1
|
Renko JM, Mahato AK, Visnapuu T, Valkonen K, Karelson M, Voutilainen MH, Saarma M, Tuominen RK, Sidorova YA. Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. JOURNAL OF PARKINSONS DISEASE 2021; 11:1023-1046. [PMID: 34024778 PMCID: PMC8461720 DOI: 10.3233/jpd-202400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.
Collapse
Affiliation(s)
- Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tanel Visnapuu
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Konsta Valkonen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Merja H Voutilainen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Christensen C, Þorsteinsson H, Maier VH, Karlsson KÆ. Multi-parameter Behavioral Phenotyping of the MPP+ Model of Parkinson's Disease in Zebrafish. Front Behav Neurosci 2021; 14:623924. [PMID: 33390914 PMCID: PMC7775599 DOI: 10.3389/fnbeh.2020.623924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) has been modeled in several animal species using the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its oxidized product 1-methyl-4-phenylpyridinium (MPP+). MPP+ selectively kills dopaminergic neurons in pars compacta of the substantia nigra, inducing parkinsonian symptoms in animals. Typically, neurotoxicity models of PD in zebrafish assess acute drug effects on locomotion. In the present study, we examined the lasting effects of MPP+ exposure and drug treatment in zebrafish larvae. Larvae were incubated in 500 μM MPP+, from 1 to 5 days post fertilization (dpf), followed by 24 h drug-free acclimation. At 6 dpf, the behavior was analyzed for locomotion, thigmotaxis, and sleep. Next, in separate assays we assessed the drug effects of brain injected glial cell-derived neurotrophic factor (GDNF) and 4-phenylbutyrate (PBA), co-incubated with MPP+. We show that MPP+ exposure consistently reduces swim distance, movement frequency, and cumulative time of movement; thus mimicking a parkinsonian phenotype of reduced movement. In contrast, MPP+ exposed larvae demonstrate reduced anxiety-like behavior and exhibit a sleep phenotype inconsistent with human PD: the larvae display longer sleep bouts, less sleep fragmentation, and more sleep. Previously reported rescuing effects of PBA were not replicated in this study. Moreover, whereas GDNF attenuated the sleep phenotype induced by MPP+, PBA augmented it. The current data suggest that MPP+ exposure generates a multifaceted phenotype in zebrafish and highlights that analyzing a narrow window of data can reveal effects that may be inconsistent with longer multi-parameter approaches. It further indicates that the model generally captures motor symptoms more faithfully than non-motor symptoms.
Collapse
Affiliation(s)
| | | | | | - Karl Ægir Karlsson
- 3Z Ehf, Reykjavik, Iceland.,Biomedical Center, University of Iceland, Reykjavik, Iceland.,Department of Engineering, School of Technology, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
3
|
Mahato AK, Kopra J, Renko J, Visnapuu T, Korhonen I, Pulkkinen N, Bespalov MM, Domanskyi A, Ronken E, Piepponen TP, Voutilainen MH, Tuominen RK, Karelson M, Sidorova YA, Saarma M. Glial cell line-derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo. Mov Disord 2020; 35:245-255. [PMID: 31840869 PMCID: PMC7496767 DOI: 10.1002/mds.27943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Juho‐Matti Renko
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Tanel Visnapuu
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Ilari Korhonen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Nita Pulkkinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Maxim M. Bespalov
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Andrii Domanskyi
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | | | - T. Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Merja H. Voutilainen
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Raimo K. Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | | | - Yulia A. Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Mart Saarma
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the α2-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson's disease. Brain Behav Immun 2018; 69:456-469. [PMID: 29339319 DOI: 10.1016/j.bbi.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 01/14/2023] Open
Abstract
The impact of treatment with the noradrenaline (NA) re-uptake inhibitor atomoxetine and the α2-adrenoceptor (AR) antagonist idazoxan in an animal model of Parkinson's disease (PD) was assessed. Concurrent systemic treatment with atomoxetine and idazoxan, a combination which serves to enhance the extra-synaptic availability of NA, exerts anti-inflammatory and neuroprotective effects following delivery of an inflammatory stimulus, the bacterial endotoxin, lipopolysaccharide (LPS) into the substantia nigra. Lesion-induced deficits in motor function (akinesia, forelimb-use asymmetry) and striatal dopamine (DA) loss were rescued to varying degrees depending on the treatment. Treatment with atomoxetine following LPS-induced lesion to the substantia nigra, yielded a robust anti-inflammatory effect, suppressing microglial activation and expression of the pro-inflammatory cytokine TNF-α whilst increasing the expression of neurotrophic factors. Furthermore atomoxetine treatment prevented loss of tyrosine hydroxylase (TH) positive nigral dopaminergic neurons and resulted in functional improvements in motor behaviours. Atomoxetine alone was sufficient to achieve most of the observed effects. In combination with idazoxan, an additional improvement in the impairment of contralateral limb use 7 days post lesion and a reduction in amphetamine-mediated rotational asymmetry 14 days post-lesion was observed, compared to atomoxetine or idazoxan treatments alone. The results indicate that increases in central NA tone has the propensity to regulate the neuroinflammatory phenotype in vivo and may act as an endogenous neuroprotective mechanism where inflammation contributes to the progression of DA loss. In accordance with this, the clinical use of agents such as NA re-uptake inhibitors and α2-AR antagonists may prove useful in enhancing the endogenous neuroimmunomodulatory potential of NA in conditions associated with brain inflammation.
Collapse
|
5
|
Mcgrath J, Lintz E, Hoffer BJ, Gerhardt GA, Quintero EM, Granholm AC. Adeno-Associated Viral Delivery of GDNF Promotes Recovery of Dopaminergic Phenotype following a Unilateral 6-Hydroxydopamine Lesion. Cell Transplant 2017. [DOI: 10.3727/096020198389988] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for dopamine neurons that has been proposed for use in the treatment of Parkinson's disease (PD). Previous studies using viral vectors to deliver GDNF in rodent models of PD have entailed administering the virus either prior to or immediately after neurotoxin-induced lesions, when the nigrostriatal pathway is largely intact, a paradigm that does not accurately reflect the clinical situation encountered with Parkinson's patients. In this study, recombinant adeno-associated virus carrying the gene encoding GDNF (rAAV-GDNF) was administered to animals bearing a maximal lesion in the nigrostriatal system, more closely resembling fully developed PD. Rats were treated with 6-hydroxydopamine into the medial forebrain bundle and assessed by apomorphine-induced rotational behavior for 5 weeks prior to virus administration. Within 4 weeks of a single intrastriatal injection of rAAV-GDNF, unilaterally lesioned animals exhibited significant behavioral recovery, which correlated with increased expression of dopaminergic markers in the substantia nigra, the medial forebrain bundle, and the striatum. Our findings demonstrate that rAAV-GDNF is capable of rescuing adult dopaminergic neurons from near complete phenotypic loss following a neurotoxic lesion, effectively restoring a functional dopaminergic pathway and diminishing motoric deficits. These data provide further support for the therapeutic potential of rAAV-GDNF-based gene therapy in the treatment of PD.
