1
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
2
|
Sánchez ML, Coveñas R. The Galaninergic System: A Target for Cancer Treatment. Cancers (Basel) 2022; 14:3755. [PMID: 35954419 PMCID: PMC9367524 DOI: 10.3390/cancers14153755] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes, metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and actions, depending on the particular G protein involved and the tumor cell type. In general, the activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show the importance of the galaninergic system in the development of certain tumors and suggest future potential clinical antitumor applications using GAL agonists or antagonists.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
| | - Rafael Coveñas
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
- Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes (Basel) 2021; 13:genes13010081. [PMID: 35052420 PMCID: PMC8774514 DOI: 10.3390/genes13010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.
Collapse
|
4
|
Epigenetic age prediction in semen - marker selection and model development. Aging (Albany NY) 2021; 13:19145-19164. [PMID: 34375949 PMCID: PMC8386575 DOI: 10.18632/aging.203399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Collapse
|
5
|
Oliveira Volpe CM, Vaz T, Rocha-Silva F, Villar-Delfino PH, Nogueira-Machado JA. Is Galanin a Promising Therapeutic Resource for Neural and Nonneural Diseases? Curr Drug Targets 2021; 21:922-929. [PMID: 32096740 DOI: 10.2174/1389450121666200225112055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Galanin (GAL) constitutes a family of neuropeptides composed of four peptides: (i) galanin (GAL), (ii) galanin-message associated peptide (GAMP), (iii) galanin-like peptide (GALP), and (iv) alarin. GAL contains 29/30 amino acids, and its biological action occurs through the interactions with its various receptors (GALR1, GALR2, and GALR3). The neuropeptide GAL regulates several physiological and pathophysiological functions in the central nervous system, the peripheral nervous system, and the peripheral organs. GAL is secreted mainly by oligodendrocytes, astrocytes, and the gastrointestinal tract, and its effect depends on the interaction with its different receptors. These receptors are expressed mainly in the central, peripheral nervous systems and the intestines. OBJECTIVE The present review evaluates the role of GAL family in inflammatory diseases. An overview is given of the signaling and pharmacological effects due to the interaction between GAL and GALR in different cell types. The potential use of GAL as a therapeutic resource is critically discussed. CONCLUSION GAL is suggested to have an anti-inflammatory function in some situations and a proinflammatory function in others. The literature on GAL is controversial and currently not conclusive. This could be due to the complexity of the metabolic network signaling induced by the interactions between GAL and GALR. In the next future, GAL might be a promising therapeutic resource for several diseases, but its practical use for disease control is presently not advisable.
Collapse
Affiliation(s)
- Caroline Maria Oliveira Volpe
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Tatiana Vaz
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Fabiana Rocha-Silva
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Pedro Henrique Villar-Delfino
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - José Augusto Nogueira-Machado
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Azin F, Khazali H. Neuropeptide galanin and its effects on metabolic and reproductive disturbances in female rats with estradiol valerate (EV) - Induced polycystic ovary syndrome (PCOS). Neuropeptides 2020; 80:102026. [PMID: 32063381 DOI: 10.1016/j.npep.2020.102026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
A functional role of the neuropeptide galanin, executed through the three G-protein coupled receptor subtypes GAL₁₋₃, has been demonstrated in many biological systems and under pathological circumstances. Galanin is involved in many central and peripheral actions, in particular associated with endocrine mechanisms such as anterior pituitary hormone regulation, reproduction, glucose metabolism and also inflammation. The role of galanin in the pathology of the polycystic ovary syndrome (PCOS) and possible therapeutic effects are unknown. However, based on the well known neuroendocrine changes in PCOS patients, it may be assumed that galanin via effects on gonadotropin-releasing hormone (GnRH) secretory neurons could play a significant role in the development of PCOS. The aim of this study was to examine possible therapeutic effects of galanin on hormonal, metabolic and molecular parameters in PCOS. Accordingly, intraperitoneal injection of galanin in a dose- dependent manner in female PCOS rats induced a significant reduction in inflammatory markers (TNF-α, IL-6), an increase in FSH and a decrease in LH, insulin and testosterone (using ELISA kit) compared to the PCOS groups. Moreover, data from real-time quantitative PCR showed significantly ameliorated changes in the mRNA levels of the steroidogenic acute regulatory protein (StAR) and aromatase cytochrome P450 (CYP19). Taken together, galanin has neuroendocrine, anti- and pro-inflammatory and metabolic effects, and we therefore suggest that treatment with this peptide could represent new therapeutic approach for managing hormonal and metabolic disturbances in the PCOS disease.
Collapse
Affiliation(s)
- Farahnaz Azin
- Department of Animal Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Homayoun Khazali
- Department of Animal Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Šípková J, Kramáriková I, Hynie S, Klenerová V. The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol Res 2017; 66:729-740. [PMID: 28730831 DOI: 10.33549/physiolres.933576] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The multitalented neuropeptide galanin was first discovered 30 years ago but initially no biologic activity was found. Further research studies discovered the presence of galanin in the brain and some peripheral tissues, and galanin was identified as a modulator of neurotransmission in the central and peripheral nervous system. Over the last decade there were performed very intensive studies of the neuronal actions and also of nonneuronal actions of galanin. Other galanin family peptides have been described, namely galanin, galanin-like peptide, galanin-message associated peptide and alarin. The effect of these peptides is mediated through three galanin receptors subtypes, GalR1, GalR2 and GalR3 belonging to G protein coupled receptors, and signaling via multiple transduction pathways, including inhibition of cyclic AMP/protein kinase A (GalR1, GalR3) and stimulation of phospholipase C (GalR2). This also explains why one specific molecule of galanin can be responsible for different roles in different tissues. The present review summarizes the information currently available on the relationship between the galaninergic system and known pathological states. The research of novel galanin receptor specific agonists and antagonists is also very promising for its future role in pharmacological treatment. The galaninergic system is important target for current and future biomedical research.
