1
|
Mahmoudzadeh NH, Heidarian Y, Tourigny JP, Fitt AJ, Beebe K, Li H, Luhur A, Buddika K, Mungcal L, Kundu A, Policastro RA, Brinkley GJ, Zentner GE, Nemkov T, Pepin R, Chawla G, Sudarshan S, Rodan AR, D'Alessandro A, Tennessen JM. Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster. Mol Metab 2024; 89:102013. [PMID: 39182840 PMCID: PMC11408159 DOI: 10.1016/j.molmet.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh. METHODS L2hgdh mutant adult male flies were analyzed under normoxic and hypoxic conditions using a combination of semi-targeted metabolomics and RNA-seq. These multi-omic analyses were complemented by tissue-specific genetic studies that examined the effects of L2hgdh mutations on the Drosophila renal system (Malpighian tubules; MTs). RESULTS Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation. CONCLUSIONS These findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.
Collapse
Affiliation(s)
| | - Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Alexander J Fitt
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Katherine Beebe
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Anirban Kundu
- Department of Urology, University of Arizona in Tucson, AZ, USA
| | | | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Travis Nemkov
- University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence, Dadri, Uttar Pradesh, 201314, India
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | | | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA; Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612925. [PMID: 39314431 PMCID: PMC11419140 DOI: 10.1101/2024.09.13.612925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and mevalonate metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with developmental growth and hint at a conserved mechanism by which ERR and HNF4 homologs coordinately regulate metabolic gene expression.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
4
|
Rai M, Li H, Policastro RA, Zentner GE, Nemkov T, D’Alessandro A, Tennessen JM. Glycolytic Disruption Triggers Interorgan Signaling to Nonautonomously Restrict Drosophila Larval Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597835. [PMID: 38895259 PMCID: PMC11185712 DOI: 10.1101/2024.06.06.597835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | | |
Collapse
|
5
|
Li Y, Wu F, Zhang J, Xu Y, Chang H, Yu Y, Jiang C, Gao X, Liu H, Chen Z, Wu C, Li JA. Mechanisms of Action of Potentilla discolor Bunge in Type 2 Diabetes Mellitus Based on Network Pharmacology and Experimental Verification in Drosophila. Drug Des Devel Ther 2024; 18:747-766. [PMID: 38495630 PMCID: PMC10941989 DOI: 10.2147/dddt.s439876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; β-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and β-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Fanwu Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Jianbo Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Hong Chang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Yueyue Yu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Chunhua Jiang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Xiujuan Gao
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Huijuan Liu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Zhen Chen
- Oriental Herbs KFT, Budapest, Hungary
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Ji-An Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| |
Collapse
|
6
|
Heidarian Y, Tourigny JP, Fasteen TD, Mahmoudzadeh NH, Hurlburt AJ, Nemkov T, Reisz JA, D’Alessandro A, Tennessen JM. Metabolomic analysis of Drosophila melanogaster larvae lacking pyruvate kinase. G3 (BETHESDA, MD.) 2023; 14:jkad228. [PMID: 37792629 PMCID: PMC10755183 DOI: 10.1093/g3journal/jkad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Pyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster are complicated by the fact that the fly genome encodes 6 Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other 5 Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of 2 different Pyk mutant strains revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and protease activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Al-Sulaiti H, Almaliti J, Naman CB, Al Thani AA, Yassine HM. Metabolomics Approaches for the Diagnosis, Treatment, and Better Disease Management of Viral Infections. Metabolites 2023; 13:948. [PMID: 37623891 PMCID: PMC10456346 DOI: 10.3390/metabo13080948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023] Open
Abstract
Metabolomics is an analytical approach that involves profiling and comparing the metabolites present in biological samples. This scoping review article offers an overview of current metabolomics approaches and their utilization in evaluating metabolic changes in biological fluids that occur in response to viral infections. Here, we provide an overview of metabolomics methods including high-throughput analytical chemistry and multivariate data analysis to identify the specific metabolites associated with viral infections. This review also focuses on data interpretation and applications designed to improve our understanding of the pathogenesis of these viral diseases.