Collapse
Affiliation(s)
| | - Elishia Lintz
- University of Colorado Health Science Center, Denver, CO
| | - Barry J. Hoffer
- Intramural Research Program National Institute on Drug Abuse, Baltimore, MD
| | - Greg A. Gerhardt
- Departments of Anatomy & Neurobiology, and Neurology, and the Morris K. Udall Parkinson's Disease Research Center of Excellence, and the Center for Sensor Technology, University of Kentucky, Chandler Medical Center, Lexington, KY
| | - E. Matthew Quintero
- ¶Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Ann-Charlotte Granholm
- ¶Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
6
|
Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 2015; 17:e8. [DOI: 10.1017/erm.2015.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the progressive loss of midbrain dopaminergic neurons, which causes motor impairments. Current treatments involve dopamine replacement to address the disease symptoms rather than its cause. Factors that promote the survival of dopaminergic neurons have been proposed as novel therapies for PD. Several dopaminergic neurotrophic factors (NTFs) have been examined for their ability to protect and/or restore degenerating dopaminergic neurons, both in animal models and in clinical trials. These include glial cell line-derived neurotrophic factor, neurturin, cerebral dopamine neurotrophic factor and growth/differentiation factor 5. Delivery of these NTFs via injection or infusion to the brain raises several practical problems. A new delivery approach for NTFs involves the use of recombinant viral vectors to enable long-term expression of these factors in brain cells. Vectors used include those based on adenoviruses, adeno-associated viruses and lentiviruses. Here we review progress to date on the potential of each of these four NTFs as novel therapeutic strategies for PD, as well as the challenges that have arisen, from pre-clinical analysis to clinical trials. We conclude by discussing recently-developed approaches to optimise the delivery of NTF-carrying viral vectors to the brain.
Collapse
|
7
|
Kordower JH, Bjorklund A. Trophic factor gene therapy for Parkinson's disease. Mov Disord 2013; 28:96-109. [PMID: 23390096 DOI: 10.1002/mds.25344] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative movement disorder for which there is presently no cure. Pharmacological remedies targeting the dopaminergic network are relatively effective at ameliorating motor deficits, especially in the early stages of the disease, but none of these therapies are curative and many generate their own problems. Recent advances in PD research have demonstrated that gene delivery of trophic factors, glial cell line-derived neurotrophic factor (GDNF) and neurturin, in particular, can provide structural and functional recovery in rodent and nonhuman primate models of PD. Similar success has been gleaned in open-label clinical trials, although this has yet to be realized in double-blinded analyses. This work reviews the field of trophic factor gene delivery for PD.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
8
|
Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, Lindahl M, Tuominen RK, Saarma M, Hoffer B, Wang Y. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant 2011; 21:1213-23. [PMID: 21943517 DOI: 10.3727/096368911x600948] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a recently discovered protein, which belongs to the evolutionarily conserved CDNF/MANF family of neurotrophic factors. The degeneration of dopamine neurons following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment is well characterized, and efficacy in this model is considered a standard criterion for development of parkinsonian therapies. MPTP is a neurotoxin, which produces parkinsonian symptoms in humans and in C57/Bl6 mice. To date, there are no reports about the effects of CDNF on dopamine neuron survival or function in the MPTP rodent model, a critical gap. Therefore, we studied whether CDNF has neuroprotective and neurorestorative properties for the nigrostriatal dopamine system after MPTP injections in C57/Bl6 mice. We found that bilateral striatal CDNF injections, given 20 h before MPTP, improved horizontal and vertical motor behavior. CDNF pretreatment increased tyrosine hydroxylase (TH) immunoreactivity in the striatum and in the substantia nigra pars reticulata (SNpr), as well as the number of TH-positive cells in substantia nigra pars compacta (SNpc). Posttreatment with CDNF, given 1 week after MPTP injections, increased horizontal and vertical motor behavior of mice, as well as dopamine fiber densities in the striatum and the number of TH-positive cells in SNpc. CDNF did not alter any of the analyzed dopaminergic biomarkers or locomotor behavior in MPTP-untreated animals. We conclude that striatal CDNF administration is both neuroprotective and neurorestorative for the TH-positive cells in the nigrostriatal dopamine system in the MPTP model, which supports the development of CDNF-based treatment for Parkinson's disease.
Collapse
Affiliation(s)
- Mikko Airavaara
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Neurotrophic factors for the treatment of Parkinson's disease. Cytokine Growth Factor Rev 2011; 22:157-65. [DOI: 10.1016/j.cytogfr.2011.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/20/2011] [Indexed: 11/20/2022]
|
10
|
Cell-Penetrating Fragments of the Cdk5 Regulatory Subunit Are Protective in Models of Neurodegeneration. Pharmaceuticals (Basel) 2010; 3:1232-1240. [PMID: 27713298 PMCID: PMC4034031 DOI: 10.3390/ph3041232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/29/2022] Open
Abstract
Cdk5 is essential for neuronal differentiation processes in the brain. Activation of Cdk5 requires the association with the mostly neuron-specific p35 or p39. Overactivation of CDK5 by cleavage of p35 into p25 is thought to be involved in neurodegenerative processes. Here, we have tested an approach to inhibit pathological Cdk5 activation with a Tat-linked dominant-negative fragment of p25. It reduced cell death induced by staurosporine and showed a tendency to alleviate manganese-induced cell death, while it did not protect against 6-OHDA toxicity. Our results suggest that the Tat technique is a suitable tool to inhibit dysregulated CDK5.
Collapse
|
11
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
12
|
Emborg ME, Moirano J, Raschke J, Bondarenko V, Zufferey R, Peng S, Ebert AD, Joers V, Roitberg B, Holden JE, Koprich J, Lipton J, Kordower JH, Aebischer P. Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 2009; 36:303-11. [PMID: 19660547 PMCID: PMC2989601 DOI: 10.1016/j.nbd.2009.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023] Open
Abstract
This study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment. GDNF ELISA of striatal brain samples confirmed increased GDNF expression in lenti-GDNF treated aged animals that correlated with functional improvements and preserved nigrostriatal dopaminergic markers. Our results indicate that the aged primate brain challenged by MPTP administration has the potential to respond to trophic factor delivery and that the degree of neuroprotection depends on GDNF levels.
