1
|
Naser YA, Vora LK, Tekko IA, Peng K, Volpe-Zanutto F, Greer B, Paredes A, McCarthy HO, Donnelly RF. Atorvastatin-Loaded Dissolving Microarray Patches for Long-Acting Microdepot Delivery: Comparison of Nanoparticle and Microparticle Drug Formulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39356645 PMCID: PMC11492242 DOI: 10.1021/acsami.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024]
Abstract
The increasing popularity of prolonged-release dosage forms, owing to their ability to provide continuous drug release after administration, has significantly improved patient compliance and overall quality of life. However, achieving prolonged release beyond 24 h frequently requires the use of invasive methods, including injections or implants, which may prove challenging for people suffering from needle phobia. This study introduces atorvastatin (ATR) microparticles (MPs) or nanocrystal (NCs) dissolving microarray patches (D-MAPs) as a noninvasive alternative for intradermal drug delivery over a two-week period for the management of hyperlipidemia. The MP-loaded D-MAPs exhibited an average drug loading of 5.15 ± 0.4 mg of ATR per patch, surpassing the 2.4 ± 0.11 mg/patch observed with NC-loaded D-MAPs. Skin deposition studies demonstrated the superior performance of MP D-MAPs, which delivered 2.0 ± 0.33 mg of ATR per 0.75 cm2 patch within 24 h, representing 38.76% of the initial amount of drug loaded. In contrast, NC D-MAPs delivered approximately 0.89 ± 0.12 mg of ATR per 0.75 cm2 patch at 24 h, equivalent to 38.42 ± 5.13% of the initial ATR loaded. Due to their favorable results, MP D-MAPs were chosen for an in vivo study using Sprague-Dawley rats. The findings demonstrated the capacity of D-MAPs to deliver and attain therapeutically relevant ATR concentrations (>20 ng/mL) for 14 days after a single 24-h application. This study is the first to successfully demonstrate the long-acting transdermal delivery of ATR using MP-loaded D-MAPs after a 24-h single-dose application. The innovative D-MAP system, particularly when loaded with MP, arises as a promising, minimally invasive, long-acting substitute for ATR delivery. This technology has the potential to improve patient compliance and therapeutic outcomes while also significantly advancing the field of transdermal drug delivery.
Collapse
Affiliation(s)
- Yara A. Naser
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Ismaiel A. Tekko
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo 00 963, Syria
| | - Ke Peng
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Fabiana Volpe-Zanutto
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
- School
of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, U.K.
| | - Brett Greer
- Institute
for Global Food Security, School of Biological Science, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, U.K.
| | - Alejandro Paredes
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Helen O. McCarthy
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| |
Collapse
|
2
|
Bruce G, Bagherpour S, Duch M, Plaza JA, Stolnik S, Pérez-García L. Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses. ACS Biomater Sci Eng 2024; 10:5689-5700. [PMID: 39167686 PMCID: PMC11388147 DOI: 10.1021/acsbiomaterials.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Drug delivery advances rely on using nano- and microsized carriers to transfer therapeutic molecules, although challenges persist in increasing the availability of new and even approved pharmaceutical products. Particle shape, a critical determinant in how these carriers distribute within the body after administration, raises opportunities of using, for instance, micrometer-sized nonspherical particles for vascular targeting and thereby creating new prospects for precise drug delivery to specific targeted areas. The versatility of polycrystalline silicon microfabrication allows for significant variation in the size and shape of microchips, and so, in the current work, photolithography was employed to create differently shaped polysilicon microchips, including cuboids, cubes, bars, and cylinders, to explore the influence of particle shape on cellular interactions. These microchips with different shapes and lateral dimensions, accounting for surface areas in the range of ca. 15 to 120 μm2 and corresponding total volumes of 0.4 to 27 μm3, serve as ideal models for investigating their interactions with macrophages with diameters of ca. 20 μm. Side-scattering imaging flow cytometry was employed for studying the interaction of label-free prepared microchips with RAW 264.7 macrophages. Using a dose of 3 microchips per cell, results show that cuboids exhibit the highest cellular association (ca. 25%) and uptake (ca. 20%), suggesting their potential as efficient carriers for targeted drug delivery to macrophages. Conversely, similarly sized cylinders and bar-shaped microchips exhibit lower uptakes of about 8% and about 6%, respectively, indicating potential benefits in evading macrophage recognition. On average, 1-1.5 microchips were internalized, and ca. 1 microchip was surface-bound per cell, with cuboids showing the higher values overall. Macrophages respond to microchips by increasing their metabolic activity and releasing low levels of intracellular enzymes, indicating reduced toxicity. Interestingly, increasing the particle dose enhances macrophage metabolic activity without significantly affecting enzyme release.
