1
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
2
|
Feng B, Lu J, Jiang W, Xu N, Sun W. Chlorpyrifos-oxon induced neuronal cell death via endoplasmic reticulum stress-triggered apoptosis pathways. Toxicol In Vitro 2024; 101:105939. [PMID: 39251113 DOI: 10.1016/j.tiv.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Chlorpyrifos (CPF) is one of the organophosphorus pesticides widely used throughout the world. Epidemiological studies suggested a link between CPF exposure and neurologic disorders, while the molecular mechanisms remain inconclusive. In the present study, we investigated the impacts of chlorpyrifos-oxon (CPO), the major toxic CPF metabolite, on cell apoptosis, and explored possible mechanism associated with endoplasmic reticulum (ER) stress in SH-SY5Y cells. Results showed that CPO exposure induced dose-dependent apoptosis and expression of ER stress-related proteins in SH-SY5Y cells. Pretreatment with 4-PBA (an ER stress inhibitor) effectively inhibited the expression of GRP78, GRP94, p-IRE1α, and XBP1-s, and apoptotic events. Pretreatment with STF-083010 (an IRE1α inhibitor) partially attenuated CPO-induced apoptosis. In addition, CPO exposure significantly evoked the generation of reactive oxygen species (ROS) which could be eliminated by pretreatment of 4-PBA. Of note, buffering the ROS generation with antioxidant NAC had little impact on the expression of p-IRE1α, and only partially attenuated CPO-induced apoptosis. In contrast, co-pretreatment with NAC and STF-083010 effectively inhibited CPO-induced apoptotic events. Collectively, our results indicate that CPO exposure exerts neuronal cytotoxicity via ER stress downstream-regulated IRE1α/XBP1 signaling pathway and ROS generation-triggered apoptosis. These findings highlight the role of ER stress in CPF-induced neurotoxicity, and provide a promising target for the intervention of organophosphate-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Baihuan Feng
- Department of Infection Prevention and Control, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingchun Lu
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Jiang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Nani Xu
- Xihu District Center for Disease Control and Prevention, Hangzhou, Zhejiang 310013, China.
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Alruhaimi RS, Ahmeda AF, Hussein OE, Alotaibi MF, Germoush MO, Elgebaly HA, Hassanein EHM, Mahmoud AM. Galangin attenuates chlorpyrifos-induced kidney injury by mitigating oxidative stress and inflammation and upregulating Nrf2 and farnesoid-X-receptor in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104542. [PMID: 39179192 DOI: 10.1016/j.etap.2024.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Chlorpyrifos (CPF) is a highly toxic commonly used pesticide and can seriously harm human health. This study assessed the potential of galangin (GAL), an antioxidant flavonoid, to attenuate oxidative stress, inflammation and kidney injury caused by CPF, emphasizing the role of farnesoid-x-receptor (FXR) and Nrf2. Rats were supplemented with CPF and GAL for 28 days. CPF increased serum creatinine, urea and Kim-1, provoked several tissue alterations, and increased kidney ROS, malondialdehyde (MDA), NF-κB p65, TNF-α, iNOS, and caspase-3. GAL effectively ameliorated serum kidney injury markers, ROS, MDA, and TNF-α, suppressed NF-κB p65, iNOS, and caspase-3, and enhanced antioxidants. GAL suppressed Keap1 and upregulated FXR, Nrf2, HO-1 and NQO-1 in CPF-administered rats. GAL exhibited binding affinity with Keap1, FXR, caspase-3, iNOS, HO-1, and NF-κB. In conclusion, GAL is effective in preventing CPF nephrotoxicity by attenuating oxidative stress and inflammation. This protection is linked to upregulation of antioxidants, Nrf2/HO-1 signaling and FXR.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
4
|
Kuang J, Fang J, Hu S, Yang X, Fan X. MECHANISM OF MICRORNA-218-5P IN MITOCHONDRIAL BIOGENESIS OF SEPSIS-INDUCED ACUTE KIDNEY INJURY BY THE REGULATION OF PGC-1Α. Shock 2024; 62:426-436. [PMID: 38888503 DOI: 10.1097/shk.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Sepsis-induced acute kidney injury (SI-AKI) is a kind of kidney dysfunction, which brings a lot of suffering. This study aimed to figure out the role of the miR-218-5p/PGC-1α axis in SI-AKI. Methods: AKI mouse model was established through cecal ligation and puncture. PGC-1α expression was activated using an activator ZLN005 before the serum and tissue samples were collected. Next, pathological structure and apoptosis of kidney tissues were observed. Levels of blood urea nitrogen, serum creatinine, and indicators of inflammation and oxidative stress were assessed. Moreover, reactive oxygen species and mitochondrial membrane potential levels, adenosine 5'-triphosphate content, and mitochondrial ultrastructure of kidney tissues were observed. HK2 cells were treated by lipopolysaccharide (LPS) to mimic sepsis in vitro , followed by evaluation of cell survival and apoptosis, inflammation, and oxidative stress. Subsequently, the binding relation between PGC-1α and miR-218-5p was predicted and validated. Then expression of PGC-1α and miR-218-5p was detected. PGC-1α and miR-218-5p expression were intervened to detect their influences in mitochondrial biogenesis. At last, miR-218-5p was overexpressed in ZLN005 (PGC-1α activating agent) pretreated SI-AKI mice to validate the mechanism. Results: PGC-1α is poorly expressed in SI-AKI, but overexpression of PGC-1α using ZLN005 alleviated SI-AKI injury and promoted mitochondrial biogenesis in AKI mice, and relieved LPS-induced cell injury. PGC-1α is a target of miR-218-5p. Downregulation of miR-218-5p expression in HK2 cells attenuated mitochondrial biogenesis disorder. Inhibition of PGC-1α annulled the role of miR-218-5p silencing in cells. In vivo , miR-218-5p overexpression partly reversed the protective role of ZLN005 in SI-AKI mice. Conclusion: miR-218-5p targeted PGC-1α to disrupt mitochondrial biogenesis, thereby exacerbating SI-AKI.