Collapse
Affiliation(s)
- M E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin - Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2009; 61:14-26. [PMID: 19840853 DOI: 10.1016/j.phrs.2009.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 01/11/2023]
Abstract
The clinical manifestation of most diseases of the central nervous system results from neuronal dysfunction or loss. Diseases such as stroke, epilepsy and neurodegeneration (e.g. Alzheimer's disease and Parkinson's disease) share common cellular and molecular mechanisms (e.g. oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction) that contribute to the loss of neuronal function. Neurotrophic factors (NTFs) are secreted proteins that regulate multiple aspects of neuronal development including neuronal maintenance, survival, axonal growth and synaptic plasticity. These properties of NTFs make them likely candidates for preventing neurodegeneration and promoting neuroregeneration. One approach to delivering NTFs to diseased cells is through viral vector-mediated gene delivery. Viral vectors are now routinely used as tools for studying gene function as well as developing gene-based therapies for a variety of diseases. Currently, many clinical trials using viral vectors in the nervous system are underway or completed, and seven of these trials involve NTFs for neurodegeneration. In this review, we discuss viral vector-mediated gene transfer of NTFs to treat neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | | | | |
Collapse
|
14
|
Chiocco MJ, Harvey BK, Wang Y, Hoffer BJ. Neurotrophic factors for the treatment of Parkinson's disease. Parkinsonism Relat Disord 2009; 13 Suppl 3:S321-8. [PMID: 18267258 DOI: 10.1016/s1353-8020(08)70024-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive disorder with no known etiology. Pathologically, there is a loss of the dopaminergic neurons in the substantia nigra that project to the striatum. Current available therapies for PD are targeted to the restoration of striatal dopamine. These approaches may alleviate symptoms transiently, but fail to slow the progression of disease. One emergent therapeutic approach is the use of neurotrophic factors to halt or reverse the loss of dopaminergic neurons. There have been intensive research efforts both preclinically and clinically testing the efficacy and safety of neurotrophic factors for the treatment of PD. In this review, we discuss the neuroprotective and neuroregenerative properties of various trophic factors, both old and recent, and their status as therapeutic molecules for PD.
Collapse
Affiliation(s)
- Matthew J Chiocco
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
15
|
Abstract
After nearly 20 years of preclinical experimentation with various gene delivery approaches in animal models of Parkinson's disease (PD), clinical trials are finally underway. The risk/benefit ratio for these procedures is now generally considered acceptable under approved protocols. The current vehicle for gene delivery to the human brain is recombinant adeno-associated viral vector, which is nonpathogenic and non-self-amplifying. Candidate genes tested in PD patients encode 1) glutamic acid decarboxylase, which is injected into the subthalamic nucleus to catalyze biosynthesis of the inhibitory neurotransmitter gamma-aminobutyric acid and so essentially mimic deep brain stimulation of this nucleus; 2) aromatic l-amino acid decarboxylase, which converts l-dopa to dopamine; and 3) neurturin, a member of the glial cell line-derived neurotrophic factor family. Unraveling the genetic underpinnings of PD could allow gene therapy to go beyond modulating neurotransmission or providing trophic effects to dopaminergic neurons by delivering a specific missing or defective gene. For example, the parkin gene (PARK2) is linked to recessively inherited PD due to loss of function mutations; it prevents alpha-synuclein-induced degeneration of nigral dopaminergic neurons in rats and nonhuman primates. On the other hand, for dominantly inherited Huntington's disease (HD), in which an expanded polyglutamine tract imparts to the protein huntingtin a toxic gain of function, repressing expression of the mutant allele in the striatum using RNA interference technology mitigates pathology and delays the phenotype in a mouse model. Here we review the current state of preclinical and clinical gene therapy studies conducted in PD and HD.
Collapse
Affiliation(s)
- Hideki Mochizuki
- grid.258269.20000000417622738Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
- grid.258269.20000000417622738Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
| | - Toru Yasuda
- grid.258269.20000000417622738Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyoku, 113-8421 Tokyo, Japan
| | - M. Maral Mouradian
- grid.430387.b0000000419368796Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 08854 Piscataway, New Jersey
| |
Collapse
|
16
|
Porras G, Bezard E. Preclinical development of gene therapy for Parkinson's disease. Exp Neurol 2008; 209:72-81. [PMID: 17904121 DOI: 10.1016/j.expneurol.2007.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
Multiple targets and pathways may be amenable to the development of gene therapy approaches for Parkinson's disease. This article discusses some of the cellular and brain circuit pathways relevant to Parkinson's disease that would be clinically amenable to gene therapy. Approaches could be classified according to two main categories, i.e. symptomatic vs. neuroprotective/neurorestorative strategies. Examples of the different possibilities currently in development are given and feature both dopaminergic and non-dopaminergic symptomatic treatments of parkinsonian symptoms and/or L-DOPA-induced side effects, anti-apoptotic neuroprotective strategies and growth-factor delivery for neuroprotection/neurorestoration. While gene therapy has been mostly used so far for enhancing the expression of the target gene, the use of dominant negative or siRNA opens new possibilities. This, combined with the key feature of gene delivery that offers access to intracellular signalling pathways, is likely to further expand the number of proposed targets to be studied.
Collapse
Affiliation(s)
- Grégory Porras
- CNRS UMR 5227, Universite Victor Segalen-Bordeaux 2, 33076, Bordeaux, France
| | | |
Collapse
|
17
|
Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med 2007; 2:425-46. [PMID: 17635050 DOI: 10.2217/17460751.2.4.425] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease and Alzheimer's disease are the most common neurodegenerative diseases in the elderly population. Given that age is the most important risk factor in these diseases, the number of patients is expected to rise dramatically in the coming years. Therefore, an effective therapy for these diseases is highly sought. Current treatment brings only temporary symptomatic relief and does not result in halting the progression of these diseases. The increasing knowledge on the molecular mechanisms that underlie these diseases enables the design of novel therapies, targeted at degenerating neurons by creating an optimal regenerative cellular environment. Here, we review the progress made in the field of cell-replacement and gene-therapy strategies. New developments in the application of embryonic stem cells and adult neuronal progenitors are discussed. We also discuss the use of genetically engineered cells in neuronal rescuing strategies that have recently advanced into the clinic. The first trials for the treatment of Alzheimer's disease and Parkinson's disease with this approach are ongoing.