Collapse
Affiliation(s)
- Gordon Bruce
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Snow Stolnik
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
3
|
Fatima SF, Sabouni R, Husseini G, Paul V, Gomaa H, Radha R. Microwave-Responsive Metal-Organic Frameworks (MOFs) for Enhanced In Vitro Controlled Release of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1081. [PMID: 38998686 PMCID: PMC11243425 DOI: 10.3390/nano14131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent candidates for a range of applications because of their numerous advantages, such as high surface area, porosity, and thermal and chemical stability. In this study, microwave (MW) irradiation is used as a novel stimulus in vitro controlled release of Doxorubicin (DOX) from two MOFs, namely Fe-BTC and MIL-53(Al), to enhance drug delivery in cancer therapy. DOX was encapsulated into Fe-BTC and MIL-53(Al) with drug-loading efficiencies of up to 67% for Fe-BTC and 40% for MIL-53(Al). Several characterization tests, including XRD, FTIR, TGA, BET, FE-SEM, and EDX, confirmed both MOF samples' drug-loading and -release mechanisms. Fe-BTC exhibited a substantial improvement in drug-release efficiency (54%) when exposed to microwave irradiation at pH 7.4 for 50 min, whereas 11% was achieved without the external modality. A similar result was observed at pH 5.3; however, in both cases, the release efficiencies were substantially higher with microwave exposure (40%) than without (6%). In contrast, MIL-53(Al) exhibited greater sensitivity to pH, displaying a higher release rate (66%) after 38 min at pH 5.3 compared to 55% after 50 min at pH 7.4 when subjected to microwave irradiation. These results highlight the potential of both MOFs as highly heat-responsive to thermal stimuli. The results of the MTT assay demonstrated the cell viability across different concentrations of the MOFs after two days of incubation. This suggests that MOFs hold promise as potential candidates for tumor targeting. Additionally, the fact that the cells maintained their viability at different durations of microwave exposure confirms that the latter is a safe modality for triggering drug release from MOFs.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Ghaleb Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, ON TEB 459, Canada
| | - Remya Radha
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| |
Collapse
|
4
|
Bishnoi S, Jansman MMT, Chen J, Thulstrup PW, Keller SS, Hosta-Rigau L. Enzyme-loaded rod-like microgel shapes: a step towards the creation of shape-specific microreactors for blood detoxification purposes. J Mater Chem B 2024; 12:4736-4747. [PMID: 38660955 DOI: 10.1039/d3tb02905k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rapid removal of toxic substances is crucial to restore the normal functions of our body and ensure survival. Due to their high substrate specificity and catalytic efficiency, enzymes are unique candidates to deplete toxic compounds. While enzymes display several limitations including low stability and high immunogenicity, these can be overcome by entrapping them in a diverse range of carriers. The resulting micro/nanoreactors shield the enzymes from their surroundings, preventing their misfolding or denaturation thus allowing them to conduct their function. The micro/nanoreactors must circulate in the blood stream for extended periods of time to ensure complete depletion of the toxic agents. Surprisingly, while it is widely acknowledged that non-spherical carriers exhibit longer residence time in the bloodstream than their spherical counterparts, so far, all the reported micro/nanoreactors have been assembled with a spherical architecture. Herein, we address this important issue by pioneering the first shape-specific microreactors. We use UV-assisted punching to create rod-like microgel shapes with dimensions of 8 μm × 1 μm × 2 μm and demonstrate their biocompatibility by conducting hemolysis and cell viability assays with a macrophage and an endothelial cell line. Upon encapsulation of the model enzyme β-lactamase, the successful fabrication of rod-shaped microreactors is demonstrated by their ability to convert the yellow nitrocefin substrate into its hydrolyzed product.
Collapse
Affiliation(s)
- Shahana Bishnoi
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Michelle Maria Theresia Jansman
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| | - Jiantao Chen
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
5
|
Yu DG, Gong W, Zhou J, Liu Y, Zhu Y, Lu X. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1964. [PMID: 38702912 DOI: 10.1002/wnan.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The shapes of micro- and nano-products have profound influences on their functional performances, which has not received sufficient attention during the past several decades. Electrohydrodynamic atomization (EHDA) techniques, mainly include electrospinning and electrospraying, are facile in manipulate their products' shapes. In this review, the shapes generated using EHDA for modifying drug release profiles are reviewed. These shapes include linear nanofibers, round micro-/nano-particles, and beads-on-a-string hybrids. They can be further divided into different kinds of sub-shapes, and can be explored for providing the desired pulsatile release, sustained release, biphasic release, delayed release, and pH-sensitive release. Additionally, the shapes resulted from the organizations of electrospun nanofibers are discussed for drug delivery, and the shapes and inner structures can be considered together for developing novel drug delivery systems. In future, the shapes and the related shape-performance relationships at nanoscale, besides the size, inner structure and the related structure-performance relationships, would further play their important roles in promoting the further developments of drug delivery field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yunajie Zhu
- Department of Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
7
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Matsumiya K, Inagaki NF, Ito T. Fabrication of Drug-Loaded Torus-Shaped Alginate Microparticles and Kinetic Analysis of Their Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1247-1256. [PMID: 37988317 DOI: 10.1021/acs.langmuir.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We fabricated drug-loaded, microsized, and torus-shaped alginate microparticles (TSMs) by vortex-ring freezing (VRF), utilizing vortex ring formation and ionic cross-linking. The equivalent outer diameter of the TSMs was ca. 200 μm. Several model drugs, such as doxorubicin, heparin, lysozyme, and several dextran derivatives, have been successfully loaded into TSMs. Because the TSMs were fragile due to the limitation of the process conditions of the VRF, drug-loaded TSMs were subsequently cross-linked via "post-cross-linking" with CaCl2, SrCl2, or BaCl2 to increase the cross-linking density of the alginate matrix, thereby enhancing the stability of dextran (Dex)-loaded TSMs (Dex-TSMs) and enabling the sustained release of natural Dex of 10, 70, or 150 kDa and cationic or anionic Dex at a physiological pH. The release kinetics of Dexs showed molecular weight and charge dependence; a relatively dense network of the alginate matrix of post-cross-linked TSMs resulted in the sustained release of Dexs with high molecular weights, heparin, and lysozyme for up to 7 days in the release test. Furthermore, the solute diffusivities of the dextran derivatives in the bulk alginate matrix were measured by using fluorescence correlation spectroscopy, which supported the release kinetics of TSMs. Drug-loaded TSMs have potential as drug carriers for biopharmaceuticals, such as proteins.
Collapse
Affiliation(s)
- Kazuki Matsumiya
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Radiology and Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Moradi Kashkooli F, Hornsby TK, Kolios MC, Tavakkoli JJ. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1913. [PMID: 37475577 DOI: 10.1002/wnan.1913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
11
|
Liu S, Ma J, Xue EY, Wang S, Zheng Y, Ng DKP, Wang A, Zheng N. Polymeric Phthalocyanine-Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Adv Healthc Mater 2023; 12:e2300481. [PMID: 37019442 DOI: 10.1002/adhm.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic therapy and sonodynamic therapy are two highly promising modalities for cancer treatment. The latter holds an additional advantage in deep-tumor therapy owing to the deep penetration of the ultrasonic radiation. The therapeutic efficacy depends highly on the photo/ultrasound-responsive properties of the sensitizers as well as their tumor-localization property and pharmacokinetics. A novel nanosensitizer system based on a polymeric phthalocyanine (pPC-TK) is reported herein in which the phthalocyanine units are connected with cleavable thioketal linkers. Such polymer could self-assemble in water forming nanoparticles with a hydrodynamic diameter of 48 nm. The degradable and flexible thioketal linkers could effectively inhibit the π-π stacking of the phthalocyanine units, rendering the resulting nanoparticles an efficient generator of reactive oxygen species upon light or ultrasonic irradiation. The nanosensitizer could be internalized into cancer cells readily, inducing cell death by efficient photodynamic and sonodynamic effects. The potency is significantly higher than that of the monomeric phthalocyanine (PC-4COOH). The nanosensitizer could also effectively inhibit the growth of tumor in liver tumor-bearing mice by these two therapies without causing noticeable side effects. More importantly, it could also retard the growth of a deep-located orthotopic liver tumor in vivo by sonodynamic therapy.
