1
|
Sunita, Kaushik R, Verma KK, Parveen R. Herbal Nanoformulations for Diabetes: Mechanisms, Formulations, and Clinical Impact. Curr Diabetes Rev 2025; 21:68-85. [PMID: 38500279 DOI: 10.2174/0115733998288592240308073925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Diabetes mellitus remains a global health challenge, demanding innovative therapeutic strategies. Herbal remedies have garnered attention for their potential in diabetes management, and recent advancements in nanotechnology have enabled the development of herbal nanoformulations with enhanced efficacy and bioavailability. OBJECTIVE This review aimed to comprehensively analyze the mechanisms, formulations, and clinical impact of herbal nanoformulations in managing diabetes mellitus. METHOD A systematic literature search was conducted to identify relevant studies exploring the mechanisms of action, various formulations, and clinical outcomes of herbal nanoformulations in diabetes management. RESULT Herbal nanoformulations exert their anti-diabetic effects through multiple mechanisms, including enhanced bioavailability, improved tissue targeting, and potentiation of insulin signaling pathways. Various herbal ingredients, such as bitter melon, fenugreek, and Gymnema sylvestre, have been encapsulated into nanocarriers, like liposomes, polymeric nanoparticles, and solid lipid nanoparticles, to enhance their therapeutic potential. Clinical studies have demonstrated promising results, showing improvements in glycemic control, lipid profile, and antioxidant status with minimal adverse effects. CONCLUSION Herbal nanoformulations represent a promising avenue for the management of diabetes mellitus, offering improved therapeutic outcomes compared to conventional herbal preparations. Further research is warranted to optimize formulation strategies, elucidate long-term safety profiles, and explore the potential synergistic effects of herbal nanoformulations in combination therapies for diabetes management.
Collapse
Affiliation(s)
- Sunita
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Rahul Kaushik
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Krishan Kumar Verma
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| | - Rehana Parveen
- Department of Pharmacy, Metro College of Health Science and Research, Plot No.41, Knowledge Park-3, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Prerna, Bhatt DC, Mir KB, Kumar V, Rathor S. A Comprehensive Review on Nanoparticles as Drug Delivery System and Their Role for Management of Hypertension. Curr Pharm Biotechnol 2025; 26:169-185. [PMID: 38566387 DOI: 10.2174/0113892010291414240322112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
The current global epidemic of hypertension is not a disease in and of itself but rather a significant risk factor for serious cardiovascular conditions such as peripheral artery disease, heart failure, myocardial infarction, and stroke. Although many medications that work through various mechanisms of action are available on the market in conventional formulations to treat hypertension, these medications face significant difficulties with their bioavailability, dosing, and associated side effects, which significantly reduces the effectiveness of their therapeutic interventions. Numerous studies have shown that nanocarriers and nanoformulations can minimize the toxicity associated with high doses of the drug while greatly increasing the drug's bioavailability and reducing the frequency of dosing. This review sheds light on the difficulties posed by traditional antihypertensive formulations and highlights the necessity of oral nanoparticulate systems to solve these issues. Because hypertension has a circadian blood pressure pattern, chronotherapeutics can be very important in treating the condition. On the other hand, nanoparticulate systems can be very important in managing hypertension.
Collapse
Affiliation(s)
- Prerna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, Haryana, India
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheswar University of Sciences and Technology, Hisar, Haryana, 125001, India
| | - Khalid Basir Mir
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurgaon, Haryana, 122103, India
| | - Vikash Kumar
- DK Pharma College, Dhani T. Bad, Rewari, Haryana, 123411, India
| | - Sandeep Rathor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
3
|
Karwasra R, Sharma S, Sharma I, Shahid N, Umar T. Diabetology and Nanotechnology: A Compelling Combination. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:4-16. [PMID: 37937555 DOI: 10.2174/0118722105253055231016155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/09/2023]
Abstract
The convergence of diabetology and nanotechnology has emerged as a promising synergy with the potential to revolutionize the management and treatment of diabetes mellitus. Diabetes, a complex metabolic disorder affecting millions worldwide, necessitates innovative approaches to enhance monitoring, diagnosis, and therapeutic interventions. Nanotechnology, a burgeoning field that manipulates materials at the nanoscale, offers unprecedented opportunities to address the challenges posed by diabetes. This abstract explores the multifaceted interface between diabetology and nanotechnology, highlighting key areas of integration. Nanotechnology has paved the way for the development of advanced glucose monitoring systems with enhanced accuracy, sensitivity, and patient convenience. Miniaturized biosensors and implantable devices equipped with nanoscale materials enable continuous and real-time glucose monitoring, empowering individuals with diabetes to make timely and informed decisions about their dietary and insulin management. Furthermore, nanotechnology has facilitated breakthroughs in targeted drug delivery, addressing the limitations of conventional therapies in diabetes treatment. Nano-sized drug carriers can improve bioavailability, enable controlled release, and enhance the selectivity of therapeutic agents, minimizing side effects and optimizing treatment outcomes. Moreover, nanoengineered materials have opened avenues for tissue engineering and regenerative medicine, offering the potential to restore damaged pancreatic islets and insulin-producing cells. The amalgamation of diabetology and nanotechnology also holds promise for early disease detection and prevention. Nanoscale diagnostic tools, such as biomarker-based nanoprobes and lab-onchip devices, offer rapid and accurate detection of diabetes-related biomolecules, enabling timely interventions and reducing the risk of complications. However, this compelling combination also presents challenges that warrant careful consideration. Safety, biocompatibility, regulatory approval, and ethical implications are crucial factors that demand meticulous evaluation during the translation of nanotechnology-based solutions into clinical practice. In conclusion, the integration of diabetology and nanotechnology represents a transformative paradigm that has the potential to reshape the landscape of diabetes management. By harnessing the unique properties of nanoscale materials, researchers and clinicians are poised to usher in an era of personalized and precise diagnostics, therapeutics, and preventive strategies for diabetes mellitus. As advancements in nanotechnology continue to unfold, the journey towards realizing the full potential of this compelling combination remains an exciting frontier in medical science. This review has thoroughly and critically studied the usage of nanomedicine in the diagnosis, monitoring, and management of diabetes and its effects, providing a clear picture of their potential clinical application in the future. This evaluation covers additional numerous clinical trials research and patents that are currently in way in this subject. Thus in the light of this we intended to provide a broad picture of the state of technological development in the area of diabetes management through nanotechnology.