Collapse
Affiliation(s)
- J Šípková
- Laboratory of Neuropharmacology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Benjamin ER, Haftl SL, Xanthos DN, Crumley G, Hachicha M, Valenzano KJ. A Miniaturized Column Chromatography Method for Measuring Receptor-Mediated Inositol Phosphate Accumulation. ACTA ACUST UNITED AC 2016; 9:343-53. [PMID: 15191651 DOI: 10.1177/1087057103262841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inositol phosphates (IPs), such as 1,4,5-inositol-trisphosphate (IP3), comprise a ubiquitous intracellular signaling cascade initiated in response to G protein-coupled receptor-mediated activation of phospholipase C. Classical methods for measuring intracellular accumulation of these molecules include time-consuming high-performance liquid chromatography (HPLC) separation or large-volume, gravity-fed anion-exchange column chromatography. More recent approaches, such as radio-receptor and AlphaScreen™ assays, offer higher throughput. However, these techniques rely on measurement of IP3itself, rather than its accumulation with other downstream IPs, and often suffer from poor signal-to-noise ratios due to the transient nature of IP3. The authors have developed a miniaturized, anion-exchange chromatography method for measuring inositol phosphate accumulation in cells that takes advantage of signal amplification achieved through measuring IP3and downstream IPs. This assay uses centrifugation of 96-well-formatted anion-exchange mini-columns for the isolation of radiolabeled inositol phosphates from cell extracts, followed by low-background dry-scintillation counting. This improved assay method measures receptor-mediated IP accumulation with signal-to-noise and pharmacological values comparable to the classical large-volume, column-based methods. Assay validation data for recombinant muscarinic receptor 1, galanin receptor 2, and rat astrocyte metabotropic glutamate receptor 5 are presented. This miniaturized protocol reduces reagent usage and assay time as compared to large-column methods and is compatible with standard 96-well scintillation counters.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Base Sequence
- CHO Cells
- Cell Line
- Chromatography, Ion Exchange/instrumentation
- Chromatography, Ion Exchange/methods
- Cricetinae
- DNA, Complementary/genetics
- Humans
- Inositol 1,4,5-Trisphosphate
- Inositol Phosphates/analysis
- Inositol Phosphates/metabolism
- Miniaturization/instrumentation
- Miniaturization/methods
- Rats
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptor, Muscarinic M1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Elfrida R Benjamin
- Purdue Pharma Discovery Research, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-9. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
10
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
11
|
Bartfai T, Wang MW. Positive allosteric modulators to peptide GPCRs: a promising class of drugs. Acta Pharmacol Sin 2013; 34:880-5. [PMID: 23624758 DOI: 10.1038/aps.2013.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/07/2013] [Indexed: 02/06/2023] Open
Abstract
The task of finding selective and stable peptide receptor agonists with low molecular weight, desirable pharmacokinetic properties and penetrable to the blood-brain barrier has proven too difficult for many highly coveted drug targets, including receptors for endothelin, vasoactive intestinal peptide and galanin. These receptors and ligand-gated ion channels activated by structurally simple agonists such as glutamate, glycine and GABA present such a narrow chemical space that the design of subtype-selective molecules capable of distinguishing a dozen of glutamate and GABA receptor subtypes and possessing desirable pharmacokinetic properties has also been problematic. In contrast, the pharmaceutical industry demonstrates a remarkable success in developing 1,4-benzodiazepines, positive allosteric modulators (PMAs) of the GABAA receptor. They were synthesized over 50 years ago and discovered to have anxiolytic potential through an in vivo assay. As exemplified by Librium, Valium and Dormicum, these allosteric ligands of the receptor became the world's first blockbuster drugs. Through molecular manipulation over the past 2 decades, including mutations and knockouts of the endogenous ligands or their receptors, and by in-depth physiological and pharmacological studies, more peptide and glutamate receptors have become well-validated drug targets for which an agonist is sought. In such cases, the pursuit for PAMs has also intensified, and a working paradigm to identify drug candidates that are designed as PAMs has emerged. This review, which focuses on the general principles of finding PAMs of peptide receptors in the 21st century, describes the workflow and some of its resulting compounds such as PAMs of galanin receptor 2 that act as potent anticonvulsant agents.
Collapse
|
12
|
Kothandan G, Gadhe CG, Cho SJ. Theoretical Characterization of Galanin Receptor Type 3 (Gal3) and Its Interaction with Agonist (GALANIN) and Antagonists (SNAP 37889 and SNAP 398299): AnIn SilicoAnalysis. Chem Biol Drug Des 2013; 81:757-74. [DOI: 10.1111/cbdd.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | - Changdev G. Gadhe
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | | |
Collapse
|
13
|
Fraley GS, Leathley E, Nickols A, Gerometta E, Coombs E, Colton S, Gallemore S, Lindberg A, Kofler B. Alarin 6-25Cys antagonizes alarin-specific effects on food intake and luteinizing hormone secretion. Neuropeptides 2013; 47:37-41. [PMID: 23009720 DOI: 10.1016/j.npep.2012.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/17/2012] [Accepted: 08/07/2012] [Indexed: 12/17/2022]
Abstract
Previous data from our labs and from others have demonstrated that intracerebroventricular (ICV) injection of alarin has orexigenic activity and significantly increases plasma luteinizing hormone (LH) secretion in a gonadotropin-releasing hormone (GnRH) dependent manner. The purpose of the current experiments was to determine if the amino acids at the amino-terminal end of the alarin peptide are critical for alarin's effects on reproductive and feeding systems. First, we injected male mice ICV with full-length alarin (Ala1-25) or peptide fragments missing residues at the amino-terminal end (Ala3-25 or Ala6-25 Cys). Neither peptide fragment alone, significantly increased food intake in male mice compared to controls. Second, ICV injection of Ala1-25, but not Ala3-25, significantly (p < 0.01) increased GnRH-mediated LH secretion. Surprisingly, Ala6-25 Cys significantly (p < 0.05) inhibited plasma LH secretion and inhibited Ala1-25 actions. In conclusion, elimination of the first five amino acids of alarin not only abolishes the biological activity of alarin, but becomes an antagonist to alarin-specific effects. Furthermore, Ala6-25 Cys seems to act as a specific antagonist to putative alarin receptors and therefore may be an important tool in identifying alarin-specific receptors.
Collapse
Affiliation(s)
- Gregory S Fraley
- Department of Biology & Neuroscience Program, Hope College, Holland, MI 49423, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Webling KEB, Runesson J, Bartfai T, Langel Ü. Galanin receptors and ligands. Front Endocrinol (Lausanne) 2012; 3:146. [PMID: 23233848 PMCID: PMC3516677 DOI: 10.3389/fendo.2012.00146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.
Collapse
Affiliation(s)
- Kristin E. B. Webling
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- *Correspondence: Kristin E. B. Webling, Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm University, Svante Arrheniusv. 21A, 10691 Stockholm, Sweden. e-mail:
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
| | - Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- Institute of Technology, University of TartuTartu, Estonia
| |
Collapse
|
15
|
Novel galanin receptor subtype specific ligands in feeding regulation. Neurochem Int 2011; 58:714-20. [DOI: 10.1016/j.neuint.2011.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/31/2011] [Accepted: 02/10/2011] [Indexed: 11/17/2022]
|
16
|
Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KEL, Chaudery F, Hunter G, Busbridge M, Leavy EM, Ghatei MA, Bloom SR, Murphy KG. Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol 2011; 161:601-13. [PMID: 20880399 DOI: 10.1111/j.1476-5381.2010.00893.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alarin is a recently discovered member of the galanin peptide family encoded by a splice variant of galanin-like peptide (GALP) mRNA. Galanin and GALP regulate energy homeostasis and reproduction. We therefore investigated the effects of alarin on food intake and gonadotrophin release. EXPERIMENTAL APPROACH Alarin was administered into the third cerebral ventricle (i.c.v.) of rats, and food intake or circulating hormone levels were measured. The effect of alarin on the hypothalamo-pituitary-gonadal axis was investigated in vitro using hypothalamic and anterior pituitary explants, and immortalized cell lines. Receptor binding assays were used to determine whether alarin binds to galanin receptors. KEY RESULTS The i.c.v. administration of alarin (30 nmol) to ad libitum fed male rats significantly increased acute food intake to 500%, and plasma luteinizing hormone (LH) levels to 170% of responses to saline. In vitro, 100 nM alarin stimulated neuropeptide Y (NPY) and gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants from male rats, and 1000 nM alarin increased GnRH release from GT1-7 cells. In vivo, pretreatment with the GnRH receptor antagonist cetrorelix prevented the increase in plasma LH levels observed following i.c.v. alarin administration. Receptor binding studies confirmed alarin did not bind to any known galanin receptor, or compete with radiolabelled galanin for hypothalamic binding sites. CONCLUSIONS AND IMPLICATIONS These results suggest alarin is a novel orexigenic peptide, and that it increases circulating LH levels via hypothalamic GnRH. Further work is required to identify the receptor(s) mediating the biological effects of alarin.