Collapse
Affiliation(s)
- Shuxin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Shaolei Wang
- Department of Radiology Intervention, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110801, China
| | - Yubin Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| |
Collapse
|
12
|
Xu Y, Liu R, Li R, Zhi X, Yang P, Qian L, Sun D, Liu L, Dai Z. Manipulating Neovasculature-Targeting Capability of Biomimetic Nanodiscs for Synergistic Photoactivatable Tumor Infarction and Chemotherapy. ACS NANO 2023; 17:16192-16203. [PMID: 37555449 DOI: 10.1021/acsnano.3c05463] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Tumor infarction therapy is a promising antitumor strategy with the advantages of taking a short therapy duration, less risk of resistance, and effectiveness against a wide range of tumor types. However, its clinical application is largely hindered by tumor recurrence in the surviving rim and the potential risk of thromboembolic events due to nonspecific vasculature targeting. Herein, a neovasculature-targeting synthetic high-density lipoprotein (sHDL) nanodisc loaded with pyropheophorbide-a and camptothecin (CPN) was fabricated for photoactivatable tumor infarction and synergistic chemotherapy. By manipulating the anisotropy in ligand modification of sHDL nanodiscs, CPN modified with neovaculature-targeting peptide on the planes (PCPN) shows up to 7-fold higher cellular uptake compared with that around the edge (ECPN). PCPN can efficiently bind to endothelial cells of tumor vessels, and upon laser irradiation, massive local thrombus can be induced by the photodynamic reaction to deprive nutrition supply. Meanwhile, CPT could be released in response to the tumor reductive environment, thus killing residual tumor cells in the surviving rim to inhibit recurrence. These findings not only offer a powerful approach of synergistic cancer therapy but also suggest the potential of plane-modified sHDL nanodiscs as a versatile drug delivery nanocarrier.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Xin Zhi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Desheng Sun
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Li Liu
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Jeong J, Jeon S, Kim S, Lee S, Kim G, Bae E, Ha Y, Lee SW, Kim JS, Kim DJ, Cho WS. Effect of sp 3/sp 2 carbon ratio and hydrodynamic size on the biodistribution kinetics of nanodiamonds in mice via intravenous injection. Part Fibre Toxicol 2023; 20:33. [PMID: 37605240 PMCID: PMC10440929 DOI: 10.1186/s12989-023-00545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Nanodiamonds (NDs) have gained a rapidly growing interest in biomedical applications; however, little is known regarding their biokinetics owing to difficulties in measurements and limited synthesis/purification technologies. In this study, we investigated the distribution kinetics of detonation-synthesized NDs in mice via intravenous injection to evaluate the parameters that determine the behavior of the particles. We prepared two distinctive NDs that controlled the sp3/sp2 carbon ratio and particle size by coating them with serum proteins. The four control samples were intravenously injected into mice, and tissue distribution and clearance were evaluated at 30 min and 1, 7, and 28 days post-injection. RESULTS The sp3/sp2 carbon ratio showed no correlation with the organ distribution of the NDs. However, hydrodynamic size showed an excellent correlation with organ distribution levels: a negative correlation in the liver and positive correlations in the spleen and lungs. Furthermore, the deposition levels of NDs in the lung suggest that particles smaller than 300 nm could avoid lung deposition. Finally, a similar organ distribution pattern was observed in mice injected with carbon black nanoparticles controlled hydrodynamic size. CONCLUSIONS In conclusion, the tissue distribution of NDs is modulated not by the sp3/sp2 carbon ratio but by the hydrodynamic size, which can provide helpful information for targeting the tissue of NDs. Furthermore, the organ distribution pattern of the NDs may not be specific to NDs but also can apply to other nanoparticles, such as carbon black.
Collapse
Affiliation(s)
- Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Eunsol Bae
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Yeonjeong Ha
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seung Whan Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, 54004, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, DGIST, Daegu, 42988, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
14
|
Shafaei N, Khorshidi S, Karkhaneh A. The immune-stealth polymeric coating on drug delivery nanocarriers: In vitro engineering and in vivo fate. J Biomater Appl 2023:8853282231185352. [PMID: 37480331 DOI: 10.1177/08853282231185352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Although essential nanosystems such as nanoparticles and nanocarriers are desirable options for transporting various drug molecules into the biological environment, they rapidly remove from the circulatory system due to their interaction with multiple in vivo barriers, especially the immune barrier, which will result in their short-term effects. In order to improve their effectiveness and durability in the circulatory system, the polymer coatings can use to cover the surface of nanoparticles and nanocarriers to conceal them from the immune system. Due to their different properties (like charge, elasticity, and hydrophilicity/hydrophobicity), these coatings can improve drug delivery nanosystem durability and therapeutic applications. The mentioned coatings have different types and are divided into various categories, such as synthetic polymers, polysaccharides, and zwitterionic polymers. Each of these polymers has unique properties based on its category, origin, and chemical structure that make them suitable for producing stealth drug delivery nanocarriers. In this review article, we have tried to explain the importance of these diverse polymer coatings in determining the fate of drug nanocarriers and then introduced the different types of these coatings and, finally, described various methods that directly and indirectly analyze the nanocoatings to determine the stability of nanoparticles in the body.
Collapse
Affiliation(s)
- Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Sheridan A, Brown AC. Recent Advances in Blood Cell-Inspired and Clot Targeted Thrombolytic Therapies. J Tissue Eng Regen Med 2023; 2023:6117810. [PMID: 37731481 PMCID: PMC10511217 DOI: 10.1155/2023/6117810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood-cells and clotting proteins to effectively target and lyse clots.
Collapse
Affiliation(s)
- Anastasia Sheridan
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering of University of North Carolina – Chapel Hill and North Carolina State University, Raleigh, NC 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
16
|
Zhao CR, Li J, Jiang ZT, Zhu JJ, Zhao JN, Yang QR, Yao W, Pang W, Li N, Yu M, Gan Y, Zhou J. Disturbed Flow-Facilitated Margination and Targeting of Nanodisks Protect against Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204694. [PMID: 36403215 DOI: 10.1002/smll.202204694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow. By employing a mouse model of carotid partial ligation, superior targeting and higher accumulation of the disk-shaped particles are also demonstrated within disturbed flow areas than that of the spherical particles. In hyperlipidemia mice, administration of disk-shaped particles loaded with hypomethylating agent decitabine (DAC) displays greater anti-inflammatory and anti-atherosclerotic effects compared with that of the spherical counterparts and exhibits reduced toxicity than "naked" DAC. The findings suggest that shaping nanoparticles to disk is an effective strategy for promoting their delivery to atheroprone endothelia.
