1
|
Wang D, Pei W, Liu Y, Mo R, Li X, Gu W, Su Y, Ye J, Xu J, Zhao D. Leucine rich α2 glycoprotein 1 derived from malignant pleural mesothelioma cells facilitates macrophage M2 phenotypes. Exp Lung Res 2024; 50:136-145. [PMID: 39033404 DOI: 10.1080/01902148.2024.2380988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Background: Macrophages constitute the main part of infiltrating immune cells in Malignant pleural mesothelioma (MPM) and abnormally high ratios of M2 macrophages are present in both pleural effusion and tissue samples of MPM patients. Whether MPM cells affect formation of M2 macrophages is poorly understood. In this study, we focused on identification of MPM-cells-derived soluble factors with M2-promoting effects. Methods: Media of malignant pleural mesothelioma cells were collected and soluble factors affecting macrophages were analyzed by mass spectrometry. TGF-β receptor inhibitor SB431542 was used as the entry point to explore the downstream mechanism of action by qRT-PCR, WB and immunofluorescence. Results: The serum-free culture media collected from the human MPM cells Meso1 and Meso2 significantly enhanced expression of the M2 signature molecules including IL-10, TGF-β and CD206 in the human macrophages THP-1, while the culture medium of the human MPM cells H2452 did not show such M2-promoting effects. Analysis of proteins by mass spectrometry and ELISA suggested that Leucine rich α2 glycoprotein 1(LRG1) was a potential candidate. LRG1 time- and dose-dependently increased expression of the M2 signature molecules, confirming its M2-promoting effects. Furthermore, LRG1's M2-promoting effects were reduced by the TGF-β receptor inhibitor SB431542, and LRG1 increased phosphorylation of Smad2, indicating that M2-promoting effects of LRG1 were via the TGF-β receptor/Smad2 signaling pathway. Conclusions: Our results provide a potential M2-promoting new member, LRG1, which contributes to the immune escape of MPM via the TGF-β receptor/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yanfei Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rongliang Mo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinru Li
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenhui Gu
- Dental School, Anhui Medical University, Hefei, China
| | - Yi Su
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
3
|
Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. ENVIRONMENTAL RESEARCH 2023; 230:114580. [PMID: 36965801 DOI: 10.1016/j.envres.2022.114580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 05/30/2023]
Abstract
The purpose of this review is to elucidate how dimensional and durability characteristics of high aspect ratio nanomaterials (HARN), including carbon nanotubes (CNT) and metal nanowires (MeNW), contribute to understanding the fiber pathogenicity paradigm (FPP), including by explaining the structure-activity relationships (SAR) of a diverse range of natural and synthetic elongate materials that may or may not contribute to mesothelioma development in the lung. While the FPP was originally developed to explain the critical importance of asbestos and synthetic vitreous fiber length, width, aspect ratio and biopersistence in mesothelioma development, there are a vast number of additional inhalable materials that need to be considered in terms of pathogenic features that may contribute to mesothelioma or lack thereof. Not only does the ability to exert more exact control over the length and biopersistence of HARNs confirm the tenets of the FPP, but could be studied by implementating more appropriate toxicological tools for SAR analysis. This includes experimentation with carefully assembled libraries of CNTs and MeNWs, helping to establish more precise dimensional features for interfering in lymphatic drainage from the parietal pleura, triggering of lysosomal damage, frustrated phagocytosis and generation of chronic inflammation. The evidence includes data that long and rigid, but not short and flexible multi-wall CNTs are capable of generating mesotheliomas in rodents based on an adverse outcome pathway requiring access to pleural cavity, obstruction of pleural stomata, chronic inflammation and transformation of mesothelial cells. In addition to durability and dimensional characteristics, bending stiffness of CNTs is a critical factor in determining the shape and rigidity of pathogenic MWCNTs. While no evidence has been obtained in humans that CNT exposure leads to a mesothelioma outcome, it is important to monitor exposure levels and health effect impacts in workers to prevent adverse health outcomes in humans.
Collapse
Affiliation(s)
- André Nel
- Distinguished Professor of Medicine and Research Director of the California Nano Systems Institute at UCLA, USA; Division of NanoMedicine, And Department of Medicine, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 LeConte Ave, Los Angeles, CA, 90095, USA; California Nano Systems Institute at UCLA, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Avramescu ML, Potiszil C, Kunihiro T, Okabe K, Nakamura E. An investigation of the internal morphology of asbestos ferruginous bodies: constraining their role in the onset of malignant mesothelioma. Part Fibre Toxicol 2023; 20:19. [PMID: 37150820 PMCID: PMC10165766 DOI: 10.1186/s12989-023-00522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an "asbestos ferruginous body" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction. RESULTS The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers. CONCLUSIONS The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.
Collapse
Affiliation(s)
- Maya-Liliana Avramescu
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Kazunori Okabe
- Bell Land General Hospital, 500-3 Higashiyama, Sakai, Osaka, 599-8247, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan.
- Advanced Science Research Center, Okayama University, Tsushima, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Erdem JS, Závodná T, Ervik TK, Skare Ø, Hron T, Anmarkrud KH, Kuśnierczyk A, Catalán J, Ellingsen DG, Topinka J, Zienolddiny-Narui S. High aspect ratio nanomaterial-induced macrophage polarization is mediated by changes in miRNA levels. Front Immunol 2023; 14:1111123. [PMID: 36776851 PMCID: PMC9911541 DOI: 10.3389/fimmu.2023.1111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | | - Øivind Skare
- National Institute of Occupational Health, Oslo, Norway
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Anna Kuśnierczyk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Proteomics and Modomics Experimental Core Facility and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - Julia Catalán
- Department of Work Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
6
|
Patel JP, Brook MS, Kah M, Hamilton A. Global geological occurrence and character of the carcinogenic zeolite mineral, erionite: A review. Front Chem 2022; 10:1066565. [PMID: 36465873 PMCID: PMC9715606 DOI: 10.3389/fchem.2022.1066565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/06/2024] Open
Abstract
As with the six regulated asbestos minerals (chrysotile, amosite, crocidolite, anthophyllite, tremolite, and actinolite), the zeolite mineral, erionite, can exhibit a fibrous morphology. When fibrous erionite is aerosolized and inhaled, it has been linked to cases of lung cancers, such as malignant mesothelioma. Importantly, fibrous erionite appears to be more carcinogenic than the six regulated asbestos minerals. The first health issues regarding erionite exposure were reported in Cappadocia (Turkey), and more recently, occupational exposure issues have emerged in the United States. Erionite is now classified as a Group 1 carcinogen. Thus, identifying the geological occurrence of erionite is a prudent step in determining possible exposure pathways, but a global review of the geological occurrence of erionite is currently lacking. Here, we provide a review of the >100 global locations where erionite has been reported, including: 1) geological setting of host rocks; 2) paragenetic sequence of erionite formation, including associated zeolite minerals; 3) fiber morphological properties and erionite mineral series (i.e., Ca, K, Na); and 4) a brief overview of the techniques that have been used to identify and characterize erionite. Accordingly, erionite has been found to commonly occur within two major rock types: felsic and mafic. Within felsic rocks (in particular, tuffaceous layers within lacustrine paleoenvironments), erionite is disseminated through the layer as a cementing matrix. In contrast, within mafic (i.e., basaltic) rocks, erionite is typically found within vesicles. Nevertheless, aside from detailed studies in Italy and the United States, there is a paucity of specific information on erionite geological provenance or fiber morphology. The latter issue is a significant drawback given its impact on erionite toxicity. Future erionite studies should aim to provide more detailed information, including variables such as rock type and lithological properties, quantitative geochemistry, and fiber morphology.