Collapse
Affiliation(s)
- Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, New Delhi, 110058, India
| | - Shivkant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Isha Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Nida Shahid
- Department of Chemistry, Jamia Milia Islamia University, Jamia Nagar, Okhla, New Delhi, 110025, India
| | - Tarana Umar
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, New Delhi, 110058, India
| |
Collapse
|
4
|
Manral K, Singh A, Singh Y. Nanotechnology as a potential treatment for diabetes and its complications: A review. Diabetes Metab Syndr 2024; 18:103159. [PMID: 39612615 DOI: 10.1016/j.dsx.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic metabolic disorder that causes multiple complications in various organs, such as the kidney, liver and cardiovascular system. These complications are the main causes of morbidity and mortality in patients with diabetes. Nanotechnology offers new opportunities for the therapy of diabetes and its multiple complications through site-specific and precise drug delivery. This review summarizes the various studies demonstrating the potential applications of different nanoparticles in diabetes-associated complications. METHOD A literature search was conducted using PubMed, Google Scholar and Scopus databases, focusing on the role of nanoparticles in the improved delivery of various hypoglycemic agents for the treatment of microvascular and macrovascular diabetic complications. RESULTS Numerous studies have shown that nanoparticles, such as nanoliposomes, polymeric micelles, dendrimers and metallic nanoparticles, improve the delivery of various hypoglycemic agents. Moreover, nanoparticles have been found to be safer, with improved pharmacokinetic and pharmacodynamic profiles. CONCLUSION This review outlines the significant role of nanotechnology in diabetes and related complications and its superiority over conventional drug delivery.
Collapse
Affiliation(s)
- Kanika Manral
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Anita Singh
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Yuvraj Singh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, India.
| |
Collapse
|
5
|
Deng LE, Guo M, Deng Y, Pan Y, Wang X, Maduraiveeran G, Liu J, Lu C. MOF-Based Platform for Kidney Diseases: Advances, Challenges, and Prospects. Pharmaceutics 2024; 16:793. [PMID: 38931914 PMCID: PMC11207304 DOI: 10.3390/pharmaceutics16060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases are important diseases that affect human health worldwide. According to the 2020 World Health Organization (WHO) report, kidney diseases have become the top 10 causes of death. Strengthening the prevention, primary diagnosis, and action of kidney-related diseases is of great significance in maintaining human health and improving the quality of life. It is increasingly challenging to address clinical needs with the present technologies for diagnosing and treating renal illness. Fortunately, metal-organic frameworks (MOFs) have shown great promise in the diagnosis and treatment of kidney diseases. This review summarizes the research progress of MOFs in the diagnosis and treatment of renal disease in recent years. Firstly, we introduce the basic structure and properties of MOFs. Secondly, we focus on the utilization of MOFs in the diagnosis and treatment of kidney diseases. In the diagnosis of kidney disease, MOFs are usually designed as biosensors to detect biomarkers related to kidney disease. In the treatment of kidney disease, MOFs can not only be used as an effective adsorbent for uremic toxins during hemodialysis but also as a precise treatment of intelligent drug delivery carriers. They can also be combined with nano-chelation technology to solve the problem of the imbalance of trace elements in kidney disease. Finally, we describe the current challenges and prospects of MOFs in the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan 523000, China
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
6
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
7
|
Polat EB, Hazar-Yavuz AN, Guler E, Ozcan GS, Taskin T, Duruksu G, Elcioglu HK, Yazır Y, Cam ME. Sublingual Administration of Teucrium Polium-Loaded Nanofibers with Ultra-Fast Release in the Treatment of Diabetes Mellitus: In Vitro and In Vivo Evaluation. J Pharm Sci 2024; 113:1068-1087. [PMID: 38123068 DOI: 10.1016/j.xphs.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In this study, Teucrium polium (TP) methanolic extract, which has antidiabetic activity and protects the β-cells of the pancreas, was loaded in polyethylene oxide/sodium alginate nanofibers by electrospinning and administered sublingually to evaluate their effectiveness in type-2 diabetes mellitus (T2DM) by cell culture and in vivo studies. The gene expressions of insulin, glucokinase, GLUT-1, and GLUT-2 improved in TP-loaded nanofibers (TPF) on human beta cells 1.1B4 and rat beta cells BRIN-BD11. Fast-dissolving (<120 s) sublingual TPF exhibited better sustainable anti-diabetic activity than the suspension form, even in the twenty times lower dosage in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, GLUT-2, SGLT-2, PPAR-γ, insulin, and tumor necrosis factor-alpha were improved. TP and TPF treatments ameliorated morphological changes in the liver, pancreas, and kidney. The fiber diameter increased, tensile strength decreased, and the working temperature range enlarged by loading TP in fibers. Thus, TPF has proven to be a novel supportive treatment approach for T2DM with the features of being non-toxic, easy to use, and effective.