Collapse
Affiliation(s)
- Jing Kuang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Fang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shuli Hu
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xiuhong Yang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xuepeng Fan
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
6
|
Zhang W, Fan C, Yi Z, Du T, Wang N, Tian W, Pan Q, Ma X, Wang Z. TMEM79 Ameliorates Cerebral Ischemia/Reperfusion Injury Through Regulating Inflammation and Oxidative Stress via the Nrf2/NLRP3 Pathway. Immunol Invest 2024; 53:872-890. [PMID: 38809063 DOI: 10.1080/08820139.2024.2354268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengcheng Fan
- Organization Department of the Party Committee, Department of Basic Sciences of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhongxue Yi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Du
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Nana Wang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Weizhu Tian
- Department of Encephalopathy, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qian Pan
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiande Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhe Wang
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
7
|
Alruhaimi RS, Alotaibi MF, Alnasser SM, Alzoghaibi MA, Germoush MO, Alotaibi M, Hassanein EHM, Mahmoud AM. Farnesol prevents chlorpyrifos nephrotoxicity by modulating inflammatory mediators, Nrf2 and FXR and attenuating oxidative stress. Food Chem Toxicol 2024; 190:114788. [PMID: 38849050 DOI: 10.1016/j.fct.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum insecticide widely employed in agricultural field for pest control. Exposure to CPF is associated with serious effects to the main organs, including kidneys. Significant evidence denotes that oxidative stress (OS) and inflammation are implicated in CPF toxicity. This study aimed to evaluate the potential of farnesol (FAR) to modulate inflammatory mediators and farnesoid-X-receptor (FXR) and Nrf2 in a rat model of CPF nephrotoxicity. CPF and FAR were orally supplemented for 28 days and blood and kidney samples were collected for investigations. CPF administration elevated blood creatinine and urea, kidney MDA and NO, and upregulated NF-κB p65, IL-1β, TNF-α, iNOS, and caspase-3. In addition, CPF upregulated kidney Keap1, and decreased GSH, antioxidant enzymes, and Nrf2, FXR, HO-1 and NQO-1. FAR ameliorated creatinine and urea, prevented histopathological alterations, decreased MDA and NO, and enhanced antioxidants in CPF-administered rats. FAR modulated NF-κB p65, iNOS, TNF-α, IL-1β, caspase-3, Keap1, HO-1, NQO-1, Nrf2 and FXR. In silico investigations revealed the binding affinity of FAR towards Keap1 and FXR, as well as NF-κB, caspase-3, iNOS, and HO-1. In conclusion, FAR prevents CPF-induced kidney injury by attenuating OS, inflammation, and apoptosis, effects associated with modulation of FXR, Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah, 72388, Saudi Arabia
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafar Al Batin, 39524, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK; Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
8
|
Lori G, Coppola L, Casella M, Tinari A, Masciola I, Tait S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. CHEMOSPHERE 2024; 362:142723. [PMID: 38945228 DOI: 10.1016/j.chemosphere.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Chlorpyrifos (CPF) is a widely used pesticide inducing adverse neurodevelopmental and reproductive effects. However, knowledge of the underlying mechanisms is limited, particularly in the hypothalamus. We investigated the mode of action of CPF at human relevant concentrations (1 nM-100 nM) in immortalized mouse hypothalamic GnRH neurons (GT1-7), an elective model for studying disruption of the hypothalamus-pituitary-gonads (HPG) axis. We firstly examined cell vitality, proliferation, and apoptosis/necrosis. At not-cytotoxic concentrations, we evaluated neuron functionality, gene expression, Transmission Electron Microscopy (TEM) and proteomics profiles, validating results by immunofluorescence and western blotting (WB). CPF decreased cell vitality with a dose-response but did not affect cell proliferation. At 100 nM, CPF inhibited gene expression and secretion of GnRH; in addition, CPF reduced the immunoreactivity of the neuronal marker Map2 in a dose-dependent manner. The gene expression of Estrogen Receptor α and β (Erα, Erβ), Androgen Receptor (Ar), aromatase and oxytocin receptor was induced by CPF with different trends. Functional analysis of differentially expressed proteins identified Autophagy, mTOR signaling and Neutrophil extracellular traps (NETs) formation as significant pathways affected at all concentrations. This finding was phenotypically supported by the TEM analysis, showing marked autophagy and damage of mitochondria, as well as by protein analysis demonstrating a dose-dependent decrease of mTOR and its direct target pUlk1 (Ser 757). The bioinformatics network analysis identified a core module of interacting proteins, including Erα, Ar, mTOR and Sirt1, whose down-regulation was confirmed by WB analysis. Overall, our results demonstrate that CPF is an inhibitor of the mTOR pathway leading to autophagy in GnRH neurons; a possible involvement of the Erα/Ar signaling is also suggested. The evidence for adverse effects of CPF in the hypothalamus in the nanomolar range, as occurs in human exposure, increases concern on potential adverse outcomes induced by this pesticide on the HPG axis.
Collapse
Affiliation(s)
- Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Irene Masciola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Zhang X, Zhang Y, Wang B, Xie C, Wang J, Fang R, Dong H, Fan G, Wang M, He Y, Shen C, Duan Y, Zhao J, Liu Z, Li Q, Ma Y, Yu M, Wang J, Fei J, Xiao L, Huang F. Pyroptosis-mediator GSDMD promotes Parkinson's disease pathology via microglial activation and dopaminergic neuronal death. Brain Behav Immun 2024; 119:129-145. [PMID: 38552923 DOI: 10.1016/j.bbi.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/02/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
GSDMD-mediated pyroptosis occurs in the nigrostriatal pathway in Parkinson's disease animals, yet the role of GSDMD in neuroinflammation and death of dopaminergic neurons in Parkinson's disease remains elusive. Here, our in vivo and in vitro studies demonstrated that GSDMD, as a pyroptosis executor, contributed to glial reaction and death of dopaminergic neurons across different Parkinson's disease models. The ablation of the Gsdmd attenuated Parkinson's disease damage by reducing dopaminergic neuronal death, microglial activation, and detrimental transformation. Disulfiram, an inhibitor blocking GSDMD pore formation, efficiently curtailed pyroptosis, thereby lessening the pathology of Parkinson's disease. Additionally, a modification in GSDMD was identified in the blood of Parkinson's disease patients in contrast to healthy subjects. Therefore, the detected alteration in GSDMD within the blood of Parkinson's disease patients and the protective impact of disulfiram could be promising for the diagnostic and therapeutic approaches against Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Boya Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Chuantong Xie
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Guangchun Fan
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mengze Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Chenye Shen
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Qing Li
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jian Wang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Pudong, Shanghai 201203, China.