Collapse
Affiliation(s)
- Haya Al-Sulaiti
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-S.); (A.A.A.T.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jehad Almaliti
- Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA P.O. Box 92093, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - C. Benjamin Naman
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, CA P.O. Box 92024, USA;
| | - Asmaa A. Al Thani
- QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-S.); (A.A.A.T.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Rai M, Carter SM, Shefali SA, Chawla G, Tennessen JM. Characterization of genetic and molecular tools for studying the endogenous expression of Lactate dehydrogenase in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545165. [PMID: 37398276 PMCID: PMC10312709 DOI: 10.1101/2023.06.15.545165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drosophila melanogaster larval development relies on a specialized metabolic state that utilizes carbohydrates and other dietary nutrients to promote rapid growth. One unique feature of the larval metabolic program is that Lactate Dehydrogenase (Ldh) activity is highly elevated during this growth phase when compared to other stages of the fly life cycle, indicating that Ldh serves a key role in promoting juvenile development. Previous studies of larval Ldh activity have largely focused on the function of this enzyme at the whole animal level, however, Ldh expression varies significantly among larval tissues, raising the question of how this enzyme promotes tissue-specific growth programs. Here we characterize two transgene reporters and an antibody that can be used to study Ldh expression in vivo . We find that all three tools produce similar Ldh expression patterns. Moreover, these reagents demonstrate that the larval Ldh expression pattern is complex, suggesting the purpose of this enzyme varies across cell types. Overall, our studies validate a series of genetic and molecular reagents that can be used to study glycolytic metabolism in the fly.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sarah M. Carter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Geetanjali Chawla
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence (SNIoE), Dadri, Uttar Pradesh 201314, India
| | | |
Collapse
|
9
|
Heidarian Y, Tourigny JP, Fasteen TD, Mahmoudzadeh NH, Hurlburt AJ, Nemkov T, Reisz JA, D'Alessandro A, Tennessen JM. Metabolomic analysis of Drosophila melanogaster larvae lacking Pyruvate kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543743. [PMID: 37333180 PMCID: PMC10274742 DOI: 10.1101/2023.06.05.543743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Pyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster , however, are complicated by the fact that the fly genome encodes six Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other five Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of two different Pyk mutant backgrounds revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that steady state pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and peptidase activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Shang L, Aughey E, Kim H, Heden TD, Wang L, Najt CP, Esch N, Brunko S, Abrahante JE, Macchietto M, Mashek MT, Fairbanks T, Promislow DEL, Neufeld TP, Mashek DG. Systemic lipolysis promotes physiological fitness in Drosophila melanogaster. Aging (Albany NY) 2022; 14:6481-6506. [PMID: 36044277 PMCID: PMC9467406 DOI: 10.18632/aging.204251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Since interventions such as caloric restriction or fasting robustly promote lipid catabolism and improve aging-related phenotypical markers, we investigated the direct effect of increased lipid catabolism via overexpression of bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila, on lifespan and physiological fitness. Comprehensive characterization was carried out using RNA-seq, lipidomics and metabolomics analysis. Global overexpression of bmm strongly promoted numerous markers of physiological fitness, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Increased bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER stress via improved proteostasis. Despite improved physiological fitness, bmm overexpression did not extend lifespan. Taken together, these data show that bmm overexpression has broad beneficial effects on physiological fitness, but these effects did not impact lifespan.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth Aughey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huiseon Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas Esch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Marissa Macchietto
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mara T Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd Fairbanks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel E L Promislow
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM. The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 GENES|GENOMES|GENETICS 2022; 12:6583191. [PMID: 35536221 PMCID: PMC9339270 DOI: 10.1093/g3journal/jkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