Collapse
Affiliation(s)
- Chuan-Rong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhi-Tong Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Juan-Juan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jia-Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Qian-Ru Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
Liu R, Xu Y, Qu S, Dai Z. Major Strategies for Spatial Control of Ultrasound-Driven Gene Expression to Enhance Therapeutic Specificity. Crit Rev Biomed Eng 2023; 51:29-40. [PMID: 37522539 DOI: 10.1615/critrevbiomedeng.2023047680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A major challenge of gene therapy is to achieve highly specific transgene expression in tissues of interest with minimized off-target expression. Ultrasound in combination with microbubbles can transiently increase permeability of desired cells or tissues and thereby facilitate gene transfer. This kind of ultrasound-driven transgene expression has gained increasing attention due to its deep tissue penetration and high spatiotemporal resolution. However, successful genetic manipulation in vivo with ultrasound need to well optimize various aspects involved in this process. Ultrasound parameters, microbubble dose, and gene vectors need to be optimized for highly increased transgene expression in the cells of interest. Conversely, the potential off-target transgene expression and toxicities need to be reduced by modification of gene vectors and/or promoter sequence. This review will discuss some major strategies for enhanced specificity of the ultrasound-mediated gene transfer in vivo. Five major strategies will be discussed, including the integration of real-time imaging methods, local injection, targeted microbubbles loaded with nucleic acids, stealth nanocarriers, and cell-specific promoter. The advantages and limitations of each strategy were outlined, hoping to provide a guideline for researchers in achieving high specific ultrasound-driven gene expression.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| |
Collapse
|
18
|
Choi W, Cho H, Kim G, Youn I, Key J, Han S. Targeted thrombolysis by magnetoacoustic particles in photothrombotic stroke model. Biomater Res 2022; 26:58. [PMID: 36273198 PMCID: PMC9587564 DOI: 10.1186/s40824-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant tissue plasminogen activator (rtPA) has a short half-life, and additional hemorrhagic transformation (HT) can occur when treatment is delayed. Here, we report the design and thrombolytic performance of 3 [Formula: see text]m discoidal polymeric particles loaded with rtPA and superparamagnetic iron oxide nanoparticles (SPIONs), referred to as rmDPPs, to address the HT issues of rtPA. METHODS The rmDPPs consisted of a biodegradable polymeric matrix, rtPA, and SPIONs and were synthesized via a top-down fabrication. RESULTS The rmDPPs could be concentrated at the target site with magnetic attraction, and then the rtPA could be released under acoustic stimulus. Therefore, we named that the particles had magnetoacoustic properties. For the in vitro blood clot lysis, the rmDPPs with magnetoacoustic stimuli could not enhance the lytic potential compared to the rmDPPs without stimulation. Furthermore, although the reduction of the infarcts in vivo was observed along with the magnetoacoustic stimuli in the rmDPPs, more enhancement was not achieved in comparison with the rtPA. A notable advantage of rmDPPs was shown in delayed administration of rmDPPs at poststroke. The late treatment of rmDPPs with magnetoacoustic stimuli could reduce the infarcts and lead to no additional HT issues, while rtPA alone could not show any favorable prognosis. CONCLUSION The rmDPPs may be advantageous in delayed treatment of thrombotic patients.
Collapse
Affiliation(s)
- Wonseok Choi
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hyeyoun Cho
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Gahee Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea.
| | - Sungmin Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea. .,Divison of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Wang Y, Soto Rodriguez PED, Woythe L, Sánchez S, Samitier J, Zijlstra P, Albertazzi L. Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37345-37355. [PMID: 35961006 PMCID: PMC9412947 DOI: 10.1021/acsami.2c06975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles represent a promising class of material for nanomedicine and molecular biosensing. The formation of a protein corona due to nonspecific particle-protein interactions is a determining factor for the biological fate of nanoparticles in vivo and strongly impacts the performance of nanoparticles when used as biosensors. Nonspecific interactions are usually highly heterogeneous, yet little is known about the heterogeneity of the protein corona that may lead to inter- and intraparticle differences in composition and protein distribution. Here, we present a super-resolution microscopic approach to study the protein corona on single silica nanoparticles and subsequent cellular interactions using multicolor stimulated emission depletion (STED) microscopy. We demonstrate that STED resolves structural features of protein corona on single particles including the distribution on the particle surface and the degree of protein internalization in porous particles. Using multicolor measurements of multiple labeled protein species, we determine the composition of the protein corona at the single-particle level. We quantify particle-to-particle differences in the composition and find that the composition is considerably influenced by the particle geometry. In a subsequent cellular uptake measurement, we demonstrate multicolor STED of protein corona on single particles internalized by cells. Our study shows that STED microscopy opens the window toward mechanistic understanding of protein coronas and aids in the rational design of nanoparticles as nanomedicines and biosensors.
Collapse
Affiliation(s)
- Yuyang Wang
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Paul E. D. Soto Rodriguez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Laura Woythe
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeige Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Samitier
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
20
|
Moore TL, Cook AB, Bellotti E, Palomba R, Manghnani P, Spanò R, Brahmachari S, Di Francesco M, Palange AL, Di Mascolo D, Decuzzi P. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv Transl Res 2022; 12:2019-2037. [PMID: 35284984 PMCID: PMC9242933 DOI: 10.1007/s13346-022-01143-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Collapse
Affiliation(s)
- Thomas L Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy.
| | - Alexander B Cook
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Purnima Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, Via Morego, 30, 16163, Genoa, Italy
| |
Collapse
|
21
|
Mills CE, Waltmann C, Archer AG, Kennedy NW, Abrahamson CH, Jackson AD, Roth EW, Shirman S, Jewett MC, Mangan NM, Olvera de la Cruz M, Tullman-Ercek D. Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. Nat Commun 2022; 13:3746. [PMID: 35768404 PMCID: PMC9243111 DOI: 10.1038/s41467-022-31279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andre G Archer
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Alexander D Jackson
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL, USA
| | - Sasha Shirman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
22
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
23
|
Micro-particle entrapment dynamics in microfluidic pulmonary capillary networks. J Biomech 2022; 137:111082. [PMID: 35489235 DOI: 10.1016/j.jbiomech.2022.111082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.