Collapse
Affiliation(s)
- C K Boughton
- Department of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Robertson CR, Scholl EA, Pruess TH, Green BR, White HS, Bulaj G. Engineering galanin analogues that discriminate between GalR1 and GalR2 receptor subtypes and exhibit anticonvulsant activity following systemic delivery. J Med Chem 2010; 53:1871-5. [PMID: 20121116 DOI: 10.1021/jm9018349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galanin modulates seizures in the brain through two galanin receptor subtypes, GalR1 and GalR2. To generate systemically active galanin receptor ligands that discriminate between GalR1 and GalR2, the GalR1-preferring analogue Gal-B2 (or NAX 5055) was rationally redesigned to yield GalR2-preferring analogues. Systematic truncations of the N-terminal backbone led to [N-Me,des-Sar]Gal-B2, containing N-methyltryptophan. This analogue exhibited 18-fold preference in binding toward GalR2, maintained agonist activity, and exhibited potent anticonvulsant activity in mice following intraperitoneal administration.
Collapse
Affiliation(s)
- Charles R Robertson
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 421 WakaraWay, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bailey KR, Pavlova MN, Rohde AD, Hohmann JG, Crawley JN. Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype specific to the elevated plus-maze. Pharmacol Biochem Behav 2007; 86:8-20. [PMID: 17257664 PMCID: PMC1853242 DOI: 10.1016/j.pbb.2006.11.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 01/31/2023]
Abstract
The neuropeptide galanin has been implicated in anxiety-related behaviors, cognition, analgesia, and feeding in rodents. Neuromodulatory actions of galanin are mediated by three G-protein coupled receptors, GalR1, GalR2, and GalR3. The present study investigates the role of the GalR2 receptor by evaluating behavioral phenotypes of mice with a targeted mutation in the GalR2 gene. A three-tiered behavioral phenotyping approach first examined control measures of general health, body weight, neurological reflexes, sensory abilities and motor function. Mice were then assessed on several tests for cognitive and anxiety-like behaviors. GalR2 null mutants and heterozygotes were not significantly different from wildtype littermates on two cognitive tests previously shown to be sensitive to galanin manipulation: acquisition of the Morris water maze spatial task, and trace cued and contextual fear conditioning, an emotional learning and memory task. Two independent cohorts of GalR2 null mutant mice demonstrated an anxiogenic-like phenotype in the elevated plus-maze. No genotype differences were detected on several other measures of anxiety-like behavior. The discovery of an anxiogenic phenotype specific to the elevated plus-maze, similar to findings in GalR1 null mutants, highlights the potential therapeutic efficacy of targeting GalR1 and GalR2 receptors in treating anxiety disorders.
Collapse
|
19
|
|
20
|
|
21
|
Wrenn CC, Kinney JW, Marriott LK, Holmes A, Harris AP, Saavedra MC, Starosta G, Innerfield CE, Jacoby AS, Shine J, Iismaa TP, Wenk GL, Crawley JN. Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci 2004; 19:1384-96. [PMID: 15016096 DOI: 10.1111/j.1460-9568.2004.03214.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide galanin induces performance deficits in a wide range of cognitive tasks in rodents. Three G-protein-coupled galanin receptor subtypes, designated GAL-R1, GAL-R2 and GAL-R3, have been cloned. The present study examined the role of GAL-R1 in cognition by testing mice with a null mutation in Galr1 on several different types of learning and memory tasks. Assessments of general health, neurological reflexes, sensory abilities and motor functions were conducted as control measures. Mutant mice were unimpaired in social transmission of food preference and the Morris water maze. In tests of fear conditioning, mutant mice were unimpaired in a delay version of cued fear conditioning. However, mice homozygous for the null mutation were impaired in a trace version of cued fear conditioning. Mutant mice were unimpaired in contextual fear conditioning, whether training was by the delay or trace protocol. General health, neurological reflexes, sensory abilities and motor functions did not differ across genotypes, indicating that the trace fear conditioning deficit was not an artifact of procedural disabilities. The findings of normal performance on several cognitive tasks and a selective deficit in trace cued fear conditioning in homozygous GAL-R1 mutant mice are discussed in terms of hypothesized roles of the GAL-R1 subtype. The generally normal phenotype of GAL-R1 null mutants supports the use of this line for identification of the receptor subtypes that mediate the cognitive deficits produced by exogenous galanin.
Collapse
Affiliation(s)
- Craige C Wrenn
- Laboratory of Behavioural Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-1375, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat 2002; 24:257-68. [PMID: 12406501 DOI: 10.1016/s0891-0618(02)00068-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent molecular cloning studies have established the existence of a third rat galanin receptor subtype, GalR3, however its precise distribution in the mammalian central nervous system (CNS) is not well established. In the present study, we examined the regional and cellular distribution of GalR3 mRNA in the CNS of the rat by in situ hybridization. Our findings indicate that GALR3 mRNA expression in the rat brain is discrete and highly restricted, concentrated mainly in the preoptic/hypothalamic area. Within the hypothalamus, GalR3 expression was confined to the paraventricular, ventromedial and dorsomedial hypothalamic nuclei. In addition to these hypothalamic nuclei, GalR3 mRNA-expressing cells were observed in the medial septum/diagonal band of Broca complex, the bed nucleus of the stria terminalis, the medial amygdaloid nucleus, the periaqueductal gray, the lateral parabrachial nucleus, the dorsal raphe nucleus, the locus coeruleus, the medial medullary reticular formation and in one of the circumventricular organs, the subfornical organ. In the spinal cord, a faint but specific ISH signal was observed over the laminae I-II with a few moderately labeled cells distributed in laminae V and X. The neuroanatomical distribution of GalR3 suggests it might be involved in mediating documented effects of galanin on food intake, fluid homeostasis, cardiovascular function and nociception.
Collapse
Affiliation(s)
- Françoise Mennicken
- AstraZeneca R&D Montreal, 7171 Frederick-Banting, St. Laurent, Quebec, Canada H4S 1Z9.
| | | | | | | | | |
Collapse
|
23
|
Bouret S, Croix D, Mariot M, Loyens A, Prevot V, Jegou S, Vaudry H, Beauvillain JC, Mitchell V. Galanin modulates the activity of proopiomelanocortin neurons in the isolated mediobasal hypothalamus of the male rat. Neuroscience 2002; 112:475-85. [PMID: 12044465 DOI: 10.1016/s0306-4522(02)00040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has become apparent that galanin as well as proopiomelanocortin-derived peptides, such as beta-endorphin, play an important role in the hypothalamic circuitry that regulates neuroendocrine functions and appetite behavior. We have recently shown that GalR1 and GalR2 galanin receptor mRNAs are expressed in proopiomelanocortin neurons of the arcuate nucleus, suggesting a direct modulatory action of galanin on the proopiomelanocortin neuronal system. In the present study, we investigated the effect of galanin on beta-endorphin release and proopiomelanocortin mRNA expression from male rat mediobasal hypothalamic fragments incubated ex vivo. Galanin induced a decrease of spontaneous beta-endorphin release within the first 30-60 min of incubation and this effect was blocked by the galanin receptor antagonist galantide. Co-incubation of galanin with FK-506 (tacrolimus), a calcineurin inhibitor, suppressed the inhibitory effect of galanin on beta-endorphin release, suggesting that calcineurin is involved in the galanin-evoked decrease in beta-endorphin release. Measurement of beta-endorphin levels in the tissues at the end of the incubation period (120 min) revealed that galanin caused a two-fold increase of beta-endorphin peptide concentration in the mediobasal hypothalamic tissues. Concurrently, galanin induced an increase in the mean density of silver grains overlying proopiomelanocortin neurons after 60 min of incubation, an effect antagonized by galantide. Finally, reverse transcription-polymerase chain reaction analysis revealed that the mRNAs for the three galanin receptor subtypes (i.e. GalR1, GalR2, and GalR3) were expressed in the incubated mediobasal hypothalamic fragments. Taken as a whole, our results indicate that galanin plays a modulatory role on proopiomelanocortin neurons and this interrelation contributes to the elucidation of the neural circuitry that controls, among others, gonadotropin-releasing hormone function.