As the fruit fly, Drosophila melanogaster, progresses from one life stage to the next, many of the enzymes that compose intermediary metabolism undergo substantial changes in both expression and activity. These predictable shifts in metabolic flux allow the fly meet stage-specific requirements for energy production and biosynthesis. In this regard, the enzyme glycerol-3-phosphate dehydrogenase 1 (GPDH1) has been the focus of biochemical genetics studies for several decades and, as a result, is one of the most well-characterized Drosophila enzymes. Among the findings of these earlier studies is that GPDH1 acts throughout the fly lifecycle to promote mitochondrial energy production and triglyceride accumulation while also serving a key role in maintaining redox balance. Here, we expand upon the known roles of GPDH1 during fly development by examining how depletion of both the maternal and zygotic pools of this enzyme influences development, metabolism, and viability. Our findings not only confirm previous observations that Gpdh1 mutants exhibit defects in larval development, lifespan, and fat storage but also reveal that GPDH1 serves essential roles in oogenesis and embryogenesis. Moreover, metabolomics analysis reveals that a Gpdh1 mutant stock maintained in a homozygous state exhibits larval metabolic defects that significantly differ from those observed in the F1 mutant generation. Overall, our findings highlight unappreciated roles for GPDH1 in early development and uncover previously undescribed metabolic adaptations that could allow flies to survive the loss of this key enzyme.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Sarah M Carter
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shefali A Shefali
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | | | - Robert Pepin
- Department of Chemistry, Indiana University , Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Cao X, La X, Zhang B, Wang Z, Li Y, Bo Y, Chang H, Gao X, Tian C, Wu C, Li JA. Sanghuang Tongxie Formula Ameliorates Insulin Resistance in Drosophila Through Regulating PI3K/Akt Signaling. Front Pharmacol 2022; 13:874180. [PMID: 35734406 PMCID: PMC9207506 DOI: 10.3389/fphar.2022.874180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Insulin resistance (IR) is a pivotal pathological characteristic that affects the occurrence and development of type 2 diabetes mellitus (T2DM). Thus, the effective control of IR is of great significance for diabetes prevention and treatment. Traditional Chinese medicine (TCM) represents a valuable tool handed down to the world by the Chinese nation and has a long history of use for diabetes clinical therapy. In this study, we focused on a self-drafted TCM-patented formula, Sanghuang Tongxie Formula (SHTXF), which exhibits clinical efficacy in the treatment of diabetes. To explore the effect and molecular mechanism of SHTXF on IR in vivo, Drosophila melanogaster was used and a (Collagen) Cg > InRK1409A diabetic IR fly model was established. SHTXF water extract was found to contribute toward carbohydrate clearance from the circulating system by converting it into triglycerides (TAG), not glycogen, for nutrient storage. In addition, SHTXF activated phosphatidylinositol-3-kinase (PI3K) activity and improved protein kinase B (PKB, also termed Akt) phosphorylation. Finally, SHTXF promoted Drosophila Forkhead Box O (dFoxO) cytoplasmic localization and inhibited its transcriptional activity. Taken together, these findings not only highlight the positive role of SHTXF in ameliorating IR via the PI3K/Akt pathway but also provide potential drug targets and key insights for use in T2DM clinical treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenxi Wu
- *Correspondence: Chenxi Wu, ; Ji-an Li,
| | - Ji-an Li
- *Correspondence: Chenxi Wu, ; Ji-an Li,
| |
Collapse
|
13
|
Tennessen JM. Ecdysone and 20-hydroxyecdysone are not required to activate glycolytic gene expression in Drosophila melanogaster embryos. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000501. [PMID: 34870111 PMCID: PMC8633990 DOI: 10.17912/micropub.biology.000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Many of the Drosophila enzymes involved in carbohydrate metabolism are coordinately up-regulated approximately midway through embryogenesis. Previous studies have demonstrated that this metabolic transition is controlled by the Drosophila Estrogen-Related Receptor (dERR), which is stabilized and activated immediately prior to onset of glycolytic gene expression. The mechanisms that promote dERR activity, however, are poorly understood and other transcriptional regulators could control this metabolic transition, independent of dERR. In this regard, the steroid hormone 20-hydroxyecdysone (20E) represents an intriguing candidate for regulating glycolytic gene expression in embryos - not only does the embryonic 20E pulse immediately precede transcriptional up-regulation of glycolytic metabolism, but 20E is also known to promote Lactate dehydrogenase gene expression. Here I test the hypothesis that embryonic 20E signaling is required to activate glycolytic gene expression. Using developmental northern blots, I demonstrate that the transcriptional up-regulation of glycolytic genes during embryogenesis still occurs in shadow mutants, which are unable to synthesize either ecdysone or 20E. My finding indicates that ecdysone and 20E signaling are not required for this mid-embryonic metabolic transition.