Collapse
|
24
|
Kim E, Lee H. Mechanical characterization of soft microparticles prepared by droplet microfluidics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eunseo Kim
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - Hyomin Lee
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
25
|
Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine (Lond) 2022; 17:695-716. [PMID: 35451315 DOI: 10.2217/nnm-2021-0126] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In this study, the main goal was to apply a multi-scale computational model in evaluating nano-sized drug-delivery systems, following extracellular drug release, into solid tumors in order to predict treatment efficacy. Methods: The impact of several parameters related to tumor (size, shape, vessel-wall pore size, and necrotic core size) and therapeutic agents (size of nanoparticles, binding affinity of drug, drug release rate from nanoparticles) are examined in detail. Results: This study illustrates that achieving a higher treatment efficacy requires smaller nanoparticles (NPs) or a low binding affinity and drug release rate. Long-term analysis finds that a slow release rate in extracellular space does not always improve treatment efficacy compared with a rapid release rate; NP size as well as binding affinity of drug are also highly influential. Conclusions: The presented methodology can be used as a step forward towards optimization of patient-specific nanomedicine plans.
Collapse
Affiliation(s)
| | - Mohsen Rezaeian
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Canada.,Centre for Biotechnology & Bioengineering (CBB), University of Waterloo, Waterloo, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Kipouros T, Chamseddine I, Kokkolaras M. Using Parallel Coordinates in Optimization of Nano-Particle Drug Delivery. J Biomech Eng 2022; 144:1120776. [PMID: 34590693 DOI: 10.1115/1.4052578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/08/2022]
Abstract
Nanoparticle drug delivery better targets neoplastic lesions than free drugs and thus has emerged as a safer form of cancer therapy. Nanoparticle design variables are important determinants of efficacy as they influence the drug biodistribution and pharmacokinetics. Previously, we determined optimal designs through mechanistic modeling and optimization. However, the numerical nature of the tumor model and numerous candidate nanoparticle designs hinder hypothesis generation and treatment personalization. In this paper, we utilize the parallel coordinates technique to visualize high-dimensional optimal solutions and extract correlations between nanoparticle design and treatment outcomes. We found that at optimality, two major design variables are dependent, and thus the optimization problem can be reduced. In addition, we obtained an analytical relationship between optimal nanoparticle sizes and optimal distribution, which could facilitate the utilization of tumors models in preclinical studies. Our approach has simplified the results of the previously integrated modeling and optimization framework developed for nanotherapy and enhanced the interpretation and utilization of findings. Integrated mathematical frameworks are increasing in the medical field, and our method can be applied outside nanotherapy to facilitate the clinical translation of computational methods.
Collapse
Affiliation(s)
- Timoleon Kipouros
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
27
|
Brisbin R, Bartolo M, Leville M, Rajan AK, Jahan B, McCloskey KE, Gopinathan A, Ghosh S, Baxter R. Tuning three-dimensional nano-assembly in the mesoscale via bis(imino)pyridine molecular functionalization. Sci Rep 2022; 12:844. [PMID: 35039592 PMCID: PMC8764047 DOI: 10.1038/s41598-022-04851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
We investigate the effect of bis(imino)pyridine (BIP) ligands in guiding self-assembly of semiconducting CdSe/ZnS quantum dots (QDs) into three-dimensional multi-layered shells with diameters spanning the entire mesoscopic range, from 200 nm to 2 μm. The assembly process is directed by guest-host interactions between the BIP ligands and a thermotropic liquid crystal (LC), with the latter's phase transition driving the process. Characterization of the shell structures, through scanning electron microscopy and dynamic light scattering, demonstrates that the average shell diameter depends on the BIP structure, and that changing one functional group in the chemical scaffold allows systematic tuning of shell sizes across the entire range. Differential scanning calorimetry confirms a relationship between shell sizes and the thermodynamic perturbation of the BIP molecules to the LC phase transition temperature, allowing analytical modeling of shell assembly energetics. This novel mechanism to controllably tune shell sizes over the entire mesoscale via one standard protocol is a significant development for research on in situ cargo/drug delivery platforms using nano-assembled structures.
Collapse
Affiliation(s)
- Ryan Brisbin
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 95343, USA
| | - Mark Bartolo
- Material and Biomaterial Sciences and Engineering, School of Engineering, University of California, Merced, CA, 95343, USA
| | - Michael Leville
- Department of Physics, University of California, Merced, CA, 95343, USA
| | - Arya K Rajan
- Department of Physics, University of California, Merced, CA, 95343, USA
| | - Basharat Jahan
- Material and Biomaterial Sciences and Engineering, School of Engineering, University of California, Merced, CA, 95343, USA
| | - Kara E McCloskey
- Material and Biomaterial Sciences and Engineering, School of Engineering, University of California, Merced, CA, 95343, USA
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, CA, 95343, USA
| | - Sayantani Ghosh
- Department of Physics, University of California, Merced, CA, 95343, USA.
| | - Ryan Baxter
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
28
|
Luc NF, Rohner N, Girish A, Sekhon UDS, Neal MD, Gupta AS. Bioinspired artificial platelets: past, present and future. Platelets 2022; 33:35-47. [PMID: 34455908 PMCID: PMC8795470 DOI: 10.1080/09537104.2021.1967916] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelets are anucleate blood cells produced from megakaryocytes predominantly in the bone marrow and released into blood circulation at a healthy count of 150,000-400,00 per μL and circulation lifespan of 7-9 days. Platelets are the first responders at the site of vascular injury and bleeding, and participate in clot formation via injury site-specific primary mechanisms of adhesion, activation and aggregation to form a platelet plug, as well as secondary mechanisms of augmenting coagulation via thrombin amplification and fibrin generation. Platelets also secrete various granule contents that enhance these mechanisms for clot growth and stability. The resultant clot seals the injury site to stanch bleeding, a process termed as hemostasis. Due to this critical role, a reduction in platelet count or dysregulation in platelet function is associated with bleeding risks and hemorrhagic complications. These scenarios are often treated by prophylactic or emergency transfusion of platelets. However, platelet transfusions face significant challenges due to limited donor availability, difficult portability and storage, high bacterial contamination risks, and very short shelf life (~5-7 days). These are currently being addressed by a robust volume of research involving reduced temperature storage and pathogen reduction processes on donor platelets to improve shelf-life and reduce contamination, as well as bioreactor-based approaches to generate donor-independent platelets from stem cells in vitro. In parallel, a complementary research field has emerged that involves the design of artificial platelets utilizing biosynthetic particle constructs that functionally emulate various hemostatic mechanisms of platelets. Here, we provide a comprehensive review of the history and the current state-of-the-art artificial platelet approaches, along with discussing the translational opportunities and challenges.