Collapse
|
7
|
Talbot N, Dirks KN, Fan W, Patel H, Costello SB, Brook M, Davy P. Reanalysis of historic elemental speciation filters to investigate the presence of fibrous mineral particles using microscopy techniques. Front Chem 2022; 10:1032624. [DOI: 10.3389/fchem.2022.1032624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
A case is presented for the value of archiving air quality filters to allow for retrospective analysis of emerging contaminants, that is filter constituents not considered to be harmful (and thus not identified or quantified specifically) at the time of collection but subsequently considered to be of interest. As an example, filters from a 20-year historical archive consisting of 16,000 filters from three sites across Auckland are re-examined for the presence of elongated mineral fibres known to be present in rock across the city. Originally collected for the purpose of the source apportionment of particulate matter, 10 filters from each of the three sites were chosen for reanalysis based on their high silica and aluminium content, and thus considered more likely to contain fibre-like particles (FLP). These filters were analysed using various microscopic methods, including phase contrast microscopy (PCM), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). The results show that although the commonly used fibrous polytetrafluoroethylene (PTFE) material of the filters may hamper the visual identification of any fibre-like particles under a certain length, their key components are able to be identified using a combination of PCM and SEM when they are of a suitable dimension and have settled in a certain orientation on the filter. In this case, the use of EDS confirmed the silicon content of the fibres and also revealed elemental spectra. Although the exact identification of the mineral fibre is uncertain, the EDS scan is consistent with hazardous zeolites such as erionite, known to be present in the rock found in Auckland. This study highlights the value in maintaining filter archives for the purpose of investigating the historical evolution of emerging atmospheric pollutants.
Collapse
|
8
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
9
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
10
|
De A. Nanomaterial Synthesis from End‐of‐Cycle Products: A Sustainable Way of Waste Valorisation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anindita De
- Sharda University Department of Chemistry and Biochemistry School of Basic Sciences and Research 201306 Greater Noida India
| |
Collapse
|
11
|
Danopoulos E, Twiddy M, West R, Rotchell JM. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127861. [PMID: 34863566 DOI: 10.1016/j.jhazmat.2021.127861] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
Humans are exposed to microplastics (MPs) daily via ingestion and inhalation. It is not known whether this results in adverse health effects and, if so, at what levels of exposure. Without epidemiological studies, human cell in vitro MP toxicological studies provide an alternative approach to this question. This review systematically synthesised all evidence and estimated thresholds of dose-response relationships. MEDLINE and Web of Science were searched from inception to March 2021 and study quality was rated using a novel risk of bias assessment tool. Seventeen studies were included in the rapid review and eight in the meta-regression. Four biological endpoints displayed MP-associated effects: cytotoxicity, immune response, oxidative stress, barrier attributes, and one did not (genotoxicity). Irregular shape was found to be the only MP characteristic predicting cell death, along with the duration of exposure and MP concentration (μg/mL). Cells showed varying cytotoxic sensitivity to MPs, with Caco-2 cells (human adenocarcinoma cell line) being the most susceptible. Minimum, environmentally-relevant, concentrations of 10 μg/mL (5-200 µm), had an adverse effect on cell viability, and 20 μg/mL (0.4 µm) on cytokine release. This work is the first to quantify thresholds of MPs effects on human cells in the context of risk assessment.
Collapse
Affiliation(s)
- Evangelos Danopoulos
- Hull York Medical School, University of Hull, Allam Medical Building, Hull HU6 7RX, United Kingdom.
| | - Maureen Twiddy
- Hull York Medical School, University of Hull, Allam Medical Building, Hull HU6 7RX, United Kingdom
| | - Robert West
- Institute of Health Science, School of Medicine, University of Leeds, Leeds LS2 9LU, United Kingdom
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
12
|
Fujita K, Obara S, Maru J, Endoh S. Genotoxicity assessment of cellulose nanofibrils using a standard battery of in vitro and in vivo assays. Toxicol Rep 2022; 9:68-77. [PMID: 35004184 PMCID: PMC8718569 DOI: 10.1016/j.toxrep.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
CNFs did not induce bacterial reverse and in vitro mammalian cell gene mutation. CNFs did not induce chromosomal aberration in CHL/IU cells. CNFs did not increase the proportion of micronucleated polychromatic erythrocytes in rat bone marrow. Three types of CNFs with different manufacturing methods exhibited no genotoxicity.
Cellulose nanofibrils (CNFs) are identified as novel nanomaterials with many potential applications. Since CNFs are fibrous manufactured nanomaterials, their potential carcinogenic effects and mesothelial toxicity raise some concerns. In this study, we conducted a standard battery of in vitro and in vivo assays to evaluate the genotoxicity of two CNF types using different manufacturing methods and physicochemical properties. Namely, one was CNF produced via chemical modification by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, while the other was CNF produced via mechanical defibrillation using needle bleached kraft pulp. A bacterial reverse mutation test and a mouse lymphoma TK assay revealed that CNFs at 100 μg/mL did not induce bacterial reverse mutations and in vitro mammalian cell gene mutation. Further, in vitro chromosomal aberration tests demonstrated that CNFs at 100 μg/mL did not induce chromosomal aberration in Chinese hamster lung fibroblasts. From the mammalian erythrocyte micronucleus test, no statistically significant increase was observed in the proportion of micronucleated polychromatic erythrocytes in the bone marrow cells of rats intratracheally instilled with any concentration of CNFs (0.25–1.0 mg/kg) compared with values from respective negative control groups. Therefore, this battery of in vitro and in vivo assays illustrated that the CNFs examined in this study did not induce genotoxicity, suggesting our results provide valuable insight on the future use of these materials in various industrial applications.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
13
|
Kuroda A. Recent progress and perspectives on the mechanisms underlying Asbestos toxicity. Genes Environ 2021; 43:46. [PMID: 34641979 PMCID: PMC8507173 DOI: 10.1186/s41021-021-00215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Most cases of mesothelioma are known to result from exposure to asbestos fibers in the environment or occupational ambient air. The following questions regarding asbestos toxicity remain partially unanswered: (i) why asbestos entering the alveoli during respiration exerts toxicity in the pleura; and (ii) how asbestos causes mesothelioma, even though human mesothelial cells are easily killed upon exposure to asbestos. As for the latter question, it is now thought that the frustrated phagocytosis of asbestos fibers by macrophages prolongs inflammatory responses and gives rise to a “mutagenic microenvironment” around mesothelial cells, resulting in their malignant transformation. Based on epidemiological and genetic studies, a carcinogenic model has been proposed in which BRCA1-associated protein 1 mutations are able to suppress cell death in mesothelial cells and increase genomic instability in the mutagenic microenvironment. This leads to additional mutations, such as CDKN2A [p16], NF2, TP53, LATS2, and SETD2, which are associated with mesothelioma carcinogenesis. Regarding the former question, the receptors involved in the intracellular uptake of asbestos and the mechanism of transfer of inhaled asbestos from the alveoli to the pleura are yet to be elucidated. Further studies using live-cell imaging techniques will be critical to fully understanding the mechanisms underlying asbestos toxicity.