| | - Lei Xiao
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing' an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
10
|
Rashidi SK, Dezfouli MA, Khodagholi F, Dadashpour M, Shabani AA. Protective effect of melatonin against methamphetamine-induced attention deficits through miR-181/SIRT1 axis in the prefrontal cortex. Mol Biol Rep 2024; 51:690. [PMID: 38796575 DOI: 10.1007/s11033-024-09631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an addictive psychostimulant with deleterious effects on the central nervous system. Chronic use of METH in high doses impairs cognition, attention and executive functions, but the underlying mechanisms are still unclear. Sirtuin 1 (SIRT1) is a post-translational regulator that is downregulated following METH neurotoxicity. Melatonin is a neuroprotective hormone that enhances mitochondrial metabolism. Here, we evaluated the effect of melatonin on METH-induced attention deficits disorder and the involvement of the miR-181/SIRT1 axis in melatonin neuroprotection. METHODS AND RESULTS METH at a dose of 5 mg/kg was injected for 21 consecutive days. The animals were assigned to receive either melatonin or the vehicle after METH injections. Attention levels were evaluated with abject-based attention test. In the prefrontal cortex, the expression levels of miR-181a-5p, SIRT1, p53 and CCAR2, as well as the mtDNA copy numbers were evaluated using qRT-PCR and western blotting. The outcomes revealed that melatonin treatment following METH injections improved METH-induced attention deficits. METH toxicity can be associated with changes in the miR-181/SIRT1 axis, elevated levels of p53 and COXII, and decreased levels of mtDNA in the prefrontal cortex of adult rats. Interestingly, administration of melatonin can improve the expression of these molecules and reduces the toxic effects of METH. CONCLUSION Melatonin ameliorated the neurotoxicity of METH in the prefrontal cortex and the miR-181/SIRT1 axis is involve in the protective effects of melatonin. However, melatonin can be potentially administrated to improve attention impairment in METH use disorders.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
11
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
12
|
Ramirez-Cando LJ, Rodríguez-Cazar LG, Acosta-Tobar LA, Ballaz SJ. Molecular docking analysis of chlorpyrifos at the human α7-nAChR and its potential relationship with neurocytoxicity in SH-SY5Y cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:277-284. [PMID: 38600794 DOI: 10.1080/03601234.2024.2340929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.
Collapse
Affiliation(s)
- Lenin J Ramirez-Cando
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | | | - Luis A Acosta-Tobar
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | | |
Collapse
|
13
|
Yadav B, Kaur S, Yadav A, Verma H, Kar S, Sahu BK, Pati KR, Sarkar B, Dhiman M, Mantha AK. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer's disease. J Biochem Mol Toxicol 2024; 38:e23660. [PMID: 38356323 DOI: 10.1002/jbt.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid β (Aβ) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid β. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Swastitapa Kar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Binit Kumar Sahu
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Riya Pati
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibekanada Sarkar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
14
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
15
|
Li Q, Guo P, Wang S, Su L, Liang T, Yu W, Guo J, Yang Q, Tang Z, Liao J. Gut microbiota disorders aggravate terbuthylazine-induced mitochondrial quality control disturbance and PANoptosis in chicken hepatocyte through gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169642. [PMID: 38159754 DOI: 10.1016/j.scitotenv.2023.169642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Terbuthylazine (TBA) is a widely prevalent pesticide pollutant, which is a global concern due to its environmental residual. However, the toxic mechanism of TBA have not been fully solved. Here, we explored that TBA exposure disrupts the intestinal flora and aggravated disturbance of mitochondrial quality control and PANapoptosis in hepatocytes via gut-liver axis. Our findings demonstrated that TBA exposure induced significant damage to the jejunum barrier, evidenced by a marked decrease in the expression of Occludin and ZO-1. Moreover. TBA led to intestinal microflora disorder, manifested as the decreased abundance of Firmicutes, and increased abundance of the Nitrospirota, Chloroflexi, Desulfobacterota, Crenarchaeota, Myxococcota, and Planctomycetota. Meanwhile, intestinal microflora disorder affected the biological processes of lipid metabolism and cell growth and death of hepatocytes by RNA-Seq analysis. Furthermore, TBA could induced mitochondrial quality control imbalance, including mitochondrial redox disorders, lower activity of mitochondrial fusion and biogenesis decrease, and increasing level of mitophagy. Subsequently, TBA significantly increased expression levels of pyroptosis, apoptosis and necroptosis-related proteins. In general, these results demonstrated the underlying mechanisms of TBA-induced hepatotoxicity induced via the gut-liver axis, which provides a theoretical basis for further research of ecotoxicology of TBA.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Tingyu Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
16
|
Li MR, Men SH, Wang ZY, Liu C, Zhou GR, Yan ZG. The application of human-derived cell lines in neurotoxicity studies of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168839. [PMID: 38036138 DOI: 10.1016/j.scitotenv.2023.168839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.
Collapse
Affiliation(s)
- Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shu-Hui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Ye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guo-Rui Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Quan W, Liu Y, Li J, Chen D, Xu J, Song J, Chen J, Sun S. Investigating the TLR4/TAK1/IRF7 axis in NLRP3-Mediated Pyroptosis in Parkinson's Disease. Inflammation 2024; 47:404-420. [PMID: 37930487 DOI: 10.1007/s10753-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
In the realm of Parkinson's disease (PD) research, NLRP3 inflammasome-mediated pyroptosis has recently garnered significant attention as a potential novel form of dopaminergic neuronal death. Our previous research revealed the activation of innate immune-related genes, such as the TLR4 signaling pathway and interferon regulatory factor 7 (IRF7), although the specific mechanism remains unclear. Our current study shed light on whether the TLR4 signaling pathway and IRF7 can affect the pyroptosis of dopaminergic nerve cells and thus participate in the pathogenesis of PD. The PD model was constructed by MPP+ treatment of PC12 cells or stereotactic injection of the striatum of SD rats, and the expression of genes were detected by RT-qPCR and Western Blotting. Lentivirus, siRNA and (5Z)-7-Oxozeaenol were used to validate the regulation of this pathway on pyroptosis. The expression of TLR4, TAK1, IRF7 and pyroptosis molecular markers was upregulated after MPP+ treatment. IRF7 could affect dopaminergic neural cells pyroptosis by targeted regulation of NLRP3. Furthermore, inhibition of the TLR4/TAK1 signaling pathway led to a decrease in the expression of both IRF7 and NLRP3, while overexpression of IRF7 reversed the reduction in pyroptosis and increase in TH expression. TLR4/TAK1/IRF7 axis can promote PD by influencing pyroptosis through NLRP3.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Dawei Chen
- Department of Neurosurgery, First Affiliated Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, Jilin, 130021, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
18
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
19
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
20
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
21
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
22
|
Zhou Q, Li T, Fang G, Pang Y, Wang X. Bioactive Molecules against Rheumatoid Arthritis by Suppressing Pyroptosis. Pharmaceuticals (Basel) 2023; 16:952. [PMID: 37513864 PMCID: PMC10383892 DOI: 10.3390/ph16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis is an inflammatory disease, and pyroptosis is a form of death associated with an inflammatory response. Pyroptosis, which occurs in synovial and osteoblastic cells, can exacerbate the development of rheumatoid arthritis. The inhibition of pyroptosis of these cells can, therefore, clearly be used as a therapeutic strategy against rheumatoid arthritis. Here, we have summarized the current status of progress in the treatment of rheumatoid arthritis by targeting cellular pyroptosis. We have identified seven compounds, including a cyclic RNA, a microRNA, a peptide, and a cytokine (protein), that may influence the progression of rheumatoid arthritis by regulating the initiation of pyroptosis. All of these compounds have been shown to have anti-rheumatoid effects in vitro and/or in vivo and have the potential to be developed as anti-rheumatoid agents. These findings may help to accelerate the development of anti-rheumatoid arthritis drugs.