Collapse
Affiliation(s)
- Elif Beyzanur Polat
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Gul Sinemcan Ozcan
- MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Gokhan Duruksu
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye
| | - Hatice Kubra Elcioglu
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye
| | - Yusufhan Yazır
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkiye
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkiye; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34722, Turkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; SFA R&D Laboratories, Teknopark Istanbul, Istanbul 34906, Türkiye; ATA BIO Technology, Teknopol Istanbul, Istanbul 34930, Türkiye.
| |
Collapse
|
8
|
Yan Q, Li D, Jia S, Yang J, Ma J. Novel gene-based therapeutic approaches for the management of hepatic complications in diabetes: Reviewing recent advances. J Diabetes Complications 2024; 38:108688. [PMID: 38281457 DOI: 10.1016/j.jdiacomp.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia and systemic complications, including hepatic dysfunction, significantly contributing to disease progression and morbidity. This article reviews recent advances in gene-based therapeutic strategies targeting hepatic complications in diabetes, offering a promising approach for precision medicine by addressing underlying molecular mechanisms. Traditional treatments for hepatic complications in diabetes often manage symptoms rather than molecular causes, showing limited efficacy. Gene-based therapies are poised to correct dysfunctional pathways and restore hepatic function. Fundamental gene therapy approaches include gene silencing via small interfering RNAs (siRNAs) to target hepatic glucose production, lipid metabolism, and inflammation. Viral vectors can restore insulin sensitivity and reduce oxidative stress in diabetic livers. Genome editing, especially CRISPR-Cas9, allows the precise modification of disease-associated genes, offering immense potential for hepatic complication treatment. Strategies using CRISPR-Cas9 to enhance insulin receptor expression and modulate aberrant lipid regulatory genes are explored. Safety challenges in gene-based therapies, such as off-target effects and immune responses, are discussed. Advances in nanoparticle-based delivery systems and targeted gene editing techniques offer solutions to enhance specificity and minimize adverse effects. In conclusion, gene-based therapeutic approaches are a transformative direction in managing hepatic complications in diabetes. Further research is needed to optimize efficacy, safety, and long-term outcomes. Nevertheless, these innovative strategies promise to improve the lives of individuals with diabetes by addressing hepatic dysfunction's genetic root causes.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Elkhalifa AME, Nazar M, Ali SI, Khursheed I, Taifa S, Ahmad Mir M, Shah IH, Malik M, Ramzan Z, Ahad S, Bashir N, Elamin E, Bazie EA, Ahmed EM, Alruwaili MM, Baltoyour AW, Alarfaj AS, Ali Al Bataj I, Arabe AMA, Nabi SU. Novel Therapeutic Agents for Management of Diabetes Mellitus: A Hope for Drug Designing against Diabetes Mellitus. Life (Basel) 2024; 14:99. [PMID: 38255714 PMCID: PMC10821096 DOI: 10.3390/life14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) is characterized by an absolute decline in insulin secretion and peripheral resistance and is the most prevalent metabolic and endocrine disorder. However, the pathogenesis of DM also includes adipocyte insulin resistance, increased glucagon secretion, increased renal glomerular glucose absorption, and neurotransmitter dysfunction. Although there is a wide spectrum of therapeutics available for glycemic control, owing to the identification of various pathogenic determinants of DM, management of DM remains challenging and complex. Current therapeutic interventions against DM focus mostly on glycemic control without considering the other pathological determinants that eventually lead to treatment failure and the progression of DM. Furthermore, long-term use of these conventionally available anti-diabetic drugs leads to various side effects, henceforth development of novel drugs against DM remains an unending search strategy for researchers. Various studies conducted in various parts of the world have proposed that these novel therapeutic interventions target multiple and alternate pathogenic hotspots involved in DM. The current review article discusses novel therapeutic options that hold particular promise to support their safety and discuss the side effects resulting from their use so that these novel candidate drugs can be effectively fabricated into potential drugs for the treatment of DM.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia;
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, Nunar, Ganderbal 191201, India;
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| | - Elham Elamin
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti 1158, Sudan;
| | - Elsadig Mohamed Ahmed
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Majed Mowanes Alruwaili
- Nursing Administration & Education Department, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ammar W. Baltoyour
- Dhahran Eye Specialist Hospital, Ministry of Health, Dhahran 39455, Saudi Arabia;
| | | | | | | | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar 190006, India; (M.N.); (S.I.A.); (S.T.); (M.A.M.); (I.H.S.); (M.M.); (Z.R.); (S.A.); (N.B.)
| |
Collapse
|
10
|
Angjo J, Pusane AE, Yilmaz HB, Basar E, Tugcu T. Molecular Beamforming for Actuation in Molecular Communication Networks. IEEE Trans Nanobioscience 2024; 23:148-156. [PMID: 37402184 DOI: 10.1109/tnb.2023.3292131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The actuation accuracy of sensing tasks performed by molecular communication (MC) schemes is a very important metric. Reducing the effect of sensors fallibility can be achieved by improvements and advancements in the sensor and communication networks design. Inspired by the technique of beamforming used extensively in radio frequency communication systems, a novel molecular beamforming design is proposed in this paper. This design can find application in tasks related to actuation of nano machines in MC networks. The main idea behind the proposed scheme is that the utilization of more sensing nano machines in a network can increase the overall accuracy of that network. In other words, the probability of an actuation error reduces as the number of sensors that collectively take the actuation decision increases. In order to achieve this, several design procedures are proposed. Three different scenarios for the observation of the actuation error are investigated. For each case, the analytical background is provided and compared with the results obtained by computer simulations. The improvement in the actuation accuracy by means of molecular beamforming is verified for a uniform linear array as well as for a random topology.