Collapse
Affiliation(s)
- S Bouret
- INSERM U-422, IFR 22, Neuroendocrinology and Neuronal Physiopathology, IFR 22, Place de Verdun, 59045 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The neuropeptide galanin has a widespread but no means ubiquitous expression pattern in the nervous and endocrine systems. Profound changes in the levels and distribution of the peptide occur in a range of path-physiological situations including nerve injury or damage and alterations in the circulating levels of a number of hormones. There is now a substantial body of work to indicate that galanin plays an important biological role as a regulator of neurotransmitter and hormone release in the adult. The recent generation of mice carrying a loss-of-function mutation within the galanin gene has allowed us new insights into the physiological actions of galanin. In this manuscript we detail three sets of data relating to the major phenotypic effects thus far delineated, putting them in the context of existing published data. These studies demonstrate that galanin acts as a developmental and trophic factor to subsets of neurons in the nervous and neuroendocrine systems.
Collapse
Affiliation(s)
- D Wynick
- University Research Centre for Neuroendocrinology, Bristol University, Marlborough Street, Bristol, BS2 8HW
| | | |
Collapse
|
25
|
Church WB, Jones KA, Kuiper DA, Shine J, Iismaa TP. Molecular modelling and site-directed mutagenesis of human GALR1 galanin receptor defines determinants of receptor subtype specificity. Protein Eng Des Sel 2002; 15:313-23. [PMID: 11983932 DOI: 10.1093/protein/15.4.313] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.
Collapse
Affiliation(s)
- W B Church
- The Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Sydney, NSW 2010, Australia.
| | | | | | | | | |
Collapse
|
26
|
Chapter IV Localization of galanin receptor subtypes in the rat CNS. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Counts SE, Perez SE, Kahl U, Bartfai T, Bowser RP, Deecher DC, Mash DC, Crawley JN, Mufson EJ. Galanin: neurobiologic mechanisms and therapeutic potential for Alzheimer's disease. CNS DRUG REVIEWS 2001; 7:445-70. [PMID: 11830760 PMCID: PMC6741671 DOI: 10.1111/j.1527-3458.2001.tb00210.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide galanin (GAL) is widely distributed in the mammalian CNS. Several lines of evidence suggest that GAL may play a critical role in cognitive processes such as memory and attention through an inhibitory modulation of cholinergic basal forebrain activity. Furthermore, GAL fibers hyperinnervate remaining cholinergic basal forebrain neurons in Alzheimer's disease (AD). This suggests that GAL activity impacts cholinergic dysfunction in advanced AD. Pharmacological and in vitro autoradiographic studies indicate the presence of heterogeneous populations of GAL receptor (GALR) sites in the basal forebrain which bind GAL with both high and low affinity. Interestingly, we have recently observed that GALR binding sites increase in the anterior basal forebrain in late-stage AD. Three G protein-coupled GALRs have been identified to date that signal through a diverse array of effector pathways in vitro, including adenylyl cyclase inhibition and phospholipase C activation. The repertoire and distribution of GALR expression in the basal forebrain remains unknown, as does the nature of GAL and GALR plasticity in the AD basal forebrain. Recently, GAL knockout and overexpressing transgenic mice have been generated to facilitate our understanding of GAL activity in basal forebrain function. GAL knockout mice result in fewer cholinergic basal forebrain neurons and memory deficits. On the other hand, mice overexpressing GAL display hyperinnervation of basal forebrain and memory deficits. These data highlight the need to explore further the putative mechanisms by which GAL signaling might be beneficial or deleterious for cholinergic cell survival and activity within basal forebrain. This information will be critical to understanding whether pharmacological manipulation of GALRs would be effective for the amelioration of cognitive deficits in AD.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| | - Sylvia E. Perez
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| | - Ulrika Kahl
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tamas Bartfai
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert P. Bowser
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deborah C. Mash
- Department of Neurology, University of Miami School of Medicine, Miami, FL, USA
| | - Jacqueline N. Crawley
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| |
Collapse
|
28
|
Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci U S A 2001; 98:9960-4. [PMID: 11481429 PMCID: PMC55560 DOI: 10.1073/pnas.161293598] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2001] [Indexed: 11/18/2022] Open
Abstract
Galanin is a 29-aa neuropeptide with a complex role in pain processing. Several galanin receptor subtypes are present in dorsal root ganglia and spinal cord with a differential distribution. Here, we describe a generation of a specific galanin R2 (GalR2) agonist, AR-M1896, and its application in studies of a rat neuropathic pain model (Bennett). The results show that in normal rats mechanical and cold allodynia of the hindpaw are induced after intrathecal infusion of low-dose galanin (25 ng per 0.5 microl/h). The same effect is seen with equimolar doses of AR-M1896 or AR-M961, an agonist both at GalR1 and GalR2 receptors. In allodynic Bennett model rats, the mechanical threshold increased dose-dependently after intrathecal injection of a high dose of AR-M961, whereas no effect was observed in the control or AR-M1896 group. No effect of either of the two compounds was observed in nonallodynic Bennett model rats. These data indicate that a low dose of galanin has a nociceptive role at the spinal cord level mediated by GalR2 receptors, whereas the antiallodynic effect of high-dose galanin on neuropathic pain is mediated by the GalR1 receptors. Thus, a selective GalR1 agonist may be used to treat neuropathic pain.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Causalgia/chemically induced
- Causalgia/drug therapy
- Causalgia/physiopathology
- Cold Temperature/adverse effects
- Dose-Response Relationship, Drug
- Galanin/administration & dosage
- Galanin/chemistry
- Galanin/pharmacology
- Galanin/physiology
- Galanin/therapeutic use
- Galanin/toxicity
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/drug effects
- Hindlimb/innervation
- Hyperesthesia/chemically induced
- Hyperesthesia/drug therapy
- Hyperesthesia/etiology
- Hyperesthesia/physiopathology
- Infusion Pumps, Implantable
- Male
- Models, Animal
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/physiology
- Pain Threshold/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Protein Isoforms/agonists
- Protein Isoforms/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Galanin
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/physiology
- Sciatic Nerve/injuries
- Sciatica/drug therapy
- Sciatica/etiology
- Sciatica/physiopathology
- Spinal Cord/chemistry
- Spinal Cord/physiopathology
- Stress, Mechanical
- Substrate Specificity
Collapse
Affiliation(s)
- H X Liu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411:613-7. [PMID: 11385580 DOI: 10.1038/35079135] [Citation(s) in RCA: 1025] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metastasis is a major cause of death in cancer patients and involves a multistep process including detachment of cancer cells from a primary cancer, invasion of surrounding tissue, spread through circulation, re-invasion and proliferation in distant organs. KiSS-1 is a human metastasis suppressor gene, that suppresses metastases of human melanomas and breast carcinomas without affecting tumorigenicity. However, its gene product and functional mechanisms have not been elucidated. Here we show that KiSS-1 (refs 1, 4) encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which we have isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and have named 'metastin'. Metastin inhibits chemotaxis and invasion of hOT7T175-transfected CHO cells in vitro and attenuates pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. The results suggest possible mechanisms of action for KiSS-1 and a potential new therapeutic approach.