Collapse
Affiliation(s)
- Akio Kuroda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
14
|
Korchevskiy AA, Wylie AG. Dimensional determinants for the carcinogenic potency of elongate amphibole particles. Inhal Toxicol 2021; 33:244-259. [PMID: 34612763 DOI: 10.1080/08958378.2021.1971340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Carcinogenic properties of particulates depend, among other factors, on dimensional characteristics that affect their ability to reach sensitive tissue, to be removed or retained, and to interact with the cells. OBJECTIVE To model mesothelioma and lung cancer potency of amphibole particles based on their dimensional characteristics and mineral habit (asbestiform vs. nonasbestiform) utilizing epidemiological data and detailed size information. METHODS The datasets from recently created depository of dimensional information of elongate mineral particles were used to correlate mesothelioma and lung cancer potency with the fraction of particles in a specific size range and the ratio of length and width in different powers. In addition, the cancer potency factors were estimated and compared for 30 asbestiform, 15 nonasbestiform, and 10 mixed datasets. RESULTS For particles longer than 5 µm, the highest correlation with mesothelioma potency was achieved for width <0.22 µm, and with lung cancer <0.28 µm. The statistical power of the correlation was observed to lose significance at a maximum width of 0.6-0.7 µm. Mesothelioma potency correlated with length in the power of 1.9 divided by width in the power of 2.97, lung cancer potency with length in the power of 0.4 divided by width in the power of 1.17. The predicted cancer potencies of asbestiform, nonasbestiform, and mixed categories were significantly different. CONCLUSION While additional studies in this direction are warranted, this paper should serve as an additional confirmation for the role of fiber dimensions in the carcinogenicity of amphibole elongate mineral particles (EMPs).
Collapse
Affiliation(s)
| | - Ann G Wylie
- Department of Geology, Department of Geology, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
16
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
17
|
Reid G, Klebe S, van Zandwijk N, George AM. Asbestos and Zeolites: from A to Z via a Common Ion. Chem Res Toxicol 2021; 34:936-951. [PMID: 33749247 DOI: 10.1021/acs.chemrestox.0c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asbestos and zeolites are silicate-based minerals, linked inextricably via paradoxical similarities and differences which have emanated from different geological epochs. Both have been employed in the service of humanity through millennia: asbestos, for its "inextinguishable" quality of being an insulator against heat and fire; zeolite, a "boiling stone" with its volcanic and marine sedimentary rock origins, for its propensity to adsorb water and remove metals and toxins. Serious adverse health effects observed in asbestos miners as long ago as the 1st Century AD did not halt the rising popularity of asbestos. As the miracle material of the 1900s, asbestos production and consumption exploded, culminating in its ubiquity in ships, vehicles, homes, commercial buildings, and over 3000 different industrial and household products. Through the 1940s and 1950s, epidemiological studies concluded that asbestos was a likely cause of asbestosis, lung cancer, and malignant mesothelioma, and it is now banned in many but far from all countries. The long latency between exposure to asbestos and the occurrence of cancer has obscured the deadly consequences of asbestos exposure for centuries. Even today, a considerable part of the world population is insufficiently aware of the dangers of asbestos, and millions of tons of this carcinogen continue to be mined and used worldwide. Zeolites, both natural and synthetic, are microporous aluminosilicate minerals commonly used in a myriad of processes, in the petrochemical industry, in domestic appliances and cleaning agents, as commercial adsorbents and exchangers for toxins and pollutants, and as catalysts. Zeolites are found in agriculture, veterinary science, and human health. More recently, new materials such as carbon nanotubes are being employed in materials requiring durability and thermal and electrical conductivity, yet nanotubes are now joining the ranks of more established particulates such as asbestos and silica, in causing human disease. In this review, we compare and contrast the similarities and differences of these two groups of silicate minerals and their waxing and waning use in the employ of humanity.
Collapse
Affiliation(s)
- Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology Bedford Park 5042, Australia
| | - Nico van Zandwijk
- Sydney Local Health District, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, New South Wales 2007, Australia
| |
Collapse
|
18
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
19
|
Kobayashi T, Oshima Y, Tsubokura Y, Muroi T, Ajimi S, Nakai M, Kawaguchi K, Sasaki T, Shinohara N, Imatanaka N. Time-course comparison of pulmonary inflammation induced by intratracheal instillation of four different nickel oxide nanoparticles in male Fischer rats. J Toxicol Pathol 2021; 34:43-55. [PMID: 33627944 PMCID: PMC7890174 DOI: 10.1293/tox.2020-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Occupational exposure to nickel oxide (NiO) is an important cause of respiratory tract cancer. Toxicity is known to be associated with the dissociated component, i.e. nickel (II) ions. To address the relationship between physicochemical properties, including solubility in artificial lysosomal fluid, of NiO and time-course changes in the pulmonary response, we conducted an intratracheal instillation study in male Fischer rats using four different well-characterized NiO products, US3352 (NiO A), NovaWireNi01 (NiO B), I small particle (NiO C), and 637130 (NiO D). The NiOs were suspended in purified water and instilled once intratracheally into male F344 rats (12 weeks old) at 0 (vehicle control), 0.67, 2, and 6 mg/kg body weight. The animals were euthanized on days 3, 28, or 91 after instillation, and blood analysis, bronchoalveolar lavage fluid (BALF) testing, and histopathological examination were performed. The most soluble product, NiO B, caused the most severe systemic toxicity, leading to a high mortality rate, but the response was transient and surviving animals recovered. The second-most-soluble material, NiO D, and the third, NiO A, caused evident pulmonary inflammation, and the responses persisted for at least 91 days with collagen proliferation. In contrast, NiO C induced barely detectable inflammation in the BALF examination, and no marked changes were noted on histopathology. These results indicate that the early phase toxic potential of NiO products, but not the persistence of pulmonary inflammation, is associated with their solubility.