Collapse
|
11
|
Kunkel DE, Tietze MF, Wilson M, Fant CT, Rivard MJ, Belchez CA, Forman TM, Husson NM. Creating Case Studies for Digital Health and Technology Competency in Nursing. Nurse Educ 2024; 49:31-35. [PMID: 37229722 DOI: 10.1097/nne.0000000000001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Nursing programs and their faculty must ensure that graduates have the informatics, digital health, and health care technologies competencies needed by health systems. PROBLEM A gap exists in nursing faculty knowledge, skills, and abilities for incorporating informatics, digital health, and technologies across curricula because of low focus on this area in faculty development initiatives and rapid adoption and evolution of technologies in health care systems. APPROACH The Nursing Knowledge Big Data Science initiative Education Subgroup used a process to create case studies for including informatics, digital health, and the concomitant clinical reasoning/critical thinking competencies across curricula. OUTCOMES Three case study examples were created using the process. CONCLUSIONS The process for creating case studies that incorporate required informatics, digital health, and health care technologies can be used by nursing educators for teaching across their curricula and to assess student competency.
Collapse
Affiliation(s)
- Dorcas E Kunkel
- Clinical Associate Professor (Dr Kunkel), School of Nursing, University of Minnesota, Minneapolis; Myrna Pickard Endowed Professor (Dr Tietze), College of Nursing and Health Innovation, The University of Texas at Arlington; Associate Professor (Dr Wilson), The University of Alabama, Birmingham; Contributing Faculty (Dr Fant), College of Nursing, Walden University, Minneapolis, Minnesota; Clinical Assistant Professor (Dr Rivard), College of Nursing & Professional Disciplines, University of North Dakota, Grand Forks; Clinical Assistant Professor (Dr Belchez), School of Nursing, The University of Kansas, Kansas City; Assistant Professor (Dr Forman), College of Health Professions, The University of Texas Rio Grande Valley, Brownsville; and Clinical Assistant Professor (Dr Husson), School of Nursing, Virginia Commonwealth University, Richmond
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Nunes AR, Costa EC, Alves G, Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. Pharmaceuticals (Basel) 2023; 16:ph16050736. [PMID: 37242519 DOI: 10.3390/ph16050736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose levels to normal. However, most modern drugs have numerous side effects, some of which cause severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste, and decreased absorption leading to low bioavailability have hindered the application of anthocyanins as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these bioactive compounds. This review summarizes the potential of anthocyanins for the prevention and treatment of DM and its complications, as well as the strategies and advances in the delivery of anthocyanins using nanoformulations.
Collapse
Affiliation(s)
- Ana R Nunes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Research Unit for Inland Development, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-554 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
14
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
15
|
Mohammadpour F, Kamali H, Gholami L, McCloskey AP, Kesharwani P, Sahebkar A. Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin Drug Deliv 2022; 19:1577-1595. [PMID: 36287584 DOI: 10.1080/17425247.2022.2138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Insulin plays a critical role in metabolism modulation including carbohydrate, lipid, and protein metabolism. There is room to improve insulin delivery but optimizing the best carrier remains challenging. Traditional and conventional approaches for insulin delivery do not emulate the normal fate of insulin release in the body. Despite extensive research attempts to overcome this and other challenges, the goal of achieving optimal insulin delivery that emulates the natural system remains unresolved. AREAS COVERED Solid Lipid Nanoparticles (SLNs) may provide a solution, because they are nontoxic, biocompatible, and straightforward to formulate thus providing a promising platform for achieving targeted and controlled delivery of various therapeutic agents. This review aims to provide an overview on the suitability and application of SLNs for insulin delivery. A special emphasis is placed on the biopharmaceutical aspects of insulin loaded SLNs which have not been explored in detail to date. EXPERT OPINION SLNs have proven to be safe and versatile drug delivery systems suitable for insulin delivery and capable of improving the efficacy and pharmacokinetic profile of encapsulated insulin. There is still some work to be done to fully explore SLNs' true potential as drug delivery and specifically insulin delivery vehicles suitable for clinical use.
Collapse
Affiliation(s)
- Fatemeh Mohammadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, 110062, Jamia Hamdard, India.,Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
17
|
Ye Z, Xiang Y, Monroe T, Yu S, Dong P, Xian S, Webber MJ. Polymeric Microneedle Arrays with Glucose-Sensing Dynamic-Covalent Bonding for Insulin Delivery. Biomacromolecules 2022; 23:4401-4411. [PMID: 36173091 DOI: 10.1021/acs.biomac.2c00878] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ongoing rise in diabetes incidence necessitates improved therapeutic strategies to enable precise blood glucose control with convenient device form factors. Microneedle patches are one such device platform capable of achieving therapeutic delivery through the skin. In recent years, polymeric microneedle arrays have been reported using methods of in situ polymerization and covalent crosslinking in microneedle molds. In spite of promising results, in situ polymerization carries a risk of exposure to toxic unreacted precursors remaining in the device. Here, a polymeric microneedle patch is demonstrated that uses dynamic-covalent phenylboronic acid (PBA)-diol bonds in a dual role affording both network crosslinking and glucose sensing. By this approach, a pre-synthesized and purified polymer bearing pendant PBA motifs is combined with a multivalent diol crosslinker to prepare dynamic-covalent hydrogel networks. The ability of these dynamic hydrogels to shear-thin and self-heal enables their loading to a microneedle mold by centrifugation. Subsequent drying then yields a patch of uniformly shaped microneedles with the requisite mechanical properties to penetrate skin. Insulin release from these materials is accelerated in the presence of glucose. Moreover, short-term blood glucose control in a diabetic rat model following application of the device to the skin confirms insulin activity and bioavailability. Accordingly, dynamic-covalent crosslinking facilitates a route for fabricating microneedle arrays circumventing the toxicity concerns of in situ polymerization, offering a convenient device form factor for therapeutic insulin delivery.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Thomas Monroe