Collapse
Affiliation(s)
- Norman F. Luc
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Nathan Rohner
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Aditya Girish
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh Trauma Research Center, Department of Surgery, Pittsburgh, PA 15123, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021; 13:pharmaceutics13101642. [PMID: 34683935 PMCID: PMC8537309 DOI: 10.3390/pharmaceutics13101642] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material.
Collapse
|
30
|
Deng H, Yang Y, Zuo T, Fang T, Xu Y, Yang J, Zhang J, Shen Q. Multifunctional ZnO@CuS nanoparticles cluster synergize chemotherapy and photothermal therapy for tumor metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102399. [PMID: 33864912 DOI: 10.1016/j.nano.2021.102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
The poor drug delivery and unsatisfying therapeutic effects remain to be the primary challenges for cancer therapy. Nanosystem that combines multiple functions into a single platform is an ideal strategy. Here, a smart drug delivery nanoplatform (Z@C-D/P) based on ZnO@CuS nanoparticles, loaded with doxorubicin (DOX) and pirfenidone (PFD) was constructed. Importantly, the β-CD-DMA and PEG-DMA could be activated in the mild acidic tumor microenvironment, then the nanosystem underwent charge reversal and PFD release. PFD could inhibit cancer-associated fibroblasts (CAFs) activation and enhance tumor penetration. And the residual nanostructure ZnO@CuS could trigger cascade amplified ROS generation to induce tumor cell death. The photothermal effect further strengthened the anti-tumor efficacy. Finally, the nanosystem showed remarkable inhibition of tumor growth (89.7%) and lung metastasis. The innovatively designed nanosystem integrating chemotherapy and photothermal effect would provide a promising strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Huizi Deng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxu Fang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
31
|
Izza N, Suga K, Okamoto Y, Watanabe N, Bui TT, Wibisono Y, Fadila CR, Umakoshi H. Systematic Characterization of Nanostructured Lipid Carriers from Cetyl Palmitate/Caprylic Triglyceride/Tween 80 Mixtures in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4284-4293. [PMID: 33797256 DOI: 10.1021/acs.langmuir.1c00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured lipid carriers (NLCs) are gaining attention as the new generation of lipid vehicles. These carriers consist of saturated lipids with small drops of liquid oil dispersed into the inner lipid matrix and are stabilized by a surfactant. Conventionally, NLC-based drug delivery systems have been widely studied, and many researchers are looking into the composition of NLC properties to improve the performance of NLCs. The membrane fluidity and polarity of self-assembling lipids are also essential properties that must be affected by membrane compositions; however, such fundamental characteristics have not been studied yet. In this study, NLCs were prepared from cetyl palmitate (CP), caprylic triglyceride (CaTG), and Tween 80 (T80). Structural properties, such as particle size and ζ-potential of the CP/CaTG/T80 ternary mixtures, were investigated. Then, the systematic characterization of self-assembly properties using fluorescence-based analysis was applied for the first time to the NLC system. As a final step, the ternary diagram was developed based on the self-assembly properties to summarize the possible structures formed at different compositions. The results showed four states: micelle-like, oil-in-water (O/W) emulsion-like, solid lipid nanoparticle-like, and intermediate (solid-liquid coexistence). For the purpose of making the lipid matrix more liquified, the heterogeneous state and the disordered state of the O/W emulsion-like structure might fulfill the criteria of NLCs. Finally, the ternary diagram provides new information about the assembly state of NLC constituents that could become an important reference for developing high-performance NLCs.
Collapse
Affiliation(s)
- Ni'matul Izza
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Keishi Suga
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Miyagi, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| | - Yusuf Wibisono
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Cut Rifda Fadila
- Bioprocess Engineering Study Program, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang 65145 East Java, Indonesia
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
32
|
Karade VC, Sharma A, Dhavale RP, Dhavale RP, Shingte SR, Patil PS, Kim JH, Zahn DRT, Chougale AD, Salvan G, Patil PB. APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci Rep 2021; 11:5674. [PMID: 33707549 PMCID: PMC7952395 DOI: 10.1038/s41598-021-84770-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The use of an appropriate delivery system capable of protecting, translocating, and selectively releasing therapeutic moieties to desired sites can promote the efficacy of an active compound. In this work, we have developed a nanoformulation which preserves its magnetization to load a model anticancerous drug and to explore the controlled release of the drug in a cancerous environment. For the preparation of the nanoformulation, self-assembled magnetic nanospheres (MNS) made of superparamagnetic iron oxide nanoparticles were grafted with a monolayer of (3-aminopropyl)triethoxysilane (APTES). A direct functionalization strategy was used to avoid the loss of the MNS magnetization. The successful preparation of the nanoformulation was validated by structural, microstructural, and magnetic investigations. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to establish the presence of APTES on the MNS surface. The amine content quantified by a ninhydrin assay revealed the monolayer coverage of APTES over MNS. The monolayer coverage of APTES reduced only negligibly the saturation magnetization from 77 emu/g (for MNS) to 74 emu/g (for MNS-APTES). Detailed investigations of the thermoremanent magnetization were carried out to assess the superparamagnetism in the MNS. To make the nanoformulation pH-responsive, the anticancerous drug Nintedanib (NTD) was conjugated with MNS-APTES through the acid liable imine bond. At pH 5.5, which mimics a cancerous environment, a controlled release of 85% in 48 h was observed. On the other hand, prolonged release of NTD was found at physiological conditions (i.e., pH 7.4). In vitro cytotoxicity study showed dose-dependent activity of MNS-APTES-NTD for human lung cancer cells L-132. About 75% reduction in cellular viability for a 100 μg/mL concentration of nanoformulation was observed. The nanoformulation designed using MNS and monolayer coverage of APTES has potential in cancer therapy as well as in other nanobiological applications.