Collapse
Affiliation(s)
- Joanna A Korecka
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Mandel SA, Sagi Y, Amit T. Rasagiline Promotes Regeneration of Substantia Nigra Dopaminergic Neurons in Post-MPTP-induced Parkinsonism via Activation of Tyrosine Kinase Receptor Signaling Pathway. Neurochem Res 2007; 32:1694-9. [PMID: 17701352 DOI: 10.1007/s11064-007-9351-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
The anti-Parkinson drug rasagiline (Azilect), an irreversible and selective monoamine oxidase (MAO)-B inhibitor, was shown to possess neuroprotective activities, involving multiple survival pathways among them the up-regulation of protein kinase C (PKC)alpha, PKCepsilon, the anti-apoptotic Bcl-2, Bcl-xL, and Bcl-w and the induction of brain-derived- and glial cell line-derived neurotrophic factors (BDNF, GDNF). More recently, employing conventional neurochemical techniques, as well as transcriptomic and proteomic screening tools, combined with a biology-based clustering method, it was shown that rasagiline also possesses neurorescue/neurogenesis activity in mice midbrain dopaminergic neurons when given chronically, post-MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). This action was attributed to the activation of cell signaling mediators associated with neurotrophic factors responsive-tyrosine kinase receptor (Trk) pathway, including ShcC, SOS, AF6, Rin1, and Ras and the increase in the Trk-downstream effecter phosphatidylinositol 3 kinase (PI3K) protein and its substrate, Akt/PKB. It is interesting to determine whether a similar effect is seen in Parkinsonian patients after long-term treatment with rasagiline, which may have implications as a possible disease modifying agent.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf Center of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Rappaport Faculty of Medicine, P.O. Box 9697, Haifa, 31096, Israel.
| | | | | |
Collapse
|
19
|
Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 2007; 1074:261-71. [PMID: 17105922 DOI: 10.1196/annals.1369.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in brain dopamine (DA) and serotonin (5-HT) content. Calcitriol, the active metabolite of vitamin D, has potent effects on brain cells, both in vitro and in vivo, including the ability to upregulate trophic factors and protect against various lesions. The present experiments were designed to examine the ability of calcitriol to protect against METH-induced reductions in striatal and nucleus accumbens levels of DA and 5-HT. Male Fischer-344 rats were administered vehicle or calcitriol (1 microg/kg, s.c.) once a day for eight consecutive days. After the seventh day of treatment the animals were given METH (5 mg/kg, s.c.) or saline four times in 1 day at 2-h intervals. Seven days later the striata and accumbens were harvested from the animals for high-performance liquid chromatography (HPLC) analysis of monoamines and metabolites. In animals treated with vehicle and METH, there were significant reductions in DA, 5-HT, and their metabolites in both the striatum and accumbens. In animals treated with calcitriol and METH, the magnitude of the METH-induced reductions in DA, 5-HT, and metabolites was substantially and significantly attenuated. The calcitriol treatments did not reduce the hyperthermia associated with multiple injections of METH, indicating that the neuroprotective effects of calcitriol are not due to the prevention of increases in body temperature. These results suggest that calcitriol can provide significant protection against the DA- and 5-HT-depleting effects of neurotoxic doses of METH.
Collapse
Affiliation(s)
- Wayne A Cass
- Department of Anatomy and Neurobiology, MN-225 Chandler Medical Center, University of KY, Lexington, KY 40536-0298, USA.
| | | | | |
Collapse
|
20
|
Abstract
It is feasible to restrict transgene expression to a tissue or region in need of therapy by using promoters that respond to focusable physical stimuli. The most extensively investigated promoters of this type are radiation-inducible promoters and heat shock protein gene promoters that can be activated by directed, transient heat. Temporal regulation of transgenes can be achieved by various two- or three-component gene switches that are triggered by an appropriate small molecule inducer. The most commonly considered gene switches that are reviewed herein are based on small molecule-responsive transactivators derived from bacterial tetracycline repressor, insect or mammalian steroid receptors, or mammalian FKBP12/FRAP. A new generation of gene switches combines a heat shock protein gene promoter and a small molecule-responsive gene switch and can provide for both spatial and temporal regulation of transgene activity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
21
|
Sagi Y, Mandel S, Amit T, Youdim MBH. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2006; 25:35-44. [PMID: 17055733 DOI: 10.1016/j.nbd.2006.07.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/04/2006] [Accepted: 07/25/2006] [Indexed: 01/15/2023] Open
Abstract
The anti-Parkinson monoamine oxidase (MAO)-B inhibitor rasagiline (Azilect) was shown to possess neuroprotective activities, involving the induction of brain-derived- and glial cell line-derived neurotrophic factors (BDNF, GDNF). Employing conventional neurochemical techniques, transcriptomics and proteomic screening tools combined with a biology-based clustering method, we show that rasagiline, given chronically post-MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), exerts neurorescue/neurotrophic activity in mice midbrain dopamine neurons. Rasagiline induced the activation of cell signaling mediators associated with neurotrophic factors responsive-tyrosine kinase receptor (Trk) pathway including ShcC, SOS, AF6, Rin1 and Ras and the increase in the Trk-downstream effector phosphatidylinositol 3 kinase (PI3K) protein. Confirmatory Western and immunohistochemical analyses indicated activation of the substrate of PI3K, Akt and phosphorylative inactivation of glycogen synthase kinase-3beta and Raf1. Thus, the activation of Ras-PI3K-Akt survival pathway may contribute to rasagiline-mediated neurorescue effect. It is interesting to determine whether a similar effect is seen in parkinsonian patients after long-term treatment with rasagiline.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Dopamine/physiology
- Dopamine Agents
- Enzyme Activation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Indans/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Monoamine Oxidase Inhibitors/pharmacology
- Nerve Degeneration/pathology
- Nerve Degeneration/prevention & control
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/pathology
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Substantia Nigra/drug effects
- Substantia Nigra/pathology
- Substantia Nigra/physiology
Collapse
Affiliation(s)
- Yotam Sagi
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, POB 9697, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
22
|
Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12:189-211. [PMID: 15946903 PMCID: PMC2676204 DOI: 10.1016/j.ymthe.2005.03.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery systems. Substantial progress has been made in making gene transfer vehicles more efficient, less toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in successfully implementing gene therapies in the clinical setting is to be able to regulate gene expression very tightly and consistently as and when it is needed. The regulation ought to be achievable using a compound that should be nontoxic, be able to penetrate into the desired target tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when withdrawn or added (depending on the regulatable system used) gene expression can be turned "on" or "off" quickly and effectively. Also, the genetic switches employed should ideally be nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount importance not only when the therapy is no longer needed, but also in the case of the development of adverse side effects to the therapy. Many regulatable systems are currently under development and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in vivo preclinical applications. Despite this, there are no examples of switches that have been employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems currently under development, the gene transfer systems employed for their expression, and also the preclinical models in which they have been used successfully. We also discuss the substantial challenges that still remain before these regulatable switches can be employed in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. G. Castro
- To whom correspondence and reprint requests should be addressed. Fax: +1 (310) 423 7308. E-mail:
| |
Collapse
|
23
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
24
|
Eberhardt O, Schulz JB. Gene therapy in Parkinson?s disease. Cell Tissue Res 2004; 318:243-60. [PMID: 15322915 DOI: 10.1007/s00441-004-0947-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/29/2004] [Indexed: 12/24/2022]
Abstract
Gene therapy in Parkinson's disease appears to be at the brink of the clinical study phase. Future gene therapy protocols will be based on a substantial amount of preclinical data regarding the use of ex vivo and in vivo genetic modifications with the help of viral or non-viral vectors. To date, the supplementation of neurotrophic factors and substitution for the dopaminergic deficit have formed the focus of trials to achieve relief in animal models of Parkinson's disease. Newer approaches include attempts to influence detrimental cell signalling pathways and to inhibit overactive basal ganglia structures. Nevertheless, current models of Parkinson's disease do not mirror all aspects of the human disease, and important issues with respect to long-term protein expression, choice of target structures and transgenes and safety remain to be solved. Here, we thoroughly review available animal data of gene transfer in models of Parkinson's disease.