Collapse
Affiliation(s)
- Toshio Kobayashi
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
- The United Graduate School of Veterinary Science, Yamaguchi
University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Yutaka Oshima
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| | - Yasuhiro Tsubokura
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| | - Takako Muroi
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| | - Shozo Ajimi
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| | - Makoto Nakai
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| | - Kenji Kawaguchi
- National Institute of Advanced Industrial Science and
Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan
| | - Takeshi Sasaki
- National Institute of Advanced Industrial Science and
Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan
| | - Naohide Shinohara
- National Institute of Advanced Industrial Science and
Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan
| | - Nobuya Imatanaka
- CERI Hita, Chemicals Evaluation and Research Institute,
Japan, 3-822 Ishii-machi, Hita-shi, Oita 877-0061, Japan
| |
Collapse
|
20
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Abdelbasir SM, McCourt KM, Lee CM, Vanegas DC. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front Chem 2020; 8:782. [PMID: 33110911 PMCID: PMC7488813 DOI: 10.3389/fchem.2020.00782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/02/2022] Open
Abstract
For the past few decades, a plethora of nanoparticles have been produced through various methods and utilized to advance technologies for environmental applications, including water treatment, detection of persistent pollutants, and soil/water remediation, amongst many others. The field of materials science and engineering is increasingly interested in increasing the sustainability of the processes involved in the production of nanoparticles, which motivates the exploration of alternative inputs for nanoparticle production as well as the implementation of green synthesis techniques. Herein, we start by overviewing the general aspects of nanoparticle synthesis from industrial, electric/electronic, and plastic waste. We expand on critical aspects of waste identification as a viable input for the treatment and recovery of metal- and carbon-based nanoparticles. We follow-up by discussing different governing mechanisms involved in the production of nanoparticles, and point to potential inferences throughout the synthesis processes. Next, we provide some examples of waste-derived nanoparticles utilized in a proof-of-concept demonstration of technologies for applications in water quality and safety. We conclude by discussing current challenges from the toxicological and life-cycle perspectives that must be taken into consideration before scale-up manufacturing and implementation of waste-derived nanoparticles.
Collapse
Affiliation(s)
| | - Kelli M. McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Cindy M. Lee
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Department of Engineering and Science Education, Clemson University, Clemson, SC, United States
| | - Diana C. Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change-BioNovo, Universidad del Valle, Cali, Colombia
| |
Collapse
|
22
|
Huang X, Tian Y, Shi W, Chen J, Yan L, Ren L, Zhang X, Zhu J. Role of inflammation in the malignant transformation of pleural mesothelial cells induced by multi-walled carbon nanotubes. Nanotoxicology 2020; 14:947-967. [PMID: 32574520 DOI: 10.1080/17435390.2020.1777477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the most widely used types of novel nano-fiber materials. The aim of this study was to establish an experimental system based on actual exposure dosage and environments and explore the roles and mechanisms of inflammation in the malignant transformation of pleural mesothelial cells induced by MWCNTs after low doses and long-term exposure. Here, we established an in vitro system by co-culturing macrophages and mesothelial cells and exposing these cells to high aspect ratio MWCNTs (0.1 μg/mL) for three months. Results indicated that IL-1β, secreted by macrophages stimulated by MWCNTs, may significantly enhance the release of inflammatory cytokines, such as IL-8, TNF-α, and IL-6, from mesothelial cells. Results obtained from proliferation, migration, invasion, colony formation, and chromosomal aberration studies indicated that MWCNTs may promote malignant transformation of mesothelial cells after long-term and low-dose exposure via inflammation. Furthermore, the obtained results demonstrated that the NF-κB/IL-6/STAT3 pathway was active in the malignant transformation of Met 5A cells, induced by MWCNTs, and played an important role in the process. In conclusion, our results showed that the NF-κB (p65)/IL-6/STAT3 molecular pathway, which was mediated by inflammation, played an important role in the malignant transformation of pleural mesothelial cells induced by MWCNTs. These findings also provide novel ideas and references for the treatment of mesothelioma and offers options for the occupational safety of nanomaterial practitioners.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Wenjing Shi
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jikuai Chen
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lijun Ren
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| |
Collapse
|
23
|
La Maestra S, Micale RT, Ferretti M, Izzotti A, Gaggero L. Attenuation of oxidative stress and chromosomal aberrations in cultured macrophages and pulmonary cells following self-sustained high temperature synthesis of asbestos. Sci Rep 2020; 10:8581. [PMID: 32444646 PMCID: PMC7244567 DOI: 10.1038/s41598-020-65620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/28/2020] [Indexed: 01/06/2023] Open
Abstract
Inhalation of asbestos fibres can cause lung and pleural diseases in humans and constitutes a severe public health threat worldwide. The aim of the present study was to assess the biological effects induced in both pulmonary cells (A549) and monocyte/macrophage (RAW 264.7) cell lines by combustion slags obtained from asbestos through a self-sustained high-temperature synthesis (SHS) reaction. The SHS reaction involves rapid thermal treatment and displays great ability to neutralise asbestos. Cytotoxicity, redox status imbalance, lipid peroxide production, DNA strand breaks (comet assay) and chromosomal aberrations (cytokinesis block micronucleus test) were evaluated in cells exposed either to untreated asbestos fibres or to grinded SHS-generated slags of different granulometry, tested in cultured cells at varying doses and for varying exposure times. Our results show that asbestos fibres cause redox status imbalance, especially in monocyte/macrophage cell lines. Moreover, they promote lipid peroxidation and trigger genomic alterations. When the cells were exposed to slag powders, which are the products of SHS asbestos treatment, generation of lipid peroxides and induction of DNA strand breaks still persisted, due to the high content in iron and other metals detected in these samples. However, there was an attenuation of redox status imbalance and an absence of chromosomal aberrations, which probably reflects the loss of the asbestos fibrous structure following SHS reaction, as demonstrated by electron microscopy analyses. In conclusions, SHS-treated asbestos wastes can potentially have deleterious health effects due to the oxidative stress induced by inhaled powders but they loose the asbestos ability to induce chromosomal alterations.
Collapse
Affiliation(s)
- Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy.
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, via A. Pastore, 1, 16132, Genoa, Italy
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, 16132, Genoa, Italy
| | - Laura Gaggero
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
24
|
Loreto C, Caltabiano R, Graziano ACE, Castorina S, Lombardo C, Filetti V, Vitale E, Rapisarda G, Cardile V, Ledda C, Rapisarda V. Defense and protection mechanisms in lung exposed to asbestiform fiber: the role of macrophage migration inhibitory factor and heme oxygenase-1. Eur J Histochem 2020; 64. [PMID: 32312030 PMCID: PMC7171426 DOI: 10.4081/ejh.2020.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.