Collapse
Affiliation(s)
- Qian Zhou
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Tian Li
- School of Basic Medical Science, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Gang Fang
- School of Zhuang Medicine, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| |
Collapse
|
23
|
Nasr Z, Schoeps VA, Ziaei A, Virupakshaiah A, Adams C, Casper TC, Waltz M, Rose J, Rodriguez M, Tillema JM, Chitnis T, Graves JS, Benson L, Rensel M, Krupp L, Waldman AT, Weinstock-Guttman B, Lotze T, Greenberg B, Aaen G, Mar S, Schreiner T, Hart J, Simpson-Yap S, Mesaros C, Barcellos LF, Waubant E. Gene-environment interactions increase the risk of paediatric-onset multiple sclerosis associated with household chemical exposures. J Neurol Neurosurg Psychiatry 2023; 94:518-525. [PMID: 36725329 PMCID: PMC10272045 DOI: 10.1136/jnnp-2022-330713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND We previously reported an association between household chemical exposures and an increased risk of paediatric-onset multiple sclerosis. METHODS Using a case-control paediatric multiple sclerosis study, gene-environment interaction between exposure to household chemicals and genotypes for risk of paediatric-onset multiple sclerosis was estimated.Genetic risk factors of interest included the two major HLA multiple sclerosis risk factors, the presence of DRB1*15 and the absence of A*02, and multiple sclerosis risk variants within the metabolic pathways of common household toxic chemicals, including IL-6 (rs2069852), BCL-2 (rs2187163) and NFKB1 (rs7665090). RESULTS 490 paediatric-onset multiple sclerosis cases and 716 controls were included in the analyses. Exposures to insect repellent for ticks or mosquitos (OR 1.47, 95% CI 1.06 to 2.04, p=0.019), weed control products (OR 2.15, 95% CI 1.51 to 3.07, p<0.001) and plant/tree insect or disease control products (OR 3.25, 95% CI 1.92 to 5.49, p<0.001) were associated with increased odds of paediatric-onset multiple sclerosis. There was significant additive interaction between exposure to weed control products and NFKB1 SNP GG (attributable proportions (AP) 0.48, 95% CI 0.10 to 0.87), and exposure to plant or disease control products and absence of HLA-A*02 (AP 0.56; 95% CI 0.03 to 1.08). There was a multiplicative interaction between exposure to weed control products and NFKB1 SNP GG genotype (OR 2.30, 95% CI 1.00 to 5.30) but not for other exposures and risk variants. No interactions were found with IL-6 and BCL-2 SNP GG genotypes. CONCLUSIONS The presence of gene-environment interactions with household toxins supports their possible causal role in paediatric-onset multiple sclerosis.
Collapse
Affiliation(s)
- Zahra Nasr
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Vinicius Andreoli Schoeps
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Amin Ziaei
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Akash Virupakshaiah
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Cameron Adams
- Genetic Epidemiology and Genomics Laboratory, Divisions of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | | | - Michael Waltz
- University of Utah Health, Salt Lake City, Utah, USA
| | - John Rose
- University of Utah Health, Salt Lake City, Utah, USA
| | | | | | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical school, Boston, Massachusetts, USA
| | | | - Leslie Benson
- Childrens Hospital Boston, Boston, Massachusetts, USA
| | | | - Lauren Krupp
- New York University Medical Center, New York City, New York, USA
| | - Amy T Waldman
- Division of Child Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Tim Lotze
- Texas Children's Hospital, Houston, Texas, USA
| | | | - Gregory Aaen
- Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Soe Mar
- Washington University in St. Louis, St Louis, Missouri, USA
| | | | - Janace Hart
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Steve Simpson-Yap
- Neuroepidemiology Unit, The University of Melbourne School of Population and Global Health, Melbourne, Carlton, Australia
- Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, The University of Melbourne, Melbourne, Parkville, Australia
- Multiple Sclerosis Flagship, Menzies Institute for Medical Research, University of Tasmania, Tasmania, Hobart, Australia
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics (SPATT), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa F Barcellos
- Genetic Epidemiology and Genomics Laboratory, Divisions of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
24
|
Sánchez-Alarcón J, Milić M, Bonassi S, Gómez-Arroyo S, Cortés-Eslava J, Flores-Márquez AR, Valencia-Sánchez RA, Valencia-Quintana R. Occupational exposure to pesticides: DNA damage in horticulturist from Nativitas, Tlaxcala in Mexico. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104141. [PMID: 37146670 DOI: 10.1016/j.etap.2023.104141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Mexico is a country where agricultural activity is of great importance, but biomonitoring data are still scarce. With more intensive pesticides use per unit area/surface in horticultural productivity, there is a higher impact on environmental contamination and workers' health. Considering that exposure to various pesticide and pesticide mixtures represents an additional genotoxic risk, the appropriate characterization of exposure, confounding factors and the risk itself are very much needed. We compared genetic damage in 42 horticulturists and 46 unexposed controls (Nativitas, Tlaxcala) using alkaline comet (whole blood) and micronucleus (MN) test with nuclear abnormalities (NA) (buccal epithelial cells). Workers demonstrated significantly higher levels of damage (TI%=14.02 ± 2.49 vs. 5.37 ± 0.46; MN=10.14 ± 5.15 vs. 2.40 ± 0.20), with more than 90% of them not using protective clothing nor gloves during application. Combined DNA damage techniques and periodic monitoring together with educational programs for safe pesticide application is the best strategy to assess and prevent workers' health risks.