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Ping Dong
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| |
Collapse
|
18
|
Aloke C, Egwu CO, Aja PM, Obasi NA, Chukwu J, Akumadu BO, Ogbu PN, Achilonu I. Current Advances in the Management of Diabetes Mellitus. Biomedicines 2022; 10:2436. [PMID: 36289697 PMCID: PMC9599361 DOI: 10.3390/biomedicines10102436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 09/13/2023] Open
Abstract
Diabetes mellitus (DM) underscores a rising epidemic orchestrating critical socio-economic burden on countries globally. Different treatment options for the management of DM are evolving rapidly because the usual methods of treatment have not completely tackled the primary causes of the disease and are laden with critical adverse effects. Thus, this narrative review explores different treatment regimens in DM management and the associated challenges. A literature search for published articles on recent advances in DM management was completed with search engines including Web of Science, Pubmed/Medline, Scopus, using keywords such as DM, management of DM, and gene therapy. Our findings indicate that substantial progress has been made in DM management with promising results using different treatment regimens, including nanotechnology, gene therapy, stem cell, medical nutrition therapy, and lifestyle modification. However, a lot of challenges have been encountered using these techniques, including their optimization to ensure optimal glycemic, lipid, and blood pressure modulation to minimize complications, improvement of patients' compliance to lifestyle and pharmacologic interventions, safety, ethical issues, as well as an effective delivery system among others. In conclusion, lifestyle management alongside pharmacological approaches and the optimization of these techniques is critical for an effective and safe clinical treatment plan.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 53, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Nigeria
| | - Jennifer Chukwu
- John Hopkins Program on International Education in Gynaecology and Obstetrics, Abuja 900281, Nigeria
| | - Blessing Oluebube Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Patience Nkemjika Ogbu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|
19
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
20
|
Nanoparticles application as a therapeutic strategy for diabetes mellitus management. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The prevalence of diabetes, as reported by the World Health Organization and the International Diabetes Federation, has raised many eyebrows about the dangers of diabetes mellitus to society, leading to the development of various therapeutic techniques, including nanotechnological, in the management of this disease. This review discusses silver, gold, ceramic, alloy, magnetic, silica, polymeric nanoparticles and their various applications in diabetes management which may help to reduce the incidence of diabetes and its complication.
Collapse
|
21
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
22
|
Taiariol L, Chaix C, Farre C, Moreau E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem Rev 2021; 122:340-384. [PMID: 34705429 DOI: 10.1021/acs.chemrev.1c00484] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, click and bioorthogonal reactions have been the subject of considerable research efforts. These high-performance chemical reactions have been developed to meet requirements not often provided by the chemical reactions commonly used today in the biological environment, such as selectivity, rapid reaction rate, and biocompatibility. Click and bioorthogonal reactions have been attracting increasing attention in the biomedical field for the engineering of nanomedicines. In this review, we study a compilation of articles from 2014 to the present, using the terms "click chemistry and nanoparticles (NPs)" to highlight the application of this type of chemistry for applications involving NPs intended for biomedical applications. This study identifies the main strategies offered by click and bioorthogonal chemistry, with respect to passive and active targeting, for NP functionalization with specific and multiple properties for imaging and cancer therapy. In the final part, a novel and promising approach for "two step" targeting of NPs, called pretargeting (PT), is also discussed; the principle of this strategy as well as all the studies listed from 2014 to the present are presented in more detail.
Collapse
Affiliation(s)
- Ludivine Taiariol
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Carole Chaix
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Farre
- Interfaces and Biosensors, UMR 5280, CNRS, F-69100 Villeurbanne, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, BP 184, F-63005 Clermont-Ferrand, France.,Inserm U 1240, F-63000 Clermont-Ferrand, France.,Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
23
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
24
|
Raval J, Trivedi R, Suman S, Kukrety A, Prajapati P. NANO-BIOTECHNOLOGY AND ITS INNOVATIVE PERSPECTIVE IN DIABETES MANAGEMENT. Mini Rev Med Chem 2021; 22:89-114. [PMID: 34165408 DOI: 10.2174/1389557521666210623164052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Diabetes occurs due to the imbalance of glucose in the body known as glucose homeostasis, thus leading to metabolic changes in the body. The two stages hypoglycemia or hyperglycemia classify diabetes into various categories. Various bio-nanotechnological approaches are coupled up with nano particulates, polymers, liposome, various gold plated and solid lipid particulates, regulating transcellular transport, non specific cellular uptake, and paracellular transport, leading to oral, trans-dermal , pulmonary, buccal , nasal , specific gene oriented administration to avoid the patient's non compliance with the parental routes of administration. Phytochemicals are emerging strategies for the future prospects of diabetes management.
Collapse
Affiliation(s)
- Jigar Raval
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Riddhi Trivedi
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Sonali Suman
- CDSCO, Meghaninagar, Ahmedabad, Gujarat 380003, India
| | | | - Prajesh Prajapati
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| |
Collapse
|
25
|
Zou JJ, Le JQ, Zhang BC, Yang MY, Jiang JL, Lin JF, Wu PY, Li C, Chen L, Shao JW. Accelerating transdermal delivery of insulin by ginsenoside nanoparticles with unique permeability. Int J Pharm 2021; 605:120784. [PMID: 34111544 DOI: 10.1016/j.ijpharm.2021.120784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022]
Abstract
Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.