Collapse
Affiliation(s)
- Carla Loreto
- Anatomy and Histology, Department of Biomedical and Biotechnologies Sciences, University of Catania.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gwenzi W. Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134622. [PMID: 31693951 DOI: 10.1016/j.scitotenv.2019.134622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Serpentinitic ultramafic geological environments (SUGEs) contain toxic geogenic contaminants (TGCs). Yet comprehensive reviews on the medical geology of SUGEs are still lacking. The current paper posits that TGCs occur widely in SUGEs, and pose human health risks. The objectives of the review are to: (1) highlight the nature, occurrence and behaviour of TGCs associated with SUGEs; (2) discuss the human intake pathways and health risks of TGCs; (4) identify the key risk factors predisposing human health to TGCs particularly in Africa; and (5) highlight key knowledge gaps and future research directions. TGCs of human health concern in SUGEs include chrysotile asbestos, toxic metals (Fe, Cr, Ni, Mn, Zn, Co), and rare earth elements. Human intake of TGCs occur via inhalation, and ingestion of contaminated drinking water, wild foods, medicinal plants, animal foods, and geophagic earths. Occupational exposure may occur in the mining, milling, sculpturing, engraving, and carving industries. African populations are particularly at high risk due to: (1) widespread consumption of wild foods, medicinal plants, untreated drinking water, and geophagic earths; (2) weak and poorly enforced environmental, occupational, and public health regulations; and (3) lack of human health surveillance systems. Human health risks of chrysotile include asbestosis, cancers, and mesothelioma. Toxic metals are redox active, thus generate reactive oxygen species causing oxidative stress. Dietary intake of iron and geophagy may increase the iron overload among native Africans who are genetically predisposed to such health risks. Synergistic interactions among TGCs particularly chrysotile and toxic metals may have adverse human health effects. The occurrence of SUGEs, coupled with the several risk factors in Africa, provides a unique and ideal setting for investigating the relationships between TGCs and human health risks. A conceptual framework for human health risk assessment and mitigation, and future research direction are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
26
|
Puigpelat E, Ignés-Mullol J, Sagués F, Reigada R. Interaction of Graphene Nanoparticles and Lipid Membranes Displaying Different Liquid Orderings: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16661-16668. [PMID: 31750663 DOI: 10.1021/acs.langmuir.9b03008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the effects of graphene-based nanomaterials on lipid membranes is fundamental to determine their environmental impact and the efficiency of their biomedical use. By means of molecular dynamics simulations of simple model lipid bilayers, we analyze in detail the different interaction modes. We have studied bilayers consisting of lipid species (including cholesterol) which display different internal liquid orderings. Nanometric graphene layers can be transiently adsorbed onto the lipid membrane and/or inserted in its hydrophobic region. Once inserted, graphene nanometric flakes display a diffusive dynamics in the membrane plane, they adopt diverse orientations depending on their size and oxidation degree, and they show a particular aversion to be placed close to cholesterol molecules in the membrane. Addition of graphene to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the lipid organization of biological membranes. Our simulation results show that graphene layers can be inserted indistinctly in the ordered and disordered regions. Once inserted, nanometric flakes migrate to disordered and cholesterol-poor lipid phases.
Collapse
|
27
|
Experimental Models of Pulmonary Fibrosis and their Translational Potential. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2019-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Pulmonary fibrosis, represented mainly by idiopathic pulmonary fibrosis, develops chronic and progressive changes in lung parenchyma with high mortality and limited therapeutic options. The aim of this review was to summarize the most common experimental models used in the research of pulmonary fibrosis. Lung damage associated with development of pulmonary fibrosis can be caused by irradiation or by instillation of bleomycin, fluorescein isothiocyanate (FITC), silicon dioxide (silica), asbestos, etc. This article reviews the characteristics of the most frequently used animal models of fibrosis, including the limitations of their use. Although none of the used animal models resembles completely the changes in human pulmonary fibrosis, similarities between them allow preclinical testing of novel treatment approaches or their combinations in the laboratory conditions before their use in the clinical practice.
Collapse
|
28
|
Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Indexed: 05/25/2023]
Abstract
The marriage of nanotechnology and medicine offers new opportunities to fight against human diseases. Benefiting from their unique optical, thermal, magnetic, or redox properties, a wide range of nanomaterials have shown potential in applications such as diagnosis, drug delivery, or tissue repair and regeneration. Despite the considerable success achieved over the past decades, the newly emerging nanomedicines still suffer from an incomplete understanding of their safety risks, and of the relationships between their physicochemical characteristics and safety profiles. Herein, the most important categories of nanomaterials with clinical potential and their toxicological mechanisms are summarized, and then, based on this available information, an overview of the principles in developing safe-by-design nanomaterials for medical applications and of the recent progress in this field is provided. These principles may serve as a starting point to guide the development of more effective safe-by-design strategies and to help identify the major knowledge and skill gaps.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
29
|
Mestre AS, Carvalho AP. Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules 2019; 24:molecules24203702. [PMID: 31618947 PMCID: PMC6832631 DOI: 10.3390/molecules24203702] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
The presence of pharmaceutical compounds in the environment is a reality that calls for more efficient water treatment technologies. Photocatalysis is a powerful technology available but the high energy costs associated with the use of UV irradiation hinder its large scale implementation. More sustainable and cheaper photocatalytic processes can be achieved by improving the sunlight harvesting and the synthesis of semiconductor/carbon composites has proved to be a promising strategy. Carbamazepine, diclofenac, and sulfamethoxazole were selected as target pharmaceuticals due to their recalcitrant behavior during conventional wastewater treatment and persistence in the environment, as properly reviewed. The literature data on the photocatalytic removal of carbamazepine, diclofenac, and sulfamethoxazole by semiconductor/carbon materials was critically revised to highlight the role of the carbon in the enhanced semiconductor performance under solar irradiation. Generally it was demonstrated that carbon materials induce red-shift absorption and they contribute to more effective charge separation, thus improving the composite photoactivity. Carbon was added as a dopant (C-doping) or as support or doping materials (i.e., nanoporous carbons, carbon nanotubes (CNTs), graphene, and derived materials, carbon quantum dots (CQDs), and biochars) and in the large majority of the cases, TiO2 was the semiconductor tested. The specific role of carbon materials is dependent on their properties but even the more amorphous forms, like nanoporous carbons or biochars, allow to prepare composites with improved properties compared to the bare semiconductor. The self-photocatalytic activity of the carbon materials was also reported and should be further explored. The removal and mineralization rates, as well as degradation pathways and toxicity of the treated solutions were also critically analyzed.
Collapse
Affiliation(s)
- Ana S Mestre
- Centro de Química e Bioquímica and Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ana P Carvalho
- Centro de Química e Bioquímica and Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
30
|
Cavallari I, Urso L, Sharova E, Pasello G, Ciminale V. Liquid Biopsy in Malignant Pleural Mesothelioma: State of the Art, Pitfalls, and Perspectives. Front Oncol 2019; 9:740. [PMID: 31475103 PMCID: PMC6705182 DOI: 10.3389/fonc.2019.00740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor linked to asbestos exposure. Although the risk factors for MPM are well-known, the majority of MPM patients are diagnosed at an advanced stage and have a very poor prognosis. Circulating biomarkers for early diagnosis remain to be identified, and the current standard for MPM diagnosis relies on pleural biopsies. Robust non-invasive tests for the screening of asbestos-exposed subjects are therefore an important unmet clinical need. This review provides a critical summary of recent liquid biopsy-based studies aimed at discovering novel blood-based circulating biomarkers for the early diagnosis and prognostic stratification of MPM patients.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Immunologia e Diagnostica Molecolare Oncologica (IDMO), Istituto Oncologico Veneto IOV- IRCCS, Padova, Italy
| | - Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, Padova, Italy
| | - Evgeniya Sharova
- Immunologia e Diagnostica Molecolare Oncologica (IDMO), Istituto Oncologico Veneto IOV- IRCCS, Padova, Italy
| | - Giulia Pasello
- Immunologia e Diagnostica Molecolare Oncologica (IDMO), Istituto Oncologico Veneto IOV- IRCCS, Padova, Italy
| | - Vincenzo Ciminale
- Immunologia e Diagnostica Molecolare Oncologica (IDMO), Istituto Oncologico Veneto IOV- IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
31
|
Zheng B, Zang L, Li W, Li H, Wang H, Zhang M, Song X. Quantitative analysis of asbestos in drinking water and its migration in mice using fourier-transform infrared spectroscopy and inductively coupled plasma optical emission spectrometry. Anal Chim Acta 2019; 1058:29-38. [PMID: 30851851 DOI: 10.1016/j.aca.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
The presence of asbestos in the environment has caused concern because exposure to asbestos can cause diseases such as stomach and pancreatic cancer. However, suitable up-to-date methods for quantitatively analyzing asbestos and assessing the toxicity of asbestos have not been developed. In this study, asbestos in drinking water was characterized using a stepwise multiple differential infra-red spectra method and a partial least squares method. The in vivo migration of ingested asbestos in mice was then investigated using the technique. The quantification limit of six kinds of asbestos by using inductively coupled plasma optical emission spectrometry and Fourier-transform infrared spectroscopy in water are respectively from 0.0468 to 0.0705 mg/L, from 0.0039 to 0.0064 mg/L. The relative standard deviations were respectively less than 2.85% and 3.81%. The recoveries of the test asbestos were respectively more than 95.10% and 95.38%. Asbestos was found mainly to accumulate in the livers of mice. The Fourier-transform infra-red spectroscopy inductively coupled plasma optical emission spectrometry method can be used to detect and precisely quantify asbestos in water samples and in animal tissues.