Collapse
Affiliation(s)
- Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10 000 Zagreb, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | | | - Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico.
| |
Collapse
|
25
|
Wang Y, Zhou J, Zhang N, Zhu Y, Zhong Y, Wang Z, Jin H, Wang X. A Novel Defined PANoptosis-Related miRNA Signature for Predicting the Prognosis and Immune Characteristics in Clear Cell Renal Cell Carcinoma: A miRNA Signature for the Prognosis of ccRCC. Int J Mol Sci 2023; 24:ijms24119392. [PMID: 37298343 DOI: 10.3390/ijms24119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent cancers, and PANoptosis is a distinct, inflammatory-programmed cell death regulated by the PANoptosome. The essential regulators of cancer occurrence and progression are microRNAs (miRNAs). However, the potential function of PANoptosis-related microRNAs (PRMs) in ccRCC remains obscure. This study retrieved ccRCC samples from The Cancer Genome Atlas database and three Gene Expression Omnibus datasets. PRMs were recognized based on previous reports in the scientific literature. Regression analyses were used to identify the prognosis PRMs and construct a PANoptosis-related miRNA prognostic signature based on the risk score. We discovered that high-risk patients had poorer survival prognoses and were significantly linked to high-grade and advanced-stage tumors, using a variety of R software packages and web analysis tools. Furthermore, we demonstrated that the low-risk group had significant changes in their metabolic pathways. In contrast, the high-risk group was characterized by high immune cell infiltration, immune checkpoint expression, and low half-maximum inhibition concentration (IC50) values of chemotherapeutic agents. This suggests that high-risk patients may benefit more from immunotherapy and chemotherapy. In conclusion, we constructed a PANoptosis-related microRNA signature and revealed its potential significance in clinicopathological features and tumor immunity, thereby providing new precise treatment strategies.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Jia Zhou
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Nan Zhang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Yiran Zhu
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Yiming Zhong
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Zhuo Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xian Wang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
26
|
Alruhaimi RS. Betulinic acid protects against cardiotoxicity of the organophosphorus pesticide chlorpyrifos by suppressing oxidative stress, inflammation, and apoptosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51180-51190. [PMID: 36808036 DOI: 10.1007/s11356-023-25917-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
The widespread application of organophosphorus (OP) pesticides can affect the environment as well as the animal and human health. Chlorpyrifos (CPF) is a broad-spectrum OP pesticide used in agriculture and can cause several toxic effects in which oxidative stresses and inflammation play a key role. This study aimed to evaluate the protective activity of betulinic acid (BA), an antioxidant and anti-inflammatory pentacyclic triterpene, against CPF cardiotoxicity in rats. The rats were divided into four groups. CPF (10 mg/kg) and BA (25 mg/kg) were orally administered for 28 days, and blood and heart samples were collected. CPF-administered rats showed an increase in serum cardiac troponin I (cTnI), creatine kinase (CK)-MB, and lactate dehydrogenase (LDH), accompanied with multiple myocardial tissue alterations. Lipid peroxidation (LPO), nitric oxide (NO), nuclear factor-kappaB (NF-κB), interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were increased, and antioxidant were decrease in CPF-administered rats. BA ameliorated cardiac function markers and tissue injury, decreased LPO, NO, NF-κB, and proinflammatory cytokines, and increased antioxidants. In addition, BA decreased proapoptosis markers, and increased B-cell lymphoma (Bcl)-2, IL-10, Nrf2, and HO-1 in the heart of CPF-treated rats. In conclusion, BA protected against cardiotoxicity in CPF-administered rats by mitigating oxidative stress, inflammation, and apoptosis, and enhanced Nrf2 and antioxidants.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
27
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
28
|
Feng Z, Huang Q, Zhang X, Xu P, Li S, Ma D, Meng Q. PPAR-γ Activation Alleviates Osteoarthritis through Both the Nrf2/NLRP3 and PGC-1α/Δψm Pathways by Inhibiting Pyroptosis. PPAR Res 2023; 2023:2523536. [PMID: 37020714 PMCID: PMC10070030 DOI: 10.1155/2023/2523536] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease with a gradually increasing morbidity in the aging and obese population. Emerging evidence has implicated pyroptosis in the etiology of OA and it may be recognized as a therapeutic target in OA. We have previously reported regarding another disease that peroxisome proliferator-activated receptor gamma (PPAR-γ) activation exerts an anti-inflammatory effect by suppressing the nucleotide-binding and oligomerization domain-like receptor containing protein (NLRP) 3 inflammasome. However, the relationship between PPAR-γ and NLRP3-mediated pyroptosis in OA cartilage and its underlying mechanisms is fully unclear. In this study, we found that the level of NLRP3-mediated pyroptosis in severe lateral femoral condyle cartilage wear in the knee of an OA patient was significantly higher than that in the mild lateral femoral condyle cartilage wear areas. Moreover, in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced primary chondrocytes and knee OA rat models, we demonstrated that activation of PPAR-γ by pioglitazone (Piog) attenuated LPS/ATP-induced chondrocyte pyroptosis and arthritis. These effects were partially counteracted by either blocking the nuclear factor erythroid-2-related factor (Nrf2)/NLRP3 or PGC1-α/Δψm signaling pathway. Simultaneous depression of these two signaling pathways can completely abrogate the protective effects of Piog on OA and chondrocytes. Taken together, Piog protects OA cartilage against pyroptosis-induced damage by simultaneously activating both the Nrf2/NLRP3 and PGC-1α/Δψm pathways, which enhances antioxidative and anti-inflammatory responses as well as mitochondrial biogenesis. Therefore, Piog may be a promising agent for human OA cartilage damage in future clinical treatments.
Collapse
|
29
|
Elhaj R, Reynolds JM. Chemical exposures and suspected impact on Gulf War Veterans. Mil Med Res 2023; 10:11. [PMID: 36882803 PMCID: PMC9993698 DOI: 10.1186/s40779-023-00449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Gulf War Illness (GWI) encompass a spectrum of maladies specific to troops deployed during the Persian Gulf War (1990-1991). There are several hypothesized factors believed to contribute to GWI, including (but not limited to) exposures to chemical agents and a foreign environment (e.g., dust, pollens, insects, and microbes). Moreover, the inherent stress associated with deployment and combat has been associated with GWI. While the etiology of GWI remains uncertain, several studies have provided strong evidence that chemical exposures, especially neurotoxicants, may be underlying factors for the development of GWI. This mini style perspective article will focus on some of the major evidence linking chemical exposures to GWI development and persistence decades after exposure.
Collapse
Affiliation(s)
- Rami Elhaj
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joseph M Reynolds
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
30
|
Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 159:114229. [PMID: 36652731 DOI: 10.1016/j.biopha.2023.114229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.