Collapse
Affiliation(s)
- T Ohtaki
- Pharmaceutical Discovery Research Division, Takeda Chemical Industries Ltd, Wadai 10, Tsukuba, Ibaraki 300-4293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gundlach AL, Burazin TC, Larm JA. Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin Exp Pharmacol Physiol 2001; 28:100-5. [PMID: 11153523 DOI: 10.1046/j.1440-1681.2001.03411.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Galanin peptide and galanin receptor-binding sites are known to be widely distributed within the central nervous system, particularly in the hypothalamus in the preoptic area, the paraventricular (PVN) and supraoptic (SON) nuclei and the arcuate nucleus/median eminence. 2. The present brief review focuses on some recent studies of the regional and cellular localization of mRNA encoding galanin and two galanin receptor subtypes (GalR1 and GalR2) in the hypothalamus, regulation of galanin and/or galanin receptor expression in various nuclei by physiological stimuli, electrophysiological effects of galanin on hypothalamic neurons and the isolation and cloning of galanin-like peptide (GALP), a putative endogenous ligand for GalR2. 3. In situ hybridization studies in rat brain have demonstrated an abundance of GalR1 mRNA in SON, magnocellular (m) and parvocellular (p) PVN and dorsomedial, ventromedial and arcuate nuclei. In contrast, GalR2 mRNA is enriched in pPVN, but not mPVN, and is not detected in SON. In addition, GalR2 mRNA is present in the dorsomedial nucleus and is enriched in the arcuate nucleus compared with GalR1 transcripts, with numerous labelled cells in all subdivisions. 4. Neurons of the SON and PVN contain vasopressin and/or oxytocin, along with several other peptides, and the production and release of these hormones and peptides are modulated by various physiological stimuli. In relation to galanin systems, GalR1 and galanin expression is increased in magnocellular neurons by salt loading and is downregulated by lactation, consistent with an increased inhibition by galanin of vasopressin release following osmotic stimulation and a decreased inhibition of oxytocin release during lactation. 5. Powerful inhibitory effects of galanin on the electrical (and secretory) activity of magnocellular neurons and complex presynaptic actions of galanin on the synaptic release of glutamate in the arcuate nucleus in vitro suggest an active role for multiple galanin receptor subtypes in the regulation of these hypothalamic systems in vivo. 6. The recent isolation of a peptide from porcine hypothalamus (GALP-1-60) that is structurally related to galanin and appears to be selective for GalR2 over GalR1 and the subsequent cloning of GALP cDNA from pig, rat and humans should allow studies to help reveal the physiological role played by galanin receptor subtypes (especially GalR2) and their multiple ligands in the hypothalamus and other brain areas.
Collapse
Affiliation(s)
- A L Gundlach
- The University of Melbourne, Department of Medicine, Austin, Victoria, Australia.
| | | | | |
Collapse
|
31
|
|
32
|
Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T. The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene 2000; 19:4199-209. [PMID: 10980593 DOI: 10.1038/sj.onc.1203777] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: G(q), G(i), and G(12). In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of G(i) coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric G alpha(S)-G alpha(i) protein In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the G(q) phospholipase C/calcium sequence and a G(12)/Rho pathway. Oncogene (2000) 19, 4199 - 4209
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- 3T3 Cells/drug effects
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Animals
- COS Cells/drug effects
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Cell Adhesion
- Cyclic AMP/physiology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, G12-G13
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11
- GTP-Binding Proteins/physiology
- Galanin/metabolism
- Galanin/pharmacology
- Heterotrimeric GTP-Binding Proteins/physiology
- Humans
- Indoles/pharmacology
- Inositol Phosphates/metabolism
- Intracellular Signaling Peptides and Proteins
- Isoproterenol/pharmacology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Maleimides/pharmacology
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Pertussis Toxin
- Phosphatidylinositol Diacylglycerol-Lyase
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/physiology
- Protein Serine-Threonine Kinases/physiology
- Receptor, Galanin, Type 2
- Receptors, Galanin
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Transfection
- Tumor Cells, Cultured/metabolism
- Type C Phospholipases/metabolism
- Virulence Factors, Bordetella/pharmacology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- N Wittau
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Scott MK, Ross TM, Lee DH, Wang HY, Shank RP, Wild KD, Davis CB, Crooke JJ, Potocki AC, Reitz AB. 2,3-Dihydro-dithiin and -dithiepine-1,1,4,4-tetroxides: small molecule non-peptide antagonists of the human galanin hGAL-1 receptor. Bioorg Med Chem 2000; 8:1383-91. [PMID: 10896115 DOI: 10.1016/s0968-0896(00)00062-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neuropeptide galanin modulates several physiological functions such as cognition, learning, feeding behavior, and depression, probably via the galanin 1 receptor (GAL-R1). Using an HTS assay based on 125I-human galanin binding to the human galanin-1 receptor (hGAL-R1), we discovered a series of 1,4-dithiin and dithiipine-1,1,4,4-tetroxides that exhibited binding affinity IC50's to hGAL-R1 ranging from 190 to 2700 nM. Two of the dithiepin analogues, 7 and 23, behaved pharmacologically as hGAL-R1 antagonists in secondary assays involving adenylate cyclase activity and GTP binding to G-proteins. Analogues 7 and 23 were also active in functional assays involving galanin, reversing the inhibitory effect of galanin on acetylcholine (ACh) release in rat brain hippocampal slices and electrically-stimulated guinea pig ileum twitch.
Collapse
Affiliation(s)
- M K Scott
- Drug Discovery Division, The R. W. Johnson Pharmaceutical Institute, Spring House, PA 19447, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Todd JF, Edwards CM, Ghatei MA, Bloom SR. The differential effects of galanin-(1-30) and -(3-30) on anterior pituitary hormone secretion in vivo in humans. Am J Physiol Endocrinol Metab 2000; 278:E1060-6. [PMID: 10827009 DOI: 10.1152/ajpendo.2000.278.6.e1060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intravenous injection of galanin increases plasma growth hormone (GH) and prolactin (PRL) concentrations. In the rat, the effects of galanin on GH appear to be mediated via the hypothalamic galanin receptor GAL-R(1), at which galanin-(3-29) is inactive. In contrast, the effect of galanin on PRL is mediated via the pituitary-specific galanin receptor GAL-R(W), at which galanin-(3-29) is fully active. We investigated the effects of an intravenous infusion of human galanin (hGAL)-(1-30) and -(3-30) on anterior pituitary hormone levels in healthy females. Subjects were infused with saline, hGAL-(1-30) (80 pmol. kg(-1). min(-1)), and hGAL-(3-30) (600 pmol. kg(-1). min(-1)) and with boluses of gonadotropin-releasing hormone, thyrotropin-releasing hormone, and growth hormone-releasing hormone (GHRH). Both hGAL-(1-30) and -(3-30) potentiated the rise in GHRH-stimulated GH levels [area under the curve (AUC), saline, 2,810 +/- 500 vs. hGAL-(1-30), 4,660 +/- 737, P < 0.01; vs. hGAL-(3-30), 6, 870 +/- 1,550 ng. min. ml(-1), P < 0.01]. In contrast to hGAL-(1-30), hGAL-(3-30) had no effect on basal GH levels (AUC, saline, -110 +/- 88 vs. hGAL 1-30, 960 +/- 280, P < 0.002; vs. hGAL-(3-30), 110 +/- 54 ng. min. ml(-1), P = not significant). These data suggest that the effects of galanin on basal and stimulated GH release are mediated via different receptor subtypes and that the human equivalent of GAL-R(W) may exist.
Collapse
Affiliation(s)
- J F Todd
- Endocrine Unit, Imperial College of Science, Technology and Medicine Hammersmith Hospital, London W12 ONN, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
The neuropeptide galanin, which is widely expressed in brain and peripheral tissues, exerts a broad range of physiological effects. Pharmacological studies using peptide analogues have led to speculation about multiple galanin receptor subtypes. Since 1994, a total of three G-protein-coupled receptor (GPCR) subtypes for galanin have been cloned (GAL1, gal2 and gal3). Potent, selective antagonists are yet to be found for any of the cloned receptors. Major challenges in this field include linking the receptor clones with each of the known physiological actions of galanin and evaluating the evidence for additional galanin receptor subtypes.