Collapse
Affiliation(s)
- Bei Zheng
- Key Laboratory of Drinking Water Science and Technology, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lijie Zang
- Key Laboratory of Drinking Water Science and Technology, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Li
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Hongyan Li
- Key Laboratory of Drinking Water Science and Technology, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Haitao Wang
- First Affiliated Hospital of PLA General Hospital, Beijing, 100048, China
| | - Ming Zhang
- Zhejiang University of Technology, College of Environment, Hangzhou, 310034, China
| | | |
Collapse
|
32
|
Kane AB, Hurt RH, Gao H. The asbestos-carbon nanotube analogy: An update. Toxicol Appl Pharmacol 2018; 361:68-80. [PMID: 29960000 PMCID: PMC6298811 DOI: 10.1016/j.taap.2018.06.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology is an emerging industry based on commercialization of materials with one or more dimensions of 100 nm or less. Engineered nanomaterials are currently incorporated into thin films, porous materials, liquid suspensions, or filler/matrix nanocomposites with future applications predicted in energy and catalysis, microelectronics, environmental sensing and remediation, and nanomedicine. Carbon nanotubes are one-dimensional fibrous nanomaterials that physically resemble asbestos fibers. Toxicologic studies in rodents demonstrated that some types of carbon nanotubes can induce mesothelioma, and the World Health Organization evaluated long, rigid multiwall carbon nanotubes as possibly carcinogenic for humans in 2014. This review summarizes key physicochemical similarities and differences between asbestos fibers and carbon nanotubes. The "fiber pathogenicity paradigm" has been extended to include carbon nanotubes as well as other high-aspect-ratio fibrous nanomaterials including metallic nanowires. This paradigm identifies width, length, and biopersistence of high-aspect-ratio fibrous nanomaterials as critical determinants of lung disease, including mesothelioma, following inhalation. Based on recent theoretical modeling studies, a fourth factor, mechanical bending stiffness, will be considered as predictive of potential carcinogenicity. Novel three-dimensional lung tissue platforms provide an opportunity for in vitro screening of a wide range of high aspect ratio fibrous nanomaterials for potential lung toxicity prior to commercialization.
Collapse
Affiliation(s)
- Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States.
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States
| |
Collapse
|
33
|
Gray EP, Browning CL, Wang M, Gion KD, Chao EY, Koski KJ, Kane AB, Hurt RH. Biodissolution and Cellular Response to MoO3 Nanoribbons and a New Framework for Early Hazard Screening for 2D Materials. ENVIRONMENTAL SCIENCE. NANO 2018; 5:2545-2559. [PMID: 31548890 PMCID: PMC6756761 DOI: 10.1039/c8en00362a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) materials are a broad class of synthetic ultra-thin sheet-like solids whose rapid pace of development motivates systematic study of their biological effects and safe design. A challenge for this effort is the large number of new materials and their chemical diversity. Recent work suggests that many 2D materials will be thermodynamically unstable and thus non-persistent in biological environments. Such information could inform and accelerate safety assessment, but experimental data to confirm the thermodynamic predictions is lacking. Here we propose a framework for early hazard screening of nanosheet materials based on biodissolution studies in reactive media, specially chosen for each material to match chemically feasible degradation pathways. Simple dissolution and in vitro tests allow grouping of nanosheet materials into four classes: A, potentially biopersistent; B: slowly degradable (>24-48 hours); C, biosoluble with potentially hazardous degradation products; and D, biosoluble with low-hazard degradation products. The proposed framework is demonstrated through an experimental case study on MoO3 nanoribbons, which have a dual 2D / 1D morphology and have been reported to be stable in aqueous stock solutions. The nanoribbons are shown to undergo rapid dissolution in biological simulant fluids and in cell culture, where they elicit no adverse responses up to 100μg ml-1 dose. These results place MoO3 nanoribbons in Class D, and assigns them a low priority for further nanotoxicology testing. We anticipate use of this framework could accelerate the risk assessment for the large set of new powdered 2D nanosheet materials, and promote their safe design and commercialization.
Collapse
Affiliation(s)
- Evan P Gray
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Cynthia L Browning
- The Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence RI, 02912, United States.
| | - Mengjing Wang
- The Department of Chemistry, Brown University, 156 George Street, Providence RI, 02912, United States
| | - Kyle D Gion
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Eric Y Chao
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| | - Kristie J Koski
- Department of Chemistry, University of California Davis, 1 Shields Ave. Davis CA 95616.
| | - Agnes B Kane
- The Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence RI, 02912, United States.
| | - Robert H Hurt
- The School of Engineering, Brown University, Providence RI, 02912, United States.