Collapse
|
31
|
Chu X, Dai X, Pu W, Guo H, Huang G, Huang B, Cui T, Zhang C. Co-exposure to molybdenum and cadmium triggers pyroptosis and autophagy by PI3K/AKT axis in duck spleens. ENVIRONMENTAL TOXICOLOGY 2023; 38:635-644. [PMID: 36399440 DOI: 10.1002/tox.23712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Excessive amounts of molybdenum (Mo) and cadmium (Cd) are toxicant, but their combined immunotoxicity are not clearly understood. To estimate united impacts of Mo and Cd on pyroptosis and autophagy by PI3K/AKT axis in duck spleens, Mo or/and Cd subchronic toxicity models of ducks were established by feeding diets with different dosages of Mo or/and Cd. Data show that Mo or/and Cd cause oxidative stress by increasing MDA concentration, and decreasing T-AOC, CAT, GSH-Px and T-SOD activities, restrain PI3K/AKT axis by decreasing PI3K, AKT, p-AKT expression levels, which evokes pyroptosis and autophagy by elevating IL-1β, IL-18 concentrations and NLRP3, Caspase-1, ASC, GSDME, GSDMA, NEK7, IL-1β, IL-18 expression levels, promoting autophagosomes, LC3 puncta, Atg5, LC3A, LC3B, LC3II/LC3I and Beclin-1 expression levels, and reducing expression levels of P62 and Dynein. Furthermore, the variations of abovementioned indexes are most pronounced in co-treated group. Overall, results reveal that Mo or/and Cd may evoke pyroptosis and autophagy by PI3K/AKT axis in duck spleens. The association of Mo and Cd exacerbates the changes.
Collapse
Affiliation(s)
- Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
32
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
33
|
Abduh MS, Alruhaimi RS, Alqhtani HA, Hussein OE, Abukhalil MH, Kamel EM, Mahmoud AM. Rosmarinic acid mitigates chlorpyrifos-induced oxidative stress, inflammation, and kidney injury in rats by modulating SIRT1 and Nrf2/HO-1 signaling. Life Sci 2023; 313:121281. [PMID: 36521549 DOI: 10.1016/j.lfs.2022.121281] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Chlorpyrifos (CPF) is a widely used broad-spectrum pesticide with multi-organ toxic effects. Oxidative stress was found to play a role in the deleterious effects of CPF, including nephrotoxicity. This study investigated the protective effect of the antioxidant polyphenol rosmarinic acid (RA) against CPF-induced kidney injury, with an emphasis on oxidative injury, inflammation, SIRT1, and Nrf2/HO-1 signaling. Rats received 10 mg/kg CPF and 25, 50, and 100 mg/kg RA orally for 28 days, and the samples were collected for analysis. CPF increased serum urea and creatinine and kidney Kim-1 and caused several histopathological alterations. ROS, MDA, NO, NF-κB p65, TNF-α, and IL-1β were elevated in the kidney of CPF-intoxicated rats. RA ameliorated kidney function markers, prevented tissue injury, suppressed ROS, MDA, and NO, and downregulated NF-κB p65, TNF-α, and IL-1β in CPF-intoxicated rats in a dose-dependent manner. RA decreased Bax, caspase-3, oxidative DNA damage, and Keap1, boosted antioxidant enzymes and Bcl-2, and upregulated Nrf2, HO-1, and SIRT1 in CPF-administered rats. Molecular docking simulation revealed the binding affinity of RA toward NF-κB, Keap1, HO-1, and SIRT1. In conclusion, RA prevented CPF nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and upregulating SIRT1 and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Emadeldin M Kamel
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
34
|
Dehghan H, Farkhondeh T, Darroudi M, Yousefizadeh S, Samarghandian S. Role of miRNAs in mediating organophosphate compounds induced toxicity. Toxicol Rep 2023; 10:216-222. [PMID: 36845257 PMCID: PMC9945638 DOI: 10.1016/j.toxrep.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Organophosphate compounds (OPCs) are a diverse class of chemicals utilized in both industrial and agricultural settings. The exact molecular pathways that OPCs-induced toxicity is caused by are still being investigated, despite the fact that studies on this topic have been ongoing for a long time. As a result, it's important to identify innovative strategies to uncover these processes and further the understanding of the pathways involved in OPCs-induced toxicity. In this context, determining the role of microRNAs (miRs) in the toxicity caused by OPCs should be taken into consideration. Recent research on the regulation function of miRs presents key discoveries to identify any gaps in the toxicity mechanisms of OPCs. As diagnostic indicators for toxicity in people exposed to OPCs, various expression miRs can also be used. The results of experimental and human studies into the expression profiles of miRs in OPCs-induced toxicity have been compiled in this article.
Collapse
Affiliation(s)
- Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Paraveterinary, Ilam University, Ilam, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
35
|
N-3 polyunsaturated fatty acids protect esophageal epithelial cells from acid exposure. Food Res Int 2022; 162:111943. [DOI: 10.1016/j.foodres.2022.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
|
36
|
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 2022; 16:985943. [PMID: 36439198 PMCID: PMC9688751 DOI: 10.3389/fncel.2022.985943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and axonal loss of the central nervous system (CNS). Despite its spread throughout the world, the mechanisms that determine its onset are still to be defined. Immunological, genetic, viral, and environmental factors and exposure to chemicals may trigger MS. Many studies have highlighted the anti-inflammatory and anti-oxidant effects of medicinal herbs, which make them a natural and complementary treatment for neurodegenerative diseases. A severe reduction of several MS symptoms occurs with herbal therapy. Thus, the request for medicinal plants with potential beneficial effects, for MS patients, is constantly increasing. Consequently, a production increase needs. Unfortunately, many medicinal herbs were untested and their action mechanism, possible adverse effects, contraindications, or interactions with other drugs, are poorly or not investigated. Keeping in mind the pathological mechanisms of MS and the oxidative damages and mitochondrial dysfunctions induced by pesticides, it is important to understand if pesticides used to increase agricultural productivity and their residues in medicinal plants, may increase the risk of developing MS in both workers and consumers. Studies providing some indication about the relationship between environmental exposure to pesticides and MS disease incidence are few, fragmentary, and discordant. The aim of this article is to provide a glance at the therapeutic potential of medicinal plants and at the risk for MS onset of pesticides used by medicinal plant growers and present in medicinal herbs.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research Center, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Marcella Reale,
| |
Collapse
|
37
|
Wang M, Zhang Y, Chang W, Zhang L, Syrigos KN, Li P. Noncoding RNA-mediated regulation of pyroptotic cell death in cancer. Front Oncol 2022; 12:1015587. [PMID: 36387211 PMCID: PMC9659888 DOI: 10.3389/fonc.2022.1015587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Pyroptosis is a newly discovered form of programmed cell death, which is manifested by DNA fragmentation, cell swelling, cell membrane rupture and leakage of cell contents. Previous studies have demonstrated that pyroptosis is tightly associated with the initiation and development of various cancers, whereas the molecular mechanisms underlying pyroptosis remain obscure. Noncoding RNAs (ncRNAs) are a type of heterogeneous transcripts that are broadly expressed in mammalian cells. Owing to their potency of regulating gene expression, ncRNAs play essential roles in physiological and pathological processes. NcRNAs are increasingly acknowledged as important regulators of the pyroptosis process. Importantly, the crosstalk between ncRNAs and pyroptosis affects various hallmarks of cancer, including cell growth, survival, metastasis and therapeutic resistance. The study of the involvement of pyroptosis-associated ncRNAs in cancer pathobiology has become a hot area in recent years, while there are limited reviews on this topic. Herein, we provide an overview of the complicated roles of ncRNAs, mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in modulating pyroptosis, with a focus on the underlying mechanisms of the ncRNA-pyroptosis axis in cancer pathogenesis. Finally, we discuss the potential applications and challenges of exploiting pyroptosis-regulating ncRNAs as molecular biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine and Laboratory, National & Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