Collapse
Affiliation(s)
- Jun-Jie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bing-Chen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juan-Fang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Peng-Yu Wu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lu Chen
- Ocean College of Minjiang University, Fuzhou 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
26
|
Suresh V, Reddy A. Dysregulation of nitric oxide synthases during early and late pathophysiological conditions of diabetes mellitus leads to amassing of microvascular impedement. J Diabetes Metab Disord 2021; 20:989-1002. [PMID: 34178871 PMCID: PMC8212285 DOI: 10.1007/s40200-021-00799-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
Diabetes is a major killer worldwide and its unprecedented rise poses a serious threat to mankind. According to recent estimation, 387 million people worldwide are affected from the disease with a prevalence rate of 8.3 and 46.3 % still remains undiagnosed. Important characteristics of diabetes are abnormalities of the physiological signalling functions of reactive oxygen species and reactive nitrogen species. Increased oxidative stress contributes to the activation of stress-sensitive intracellular signalling pathways and the development of gene products that trigger cellular damage and contribute to the vascular complications of diabetes. Growing evidence from studies into many diseases suggests that the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure are correlated with oxidative stress. This leads to cell metabolism and cell-cell homeostasis to be complexly dysregulated. This review focuses to investigate the status of oxidative stress, nitric oxide and reactive species in early and diabetes. Significance of nitric oxide synthases Evidences has accumulated indicating that the generation of reactive oxygen species (oxidative stress) may play an important role in the etiology of diabetic complications thus attention was given on the reactive oxygen and reactive nitrogen species and their potential role in pathogenesis. Additionally, the therapeutic advances in diabetes management are included. Nanotechnology, statins and stem cell technology are some techniques which can be considered to have a possible future in the treatment sector of diabetes.
Collapse
Affiliation(s)
- Varuna Suresh
- Animal Cell Culture Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kancheepuram District-603203, Kattankulathur, Tamil Nadu India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kancheepuram District-603203, Kattankulathur, Tamil Nadu India
| |
Collapse
|
27
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
28
|
Manimaran V, Sivakumar PM, Narayanan J, Parthasarathi S, Prabhakar PK. Nanoemulsions: A Better Approach for Antidiabetic Drug Delivery. Curr Diabetes Rev 2021; 17:486-495. [PMID: 33297917 DOI: 10.2174/1573399817666201209095205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Conventional delivery of antidiabetic drugs faces many problems like poor absorption, low bioavailability, and drug degradation. Nanoemulsion is a unique drug technology, which is very suitable for the delivery of antidiabetic drugs. In recent years, the flaws of delivering anti-hypoglycaemic drugs have been overcome by choosing nanoemulsion drug technology. They are thermodynamically stable and also provide the therapeutic agent for a longer duration. Generally, nanoemulsions are made up of either oil-in-water or water-in-oil and the size of the droplets is from fifty to thousand nanometer. Surfactants are critical substances that are added in the manufacturing of nanoemulsions. Only the surfactants which are approved for human use can be utilized in the manufacturing of nanoemulsions. Generally, the preparation of emulsions includes mixing of the aqueous phase and organic phase and using surfactant with proper agitation. Nanoemulsions are used for antimicrobial drugs, and they are also used in the prophylaxis of cancer. Reduction in the droplet size may cause variation in the elastic and optical behaviour of nanoemulsions.
Collapse
Affiliation(s)
- V Manimaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu-603203, India
| | | | - J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu-603203, India
| | | | - Pranav Kumar Prabhakar
- Department of Allied Medical Sciences, Lovely Professional University, Phagwara Punjab-144411, India
| |
Collapse
|
29
|
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16:62-76. [PMID: 33613730 PMCID: PMC7878460 DOI: 10.1016/j.ajps.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
There are several therapeutic approaches in type 2 diabetes mellitus (T2DM). When diet and exercise fail to control hyperglycemia, patients are forced to start therapy with antidiabetic agents. However, these drugs present several drawbacks that can affect the course of treatment. The major disadvantages of current oral modalities for the treatment of T2DM are mainly depicted in the low bioavailability and the immediate release of the drug, generating the need for an increase in frequency of dosing. In conjugation with the manifestation of adverse side effects, patient compliance to therapy is reduced. Over the past few years nanotechnology has found fertile ground in the development of novel delivery modalities that can potentially enhance anti-diabetic regimes efficacy. All efforts have been targeted towards two main vital steps: (a) to protect the drug by encapsulating it into a nano-carrier system and (b) efficiently release the drug in a gradual as well as controllable manner. However, only a limited number of studies published in the literature used in vivo techniques in order to support findings. Here we discuss the current disadvantages of modern T2DM marketed drugs, and the nanotechnology advances supported by in vivo in mouse/rat models of glucose homeostasis. The generation of drug nanocarriers may increase bioavailability, prolong release and therefore reduce dosing and thus, improve patient compliance. This novel approach might substantially improve quality of life for diabetics. Application of metal nanoformulations as indirect hypoglycemic agents is also discussed.