Collapse
Affiliation(s)
- T A Branchek
- Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, NJ 07652, USA.
| | | | | | | |
Collapse
|
36
|
Rezaei K, Saar K, Soomets U, Valkna A, Näsman J, Zorko M, Akerman K, Schroeder T, Bartfai T, Langel U. Role of third intracellular loop of galanin receptor type 1 in signal transduction. Neuropeptides 2000; 34:25-31. [PMID: 10688965 DOI: 10.1054/npep.1999.0782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine the domains essential for G-protein coupling of the human galanin receptor type 1 (GalR1), we have used both GalR1 mutants and synthetic receptor-derived peptides in(125)I-galanin and [(35)S]-GTPgammaS binding studies. Replacement of potential phosphorylation sites by Leu in the third intracellular loop (IC3) of GalR1 did not affect K(D)values for the receptor. Peptides derived form the IC3 loop, and especially the N-terminal part of it were able to increase the rate of [(35)S]-GTPgammaS binding to the trimeric Gialpha1beta1gamma2, but not to Gsalphabeta1gamma2, whereas the peptides corresponding to the IC1 and IC2 loops had no such effect. IC3 loop peptides also inhibited the binding of(125)I-galanin to GalR1 in membranes from Rin m5F cells. Our results suggest that the IC3 loop of GalR1, especially its N-terminal part, defines the coupling of the receptor to the Gialpha1beta1gamma2 protein and consequently, to the signal transduction cascade.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Cell Line
- Cell Membrane/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Galanin/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Kinetics
- Leucine
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Galanin, Type 1
- Receptors, Galanin
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Signal Transduction/physiology
- Spodoptera
- Transfection
Collapse
Affiliation(s)
- K Rezaei
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, S-10691, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Waters SM, Krause JE. Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000; 95:265-71. [PMID: 10619483 DOI: 10.1016/s0306-4522(99)00407-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galanin is a neuropeptide widely expressed in the central nervous system and periphery. In rat, three galanin-binding receptors have been cloned and characterized. We report the qualitative and quantitative distribution of galanin-1, galanin-2, and galanin-3 messenger RNAs in central and peripheral rat tissues by reverse transcription-polymerase chain reaction and solution hybridization/RNase protection assays, respectively. Galanin-1 messenger RNA was detected exclusively in the central and peripheral nervous system with highest expression in hypothalamus, amygdala, spinal cord and dorsal root ganglia. Galanin-2 messenger RNA was highly expressed in hypothalamus, dorsal root ganglia, and kidney with moderate expression in several other tissues. Galanin-3 messenger RNA was widely distributed at low to moderate levels in many central and peripheral tissues. The observed expression of multiple galanin receptors in several tissues including hypothalamus, anterior pituitary and spinal cord supports earlier pharmacological studies suggesting the presence of more than one receptor subtype in these regions. The presence of multiple galanin receptors in these tissues in conjunction with the detection of a single subtype, galanin-2, in tissues such as heart and intestine, illustrates the potential complexity of galanin-associated actions in rat central nervous system and periphery.
Collapse
Affiliation(s)
- S M Waters
- Department of Biochemistry and Molecular Biology, Neurogen Corporation, Branford, CT 06405, USA
| | | |
Collapse
|
38
|
Abstract
The development of a strain of galanin knockout mice has provided confirmation of a neuroendocrine role for galanin, as well as supporting results of previous physiological investigations indicating a role for galanin in analgesia and neuropathic pain, and potentially in neuronal growth and regeneration processes. Whether elevation of galanin expression in neurodegenerative disorders such as Alzheimer's disease represents a survival response or exacerbates functional deficit in afflicted individuals remains to be determined. More detailed analysis of the phenotype of the galanin knockout mouse should provide insights into the physiological role of galanin in memory and learning processes, as well as in hypothalamic function and other aspects of neuroendocrine regulation. Biochemical and molecular cloning efforts have demonstrated that the multiplicity of actions of galanin is matched by complexity in the distribution and regulation of galanin and its receptors. A focus on characterisation of galanin receptors has resulted in the molecular cloning of three receptor subtypes to date. The distribution and functional properties of these receptors have not yet been fully elucidated, currently precluding assignment of discrete functions of galanin to any one receptor subtype. It is not currently possible to reconcile available pharmacological data using analogs of galanin and chimeric peptides in functional assay systems with the pharmacological properties of cloned receptor subtypes. This highlights the value of further knockout approaches targeting galanin receptor subtypes, but also raises the possibility of the existence of additional receptor subtypes that have yet to be cloned, or that receptor activity may be modulated by regulatory molecules that remain to be identified. The development of receptor subtype-specific compounds remains a high priority to advance work in this area. The ability to selectively modulate the many different actions of galanin, through a clearer understanding of receptor structure-function relationships and neuronal distribution, promises to provide important insights into the molecular and cellular basis of galanin action in normal physiology, and may provide lead compounds with therapeutic application in the prevention and treatment of a range of disorders.
Collapse
Affiliation(s)
- T P Iismaa
- Neurobiology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
39
|
Wang HY, Wild KD, Shank RP, Lee DH. Galanin inhibits acetylcholine release from rat cerebral cortex via a pertussis toxin-sensitive G(i)protein. Neuropeptides 1999; 33:197-205. [PMID: 10657492 DOI: 10.1054/npep.1999.0024] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Galanin has been implicated in various physiological functions including memory, feeding and pain perception. Using rat cerebral cortical slices and synaptosome preparations incubated with [(3)H]choline in Kreb's-Ringer solution, galanin was shown to inhibit both spontaneous and K(+)-stimulated [(3)H]ACh release in a concentration-related manner [EC(50)= 35 nM]. The galanin-mediated inhibition on spontaneous and K(+)-stimulated [(3)H]ACh release was respectively regulated by pertussis toxin-sensitive G(alphai3)and G(alphai1). These suggest that galanin is a negative modulator of cortical cholinergic function and most probably acting on presynaptic cholinergic terminals. Although galantide blocked the galanin-mediated inhibitory effect on [(3)H]ACh release, it mimicked galanin in blocking K(+)-stimulated [(3)H]ACh release, indicating that galantide may have a more complicated pharmacology than being a galanin receptor antagonist. In addition, we demonstrate that galanin and beta-amyloid peptide(1-42)synergistically attenuated K(+)-evoked [(3)H]ACh release from synaptosomes prepared from rat cerebral cortex. Since galanin is increased in Alzheimer's disease brain, our results suggest that galanin may be involved in cholinergic dysfunctions that occur in Alzheimer's disease.
Collapse
Affiliation(s)
- H Y Wang
- CNS Drug Discovery, The R.W. Johnson Pharmaceutical Research Institute, Spring House, PA, 19477, USA.
| | | | | | | |
Collapse
|
40
|
Mitchell V, Bouret S, Howard AD, Beauvillain JC. Expression of the galanin receptor subtype Gal-R2 mRNA in the rat hypothalamus. J Chem Neuroanat 1999; 16:265-77. [PMID: 10450874 DOI: 10.1016/s0891-0618(99)00011-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of galanin receptor subtype 2 (Gal-R2) mRNA-expressing cells was examined by in situ hybridization in the rat hypothalamus using a full-length rat 35S-riboprobe. Gal-R2 receptor mRNA-expressing cells were found at moderate to high levels of expression in most nuclei and regions of hypothalamus. The labeling was observed within well-defined anatomical nuclei: preoptic, suprachiasmatic, periventricular, paraventricular, arcuate, dorsomedial, mammillary nuclei. The supraoptic and ventromedial nuclei were almost devoid of labeling. Some scattered labeled cells were also observed in the pituitary. This distribution of Gal-R2 mRNA-expressing cells corresponds well with that of galanin binding sites studies. As compared to the distribution of the galanin receptor subtype 1 (Gal-R1), our results indicate that the Gal-R2 type is differentially distributed, although a significant overlap exists in some regions such the preoptic area, arcuate and dorsomedial nuclei. The functional implications of these results are discussed in light of the role of galanin receptors plays in neuroendocrine regulation and feeding behavior.