39
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
40
|
Owumi SE, Najophe ES, Otunla MT. 3-Indolepropionic acid prevented chlorpyrifos-induced hepatorenal toxicities in rats by improving anti-inflammatory, antioxidant, and pro-apoptotic responses and abating DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74377-74393. [PMID: 35644820 DOI: 10.1007/s11356-022-21075-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/20/2022] [Indexed: 05/10/2023]
Abstract
The application of chlorpyrifos (CPF), an organophosphorus pesticide to control insects, is associated with oxidative stress and reduced quality of life in humans and animals. Indole-3-propionic acid (IPA) is a by-product of tryptophan metabolism with high antioxidant capacity and has the potential to curb CPF-mediated toxicities in the hepatorenal system of rats. It is against this background that we explored the subacute exposure of CPF and the effect of IPA in the liver and kidney of thirty rats using five cohort experimental designs (n = 6) consisting of control (corn oil 2 mL/kg body weight), CPF alone (5 mg/kg), IPA alone (50 mg/kg), CPF + IPA1 (5 mg/kg + 25 mg/kg), and CPF + IPA2 (5 mg/kg + 50 mg/kg). Subsequently, we evaluated biomarkers of hepatorenal damage, oxidative and nitrosative stress, inflammation, DNA damage, and apoptosis by spectrophotometric and enzyme-linked immunosorbent assay methods. Our results showed that co-treatment with IPA decreased CPF-upregulated serum hepatic transaminases, creatinine, and urea; reversed CPF downregulation of SOD, CAT, GPx, GST, GSH, Trx, TRx-R, and TSH; and abated CPF upregulation of XO, MPO, RONS, and LPO. Co-treatment with IPA decreased CPF-upregulated IL-1β and 8-OHdG levels, caspase-9 and caspase-3 activities, and increased IL-10. In addition, IPA averts CPF-induced histological changes in the liver and kidney of rats. Our results demonstrate that co-dosing CPF-exposed rats with IPA can significantly decrease CPF-induced oxidative stress, pro-inflammatory responses, DNA damage, and subsequent pro-apoptotic responses in rats' liver and kidneys. Therefore, supplementing tryptophan-derived endogenous IPA from exogenous sources may help avert toxicity occasioned by inadvertent exposure to harmful chemicals, including CPF-induced systemic perturbation of liver and kidney function.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Room NB 302, Ibadan, 200005, Nigeria.
| | - Eseroghene S Najophe
- Nutrition and Industrial Biochemistry Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, 200005, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Room NB 302, Ibadan, 200005, Nigeria
| |
Collapse
|
41
|
Hassan AA, Bel Hadj Salah K, Fahmy EM, Mansour DA, Mohamed SAM, Abdallah AA, Ashkan MF, Majrashi KA, Melebary SJ, El-Sheikh ESA, El-Shaer N. Olive Leaf Extract Attenuates Chlorpyrifos-Induced Neuro- and Reproductive Toxicity in Male Albino Rats. Life (Basel) 2022; 12:1500. [PMID: 36294935 PMCID: PMC9605092 DOI: 10.3390/life12101500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is a common organophosphorus insecticide. It is associated with negative consequences such as neurotoxicity and reproductive injury. This study aimed to observe the ability of olive leaf extract to attenuate chlorpyrifos toxicity, which induced neuro- and reproductive toxicity in male albino rats. Olive leaf extract (OLE) exhibits potent antioxidant and antiapoptotic properties. Twenty-two mature male rats were divided into four groups: control (saline), CPF (9 mg/kg), OLE (150 mg/kg), and CPF + OLE. Treatment was administered orally for 80 days. The CPF significantly reduced serum sex hormones, sperm counts and motility, high oxidants (MDA), and depleted antioxidants (GSH, SOD, TAC) in the brain and testes homogenate; additionally, it decreased serum AChE and brain neurotransmitters, increased Bax, decreased Bcl-2, and boosted caspase-3 immune expression in neural and testicular cells. Immunological expression of Ki 67 in the cerebrum, cerebellum, choroid plexus, and hippocampus was reduced, and α-SMA in testicular tissue also decreased. Histopathological findings were consistent with the above impacts. OLE co-administration significantly normalized all these abnormalities. OLE showed significant protection against neural and reproductive damage caused by CPF.
Collapse
Affiliation(s)
- Arwa A. Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia
| | - Esraa M. Fahmy
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa A. Mansour
- Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Sally A. M. Mohamed
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa A. Abdallah
- Theriogenology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - El-Sayed A. El-Sheikh
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa El-Shaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
42
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
43
|
Stein CS, McLendon JM, Witmer NH, Boudreau RL. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:1-15. [PMID: 35280925 PMCID: PMC8899134 DOI: 10.1016/j.omtn.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jared M. McLendon
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
44
|
Zhao S, Huang Z, Jiang H, Xiu J, Zhang L, Long Q, Yang Y, Yu L, Lu L, Gu H. Sirtuin 1 Induces Choroidal Neovascularization and Triggers Age-Related Macular Degeneration by Promoting LCN2 through SOX9 Deacetylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1671438. [PMID: 35720180 PMCID: PMC9203240 DOI: 10.1155/2022/1671438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022]
Abstract
Increasing studies have identified the function of sirtuin-1 (SIRT1) in ocular diseases. Hence, this study is aimed at exploring the potential role of SIRT1 in choroidal neovascularization- (CNV-) induced age-related macular degeneration (AMD) development and the associated mechanism. Expression of SIRT1/SOX9/LCN2 in the hypoxic cells was determined, and their interactions were predicted by bioinformatics websites and followed by the verification by luciferase assay and chromatin immunoprecipitation (ChIP). Their in vitro effects on hypoxic cells concerning cell viability, apoptosis, migration, and angiogenesis were detected through gain- and loss-of-function assays. Besides, their in vivo effect was explored using the established CNV mouse models. Highly expressed LCN2, SOX9, and SIRT1 were observed in hypoxic cells. LCN2 was increased by SOX9 and SIRT1 deacetylated SOX9 to promote its nuclear translocation, which further inhibited the viability of human retinal pigment epithelial cells and promoted cell apoptosis and angiogenesis as well as CNV-induced AMD formation. The relieving role of LCN2 inhibition on CNV-induced AMD without toxicity for mice was also demonstrated by in vivo experiments. Overall, SIRT1 promoted the formation of CNV-induced AMD through SOX9 deacetylation-caused LCN2 upregulation, representing a promising target for CNV-induced AMD management.