| |
Collapse
|
34
|
Felley-Bosco E, MacFarlane M. Asbestos: Modern Insights for Toxicology in the Era of Engineered Nanomaterials. Chem Res Toxicol 2018; 31:994-1008. [PMID: 30156102 DOI: 10.1021/acs.chemrestox.8b00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asbestos fibers are naturally occurring silicates that have been extensively used in the past, including house construction, but because of their toxicity, their use has been banned in 63 countries. Despite this, more than one million metric tons of asbestos are still consumed annually in countries where asbestos use has not been banned. Asbestos-related disease incidence is still increasing in several countries, including those countries that banned the use of asbestos more than 30 years ago. We highlight here recent knowledge obtained in experimental models about the mechanisms leading to tumor development following asbestos exposure, including genetic and epigenetic changes. Importantly, the landscape of alterations observed experimentally in tumor samples is consistent with alterations observed in clinical tumor samples; therefore, studies performed on early/precancer stages should help inform secondary prevention, which remains crucial in the absence of an efficient primary prevention. Knowledge gathered on asbestos should also help address future challenges, especially in view of the increased production of new materials that may behave similarly to asbestos fibers.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology , University Hospital Zurich , Sternwartstrasse 14 , 8091 Zürich , Switzerland
| | - Marion MacFarlane
- MRC Toxicology Unit , University of Cambridge , Hodgkin Building, Leicester LE1 9HN , United Kingdom
| |
Collapse
|
35
|
Ilves M, Vilske S, Aimonen K, Lindberg HK, Pesonen S, Wedin I, Nuopponen M, Vanhala E, Højgaard C, Winther JR, Willemoës M, Vogel U, Wolff H, Norppa H, Savolainen K, Alenius H. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology 2018; 12:729-746. [DOI: 10.1080/17435390.2018.1472312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marit Ilves
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Vilske
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Saila Pesonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | - Esa Vanhala
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Casper Højgaard
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob R. Winther
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Willemoës
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Alenius
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
|
37
|
Yanamala N, Kisin ER, Gutkin DW, Shurin MR, Harper M, Shvedova AA. Characterization of pulmonary responses in mice to asbestos/asbestiform fibers using gene expression profiles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:60-79. [PMID: 29279043 DOI: 10.1080/15287394.2017.1408201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Humans exposed to asbestos and/or asbestiform fibers are at high risk of developing many lung diseases including asbestosis, lung cancer, and malignant mesothelioma. However, the disease-causing potential and specific metabolic mechanisms and pathways associated with various asbestos/asbestiform fiber exposures triggering different carcinogenic and non-carcinogenic outcomes are still largely unknown. The aim of this this study was to investigate gene expression profiles and inflammatory responses to different asbestos/asbestiform fibers at the acute/sub-acute phase that may be related to delayed pathological outcomes observed at later time points. Mice were exposed to asbestos (crocidolite, tremolite asbestos), asbestiform fibers (erionite), and a low pathogenicity mineral fiber (wollastonite) using oropharyngeal aspiration. Similarities in inflammatory and tissue damage responses, albeit with quantitative differences, were observed at day 1 and 7 post treatment. Exposure to different fibers induced significant changes in regulation and release of a number of inflammatory cytokines/chemokines. Comparative analysis of changes in gene regulation in the lung on day 7 post exposure were interpretable in the context of differential biological responses that were consistent with histopathological findings at days 7 and 56 post treatment. Our results noted differences in the magnitudes of pulmonary responses and gene regulation consistent with pathological alterations induced by exposures to four asbestos/asbestiform fibers examined. Further comparative mechanistic studies linking early responses with the long-term endpoints may be instrumental to understanding triggering mechanisms underlying pulmonary carcinogenesis, that is lung cancer versus mesothelioma.
Collapse
Affiliation(s)
| | - Elena R Kisin
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
| | - Dmitriy W Gutkin
- b Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Michael R Shurin
- b Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Martin Harper
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
- c Zefon International, Inc. , Ocala , FL , USA
| | - Anna A Shvedova
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
- d Department Physiology, Pharmacology & Neuroscience , School of Medicine, West Virginia University , Morgantown , WV , USA
- e Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA
| |
Collapse
|
38
|
DeStefano A, Martin CF, Wallace DI. A dynamical model of the transport of asbestos fibres in the human body. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:365-377. [PMID: 28770658 DOI: 10.1080/17513758.2017.1355489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a model for the transport of a single type of asbestos fibre through the human body. The model captures the transport modes that pertain particularly to the lungs and the mesothelium. Numerical solutions of the system follow observed movement in the body. We compare the accumulation of fibres in the lungs versus the mesothelium, and then we give analysis and results for various cases of exposure level and exposure time. Models, such as the one developed here, can give clues as to how asbestos fibres impact the body, and where to look for major impact.
Collapse
Affiliation(s)
| | - Clyde F Martin
- b Department of Mathematics and Statistics , Texas Tech University , Lubbock , TX , USA
| | | |
Collapse
|
39
|
SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells. Sci Rep 2017; 7:11653. [PMID: 28912540 PMCID: PMC5599589 DOI: 10.1038/s41598-017-12037-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Engineered nanomaterials hold great promise for the future development of innovative products but their adverse health effects are a major concern. Recent studies have indicated that certain nanomaterials, including carbon nanotubes (CNTs), may be carcinogenic. However, the underlying mechanisms behind their potential malignant properties remain unclear. In this study, we linked SOX9, a stem cell associated transcription factor, to the neoplastic-like properties of human lung epithelial cells chronically exposed to a low-dose of single-walled carbon nanotubes (SWCNTs). We found that SOX9 is upregulated in SWCNT-exposed cells, which is consistent with their abilities to induce tumor formation and metastasis in vivo. We therefore hypothesized that SOX9 overexpression may be responsible for the neoplastic-like phenotype observed in our model. Indeed, SOX9 knockdown inhibited anchorage-independent cell growth in vitro and lung colonization in vivo in a mouse xenograft model. SOX9 depletion also suppressed the formation of cancer stem-like cells (CSCs), as determined by tumor sphere formation and aldehyde dehydrogenase (ALDH) activity (Aldefluor) assays. Furthermore, SOX9 knockdown suppressed tumor metastasis and the expression of the stem cell marker ALDH1A1. Taken together, our findings provide a mechanistic insight into SWCNT-induced carcinogenesis and the role of SOX9 in CSC regulation and metastasis.
Collapse
|
40
|
Reinforcing nanomedicine using graphene family nanomaterials. J Control Release 2017; 255:218-230. [DOI: 10.1016/j.jconrel.2017.04.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
|
41
|
Mittal S, Sharma PK, Tiwari R, Rayavarapu RG, Shankar J, Chauhan LKS, Pandey AK. Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment. Part Fibre Toxicol 2017; 14:15. [PMID: 28454554 PMCID: PMC5408471 DOI: 10.1186/s12989-017-0194-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background Graphite carbon nanofibers (GCNF) have emerged as a potential alternative of carbon nanotubes (CNT) for various biomedical applications due to their superior physico-chemical properties. Therefore in-depth understanding of the GCNF induced toxic effects and underlying mechanisms in biological systems is of great interest. Currently, autophagy activation by nanomaterials is recognized as an emerging toxicity mechanism. However, the association of GCNF induced toxicity with this form of cell death is largely unknown. In this study, we have assessed the possible mechanism; especially the role of autophagy, underlying the GCNF induced toxicity. Methods Human lung adenocarcinoma (A549) cells were exposed to a range of GCNF concentrations and various cellular parameters were analyzed (up to 48 h). Transmission electron microscopy, immunofluorescent staining, western blot and quantitative real time PCR were performed to detect apoptosis, autophagy induction, lysosomal destabilization and cytoskeleton disruption in GCNF exposed cells. DCFDA assay was used to evaluate the reactive oxygen species (ROS) production. Experiments with N-acetyl-L-cysteine (NAC), 3-methyladenine (3-MA) and LC3 siRNA was carried out to confirm the involvement of oxidative stress and autophagy in GCNF induced cell death. Comet assay and micronucleus (MN) assay was performed to assess the genotoxicity potential. Results In the present study, GCNF was found to induce nanotoxicity in human lung cells through autophagosomes accumulation followed by apoptosis via intracellular ROS generation. Mechanistically, impaired lysosomal function and cytoskeleton disruption mediated autophagic flux blockade was found to be the major cause of accumulation rather than autophagy induction which further activates apoptosis. The whole process was in line with the increased ROS level and their pharmacological inhibition leads to mitigation of GCNF induced cell death. Moreover the inhibition of autophagy attenuates apoptosis indicating the role of autophagy as cell death process. GCNF was also found to induce genomic instability. Conclusion Our present study demonstrates that GCNF perturbs various interrelated signaling pathway and unveils the potential nanotoxicity mechanism of GCNF through targeting ROS-autophagy-apoptosis axis. The current study is significant to evaluate the safety and risk assessment of fibrous carbon nanomaterials prior to their potential use and suggests caution on their utilization for biomedical research. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Mittal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Raja Gopal Rayavarapu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Lalit Kumar Singh Chauhan
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Kumar Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. .,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
42
|
Yue T, Xu Y, Li S, Luo Z, Zhang X, Huang F. Ultrashort Single-Walled Carbon Nanotubes Insert into a Pulmonary Surfactant Monolayer via Self-Rotation: Poration and Mechanical Inhibition. J Phys Chem B 2017; 121:2797-2807. [DOI: 10.1021/acs.jpcb.7b00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic
Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
43
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
44
|
Shatkin JA, Oberdörster G. Comment on Shvedova et al. (2016), "gender differences in murine pulmonary responses elicited by cellulose nanocrystals". Part Fibre Toxicol 2016; 13:59. [PMID: 27814761 PMCID: PMC5096324 DOI: 10.1186/s12989-016-0170-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
A recent publication in “Particle and Fibre Toxicology” reported on the gender differences in pulmonary toxicity from oro-pharyngeal aspiration of a high dose of cellulose nanocrystals. The study is timely given the growing interest in diverse commercial applications of cellulose nanomaterials, and the need for studies addressing pulmonary toxicity. The results from this study are interesting and can be strengthened with a discussion of how differences in the weights of female and male C57BL/6 mice was accounted for. Without such a discussion, the observed differences could be partially explained by the lower body weights of females, resulting in higher doses than males when standardized to body weight or lung volume. Further, few conclusions can be drawn about the pulmonary toxicity of cellulose nanocrystals given the study design: examination of a single high dose of cellulose nanocrystals, administered as a bolus, without positive or negative controls or low dose comparisons, and at an unphysiological and high dose rate. Simulating the bolus type delivery by inhalation would require a highly unrealistic exposure concentration in the g/m3 range of extremely short duration. A discussion of these limitations is missing in the paper; further speculative comparisons of cellulose nanocrystals toxicity to asbestos and carbon nanotubes in the abstract are both unwarranted and can be misleading, these materials were neither mentioned in the manuscript, nor evaluated in the study.
Collapse
Affiliation(s)
| | - Günter Oberdörster
- University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
45
|
Liu Y, Peng B, Sohrabi S, Liu Y. The Configuration of Copolymer Ligands on Nanoparticles Affects Adhesion and Uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10136-10143. [PMID: 27609544 DOI: 10.1021/acs.langmuir.6b02371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticles (NPs) are promising carriers for targeted drug delivery, photodynamic therapy, and imaging probes. A fundamental understanding of the dynamics of polymeric NP targeting to bilayer membranes is important to enhance the design of NPs for higher adhesion, binding percentage, and efficiency. In this study, dissipative particle dynamics simulations are applied to investigate the adhesion and uptake processes of the rod, spherical, and striped NPs to cell membranes. It is observed that the striped ligands can prevent NPs from rotating even in active rotation. We further optimize striped NP to a more stabilized structure. Uptake processes of NPs with different configurations are thoroughly investigated in our simulations and among which Janus NP are indicated to improve the penetration rate to 100%. These findings provide better insight into patterned NP design and may help fabricate new NPs for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Mechatronics Engineering, University of Electronic Science and Technology of China , Chengdu 611731, China
- Center for Robotics, University of Electronic Science and Technology of China , Chengdu 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China , Chengdu 611731, China
- Center for Robotics, University of Electronic Science and Technology of China , Chengdu 611731, China
| | - Salman Sohrabi
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, United States
- Bioengineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
46
|
Bloise A, Barca D, Gualtieri AF, Pollastri S, Belluso E. Trace elements in hazardous mineral fibres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:314-323. [PMID: 27289526 DOI: 10.1016/j.envpol.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Collapse
Affiliation(s)
- Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Donatella Barca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | | | - Simone Pollastri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Elena Belluso
- Department of Earth Sciences, University of Torino, Torino, 10125, Italy; Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti", Torino, Italy
| |
Collapse
|
47
|
SUZUKI T, SAKAKIBARA Y, HISANAGA N, SAKAI K, YU IJ, LIM HS, MIKAMO H, SENO H, KOBAYASHI F, SHIBATA E. The association among ferruginous body, uncoated fibers, asbestos and non-asbestos fibers in lung tissue in terms of length. INDUSTRIAL HEALTH 2016; 54:370-376. [PMID: 27021059 PMCID: PMC4963550 DOI: 10.2486/indhealth.2015-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
To demonstrate the correlations between the concentrations of ferruginous body as well as uncoated fiber both of which can be observed with phase-contrast microscope and the concentration of various inorganic fibers including asbestos which requires the observation with TEM or SEM, we measured those indices among Japanese and Korean cases. Though the concentration of ferruginous body in lung tissue is an important index of asbestos exposure, uncoated fibers observed with phase-contrast microscope might be another index especially in such cases with relatively low exposure due to their history of living in a general environment. However, to establish the reliability of uncoated fibers as an index of asbestos exposure, analysis with more cases and from various backgrounds must be carried out.
Collapse
Affiliation(s)
- Takayoshi SUZUKI
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Japan
- Department of Legal Medicine, Aichi Medical University School of Medicine, Japan
| | - Yoko SAKAKIBARA
- Center for Health and Environment, Aichi University of Education, Japan
| | | | | | - Il-Je YU
- Institute of Nanoproduct Safety Research, Hoseo University, Republic of Korea
| | - Hyun-Sul LIM
- Department of Preventive Medicine, College of Medicine, Dongguk University, Korea
| | - Hiroshige MIKAMO
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Hiroshi SENO
- Department of Legal Medicine, Aichi Medical University School of Medicine, Japan
| | - Fumio KOBAYASHI
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Japan
| | - Eiji SHIBATA
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Japan
| |
Collapse
|
48
|
Yang HY, Huang SH, Shie RH, Chen PC. Cancer mortality in a population exposed to nephrite processing. Occup Environ Med 2016; 73:528-36. [DOI: 10.1136/oemed-2016-103586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/25/2016] [Indexed: 01/30/2023]
|
49
|
Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, Gao H, Koski K, Hurt R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 2016; 45:1750-80. [PMID: 26923057 PMCID: PMC4820079 DOI: 10.1039/c5cs00914f] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Xin Yi
- School of Engineering, USA.
| | | | - Agnes Kane
- Department of Pathology and Laboratory Medicine, USA. and Institute for Molecular and Nanoscale Innovation, USA
| | | | - Kristie Koski
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Robert Hurt
- School of Engineering, USA. and Institute for Molecular and Nanoscale Innovation, USA
| |
Collapse
|
50
|
A Review on the Respiratory System Toxicity of Carbon Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030325. [PMID: 26999172 PMCID: PMC4808988 DOI: 10.3390/ijerph13030325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 12/05/2022]
Abstract
The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.
Collapse
|