from sagittal sections showed a similar biodistribution. Mice treated with MPTP or L-DOPA showed no significant difference in the uptake of [99mTc] TRODAT-1 in bilateral striata, as compared to those of the control. In CFT or methylphenidate-treated mice, DAT binding sites were almost completely inhibited. These data showed that [99mTc] TRODAT-1 has potential clinical use for neurological investigation, such as Parkinson's and similar diseases.
Collapse
Affiliation(s)
- J J Hwang
- Department of Medical Radiation Technology & Institute of Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kasper S, Tauscher J, Willeit M, Stamenkovic M, Neumeister A, Küfferle B, Barnas C, Stastny J, Praschak-Rieder N, Pezawas L, de Zwaan M, Quiner S, Pirker W, Asenbaum S, Podreka I, Brücke T. Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette's disorder--implications for psychopharmacology. World J Biol Psychiatry 2002; 3:133-46. [PMID: 12478878 DOI: 10.3109/15622970209150614] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Considerable progress has been achieved over the past 15 years in uncovering the biological basis of major psychiatric disorders. To determine patterns of brain dysfunction and to uncover the mechanism of action of centrally active compounds we used single photon emission computerized tomography (SPECT) as well as positron emission tomography (PET) in patients diagnosed with schizophrenia, depression, bulimia and Tourette's disorder. Striatal D2 and 5-HT1A receptors were studied in schizophrenia and 5-HT transporters (5-HTT) in depression and bulimia. Patients were either drug-naïve or drug free, or we studied the influence of specifically acting compounds on receptor/transporter occupancy. We could demonstrate that atypical antipsychotics have a dose-dependent (with the exception of clozapine and quetiapine) lower striatal D2 receptor occupancy rate compared with typical neuroleptics, paralleling the more favourable extrapyramidal side effects of atypical antipsychotics. However, no association between striatal D2 receptor occupancy rates and antipsychotic efficacy has been found. The measurement of 5-HT1A receptors in drug-naïve schizophrenic patients using the in vivo PET methodology revealed an increase of cortical 5-HT1A receptor binding potential in schizophrenia. beta-CIT as a ligand for measurement of 5-HT transporter densities (5-HTT) revealed lower rates in depression compared to age- and sex-matching healthy controls, a measurement that has also been obtained for bulimia. We also documented seasonal variations in brain serotonergic function by our finding of reduced brain 5-HTT availability in winter (compared to summer) in healthy controls. Furthermore, displaceable [123I] beta-CIT binding in the area corresponding to the left striatum (representing predominantly the density of dopamine transporters) was significantly reduced in SAD patients compared to healthy controls. In depression as well as in bulimia, selective serotonin reuptake inhibitors significantly decreased the beta-CIT binding potential, however, no significant dose relationship has been obtained in depression. Genotyping depressed patients for the serotonin transporter promoter gene region (5-HTTLPR) did not provide evidence for in vivo functional regulation of 5-HTT availability by 5-HTTLPR in the thalamus-hypothalamus and mesencephalon-pons of healthy subjects. In patients suffering from Tourette's disorder (TD) we were unable to detect differences of dopamine transporter densities between psychotropic drug-naïve TD patients and controls. Furthermore, no difference could be found between currently treated (with antipsychotics) and psychotropic drug-naïve TD patients. Our data provide insight into the pathophysiology of neuropsychiatric disorders and may guide future psychopharmacological drug developments.
Collapse
Affiliation(s)
- Siegfried Kasper
- Department of General Psychiatry, University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, Inoue M, Yasuno F, Takano A, Maeda J, Shibuya H. Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+)McN5652. Biol Psychiatry 2002; 51:715-22. [PMID: 11983185 DOI: 10.1016/s0006-3223(01)01351-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several lines of studies have suggested the involvement of serotonin transporter (5-HTT) in the pathophysiology of mood disorders. The aim of this study was to examine whether 5-HTT binding was altered in patients with mood disorders using positron emission tomography (PET). METHODS Thirteen antidepressant-naive or -free patients with mood disorders and 21 age-matched healthy control subjects participated in this study. The patients consisted of 7 with major depressive disorder (MDD) and 6 with bipolar disorder (BD). Positron emission tomography scans were performed using a selective ligand for 5-HTT, [11C](+)McN5652. The uptake was quantified in the thalamus and midbrain by graphical method with reference tissue, and binding potential (BP) was used for the index of 5-HTT binding. RESULTS Binding potential in the thalamus was significantly increased in patients with mood disorders as compared to control subjects, whereas BP in the midbrain did not differ between the groups. Subgroup comparison showed that MDD patients had significantly higher BP in the thalamus compared to control subjects. Binding potential of the thalamus was higher by approximately 22% in the combined patients and 23% in MDD patients relative to control subjects. CONCLUSIONS These findings may suggest the possibility of altered 5-HTT in patients with mood disorders. Functional abnormality in the thalamus may be involved in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Tetsuya Ichimiya