Collapse
Affiliation(s)
- O Eberhardt
- Department of General Neurology, Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | | |
Collapse
|
25
|
Jiang L, Rampalli S, George D, Press C, Bremer EG, O'Gorman MRG, Bohn MC. Tight regulation from a single tet-off rAAV vector as demonstrated by flow cytometry and quantitative, real-time PCR. Gene Ther 2004; 11:1057-67. [PMID: 15152187 DOI: 10.1038/sj.gt.3302245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vectors suitable for delivery of therapeutic genes to the CNS for chronic neurodegenerative diseases will require regulatable transgene expression. In this study, three self-regulating rAAV vectors encoding humanized green fluorescent protein (hGFP) were made using the tetracycline (tet)-off system. Elements were cloned in different orientations relative to each other and to the AAV internal terminal repeat (ITRs). The advantage of this vector system is that all infected cells will carry both the 'therapeutic' gene and the tet-regulator. To compare the efficiency of the vectors, 293T cells infected by each vector were grown in the presence or absence of the tet-analog doxycycline (dox). Cells were analyzed by flow cytometry for hGFP protein expression, and quantitative RT-PCR (QRT-PCR) for levels of hGFP mRNA and the tet-activator (tTA) mRNA. In the presence of dox, cells infected with one of the vectors, rAAVS3, showed less than 2% total fluorescent intensity and mRNA copy number than cells grown without dox. The other two vectors were significantly more leaky. Levels of tTA mRNA were not affected by dox. The S3 vector also displayed tight regulation in HeLa and HT1080 cells. To assess regulation in the brain, the S3 vector was injected into rat striatum and rats maintained on regular or dox-supplemented water. At 1 month after vector injection, numerous positive cells were observed in rats maintained on regular water whereas only rare positive cells with very low levels of fluorescence were observed in rats maintained on water containing dox. The QRT-PCR analysis showed that dox inhibited expression of hGFP mRNA in brain by greater than 99%. These results demonstrate that exceedingly tight regulation of transgene expression is possible using the tet-off system in the context of a self-regulating rAAV vector and that the specific orientation of two promoters relative to each other and to the ITRs is important. Regulatable vectors based on this design are ideal for therapeutic gene delivery to the CNS.
Collapse
Affiliation(s)
- L Jiang
- 1Department of Pediatrics, Children's Memorial Institute for Education & Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Unsinger J, Lindenmaier W, May T, Hauser H, Wirth D. Stable and strictly controlled expression of LTR-flanked autoregulated expression cassettes upon adenoviral transfer. Biochem Biophys Res Commun 2004; 319:879-87. [PMID: 15184065 DOI: 10.1016/j.bbrc.2004.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 10/26/2022]
Abstract
An autoregulatory bidirectional expression cassette encoding all components necessary for regulated gene expression in a one-step gene transfer was evaluated for use in adenoviral vectors. Adenoviral vectors transducing this cassette provide about 1000-fold regulation. Regulation could be further improved by integrating the cassette as a retroviral vector into the adenoviral backbone. Moreover, with these adeno/retroviral hybrid vectors, the frequency of chromosomal integration is enhanced and about 1% of infected cells show stable chromosomal integration of the autoregulated cassette. In these stably transduced cells high regulation capacity is maintained. To elucidate the molecular mechanism underlying this unexpected observation we investigated the regulation capacity of these cassettes in a viral and non-viral vector background after stable integration into the host's DNA. While naked cassettes show regulated expression that is strongly influenced by the chromosomal surrounding sequences the regulatory capacity of LTR flanked cassettes is highly comparable amongst different cell clones. This strict regulation with little influence from the flanking sequences is obtained when LTR-flanked cassettes are transduced as DNA, by retroviral or by adenoviral infection.
Collapse
Affiliation(s)
- Jacqueline Unsinger
- Department of Gene Regulation and Differentiation, GBF-National Research Institute for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, FRG, Germany
| | | | | | | | | |
Collapse
|
27
|
Tietge UJF, Kozarsky KF, Donahee MH, Rader DJ. A tetracycline-regulated adenoviral expression system for in vivo delivery of transgenes to lung and liver. J Gene Med 2003; 5:567-75. [PMID: 12825196 DOI: 10.1002/jgm.384] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recombinant adenoviruses are an established tool for somatic gene transfer to multiple cell types in animals as well as in tissue culture. However, generation of adenoviruses expressing transgenes that are potentially toxic to the host cell line represents a practical problem. The aim of this study was to construct an adenoviral expression system that prevents transgene expression during the generation and propagation of the virus, and allows efficient gene transfer to lung and liver, major target organs of gene therapy. METHODS Using the tet-off system we constructed tetracycline (tet) regulatable recombinant adenoviruses expressing the marker gene LacZ (Adtet-off.LacZ) as well as a secretory protein, human group IIA secretory phospholipase A(2) (Adtet-off.hsPLA(2)). Expression (Western blot, activity assay) was tested in vitro (HeLa cells), and in vivo by gene transfer to lung and liver. RESULTS Without addition of tetracycline we demonstrated expression of LacZ (Adtet-off.LacZ) and sPLA(2) (Adtet-off.hsPLA(2)) in HeLa cells. Providing additional tet-transactivator (tTA) protein either by stable transfection or coinfection with a tTA-expressing adenovirus resulted in a further increase of LacZ and sPLA(2) expression. Transgene expression in vitro was eliminated by the addition of tetracycline to the culture medium. Adtet-off.LacZ and Adtet-off.hsPLA(2) allowed successful gene transfer in vivo to lung and liver. While the expression was highly efficient within the lungs, however, additional tTA was necessary to achieve high-level expression within liver. CONCLUSIONS Tet-regulatable adenoviral expression systems may facilitate the construction of recombinant adenoviruses encoding potentially toxic transgenes and permit regulated transgene expression.
Collapse
Affiliation(s)
- Uwe J F Tietge
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
28
|
Segovia J. Gene therapy for Parkinson's disease: current status and future potential. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:135-46. [PMID: 12083948 DOI: 10.2165/00129785-200202020-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease appears to be a good candidate for gene therapy. The primary biochemical defect associated with the disease has been clearly determined as an absence of dopamine in the caudate-putamen, and the anatomical region where the neuropathologic hallmark of the disease, death of the nigral dopamine-producing neurons, occurs, remains circumscribed. Based on the biochemical and anatomical information gathered on Parkinson's disease, different gene therapy strategies have been devised to treat it. The first, and most explored strategy so far, consists in engineering cells to produce levodopa or dopamine so they will replace dopaminergic neurotransmission. Several types of cells have been employed in these experiments, and behavioral recovery has been reported in animal models of the disease. However, this approach cannot prevent neuronal death, nor reconstruct brain circuits. Another strategy is to protect cells by transferring genes that encode neurotrophic factors. Effort is now being concentrated into this research area, and promising results have recently been reported. Finally, an additional strategy aims at generating cells with a dopaminergic phenotype so they will be capable of replacing the missing dopaminergic neurons in biochemical, anatomical and functional terms. This has the potential to become an important constituent for an effective cure. Gene therapy holds significant promise for the treatment of neurodegenerative disorders, and Parkinson's disease treatment will benefit greatly from the knowledge and information arising from gene therapy research.