Collapse
|
14
|
Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The deposition of storage fat in the form of triacylglycerol (TAG) is an evolutionarily conserved strategy to cope with fluctuations in energy availability and metabolic stress. Organismal TAG storage in specialized adipose tissues provides animals a metabolic reserve that sustains survival during development and starvation. On the other hand, excessive accumulation of adipose TAG, defined as obesity, is associated with an increasing prevalence of human metabolic diseases. During the past decade, the fruit fly Drosophila melanogaster, traditionally used in genetics and developmental biology, has been established as a versatile model system to study TAG metabolism and the etiology of lipid-associated metabolic diseases. Similar to humans, Drosophila TAG homeostasis relies on the interplay of organ systems specialized in lipid uptake, synthesis, and processing, which are integrated by an endocrine network of hormones and messenger molecules. Enzymatic formation of TAG from sugar or dietary lipid, its storage in lipid droplets, and its mobilization by lipolysis occur via mechanisms largely conserved between Drosophila and humans. Notably, dysfunctional Drosophila TAG homeostasis occurs in the context of aging, overnutrition, or defective gene function, and entails tissue-specific and organismal pathologies that resemble human disease. In this review, we summarize the physiology and biochemistry of TAG in Drosophila and outline the potential of this organism as a model system to understand the genetic and dietary basis of TAG storage and TAG-related metabolic disorders.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Svitlana Klishch
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Olha Stilbytska
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Department Biochemistry 1, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str, Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
15
|
Nawrot-Esposito MP, Babin A, Pasco M, Poirié M, Gatti JL, Gallet A. Bacillus thuringiensis Bioinsecticides Induce Developmental Defects in Non-Target Drosophila melanogaster Larvae. INSECTS 2020; 11:E697. [PMID: 33066180 PMCID: PMC7601982 DOI: 10.3390/insects11100697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Bioinsecticides made from the bacterium Bacillus thuringiensis (Bt) are the bestselling bioinsecticide worldwide. Among Bt bioinsecticides, those based on the strain Bt subsp. kurstaki (Btk) are widely used in farming to specifically control pest lepidopteran larvae. Although there is much evidence of the lack of acute lethality of Btk products for non-target animals, only scarce data are available on their potential non-lethal developmental adverse effects. Using a concentration that could be reached in the field upon sprayings, we show that Btk products impair growth and developmental time of the non-target dipteran Drosophila melanogaster. We demonstrate that these effects are mediated by the synergy between Btk bacteria and Btk insecticidal toxins. We further show that Btk bioinsecticides trigger intestinal cell death and alter protein digestion without modifying the food intake and feeding behavior of the larvae. Interestingly, these harmful effects can be mitigated by a protein-rich diet or by adding the probiotic bacterium Lactobacillus plantarum into the food. Finally, we unravel two new cellular mechanisms allowing the larval midgut to maintain its integrity upon Btk aggression: First the flattening of surviving enterocytes and second, the generation of new immature cells arising from the adult midgut precursor cells. Together, these mechanisms participate to quickly fill in the holes left by the dying enterocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, UMR CNRS 7254/INRAE 1355/UCA, 400 route des Chappes, BP 167, 06903 Sophia Antipolis CEDEX, France; (M.-P.N.-E.); (A.B.); (M.P.); (M.P.); (J.-L.G.)