Collapse
Affiliation(s)
- V Mitchell
- Neuroendocrinologie et Physiopathologie Neuronale, INSERM U422, Lille, France.
| | | | | | | |
Collapse
|
41
|
Benya RV, Marrero JA, Ostrovskiy DA, Koutsouris A, Hecht G. Human colonic epithelial cells express galanin-1 receptors, which when activated cause Cl- secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G64-72. [PMID: 9886980 DOI: 10.1152/ajpgi.1999.276.1.g64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Galanin is a peptide hormone widely expressed in the central nervous system and gastrointestinal (GI) tract. Within the GI tract galanin is present in enteric nerve terminals where it is known to modulate intestinal motility by altering smooth muscle contraction. Recent studies also show that galanin can alter intestinal short-circuit current (Isc) but with differing results observed in rats, rabbits, guinea pigs, and pigs. In contrast, nothing is known about the ability of galanin to alter ion transport in human intestinal epithelial tissues. By RT-PCR, we determined that these tissues express only the galanin-1 receptor (Gal1-R) subtype. To evaluate Gal1-R pharmacology and physiology, we studied T84 cells. Gal1-R expressed by these cells bound galanin rapidly (half time 1-2 min) and with high affinity (inhibitor constant 0.7 +/- 0.2 nM). T84 cells were then studied in a modified Ussing chamber and alterations in Isc, a measure of all ion movement across the tissue, were determined. Maximal increases in Isc were observed in a concentration-dependent manner around 2 min after stimulation with peptide, with 1 microM galanin causing Isc to rise more than eightfold and return to baseline occurring within 10 min. The increase in galanin-induced Isc was shown by 125I efflux studies to be due to Cl- secretion, which occurred independently of alterations in cAMP and phospholipase C. Rather, Cl- secretion is mediated via a Ca2+-dependent, pertussis toxin-sensitive mechanism. These data suggest that galanin released by enteric nerves may act as a secretagogue in the human colon by activating Gal1-R.
Collapse
Affiliation(s)
- R V Benya
- Department of Medicine, University of Illinois and Chicago Veterans Affairs Medical Center, West Side Division, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Galanin was first isolated 15 years ago. Diversity of galanin receptors has been suspected from the study of native tissues and functional responses to galanin and galanin-like peptides in vitro and in vivo. The recent application of molecular biologic techniques to clone galanin receptors has extended this diversity. So far, three galanin receptor subtypes, GALR1, GALR2, and GALR3, have been cloned from both human and rat. Their molecular structure, pharmacologic profiles, tissue distribution, and signal transduction properties have been partially elucidated.
Collapse
Affiliation(s)
- T Branchek
- Synaptic Pharmaceutical Corporation, Paramus, New Jersey 07652, USA.
| | | | | |
Collapse
|
43
|
Iismaa TP, Fathi Z, Hort YJ, Iben LG, Dutton JL, Baker E, Sutherland GR, Shine J. Structural organization and chromosomal localization of three human galanin receptor genes. Ann N Y Acad Sci 1998; 863:56-63. [PMID: 9928159 DOI: 10.1111/j.1749-6632.1998.tb10683.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human galanin receptor subtypes GALR1, GALR2, and GALR3 are encoded by separate genes that are located on human chromosomes 18q23, 17q25.3, and 22q13.1, respectively. The exon:intron organization of the gene encoding GALR2 (GALNR2) and GALR3 (GALNR3) is conserved, with exon 1 encoding the NH2-terminus to the end of transmembrane domain 3 and exon 2 encoding the remainder of the receptor, from the second intracellular loop to the COOH-terminus. This conservation of structural organization is indicative of a common evolutionary origin for GALNR2 and GALNR3. The exon:intron organization of the gene encoding GALR1 (GALNR1) is different from that of GALNR2 and GALNR3, with exon 1 encoding the NH2-terminus to the end of transmembrane domain 5, exon 2 encoding the third intracellular loop, and exon 3 encoding the remainder of the receptor, from transmembrane domain 6 to the COOH-terminus. The structural organization of GALNR1 suggests convergent evolution for this gene and represents a structural organization that is unique among genes encoding G-protein-coupled receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 22
- Exons
- Genome, Human
- Humans
- Introns
- Molecular Sequence Data
- Receptors, Galanin
- Receptors, Neuropeptide/genetics
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- T P Iismaa
- Neurobiology Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mufson EJ, Kahl U, Bowser R, Mash DC, Kordower JH, Deecher DC. Galanin expression within the basal forebrain in Alzheimer's disease. Comments on therapeutic potential. Ann N Y Acad Sci 1998; 863:291-304. [PMID: 9928179 DOI: 10.1111/j.1749-6632.1998.tb10703.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inhibitory neuropeptide galanin has widespread distribution throughout the central nervous system. Studies indicate that galanin modulates cognition by regulating cholinergic basal forebrain (CBF) neuron function. The chemoanatomic organization of galanin within the mammalian CBF differs across species. In monkeys, all CBF neurons coexpress galanin, whereas in apes and humans galanin is found within a separate population of interneurons that are in close apposition to the CBF perikarya. Pharmacologic investigations revealed a low and high affinity galanin receptor within the basal forebrain in humans. In vitro autoradiographic investigations of the primate brain indicate that galanin receptors are concentrated within the anterior subfields of the CBF as well as bed nucleus of the stria terminalis, amygdala, and entorhinal cortex. Galaninergic fibers hyperinnervate remaining CBF neurons in Alzheimer's disease. Because galanin inhibits the release of acetylcholine in the hippocampus, it has been suggested that the overexpression of galanin in Alzheimer's disease may downregulate the production of acetylcholine within CBF perikarya, further exacerbating cholinergic cellular dysfunction in this disorder. These observations suggest that the development of a potent galanin antagonist would be a useful step towards the successful pharmacologic treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- E J Mufson
- Department of Neurological Sciences, Rush Presbyterian/St. Lukes Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Kask K, Berthold M, Kahl U, Juréus A, Nordvall G, Langel U, Bartfai T. Mutagenesis study on human galanin receptor GalR1 reveals domains involved in ligand binding. Ann N Y Acad Sci 1998; 863:78-85. [PMID: 9928161 DOI: 10.1111/j.1749-6632.1998.tb10685.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many receptor mutants were generated and several NH2-terminally modified galanin analogs synthesized to define the regions of hGalR1 involved in galanin binding. Ligand binding properties and functionality of mutant receptors were evaluated. The His264Ala and Phe282Ala receptor mutants, although deficient in binding in the concentration range of galanin used, remained functional albeit at least 20-fold less efficient than the wild-type receptor in the inhibition of stimulated cAMP production. Hence, His264 and Phe282 of hGalR1 are directly involved in galanin binding. NH2-terminal carboxylic acid analogs of galanin (1-16) have a very low affinity for the wild-type receptor, but substantially increased affinity for the Glu271Lys-hGalR1, suggesting that the NH2-terminus of galanin binds to the receptor near the transmembrane (TM) VI. Based on these findings and computer-aided molecular modeling, we propose a binding site model for the hGalR1 receptor (possibly also for other galanin receptor subtypes): galanin binds with its NH2-terminus to the pocket between TM III and TM VI, Trp2 of galanin interacts with His264 of the receptor, and Tyr9 is involved in an aromatic-aromatic type of interaction with Phe282 of ECIII of GalR1.