Collapse
Affiliation(s)
- Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
30
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
32
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
33
|
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges. Mol Pharm 2020; 18:550-575. [PMID: 32519875 DOI: 10.1021/acs.molpharmaceut.0c00346] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammad Javad Hajipour
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02912, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
34
|
Pan W, Zheng X, Chen G, Su L, Luo S, Wang W, Ye S, Weng J, Min Y. Nanotechnology's application in Type 1 diabetes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1645. [PMID: 32558337 DOI: 10.1002/wnan.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the immune system attacking islet cells. T1D, with a long prediabetes period, and the incidence of T1D increases with age during childhood and peaks at 10-14 years. And once it gets overt, it requires lifelong insulin replace treatment. Therefore, the diagnosis of early-stage T1D and effective treatments are important for the management of T1D patients. The imaging methods, such as magnetic resonance imaging (MRI) and so on, were applied in diagnosis of the early stage T1D and its development tracking. The addition of nanomaterials, especially in MRI, can improve the quality of T1D imaging for the diagnosis of T1D at early stage and cause less harm to human body. Meantime, among various treatment options, islet transplantation and immunotherapy are promising, effective, and less independent on insulin. The addition of nanotechnology can effectively reduce the attack of the immune system on drugs and cells, making the therapeutic drug more targeted in the body and prolonging the action time between drugs and cells, thus its addition makes these therapy safer and more efficient. In this review, we attempt to summarize the recent advances in the development of nanotechnology advances of T1D including using nanomaterials for the diagnosis and immunological imaging of T1D, protecting the transplanted islet cells from immune system attack, and delivering relevant molecules to targeted immunocytes. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Wen Pan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China.,Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Fakharzadeh S, Argani H, Torbati PM, Dadashzadeh S, Kalanaky S, Nazaran MH, Basiri A. DIBc nano metal-organic framework improves biochemical and pathological parameters of experimental chronic kidney disease. J Trace Elem Med Biol 2020; 61:126547. [PMID: 32460199 DOI: 10.1016/j.jtemb.2020.126547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The growing morbidity and mortality rate of chronic kidney disease (CKD) has forced researchers to find more efficient strategies for controlling this disease. Studies have proven the important role of alteration in iron, zinc and selenium metabolism in CKD pathological process. Nanotechnology, through synthetizing nano metal-organic framework (NMOF) structures, can be employed as a valuable strategy for using these trace elements as the key for modification and improvement of CKD-related pathological events. After proving the anti-diabetic property of DIBc NMOF (which contains selenium and zinc) in the previous study, the impact of this NMOF on some important biochemical and pathological parameters of CKD was evaluated in the current study. METHODS Knowing that diabetic nephropathy (DN) is the leading cause of CKD, male wistar rats were selected and given a high fat diet for 2 weeks and then were injected with streptozotocin (35 mg/kg) to induce DN. Six weeks after streptozotocin injection, DIBc or metformin treatment started and continued for 8 weeks. RESULTS Eight weeks of DIBc treatment decreased plasma fasting blood glucose, blood urea nitrogen, uric acid, malondialdehyde (MDA) and HOMA-IR index compared to DN control and metformin groups. This NMOF significantly reduced urinary albumin excretion rate, MDA and 8-isoprostane, while it increased creatinine clearance in comparison to the above-mentioned groups. Renal histo-pathological images indicated that DIBc ameliorated glomerular basement membrane thickening and wrinkling, mesangial matrix expansion and hypercellularity and presence of intra-cytoplasmic hyaline droplets in proximal cortical tubules of kidney samples. CONCLUSION The results showed the therapeutic effect of DIBc on important biochemical and histo-pathological parameters of CKD, so this NMOF could be regarded as a promising novel anti-CKD agent.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Delgadillo Armendariz NL, Rangel Vásquez NA, Marquez Brazón EA. Determination of structural properties in the adsorption of drugs on chitosan-hydrogels for type 2 diabetes by means of the PM6 method. REVISTA COLOMBIANA DE QUÍMICA 2020. [DOI: 10.15446/rev.colomb.quim.v49n2.84723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Computational chemistry performs the modeling and calculation of physicochemical properties that allow understanding of the different molecular interactions at the nanometric scale in medical applications such as the design of controlled release systems. The PM6 model was used to analyze metformin and glibenclamide. First, the energy properties as the Gibbs free energy and enthalpies were obtained. The results showed the affinity of both drugs with water (glibenclamide: -7.96 and metformin: -11.49) due to the formation of hydrogen bonds, which were verified by the electronegativities corresponding to the dipole moment and to the partition coefficient (Log P).Subsequently, the main properties for the design of a release system using the metformin/glibenclamide complex in the chitosan hydrogel were determined. In this process it was appreciated that the Gibbs free energy (-2157.60 kcal/mol) determined the thermodynamic stability of the adsorption. In addition, the Log P (-25.82) indicated an instantaneous solubility through the formation of hydrogen bonds and were verified by the electronic distribution and the change in dipole moment.
Collapse
|
37
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
38
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
39
|
Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902004. [PMID: 31423670 PMCID: PMC7141789 DOI: 10.1002/adma.201902004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose-responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed-loop insulin delivery or "smart insulin" systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose-responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose-responsive moieties, including glucose oxidase, phenylboronic acid, and glucose-binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Zenomics Inc., Durham, NC 27709, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug Delivery Systems for Diabetes Treatment. Curr Pharm Des 2020; 25:166-173. [PMID: 30848184 DOI: 10.2174/1381612825666190306153838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control. OBJECTIVE Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment. RESULTS Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location. CONCLUSIONS The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Jovan Nedeljkovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Vesna Lazic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
41
|
Rajan M, George Raj ICM, Rajendran AP. Biosynthesized Nanoparticles and Their Biological Applications. INTEGRATIVE NANOMEDICINE FOR NEW THERAPIES 2020. [DOI: 10.1007/978-3-030-36260-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
|
43
|
Surface engineering of nanomaterials with phospholipid-polyethylene glycol-derived functional conjugates for molecular imaging and targeted therapy. Biomaterials 2019; 230:119646. [PMID: 31787335 DOI: 10.1016/j.biomaterials.2019.119646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
In recent years, phospholipid-polyethylene glycol-derived functional conjugates have been widely employed to decorate different nanomaterials, due to their excellent biocompatibility, long blood circulation characteristics, and specific targeting capability. Numerous in vivo studies have demonstrated that nanomedicines peripherally engineered with phospholipid-polyethylene glycol-derived functional conjugates show significantly increased selective and efficient internalization by target cells/tissues. Targeting moieties including small-molecule ligands, peptides, proteins, and antibodies are generally conjugated onto PEGylated phospholipids to decorate liposomes, micelles, hybrid nanoparticles, nanocomplexes, and nanoemulsions for targeted delivery of diagnostic and therapeutic agents to diseased sites. In this review, the synthesis methods of phospholipid-polyethylene glycol-derived functional conjugates, biophysicochemical properties of nanomedicines decorated with these conjugates, factors dominating their targeting efficiency, as well as their applications for in vivo molecular imaging and targeted therapy were summarized and discussed.