Collapse
Affiliation(s)
- V C Karade
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju, 500-757, South Korea
| | - A Sharma
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - R P Dhavale
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - R P Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, 416013, India
| | - S R Shingte
- Department of Physics, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India
| | - P S Patil
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Physics, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - J H Kim
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju, 500-757, South Korea
| | - D R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - A D Chougale
- Department of Chemistry, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India
| | - G Salvan
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany.
| | - P B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India.
| |
Collapse
|
33
|
Cai MH, Chen XY, Fu LQ, Du WL, Yang X, Mou XZ, Hu PY. Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends in Anticancer Drug Delivery and Tissue Engineering. Front Bioeng Biotechnol 2021; 9:630943. [PMID: 33681168 PMCID: PMC7925894 DOI: 10.3389/fbioe.2021.630943] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
The applications of hydrogels in biomedical field has been since multiple decades. Discoveries in biology and chemistry render this platform endowed with much engineering potentials and growing continuously. Novel approaches in constructing these materials have led to the production of complex hybrid hydrogels systems that can incorporate both natural and synthetic polymers and other functional moieties for mediated cell response, tunable release kinetic profiles, thus they are used and research for diverse biomedical applications. Recent advancement in this field has established promising techniques for the development of biorelevant materials for construction of hybrid hydrogels with potential applications in the delivery of cancer therapeutics, drug discovery, and re-generative medicines. In this review, recent trends in advanced hybrid hydrogels systems incorporating nano/microstructures, their synthesis, and their potential applications in tissue engineering and anticancer drug delivery has been discussed. Examples of some new approaches including click reactions implementation, 3D printing, and photopatterning for the development of these materials has been briefly discussed. In addition, the application of biomolecules and motifs for desired outcomes, and tailoring of their transport and kinetic behavior for achieving desired outcomes in hybrid nanogels has also been reviewed.
Collapse
Affiliation(s)
- Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Luo-Qin Fu
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Wen-Lin Du
- Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, People's Hospital, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou, China
| |
Collapse
|
34
|
Kotsalos C, Latt J, Beny J, Chopard B. Digital blood in massively parallel CPU/GPU systems for the study of platelet transport. Interface Focus 2021; 11:20190116. [PMID: 33335703 PMCID: PMC7739916 DOI: 10.1098/rsfs.2019.0116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
We propose a highly versatile computational framework for the simulation of cellular blood flow focusing on extreme performance without compromising accuracy or complexity. The tool couples the lattice Boltzmann solver Palabos for the simulation of blood plasma, a novel finite-element method (FEM) solver for the resolution of deformable blood cells, and an immersed boundary method for the coupling of the two phases. The design of the tool supports hybrid CPU-GPU executions (fluid, fluid-solid interaction on CPUs, deformable bodies on GPUs), and is non-intrusive, as each of the three components can be replaced in a modular way. The FEM-based kernel for solid dynamics outperforms other FEM solvers and its performance is comparable to state-of-the-art mass-spring systems. We perform an exhaustive performance analysis on Piz Daint at the Swiss National Supercomputing Centre and provide case studies focused on platelet transport, implicitly validating the accuracy of our tool. The tests show that this versatile framework combines unprecedented accuracy with massive performance, rendering it suitable for upcoming exascale architectures.
Collapse
Affiliation(s)
- Christos Kotsalos
- Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | | | | | | |
Collapse
|
35
|
Bai Y, Zhang J, Ju J, Liu J, Chen X. Shape memory microparticles with permanent shape reconfiguration ability and near infrared light responsiveness. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Chamseddine IM, Kokkolaras M. A Dual Nanoparticle Delivery Strategy for Enhancing Drug Distribution in Cancerous Tissue. J Biomech Eng 2020; 142:124501. [PMID: 32601692 DOI: 10.1115/1.4047657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 11/08/2022]
Abstract
Nanoparticle-mediated drug delivery may be a promising alternative to traditional chemotherapy of high systemic toxicity. Tumor tissue architecture poses a challenge to delivery of nanoparticles. Small and spherical nanoparticles have poor adherence to the tumor vasculature, while larger and more eccentric ones create high heterogeneity in tissue-to-drug exposure. In previous work, we quantified these tradeoffs using numerical optimization. In this study, we demonstrate that simultaneous delivery of multiple nanoparticle designs can enhance drug distribution in the cancerous tissue without compromising nanoparticle tumoral accumulation. We formulate and solve optimization problems to find the optimal constituent of the heterogeneous injection in terms of nanoparticle design diversity that increases drug distribution by 14%.
Collapse
Affiliation(s)
- Ibrahim M Chamseddine
- Systems Optimization Lab, Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michael Kokkolaras
- Systems Optimization Lab, Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
37
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Liu N, Becton M, Zhang L, Wang X. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. J Phys Chem B 2020; 124:11145-11156. [DOI: 10.1021/acs.jpcb.0c08089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Becton
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
39
|
He X, Feng J, Yan S, Zhang Y, Zhong C, Liu Y, Shi D, Abagyan R, Xiang T, Zhang J. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102311. [PMID: 33011392 DOI: 10.1016/j.nano.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
Abstract
A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-β-cyclodextrin and sulfobutyl-ether-β-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.
Collapse
Affiliation(s)
- Xiaoqian He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Feng
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
40
|
Coupled influences of particle shape, surface property and flow hydrodynamics on rod-shaped colloid transport in porous media. J Colloid Interface Sci 2020; 577:471-480. [DOI: 10.1016/j.jcis.2020.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022]
|
41
|
Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother 2020; 131:110695. [PMID: 32920512 DOI: 10.1016/j.biopha.2020.110695] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
The unique properties of polymer-hybrid nanosystems enable them to play an important role in different fields such as biomedical applications. Hybrid materials, which are formed by polymer and inorganic- or organic-base systems, have been the focus of many recently published studies whose results have shown outstanding improvements in drug targeting. The development of hybrid polymer materials can avoid the synthesis of new molecules, which is an overall expensive process that can take several years to get to the proper elaboration and approval. Thus, the combination of properties in a single hybrid system can have several advantages over non-hybrid platforms, such as improvements in circulation time, structural disintegration, high stability, premature release, low encapsulation rate and unspecific release kinetics. Thus, the aim of the present review is to outline a rapid and well-oriented scenario concerning the knowledge about polymer-hybrid nanoparticles use in biomedical platforms. Furthermore, the ultimate methodologies adopted in synthesis processes, as well as in applications in vitro/in vivo, are the focus of this review.
Collapse
Affiliation(s)
- Daniel Crístian Ferreira Soares
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil.
| | - Stephanie Calazans Domingues
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Daniel Bragança Viana
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Marli Luiza Tebaldi
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| |
Collapse
|
42
|
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020; 10:8996-9031. [PMID: 32802176 PMCID: PMC7415816 DOI: 10.7150/thno.45413] [Citation(s) in RCA: 387] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been one of the most attractive nanomaterials in biomedicine due to their unique physicochemical properties. In this paper, we review the state-of-the-art advances of AgNPs in the synthesis methods, medical applications and biosafety of AgNPs. The synthesis methods of AgNPs include physical, chemical and biological routes. AgNPs are mainly used for antimicrobial and anticancer therapy, and also applied in the promotion of wound repair and bone healing, or as the vaccine adjuvant, anti-diabetic agent and biosensors. This review also summarizes the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. Despite these therapeutic benefits, their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention. Besides, we briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current challenges and point out the future development direction of AgNPs.