Collapse
Affiliation(s)
- K Kask
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- U Langel
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden.
| | | |
Collapse
|
47
|
Ahmad S, O'Donnell D, Payza K, Ducharme J, Ménard D, Brown W, Schmidt R, Wahlestedt C, Shen SH, Walker P. Cloning and evaluation of the role of rat GALR-2, a novel subtype of galanin receptor, in the control of pain perception. Ann N Y Acad Sci 1998; 863:108-19. [PMID: 9928164 DOI: 10.1111/j.1749-6632.1998.tb10688.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have identified a novel subtype of galanin receptor (GALR-2) in rat dorsal root ganglia and spinal cord. The open reading frame of GALR-2 is 1116 nucleotides long, encoding a protein of 372 amino acids with a theoretical molecular mass of 40.7 kD. Membranes prepared from stable pools of 293 cells expressing GALR-2, but not wild-type 293 cells, demonstrated high affinity galanin binding sites. Rat galanin and galanin-related peptides M40, C7, M15, and galanin effectively competed for binding; peptide C7 demonstrated a lower affinity for rGALR-2, and all these peptides were agonists at rGALR-2 when assessed on a microphysiometer. Studies on the expression of GALR-2 in various tissues by Northern and in situ hybridization analyses suggest a low abundance but wide distribution of GALR-2 mRNA, including several discrete areas in brain and spinal cord and a high abundance in the dorsal root ganglia.
Collapse
Affiliation(s)
- S Ahmad
- Astra Research Centre Montreal, Biotechnology Research Institute, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gundlach AL, Burazin TC. Galanin-galanin receptor systems in the hypothalamic paraventricular and supraoptic nuclei. Some recent findings and future challenges. Ann N Y Acad Sci 1998; 863:241-51. [PMID: 9928175 DOI: 10.1111/j.1749-6632.1998.tb10699.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galanin and galanin receptors are widely distributed within the central nervous system, but historically much research has been focused on hypothalamic galanin systems including those in the preoptic area, paraventricular nucleus (PVN), supraoptic nucleus (SON), and median eminence. In early studies, galanin mRNA, immunoreactivity, and binding sites were detected in neurons of the SON and both the magnocellular and parvocellular regions of the PVN, all of which also contain vasopressin, oxytocin, and several other peptides. This article briefly reviews some important recent studies of the electrophysiologic effects of galanin on magno-cellular neurons in vitro; regulation of galanin expression by the physiologic stimulus of lactation; the role of parvocellular galanin systems in energy balance, body weight, and obesity; and the regional and cellular localization of galanin and galanin receptor mRNAs in the PVN/SON. In relation to the latter issue, two distinct galanin receptor subtypes, GalR1 and GalR2, have now been cloned and characterized. In situ hybridization histochemical studies of rat brain by several groups have consistently demonstrated GalR1 mRNA in the SON and PVN, in the magnocellular and parvocellular regions. By contrast, our recent experiments using [35S]-labeled oligonucleotide probes detected GalR2 mRNA enriched in the parvocellular, not the magnocellular regions of the PVN, and the transcripts were not detected in the SON, whereas studies by other using a digoxigenin-labeled RNA probe have detected GalR2 mRNA in the SON (and PVN). Nonetheless, given the known effects of hyperosmotic stimuli, changes in metabolic status, and various hormones on galanin synthesis and release and the ability of galanin to regulate the electrical and secretory activity of magnocellular neurons, it will be of interest to determine any possible (differential) regulation of galanin receptor subtype expression and the pre- and postsynaptic roles of GalR1 and GalR2 receptors in magnocellular and parvocellular neurons.
Collapse
Affiliation(s)
- A L Gundlach
- University of Melbourne, Department of Medicine, Austin & Repatriation Medical Centre, Heidelberg, Victoria, Australia.
| | | |
Collapse
|
49
|
McDonald MP, Gleason TC, Robinson JK, Crawley JN. Galanin inhibits performance on rodent memory tasks. Ann N Y Acad Sci 1998; 863:305-22. [PMID: 9928180 DOI: 10.1111/j.1749-6632.1998.tb10704.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Central administration of galanin produces performance deficits on a variety of rodent learning and memory tasks. Galanin impairs acquisition and/or retention of the Morris water task, delayed nonmatching to position, T-maze delayed alternation, starburst radial maze, and passive avoidance in normal rats. A primary site of action is the ventral hippocampus, with an additional modulatory site in the medial septum-diagonal band. The behavioral actions of galanin at rat septohippocampal sites mediating cognitive processes are consistent with previous reports of inhibitory actions of galanin on acetylcholine release and cholinergically activated transduction at the M1 muscarinic receptor in rat hippocampus. The peptidergic galanin receptor antagonist M40 blocks the inhibitory actions of galanin on memory tasks. Treatment combinations of M40 with an M1 agonist, TZTP, improves performance on delayed nonmatching to position, in rats with 192IgG-saporin-induced cholinergic lesions of basal forebrain neurons. Nonpeptide, bioavailable, subtype-selective galanin receptor antagonists may provide tools to test the hypothesis that antagonism of endogenous galanin, which is overexpressed in the basal forebrain in Alzheimer's patients, can contribute to the alleviation of the cognitive deficits associated with Alzheimer's disease.
Collapse
Affiliation(s)
- M P McDonald
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, Bethesda, Maryland 20892-1375, USA
| | | | | | | |
Collapse
|
50
|
Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Mahle CD, Sutherland GR, Iismaa TP, Dickinson KE, Zimanyi IA. Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 galanin receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 58:156-69. [PMID: 9685625 DOI: 10.1016/s0169-328x(98)00116-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neuropeptide galanin mediates a diverse spectrum of biological activities by interacting with specific G protein-coupled receptors. We have used homology genomic library screening and polymerase chain reaction (PCR) techniques to isolate both genomic and cDNA clones encoding the human homolog of the recently cloned rat GALR2 galanin receptor. By fluorescence in situ hybridization, the gene encoding human GALR2 (GALNR2) has been localized to chromosome 17q25.3. The two coding exons of the human GALNR2 gene, interrupted by an intron positioned at the end of transmembrane domain III, encode a 387 amino acid G protein-coupled receptor with 87% overall amino acid identity with rat GALR2. In HEK-293 cells stably expressing human GALR2, binding of [125I]porcine galanin is saturable and can be displaced by galanin, amino-terminal galanin fragments and chimeric galanin peptides but not by carboxy-terminal galanin fragments. In HEK-293 cells, human GALR2 couples both to Galphaq/11 to stimulate phospholipase C and increase intracellular calcium levels and to Galphai/o to inhibit forskolin-stimulated intracellular cAMP accumulation. A wide tissue distribution is observed by reverse transcriptase (RT)-PCR analysis, with human GALR2 mRNA being detected in many areas of the human central nervous system as well as in peripheral tissues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- Cloning, Organism
- DNA, Complementary
- GTP-Binding Proteins/metabolism
- Galanin/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Kinetics
- Molecular Sequence Data
- Phosphatidylinositols/metabolism
- Rats
- Receptors, Galanin
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Swine
- Transfection
Collapse
Affiliation(s)
- Z Fathi
- Neuroscience Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|