Collapse
|
44
|
Xi Y, Jiang T, Chaurasiya B, Zhou Y, Yu J, Wen J, Shen Y, Ye X, Webster TJ. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomedicine 2019; 14:8521-8542. [PMID: 31806960 PMCID: PMC6831987 DOI: 10.2147/ijn.s216199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a complex disease characterized by inflammation and ankylosis primarily at the cartilage–bone interface. The disease is more common in young males and risk factors include both genetic and environmental. While the pathogenesis of AS is not completely understood, it is thought to be an immune-mediated disease involving inflammatory cellular infiltrates, and human leukocyte antigen-B27. Currently, there is no specific diagnostic technique available for this disease; therefore conventional diagnostic approaches such as clinical symptoms, laboratory tests and imaging techniques are used. There are various review papers that have been published on conventional treatment approaches, and in this review work, we focus on the more promising nanomedicine-based treatment modalities to move this field forward.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu, Jiangsu 215500, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanyan Zhou
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
45
|
Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019; 9:3308-3340. [PMID: 31244956 PMCID: PMC6567964 DOI: 10.7150/thno.33888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-assisted spatiotemporal manipulation of biological events holds great promise in advancing the practice of precision medicine in healthcare systems. The progress in internal and/or external stimuli-responsive nanoplatforms for highly specific cellular regulations and theranostic controls offer potential clinical translations of the revolutionized nanomedicine. To successfully implement this new paradigm, the emerging light-responsive nanoregulators with unparalleled precise cell functions manipulation have gained intensive attention, providing UV-Vis light-triggered photocleavage or photoisomerization studies, as well as near-infrared (NIR) light-mediated deep-tissue applications for stimulating cellular signal cascades and treatment of mortal diseases. This review discusses current developments of light-activatable nanoplatforms for modulations of various cellular events including neuromodulations, stem cell monitoring, immunomanipulation, cancer therapy, and other biological target intervention. In summary, the propagation of light-controlled nanomedicine would place a bright prospect for future medicine.
Collapse
Affiliation(s)
- Do Cong Thang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bengang Xing
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
46
|
Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel) 2019; 11:cancers11050597. [PMID: 31035440 PMCID: PMC6562381 DOI: 10.3390/cancers11050597] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) causes around 80% to 90% of deaths. The lack of an early diagnosis and inefficiency in conventional therapies causes poor prognosis and overall survival of lung cancer patients. Recent progress in nanomedicine has encouraged the development of an alternative theranostics strategy using nanotechnology. The interesting physico-chemical properties in the nanoscale have generated immense advantages for nanoparticulate systems for the early detection and active delivery of drugs for a better theranostics strategy for lung cancer. This present review provides a detailed overview of the recent progress in the theranostics application of nanoparticles including liposomes, polymeric, metal and bio-nanoparticles. Further, we summarize the advantages and disadvantages of each approach considering the improvement for the lung cancer theranostics.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA.
| | - Manash Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles (UCLA) Factor Bldg. 10-240, 621 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
47
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Abstract
Antidiabetic therapeutics, including insulin as well as glucagon-like peptide 1 (GLP-1) and its analogs, are essential for people with diabetes to regulate their blood glucose levels. Nevertheless, conventional treatments based on hypodermic administration is commonly associated with poor blood glucose control, a lack of patient compliance, and a high risk of hypoglycemia. Closed-loop drug delivery strategies, also known as self-regulated administration, which can intelligently govern the drug release kinetics in response to the fluctuation in blood glucose levels, show tremendous promise in diabetes therapy. In the meantime, the advances in the development and use of microneedle (MN)-array patches for transdermal drug delivery offer an alternative method to conventional hypodermic administration. Hence, glucose-responsive MN-array patches for the treatment of diabetes have attracted increasing attentions in recent years. This review summarizes recent advances in glucose-responsive MN-array patch systems. Their opportunities and challenges for clinical translation are also discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Testera AM, Santos M, Girotti A, Arias FJ, Báñez JM, Alonso M, Rodríguez-Cabello JC. A novel lipase-catalyzed method for preparing ELR-based bioconjugates. Int J Biol Macromol 2019; 121:752-759. [DOI: 10.1016/j.ijbiomac.2018.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022]
|
50
|
Siwach R, Pandey P, Chawla V, Dureja H. Role of Nanotechnology in Diabetic Management. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:28-37. [PMID: 30608045 DOI: 10.2174/1872210513666190104122032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM) has emerged as an epidemic that has affected millions of people worldwide in the last few decades. Nanotechnology is a discipline that is concerned with material characteristics at nanoscale and offers novel techniques for disease detection, management and prevention. OBJECTIVE Diabetes mellitus is an epidemic disease that has affected millions of people globally. Nanotechnology has greatly enhanced the health status by providing non-obtrusive techniques for the management and treatment of diabetic patients. METHOD In diabetes research, the nanotechnology has encouraged the advancement of novel glucose monitoring and several modalities for insulin delivery holding possibilities to enhance the personal satisfaction and life quality for diabetic patients. RESULT Nanoparticles hold a great potential in the areas of drug delivery and are explored as vehicles for orally administered insulin formulations. Glucose biosensors equipped with nanoscale materials such as Quantum Dots (QDs), Carbon Nanotubes (CNTs), Magnetic Nanoparticles (MNPs) etc. have shown greater sensitivity. Nanotechnology in diabetic research is heading towards the novel techniques which can provide continuous glucose monitoring offering accurate information and improving patient's compliance. CONCLUSION The present review addresses the different aspects of nanoparticles and recent patents related to diabetic management based on nanotechnology.
Collapse
Affiliation(s)
- Reena Siwach
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak-124001, India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|