Collapse
Affiliation(s)
- Li Xu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
43
|
Chamseddine IM, Frieboes HB, Kokkolaras M. Multi-objective optimization of tumor response to drug release from vasculature-bound nanoparticles. Sci Rep 2020; 10:8294. [PMID: 32427977 PMCID: PMC7237449 DOI: 10.1038/s41598-020-65162-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/26/2020] [Indexed: 12/31/2022] Open
Abstract
The pharmacokinetics of nanoparticle-borne drugs targeting tumors depends critically on nanoparticle design. Empirical approaches to evaluate such designs in order to maximize treatment efficacy are time- and cost-intensive. We have recently proposed the use of computational modeling of nanoparticle-mediated drug delivery targeting tumor vasculature coupled with numerical optimization to pursue optimal nanoparticle targeting and tumor uptake. Here, we build upon these studies to evaluate the effect of tumor size on optimal nanoparticle design by considering a cohort of heterogeneously-sized tumor lesions, as would be clinically expected. The results indicate that smaller nanoparticles yield higher tumor targeting and lesion regression for larger-sized tumors. We then augment the nanoparticle design optimization problem by considering drug diffusivity, which yields a two-fold tumor size decrease compared to optimizing nanoparticles without this consideration. We quantify the tradeoff between tumor targeting and size decrease using bi-objective optimization, and generate five Pareto-optimal nanoparticle designs. The results provide a spectrum of treatment outcomes - considering tumor targeting vs. antitumor effect - with the goal to enable therapy customization based on clinical need. This approach could be extended to other nanoparticle-based cancer therapies, and support the development of personalized nanomedicine in the longer term.
Collapse
Affiliation(s)
- Ibrahim M Chamseddine
- Deparment of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.
- GERAD - Group for Research in Decision Analysis, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
|
45
|
Chamseddine IM, Kokkolaras M. Nanoparticle Optimization for Enhanced Targeted Anticancer Drug Delivery. J Biomech Eng 2019; 140:2658265. [PMID: 29049542 DOI: 10.1115/1.4038202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/08/2022]
Abstract
Nanoparticle (NP)-based drug delivery is a promising method to increase the therapeutic index of anticancer agents with low median toxic dose. The delivery efficiency, corresponding to the fraction of the injected NPs that adhere to the tumor site, depends on NP size a and aspect ratio AR. Values for these variables are currently chosen empirically, which may not result in optimal targeted drug delivery. This study applies rigorous optimization to the design of NPs. A preliminary investigation revealed that delivery efficiency increases monotonically with a and AR. However, maximizing a and AR results in nonuniform drug distribution, which impairs tumor regression. Therefore, a multiobjective optimization (MO) problem is formulated to quantify the trade-off between NPs accumulation and distribution. The MO is solved using the derivative-free mesh adaptive direct search algorithm. Theoretically, the Pareto-optimal set consists of an infinite number of mathematically equivalent solutions to the MO problem. However, interesting design solutions can be identified subjectively, e.g., the ellipsoid with a major axis of 720 nm and an aspect ratio of 7.45, as the solution closest to the utopia point. The MO problem formulation is then extended to optimize NP biochemical properties: ligand-receptor binding affinity and ligand density. Optimizing physical and chemical properties simultaneously results in optimal designs with reduced NP sizes and thus enhanced cellular uptake. The presented study provides an insight into NP structures that have potential for producing desirable drug delivery.
Collapse
Affiliation(s)
- Ibrahim M Chamseddine
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mail:
| | - Michael Kokkolaras
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada e-mail:
| |
Collapse
|
46
|
Besseris GJ. Synchronous screening-and-optimization of nano-engineered blood pressure-drop using rapid robust non-linear Taguchi profiling. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Damiati S, Scheberl A, Zayni S, Damiati SA, Schuster B, Kompella UB. Albumin-bound nanodiscs as delivery vehicle candidates: Development and characterization. Biophys Chem 2019; 251:106178. [DOI: 10.1016/j.bpc.2019.106178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022]
|
48
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
49
|
Chamseddine IM, Rejniak KA. Hybrid modeling frameworks of tumor development and treatment. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1461. [PMID: 31313504 PMCID: PMC6898741 DOI: 10.1002/wsbm.1461] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Tumors are complex multicellular heterogeneous systems comprised of components that interact with and modify one another. Tumor development depends on multiple factors: intrinsic, such as genetic mutations, altered signaling pathways, or variable receptor expression; and extrinsic, such as differences in nutrient supply, crosstalk with stromal or immune cells, or variable composition of the surrounding extracellular matrix. Tumors are also characterized by high cellular heterogeneity and dynamically changing tumor microenvironments. The complexity increases when this multiscale, multicomponent system is perturbed by anticancer treatments. Modeling such complex systems and predicting how tumors will respond to therapies require mathematical models that can handle various types of information and combine diverse theoretical methods on multiple temporal and spatial scales, that is, hybrid models. In this update, we discuss the progress that has been achieved during the last 10 years in the area of the hybrid modeling of tumors. The classical definition of hybrid models refers to the coupling of discrete descriptions of cells with continuous descriptions of microenvironmental factors. To reflect on the direction that the modeling field has taken, we propose extending the definition of hybrid models to include of coupling two or more different mathematical frameworks. Thus, in addition to discussing recent advances in discrete/continuous modeling, we also discuss how these two mathematical descriptions can be coupled with theoretical frameworks of optimal control, optimization, fluid dynamics, game theory, and machine learning. All these methods will be illustrated with applications to tumor development and various anticancer treatments. This article is characterized under:Analytical and Computational Methods > Computational Methods Translational, Genomic, and Systems Medicine > Therapeutic Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models
Collapse
Affiliation(s)
- Ibrahim M. Chamseddine
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFlorida
| | - Katarzyna A. Rejniak
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFlorida
- Department of Oncologic Sciences, Morsani College of MedicineUniversity of South FloridaTampaFlorida
| |
Collapse
|
50
|
Choi CA, Ryplida B, In I, Park SY. Selective redox-responsive theragnosis nanocarrier for breast tumor cells mediated by MnO2/fluorescent carbon nanogel. Eur J Pharm Sci 2019; 134:256-265. [DOI: 10.1016/j.ejps.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/25/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023]
|