| |
Collapse
|
16
|
Trautenberg LC, Knittelfelder O, Hofmann C, Shevchenko A, Brankatschk M, Prince E. How to use the development of individual Drosophila larvae as a metabolic sensor. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104095. [PMID: 32783958 DOI: 10.1016/j.jinsphys.2020.104095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Metabolic research is a challenge because of the variety of data within experimental series and the difficulty of replicating results among scientific groups. The fruit fly, Drosophila melanogaster, is a cost-effective and reliable pioneer model to screen dietary variables for metabolic research. One of the main reasons for problems in this field are differences in food recipes, diet-associated microbial environments and the pharmacokinetic behavior of nutrients across the gut-blood barrier. To prevent such experimental shortcomings, a common strategy is to pool scores of subjects into one sample to create an average statement. However, this approach lacks information about the biological spread and may provoke misleading interpretations. We propose to use the developmental rate of individual Drosophila larvae as a metabolic sensor. To do so, we introduce here a 96-well plate-based assay, which allows screening for multiple variables including food quality, microbial load, and genetic differences. We demonstrate that on a diet that is rich in calories, pupation is sensitive to the variation of dietary lipid compounds and that genotypes considered as wild-types/controls produce different developmental profiles. Our platform is suited for later automation and represents a potent high-throughput screening tool for the pharmacology and food industry. If used systematically, our assay could become a powerful reference tool to compare the quality of used dietary configurations with published benchmark recipes.
Collapse
Affiliation(s)
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Carla Hofmann
- Biotechnology Center (BIOTEC) of the Technische Universitat Dresden (TUD), Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC) of the Technische Universitat Dresden (TUD), Dresden, Germany.
| | - Elodie Prince
- Biotechnology Center (BIOTEC) of the Technische Universitat Dresden (TUD), Dresden, Germany.
| |
Collapse
|
17
|
Li H, Rai M, Buddika K, Sterrett MC, Luhur A, Mahmoudzadeh NH, Julick CR, Pletcher RC, Chawla G, Gosney CJ, Burton AK, Karty JA, Montooth KL, Sokol NS, Tennessen JM. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development. Development 2019; 146:dev175315. [PMID: 31399469 PMCID: PMC6765128 DOI: 10.1242/dev.175315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Cole R Julick
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Rose C Pletcher
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Chelsea J Gosney
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Anna K Burton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Fernando T, Sawala A, Bailey AP, Gould AP, Driscoll PC. An Improved Method for Measuring Absolute Metabolite Concentrations in Small Biofluid or Tissue Samples. J Proteome Res 2019; 18:1503-1512. [PMID: 30757904 PMCID: PMC6456871 DOI: 10.1021/acs.jproteome.8b00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
measurement of absolute metabolite concentrations in small
samples remains a significant analytical challenge. This is particularly
the case when the sample volume is only a few microliters or less
and cannot be determined accurately via direct measurement. We previously
developed volume determination with two standards (VDTS) as a method
to address this challenge for biofluids. As a proof-of-principle,
we applied VDTS to NMR spectra of polar metabolites in the hemolymph
(blood) of the tiny yet powerful genetic model Drosophila
melanogaster. This showed that VDTS calculation of absolute
metabolite concentrations in fed versus starved Drosophila larvae is more accurate than methods utilizing normalization to
total spectral signal. Here, we introduce paired VDTS (pVDTS), an
improved VDTS method for biofluids and solid tissues that implements
the statistical power of paired control and experimental replicates.
pVDTS utilizes new equations that also include a correction for dilution
errors introduced by the variable surface wetness of solid samples.