Collapse
Affiliation(s)
- José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, Mexico.
| |
Collapse
|
29
|
McBride JL, Kordower JH. Neuroprotection for Parkinson's disease using viral vector-mediated delivery of GDNF. PROGRESS IN BRAIN RESEARCH 2002; 138:421-32. [PMID: 12432782 DOI: 10.1016/s0079-6123(02)38091-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jodi L McBride
- Department of Neurological Sciences, Research Center for Brain Repair, Rush University, 2242 W. Harrison Street, Chicago, IL 60612, USA
| | | |
Collapse
|
30
|
Marco S, Canudas AM, Canals JM, Gavaldà N, Pérez-Navarro E, Alberch J. Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 2002; 174:243-52. [PMID: 11922665 DOI: 10.1006/exnr.2001.7859] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands are important regulators of neuronal development and maintenance of the connectivity in the basal ganglia and show neuroprotective activities in several paradigms of brain injury. The mRNAs of two members of this family, GDNF and neurturin, and also their receptors have been detected in the basal ganglia. In the present work, we analyzed the time course changes in the expression of these neurotrophic factors and receptors in the adult rat striatum, induced by quinolinate or kainate excitotoxicity. Our results show that stimulation of NMDA or non-NMDA receptors induced different effects on the mRNA levels analyzed. Expression of GDNF and its preferred receptor, GDNF family receptor-alpha1 (GFRalpha1), was transiently up-regulated by quinolinate and kainate, but with differing intensity and temporal pattern. Immunohistochemical analysis showed that, although GDNF and GFRalpha1 were initially localized in neurons, excitotoxicity induced the expression of these proteins in astrocyte-like cells. Neurturin mRNA levels were only up-regulated after quinolinate injection, whereas quinolinate or kainate injection did not modify GFRalpha2 mRNA. The mRNA for the common receptor, c-Ret, was up-regulated by both agonists with similar temporal pattern but with differing intensity. Immunohistochemical analysis showed that c-Ret protein was located on neurons. These changes in mRNA levels and protein localization of GDNF family components could reflect an endogenous trophic response of striatal cells to different excitotoxic insults.
Collapse
Affiliation(s)
- Sònia Marco
- Departament de Biologia Cel small middle dotlular i Anatomia Patològica, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Casanova 143, Barcelona, E-08036, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neurosci 2001. [PMID: 11124990 DOI: 10.1523/jneurosci.20-24-09126.2000] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces clinical, biochemical, and neuropathological changes reminiscent of those occurring in idiopathic Parkinson's disease (PD). Here we show that a peptide caspase inhibitor, N-benzyloxy-carbonyl-val-ala-asp-fluoromethyl ketone, or adenoviral gene transfer (AdV) of a protein caspase inhibitor, X-chromosome-linked inhibitor of apoptosis (XIAP), prevent cell death of dopaminergic substantia nigra pars compacta (SNpc) neurons induced by MPTP or its active metabolite 1-methyl-4-phenylpyridinium in vitro and in vivo. Because the MPTP-induced decrease in striatal concentrations of dopamine and its metabolites does not differ between AdV-XIAP- and control vector-treated mice, this protection is not associated with a preservation of nigrostriatal terminals. In contrast, the combination of adenoviral gene transfer of XIAP and of the glial cell line-derived neurotrophic factor to the striatum provides synergistic effects, rescuing dopaminergic SNpc neurons from cell death and maintaining their nigrostriatal terminals. These data suggest that a combination of a caspase inhibitor, which blocks death, and a neurotrophic factor, which promotes the specific function of the rescued neurons, may be a promising strategy for the treatment of PD.
Collapse
|
32
|
Yagi T, Jikihara I, Fukumura M, Watabe K, Ohashi T, Eto Y, Hara M, Maeda M. Rescue of ischemic brain injury by adenoviral gene transfer of glial cell line-derived neurotrophic factor after transient global ischemia in gerbils. Brain Res 2000; 885:273-82. [PMID: 11102581 DOI: 10.1016/s0006-8993(00)02956-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor (TGF)-beta superfamily, is one of the most potent neurotrophic factors and promotes survival of many populations of cells. We examined neuroprotective effect of an adenoviral vector encoding glial cell line-derived neurotrophic factor (AxCAhGDNF) on the transient global ischemia. Gerbils received administration of AxCAhGDNF or an adenoviral vector encoding bacterial beta-galactosidase gene (AxCALacZ) through the lateral ventricle. Two days later, occluding bilateral common carotid arteries for 5 min using aneurysm clips produced the transient global forebrain ischemia. Animals showed intense immunolabeling for GDNF in ependymal cells on 2, 4 and 7 days after the operation. The exogenous gene transducted by adenovirus in the same cells was detected by in situ hybridization. The treatment with AxCAhGDNF significantly prevented the loss of hippocampal CA1 pyramidal neurons 2 to 7 days after the operation, as compared to AxCALacZ treatment. Also terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) staining was markedly reduced in the case with AxCAhGDNF treatment at 7 days after the operation. These results indicated that the adenovirus-mediated gene transfer of GDNF might prevent the delayed neuronal death of stroke and other disorders of the cerebral vasculature.
Collapse
Affiliation(s)
- T Yagi
- First Department of Anatomy, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Watabe K, Ohashi T, Sakamoto T, Kawazoe Y, Takeshima T, Oyanagi K, Inoue K, Eto Y, Kim SU. Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 2000; 60:511-9. [PMID: 10797554 DOI: 10.1002/(sici)1097-4547(20000515)60:4<511::aid-jnr10>3.0.co;2-i] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been shown to protect cranial and spinal motoneurons, that suggests potential uses of GDNF in the treatment of spinal cord injury and motor neuron diseases. We examined neuroprotective effect of human GDNF encoded by an adenovirus vector (AxCAhGDNF) on the death of lesioned adult rat spinal motoneurons. The seventh cervical segment (C7) ventral and dorsal roots and dorsal root ganglia of adult Fisher 344 rats were avulsed, and AxCAhGDNF, AxCALacZ (adenovirus encoding beta-galactosidase gene) or PBS was inoculated in C7 vertebral foramen. One week after the avulsion and treatment with AxCALacZ, the animals showed expression of beta-galactosidase activity in lesioned spinal motoneurons. Animals avulsed and treated with AxCAhGDNF showed intense immunolabeling for GDNF in lesioned spinal motoneurons and expression of virus-induced human GDNF mRNA transcripts in the lesioned spinal cord tissue. Nissl-stained cell counts revealed that the treatment with AxCAhGDNF significantly prevented the loss of lesioned ventral horn motoneurons 2 to 8 weeks after avulsion, as compared to AxCALacZ or PBS treatment. Furthermore, the AxCAhGDNF treatment ameliorated choline acetyltransferase immunoreactivity in the lesioned motoneurons after avulsion. These results indicate that the adenovirus-mediated gene transfer of GDNF may prevent the degeneration of motoneurons in adult humans with spinal cord injury and motor neuron diseases.