Collapse
Affiliation(s)
- Su Zhao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550002, China
| | - Zhi Huang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Hao Jiang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Jiangfan Xiu
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Liying Zhang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Qiurong Long
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Yuhan Yang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Lu Yu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| | - Lu Lu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen 5180403, China
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China
| |
Collapse
|
45
|
Dogan AE, Hamid SM, Yildirim AD, Yildirim Z, Sen G, Riera CE, Gottlieb RA, Erbay E. PACT establishes a posttranscriptional brake on mitochondrial biogenesis by promoting the maturation of miR-181c. J Biol Chem 2022; 298:102050. [PMID: 35598827 PMCID: PMC9218515 DOI: 10.1016/j.jbc.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.
Collapse
Affiliation(s)
- Asli E Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Asli D Yildirim
- Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Celine E Riera
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ebru Erbay
- David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
46
|
Valencia-Quintana R, Bahena-Ocampo IU, González-Castañeda G, Bonilla E, Milić M, Bonassi S, Sánchez-Alarcón J. miRNAs: A potentially valuable tool in pesticide toxicology assessment-current experimental and epidemiological data review. CHEMOSPHERE 2022; 295:133792. [PMID: 35104543 DOI: 10.1016/j.chemosphere.2022.133792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
miRNAs are responsible for the regulation of many cellular processes such as development, cell differentiation, proliferation, apoptosis, and tumor growth. Several studies showed that they can also serve as specific, stable, and sensitive markers of chemical exposure. In this review, current experimental and epidemiological data evidencing deregulation in miRNA expression in response to fungicides, insecticides or herbicides were analyzed. As shown by Venn's diagrams, miR-363 and miR-9 deregulation is associated with fungicide exposure in vitro and in vivo, while let-7, miR-155, miR-181 and miR-21 were found to be commonly deregulated by at least three different insecticides. Furthermore, let-7, miR-30, miR-126, miR-181 and miR-320 were commonly deregulated by 3 different herbicides. Notably, these 5 miRNAs were also found to be deregulated by one or more insecticides, suggesting their participation in the cellular response to pesticides, regardless of their chemical structure. All these miRNAs have been proposed as potential biomarkers for fungicide, insecticide, or herbicide exposure. These results allow us to improve our understanding of the molecular mechanisms of toxicity upon pesticide exposure, although further studies are needed to confirm these miRNAs as definitive (not potential) biomarkers of pesticide exposure.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| | | | | | - Edmundo Bonilla
- Departamento de Ciencias de La Salud, UAM-Iztapalapa, Mexico.
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, 10000, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, 00166, Italy; Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, Rome, 00166, Italy.
| | - Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| |
Collapse
|
47
|
Deng B, Zhang Z, Zhou H, Zhang X, Niu S, Yan X, Yan J. MicroRNAs in Methamphetamine-Induced Neurotoxicity and Addiction. Front Pharmacol 2022; 13:875666. [PMID: 35496314 PMCID: PMC9046672 DOI: 10.3389/fphar.2022.875666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) abuse remains a significant public health concern globally owing to its strong addictive properties. Prolonged abuse of the drug causes irreversible damage to the central nervous system. To date, no efficient pharmacological interventions are available, primarily due to the unclear mechanisms underlying METH action in the brain. Recently, microRNAs (miRNAs) have been identified to play critical roles in various cellular processes. The expression levels of some miRNAs are altered after METH administration, which may influence the transcription of target genes to regulate METH toxicity or addiction. This review summarizes the miRNAs in the context of METH use, discussing their role in the reward effect and neurotoxic sequelae. Better understanding of the molecular mechanisms involved in METH would be helpful for the development of new therapeutic strategies in reducing the harm of the drug.
Collapse
Affiliation(s)
- Bi Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhirui Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Huixuan Zhou
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jie Yan,
| |
Collapse
|
48
|
Parny M, Coste A, Aubouy A, Rahabi M, Prat M, Pipy B, Treilhou M. Differential immunomodulatory effects of six pesticides of different chemical classes on human monocyte-derived macrophage functions. Food Chem Toxicol 2022; 163:112992. [PMID: 35395341 DOI: 10.1016/j.fct.2022.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 01/19/2023]
Abstract
Exposure to pesticides through eyes, skin, ingestion and inhalation may affects human health by interfering with immune cells, such as macrophages. We evaluated, in vitro, the effect of six pesticides widely used in apple arboriculture on the functions of human monocyte-derived macrophages (hMDMs). hMDMs were cultured for 4 or 24 h with or without pesticides (0.01, 0.1, 1, 10 μmol.L-1). We showed that chlorpyrifos, thiacloprid, thiophanate, boscalid, and captan had little toxic effect at the tested concentrations, while dithianon had low-cytotoxicity at 10 μmol.L-1. While boscalid showed no effect on hMDMs function, thiophanate (0.01 μmol.L-1) stimulated with TPA and thiacloprid (1, 10 μmol.L-1) stimulated with zymosan activated ROS production. Chlorpyrifos, dithianon, and captan inhibited ROS production and TNF-α, IL-1β pro-inflammatory cytokines. We established that dithianon (0.01-1 μmol.L-1) and captan (0.1, 1 μmol.L-1) induced mRNA expression of NQO1 and HMOX1 antioxidant enzymes. Dithianon also induced the mRNA expression of catalase, superoxide dismutase-2 at 10 μmol.L-1. Together, these results show that exposure to chlorpyrifos, dithianon, and captan induce immunomodulatory effects that may influence the disease fighting properties of monocytes/macrophages while pesticides such as thiacloprid, thiophanate and boscalid have little influence.
Collapse
Affiliation(s)
- Melissa Parny
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France; PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Coste
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Agnès Aubouy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Mouna Rahabi
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Melissa Prat
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Bernard Pipy
- PHARMADEV UMR 152, Institut de Recherche pour le Développement (IRD), Université Paul Sabatier Toulouse 3, Toulouse, France.
| | - Michel Treilhou
- EA7417, BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France.
| |
Collapse
|
49
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
50
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|