- Brain Imaging Project, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schönbächler RD, Gucker PM, Arigoni M, Kneifel S, Vollenweider FX, Buck A, Burger C, Berthold T, Brühlmeier M, Schubiger PA, Ametamey SM. PET imaging of dopamine transporters in the human brain using [(11)C]-beta-CPPIT, a cocaine derivative lacking the 2 beta-ester function. Nucl Med Biol 2002; 29:19-27. [PMID: 11786272 DOI: 10.1016/s0969-8051(01)00271-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The compound 3 beta-(4'-chlorophenyl)-2 beta-(3'-phenylisoxazol-5'-yl)tropane (CPPIT or RTI 177) is a 2beta-heterocyclic substituted cocaine congener with high in vitro selectivity and affinity for the dopamine transporter relative to serotonin and norepinephrine transporters. The aim of the present study was to evaluate the in vivo selectivity of [(11)C]-beta-CPPIT and to determine whether [(11)C]-beta-CPPIT may be a suitable alternative to existing DAT PET radioligands. [(11)C]-beta-CPPIT was prepared by N-alkylation of the free amine with [(11)C]methyl iodide. In mouse brain, the striatal binding of [(11)C]-beta-CPPIT was reduced significantly by preinjecting the dopamine reuptake antagonist GBR 12909 (5 mg/kg). By contrast, radioactivity uptake in the brain was not affected significantly by the preinjection of citalopram (5 mg/kg) and desipramine (5 mg/kg), inhibitors for the serotonin and norepinephrine transporters, respectively. No effect was also observed by pretreatment with ketanserin (2.5 mg/kg) a compound with high affinity for the 5-HT(2A)-receptor and the vesicular monoamine transporter. In a PET study with six healthy volunteers high striatal uptake was observed. The distribution pattern of [(11)C]-beta-CPPIT was similar to the known distribution of the dopamine transporter in the human brain. Compared to (123)I labeled beta-CIT, the rate of metabolic degradation of [(11)C]-beta-CPPIT was almost twofold slower suggesting that bioisosteric heterocyclic substitution of the ester group at the 2 beta-position of the tropane ring does have an influence on the rate of metabolism of [(11)C]-beta-CPPIT. The rank order of the distribution volumes obtained via the one-tissue compartment model is also similar to the reported distribution of DAT. These preliminary results suggest that [(11)C]-beta-CPPIT may be a useful PET radioligand for the visualization and quantification of dopamine transporters in man.
Collapse
|
49
|
Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato K, Harada N. Ketamine alters the availability of striatal dopamine transporter as measured by [(11)C]beta-CFT and [(11)C]beta-CIT-FE in the monkey brain. Synapse 2001; 42:273-80. [PMID: 11746726 DOI: 10.1002/syn.10012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of ketamine anesthesia on the binding of [(11)C]-labeled cocaine analogs, [(11)C]beta-CFT (2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane) and [(11)C]beta-CIT-FE (N-(2-fluoroethyl)-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane), to the striatal dopamine transporter (DAT) were evaluated in the monkey brain using positron emission tomography (PET). We sequentially measured the kinetics of these labeled compounds in the brains of five young-adult male rhesus monkeys (Macaca mulatta) in the conscious state, followed by those under ketamine anesthesia with continuous infusion (3 and 10 mg/kg/h). After intravenous injection, [(11)C]beta-CFT and [(11)C]beta-CIT-FE were predominantly accumulated in the striatum in both conscious and ketamine-anesthetized states. In the conscious state, the striatal uptake of [(11)C]beta-CFT and [(11)C]beta-CIT-FE continuously increased with time up to 91 min after injection. Continuous infusion of ketamine-induced higher levels of uptake of [(11)C]beta-CFT and [(11)C]beta-CIT-FE into the brain in a dose-dependent manner as compared with conscious state, and kinetic analysis with metabolite-corrected arterial input function indicated that the binding potentials (BP = k(3)/k(4)) of both compounds were elevated by ketamine. Not only [(11)C]beta-CIT-FE but also [(11)C]beta-CFT reached the equilibrium state of specific binding in the striatum within 40-50 min after injection. The present results demonstrated that ketamine significantly alters the DAT availability as measured with [(11)C]beta-CFT and [(11)C]beta-CIT-FE in the brain.
Collapse
Affiliation(s)
- H Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka 434-8601, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Reneman L, Booij J, Majoie CBLM, Van Den Brink W, Den Heeten GJ. Investigating the potential neurotoxicity of Ecstasy (MDMA): an imaging approach. Hum Psychopharmacol 2001; 16:579-588. [PMID: 12404537 DOI: 10.1002/hup.347] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human users of 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') users may be at risk of developing MDMA-induced neuronal injury. Previously, no methods were available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivo neuroimaging tools has begun to provide insights into the effects of MDMA in the human brain. In this review, contributions of brain imaging studies on the potential neurotoxic effects of MDMA and functional consequences are highlighted. An overview is given of PET, SPECT and MR spectroscopy studies, most of which show evidence of neuronal injury in MDMA users. Different neuroimaging tools are discussed that have investigated potential functional consequences of MDMA-induced 5-HT neurotoxic lesions. Finally, the contribution of brain imaging in future studies is discussed, emphasising the crucial role it will play in our understanding of MDMA's short- and long-term effects in the human brain. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liesbeth Reneman
- Department of Nuclear Medicine, Graduate School of Neurosciences, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|