Collapse
Affiliation(s)
- K Watabe
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Matsuo A, Nakamura S, Akiguchi I. Immunohistochemical localization of glial cell line-derived neurotrophic factor family receptor alpha-1 in the rat brain: confirmation of expression in various neuronal systems. Brain Res 2000; 859:57-71. [PMID: 10720615 DOI: 10.1016/s0006-8993(99)02442-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The localization of glial cell line-derived neurotrophic factor (GDNF) family receptor alpha-1 (GFRalpha-1) was investigated in rat brain by immunohistochemistry using a polyclonal antibody against a specific sequence of the rat protein. For raising the antisera in rabbits, we synthesized the oligopeptide SDVFQQVEHISKGN that corresponds to residues 139 to 152 of rat GFRalpha-1. On immunospot assay, 0.5 microg/ml of an affinity-purified antibody was capable of detecting 7.8 pmol of the rat GFRalpha-1 oligopeptides. When rat brain homogenates were examined by Western blots, the antibody revealed two main bands with molecular weights of approximately 47 kDa and 53 kDa, corresponding to the known sizes of GFRalpha-1. Immunohistochemistry in rat brain demonstrated that GFRalpha-1-like immunoreactivity was present in neurons but not in glial cells. The localization of GFRalpha-1-like immunoreactivity was largely consistent with that of the corresponding GFRalpha-1 mRNA. Positive neurons were distributed widely in various brain regions, but were particularly abundant in such regions as the olfactory bulb, diagonal band, substantia innominata, zona incerta, substantia nigra, cerebellar cortex, nuclei of the cranial nerves including auditory system and spinal motoneurons. The present study showed that GFRalpha-1 in the normal central nervous system is expressed preferentially in certain multiple neuronal systems that include cholinergic system as well as dopaminergic system and motor neurons. As GFRalpha-1 protein was found in numerous brain structures, GDNF family ligands may have therapeutic application not only in degenerative diseases affecting in specific nervous systems, such as Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy, but in diffusely damaging diseases like cerebrovascular diseases.
Collapse
Affiliation(s)
- A Matsuo
- Department of Neurology, Kyoto University, 54 Shougoinkawara-cho, Sakyo-ku, Japan.
| | | | | |
Collapse
|
35
|
Kitagawa H, Sasaki C, Sakai K, Mori A, Mitsumoto Y, Mori T, Fukuchi Y, Setoguchi Y, Abe K. Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents ischemic brain injury after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1999; 19:1336-44. [PMID: 10598938 DOI: 10.1097/00004647-199912000-00007] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To examine a possible protective effect of exogenous glial cell line-derived neurotrophic factor (GDNF) gene expression against ischemic brain injury, a replication-defective adenoviral vector containing GDNF gene (Ad-GDNF) was directly injected into the cerebral cortex at 1 day before 90 minutes of transient middle cerebral artery occlusion (MCAO) in rats. 2,3,5-Triphenyltetrazolium chloride staining showed that infarct volume of the Ad-GDNF-injected group at 24 hours after the transient MCAO was significantly smaller than that of vehicle- or Ad-LacZ-treated group. Enzyme-linked immunosorbent assay (ELISA) for immunoreactive GDNF demonstrated that GDNF gene products in the Ad-GDNF-injected group were higher than those of vehicle-treated group at 24 hours after transient MCAO. Immunoreactive GDNF staining was obviously detected in the cortex around the needle track just before or 24 hours after MCAO in the Ad-GDNF group, whereas no or slight GDNF staining was detected in the vehicle group. The numbers of TUNEL, immunoreactive caspase-3, and cytochrome c-positive neurons induced in the ipsilateral cerebral cortex at 24 hours after transient MCAO were markedly reduced by the Ad-GDNF group. These results suggest that the successful exogenous GDNF gene transfer ameliorates ischemic brain injury after transient MCAO in association with the reduction of apoptotic signals.
Collapse
Affiliation(s)
- H Kitagawa
- Department of Neurology, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, Cochran EJ, Mufson EJ, Penn R, Goetz CG, Comella CD. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol 1999; 46:419-24. [PMID: 10482276 DOI: 10.1002/1531-8249(199909)46:3<419::aid-ana21>3.0.co;2-q] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As part of a safety and tolerability study, a 65-year-old man with Parkinson's disease (PD) received monthly intracerebroventricular injections of glial-derived neurotrophic factor (GDNF). His parkinsonism continued to worsen following intracerebroventricular GDNF treatment. Side effects included nausea, loss of appetite, tingling, L'hermitte's sign, intermittent hallucinations, depression, and inappropriate sexual conduct. There was no evidence of significant regeneration of nigrostriatal neurons or intraparenchymal diffusion of the intracerebroventricular GDNF to relevant brain regions. Alternative GDNF delivery systems should be explored.
Collapse
Affiliation(s)
- J H Kordower
- Department of Neurological Sciences, Rush-Presbyterian-St Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cass WA, Walker DJ, Manning MW. Augmented methamphetamine-induced overflow of striatal dopamine 1 day after GDNF administration. Brain Res 1999; 827:104-12. [PMID: 10320698 DOI: 10.1016/s0006-8993(99)01314-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) can attenuate the dopamine (DA)-depleting effects of neurotoxic doses of methamphetamine (METH) when given 1 day prior to the METH. The neurotoxic effects of METH may be due, in part, to sustained increases in extracellular levels of DA. It is therefore possible that GDNF may be altering the effects of METH by influencing extracellular levels of DA during the METH treatment. The purpose of the present study was to determine if GDNF has effects on extracellular levels of DA in the striatum by 24-h post-administration. GDNF (10 microgram in 2 microliter vehicle) or vehicle was injected into the right striatum or substantia nigra of anesthetized male rats. The next day the animals were anesthetized again and dialysis probes were positioned in both the right and left striata and perfused with artificial cerebrospinal fluid. Following the collection of baseline samples the rats were administered METH (5 mg/kg, s.c.). The METH injections dramatically increased extracellular DA levels on both sides of the brain. However, levels on the GDNF injected side were significantly greater than levels on the contralateral side. Basal levels of DA were not significantly different between the two sides, but levels of DA metabolites were elevated on the GDNF side. Post-mortem tissue levels of DA metabolites, but not DA, were also elevated in the striatum and substantia nigra. These results indicate that GDNF has significant effects on DA neuron functioning within 24 h of administration and that GDNF can augment DA overflow while inhibiting the neurotoxic effects of METH.