We then show that metabolite concentrations in Drosophila larvae are more precisely determined and logically consistent using
pVDTS than using the original VDTS method. The refined pVDTS workflow
described in this study is applicable to a wide range of different
tissues and biofluids.
Collapse
Affiliation(s)
- Tharindu Fernando
- Physiology and Metabolism Laboratory , The Francis Crick Institute , 1 Midland Road , London NW1 1AT , U.K
| | - Annick Sawala
- Physiology and Metabolism Laboratory , The Francis Crick Institute , 1 Midland Road , London NW1 1AT , U.K
| | - Andrew P Bailey
- Physiology and Metabolism Laboratory , The Francis Crick Institute , 1 Midland Road , London NW1 1AT , U.K
| | - Alex P Gould
- Physiology and Metabolism Laboratory , The Francis Crick Institute , 1 Midland Road , London NW1 1AT , U.K
| | - Paul C Driscoll
- Metabolomics Science Technology Platform , The Francis Crick Institute , 1 Midland Road , London NW1 1AT , U.K
| |
Collapse
|
19
|
Li H, Tennessen JM. Quantification of D- and L-2-Hydroxyglutarate in Drosophila melanogaster Tissue Samples Using Gas Chromatography-Mass Spectrometry. Methods Mol Biol 2019; 1978:155-165. [PMID: 31119662 DOI: 10.1007/978-1-4939-9236-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as an ideal system in which to study 2-hydroxyglutarate (2HG) metabolism. Unlike many mammalian tissues and cell lines, which primarily accumulate D- or L-2HG as the result of genetic mutations or metabolic stress, Drosophila larvae accumulate high concentrations of L-2HG during normal larval growth. As a result, flies represent one of the few model systems that allows for studies of endogenous L-2HG metabolism. Moreover, the Drosophila genome not only encodes key enzymes involved in the synthesis and degradation of D-2HG, but the fly has also been used as to investigate the in vivo effects of oncogenic isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations. All of these studies, however, rely on mass spectrometry-based methods to distinguish between the D- and L-2HG enantiomers. While such approaches are common among labs studying mammalian cell culture, few Drosophila studies have attempted to resolve and measure the individual 2HG enantiomers. Here we describe a highly reproducible gas chromatography-mass spectrometry (GC-MS)-based protocol that allows for quantitative measurements of both 2HG enantiomers in Drosophila homogenates.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
20
|
Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RUS, Xu W, Ji JY. CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 2018; 444:62-70. [PMID: 30352217 PMCID: PMC6263851 DOI: 10.1016/j.ydbio.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/08/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023]
Abstract
The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.
Collapse
Affiliation(s)
- Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Dev Cell 2018; 48:200-214.e6. [PMID: 30554999 DOI: 10.1016/j.devcel.2018.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.
Collapse
Affiliation(s)
- Gilles Storelli
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
22
|
Li H, Tennessen JM. Preparation of Drosophila Larval Samples for Gas Chromatography-Mass Spectrometry (GC-MS)-based Metabolomics. J Vis Exp 2018. [PMID: 29939167 DOI: 10.3791/57847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent advances in the field of metabolomics have established the fruit fly Drosophila melanogaster as a powerful genetic model for studying animal metabolism. By combining the vast array of Drosophila genetic tools with the ability to survey large swaths of intermediary metabolism, a metabolomics approach can reveal complex interactions between diet, genotype, life-history events, and environmental cues. In addition, metabolomics studies can discover novel enzymatic mechanisms and uncover previously unknown connections between seemingly disparate metabolic pathways. In order to facilitate more widespread use of this technology among the Drosophila community, here we provide a detailed protocol that describes how to prepare Drosophila larval samples for gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis. Our protocol includes descriptions of larval sample collection, metabolite extraction, chemical derivatization, and GC-MS analysis. Successful completion of this protocol will allow users to measure the relative abundance of small polar metabolites, including amino acids, sugars, and organic acids involved in glycolysis and the TCA cycles.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University
| | | |
Collapse
|