Collapse
Affiliation(s)
- W A Cass
- Department of Anatomy and Neurobiology, MN 224 Chandler Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | | | |
Collapse
|
38
|
Corti O, Sabaté O, Horellou P, Colin P, Dumas S, Buchet D, Buc-Caron MH, Mallet J. A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat Biotechnol 1999; 17:349-54. [PMID: 10207882 DOI: 10.1038/7901] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ex vivo gene transfer is emerging as a promising therapeutic approach to human neurodegenerative diseases. By combining efficient methodologies for cell amplification and gene delivery, large numbers of cells can be generated with the capacity to synthesize therapeutic molecules. These cells can then be transplanted into the degenerating central nervous system (CNS). Applying this approach to human diseases will require the development of suitable cellular vehicles, as well as safe gene delivery systems capable of tightly controlled transgene expression. For such brain repair technologies, human neural progenitors may be extremely valuable, because of their human CNS origin and developmental potential. We have used these cells to develop a system for the regulated expression of a gene of therapeutic potential. We report the construction of a single adenovirus encoding human tyrosine hydroxylase 1 (hTH-1) under the negative control of the tetracycline-based gene regulatory system. Human neural progenitors infected with this vector produced large amounts of hTH-1. Most importantly, doxycycline allowed a reversible switch of transgene transcription both in vitro and in vivo. This system may be applied to the development of therapies for human neurodegenerative diseases.
Collapse
Affiliation(s)
- O Corti
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, C.N.R.S., Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yagi M, Magal E, Sheng Z, Ang KA, Raphael Y. Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor. Hum Gene Ther 1999; 10:813-23. [PMID: 10210148 DOI: 10.1089/10430349950018562] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminoglycosides are commonly used antimicrobial drugs that often have ototoxic side effects. The ototoxicity often involves permanent loss of cochlear hair cells (HCs). Neurotrophic factors have been shown to protect a variety of tissues, including HCs, from toxic trauma. To determine if glial cell line-derived neurotrophic factor (GDNF) can protect cochlear HCs from trauma, we inoculated an adenoviral vector encoding the human GDNF gene into guinea pig cochleae via the round window membrane 4 days prior to injection of aminoglycosides. Control groups showed little or no negative influence of the viral inoculation on cochlear structure and function. In contrast, ears that were inoculated with the GDNF vector had better hearing and fewer missing HCs after exposure to the ototoxins, as compared with controls. Our results demonstrate the feasibility of gene therapy for cochlear application and suggest that virus-mediated overexpression of GDNF may be developed as a valuable prevention against trauma-induced HC death.
Collapse
Affiliation(s)
- M Yagi
- Kresge Hearing Research Institute, The University of Michigan, Ann Arbor 48109-0648, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Glial cell line-derived neurotrophic factor (GDNF), when administered before 6-hydroxydopamine (6-OHDA), has been shown to prevent the reduction in nigral dopamine (DA) levels and tyrosine hydroxylase-positive neurons normally observed after 6-OHDA lesions. The present study examined the ability of GDNF to prevent 6-OHDA-induced reductions in striatal DA release and reductions in striatal and nigral DA levels. GDNF (10 micrograms), or vehicle, was injected into the right nigra of anesthetized male Fischer-344 rats and was followed 6 hr later by intranigral 6-OHDA or saline. Three to four weeks later the animals were anesthetized with urethane and prepared for in vivo electrochemistry. Potassium-evoked overflow of DA was dramatically decreased in the right striatum of the vehicle + 6-OHDA-treated animals. GDNF appeared to prevent the reduction in evoked overflow of DA in the right striatum of the 6-OHDA-treated animals. However, in comparison with that in animals that received GDNF + saline, the overflow of DA was significantly reduced in the GDNF + 6-OHDA animals. Similarly, although nigral levels of DA were above normal in the GDNF + 6-OHDA-treated animals, they were below DA levels found in GDNF + saline-treated rats. Striatal DA levels were partially protected by GDNF. In animals examined 10-12 weeks after the GDNF and 6-OHDA treatments, the apparent protective ability of GDNF on the evoked overflow of DA in the striatum was diminished. Thus, although intranigral GDNF can prevent 6-OHDA-induced reductions in nigral DA levels, long-term protection of the evoked overflow of DA in the striatum is minimal.
Collapse
|
41
|
Choi-Lundberg DL, Lin Q, Schallert T, Crippens D, Davidson BL, Chang YN, Chiang YL, Qian J, Bardwaj L, Bohn MC. Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 1998; 154:261-75. [PMID: 9878166 DOI: 10.1006/exnr.1998.6887] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we observed that an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF), injected near the rat substantia nigra (SN), protects SN dopaminergic (DA) neuronal soma from 6-hydroxydopamine (6-OHDA)-induced degeneration. In the present study, the effects of Ad GDNF injected into the striatum, the site of DA nerve terminals, were assessed in the same lesion model. So that effects on cell survival could be assessed without relying on DA phenotypic markers, fluorogold (FG) was infused bilaterally into striatae to retrogradely label DA neurons. Ad GDNF or control treatment (Ad mGDNF, encoding a deletion mutant GDNF, Ad lacZ, vehicle, or no injection) was injected unilaterally into the striatum near one FG site. Progressive degeneration of DA neurons was initiated 7 days later by unilateral injection of 6-OHDA at this FG site. At 42 days after 6-OHDA, Ad GDNF prevented the death of 40% of susceptible DA neurons that projected to the lesion site. Ad GDNF prevented the development of behavioral asymmetries which depend on striatal dopamine, including limb use asymmetries during spontaneous movements along vertical surfaces and amphetamine-induced rotation. Both behavioral asymmetries were exhibited by control-treated, lesioned rats. Interestingly, these behavioral protections occurred in the absence of an increase in the density of DA nerve fibers in the striatum of Ad GDNF-treated rats. ELISA measurements of transgene proteins showed that nanogram quantities of GDNF and lacZ transgene were present in the striatum for 7 weeks, and picogram quantities of GDNF in the SN due to retrograde transport of vector and/or transgene protein. These studies demonstrate that Ad GDNF can sustain increased levels of biosynthesized GDNF in the terminal region of DA neurons for at least 7 weeks and that this GDNF slows the degeneration of DA neurons and prevents the appearance of dopamine dependent motor asymmetries in a rat model of Parkinson's disease (PD). GDNF gene therapy targeted to the striatum, a more surgically accessible site than the SN, may be clinically applicable to humans with PD.
Collapse
Affiliation(s)
- D L Choi-Lundberg
- Department of Neurobiology and Anatomy, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|