1
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
2
|
Yeom SJ, Le TK, Yun CH. P450-driven plastic-degrading synthetic bacteria. Trends Biotechnol 2021; 40:166-179. [PMID: 34243985 DOI: 10.1016/j.tibtech.2021.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Plastic contamination currently threatens a wide variety of ecosystems and presents damaging repercussions and negative consequences for many wildlife species. Sustainable plastic waste management is an important approach to environmental protection and a necessity in the current life cycle of plastics in nature. Plastic biodegradation by microorganisms is a notable possible solution. This opinion article includes a proposal to use hypothetical P450 enzymes with an engineered active site as potent trigger biocatalysts to biodegrade polyethylene (PE) via in-chain hydroxylation into smaller products of linear aliphatic alcohols and alkanoic acids based on cascade enzymatic reactions. Furthermore, we propose the adoption of P450 into plastic-eating synthetic bacteria for PE biodegradation. This strategy can be applicable to other dense plastics, such as polypropylene (PP) and polystyrene (PS).
Collapse
Affiliation(s)
- Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Kowalski JP, McDonald MG, Whittington D, Guttman M, Scian M, Girhard M, Hanenberg H, Wiek C, Rettie AE. Structure–Activity Relationships for CYP4B1 Bioactivation of 4-Ipomeanol Congeners: Direct Correlation between Cytotoxicity and Trapped Reactive Intermediates. Chem Res Toxicol 2019; 32:2488-2498. [DOI: 10.1021/acs.chemrestox.9b00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- John P. Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Matthew G. McDonald
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Dale Whittington
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Michele Scian
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children’s Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Allan E. Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
4
|
De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metab Eng Commun 2019; 10:e00111. [PMID: 31867212 PMCID: PMC6906673 DOI: 10.1016/j.mec.2019.e00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
Terminally hydroxylated fatty acids or dicarboxylic acids are industrially relevant compounds with broad applications. Here, we present the proof of principle for the de novo biosynthesis of 8-hydroxyoctanoic acid from glucose and ethanol in the yeast Saccharomyces cerevisiae. Toxicity tests with medium-chain length ω-hydroxy fatty acids and dicarboxylic acids revealed little or no growth impairments on yeast cultures even at higher concentrations. The ability of various heterologous cytochrome P450 enzymes in combination with their cognate reductases for ω-hydroxylation of externally fed octanoic acid were compared. Finally, the most efficient P450 enzyme system was expressed in a yeast strain, whose fatty acid synthase was engineered for octanoic acid production, resulting in de novo biosynthesis of 8-hydroxyoctanoic acid up to 3 mg/l. Accumulation of octanoic acid revealed that cytochromes P450 activities were limiting 8-hydroxyoctanoic acid synthesis. The hydroxylation of both externally added and intracellularly produced octanoic acid was strongly dependent on the carbon source used, with ethanol being preferred. We further identified the availability of heme, a cofactor needed for P450 activity, as a limiting factor of 8-hydroxyoctanoic acid biosynthesis. Low toxic effects of medium-chain ω-hydroxy fatty acids on yeast cells . Systematic comparison of cytochrome P450 enzyme activities on octanoic acid . De novo biosynthesis of 8-hydroxyoctanoic acid . Improvement of cytochrome P450 activity with ethanol or by addition of hemin .
Collapse
|
5
|
Albertolle ME, Song HD, Wilkey CJ, Segrest JP, Guengerich FP. Glutamine-451 Confers Sensitivity to Oxidative Inhibition and Heme-Thiolate Sulfenylation of Cytochrome P450 4B1. Chem Res Toxicol 2019; 32:484-492. [PMID: 30701961 PMCID: PMC7279892 DOI: 10.1021/acs.chemrestox.8b00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (P450) family 4 enzymes are involved in the metabolism of fatty acids and the bioactivation of carcinogenic arylamines and toxic natural products, e.g., 4-ipomeanol. These and other drug-metabolizing P450s are redox sensitive, showing a loss of activity resulting from preincubation with H2O2 and recovery with mild reducing agents [Albertolle, M. W., et al. (2017) J. Biol. Chem. 292, 11230-11242]. The inhibition is due to sulfenylation of the heme-thiolate ligand, as determined by chemopreoteomics and spectroscopy. This phenomenon may have implications for chemical toxicity and observed disease-drug interactions, in which the decreased metabolism of P450 substrates occurs in patients with inflammatory diseases (e.g., influenza and autoimmunity). Human P450 1A2 was determined to be redox insensitive. To determine the mechanism underlying the differential redox sensitivity, molecular dynamics (MD) simulations were employed using the crystal structure of rabbit P450 4B1 (Protein Data Bank entry 5T6Q ). In simulating either the thiolate (Cys-S-) or the sulfenic acid (Cys-SOH) at the heme ligation site, MD revealed Gln-451 in either an "open" or "closed" conformation, respectively, between the cytosol and heme-thiolate cysteine. Mutation to either an isosteric leucine (Q451L) or glutamate (Q451E) abrogated the redox sensitivity, suggesting that this "open" conformation allows for reduction of the sulfenic acid and religation of the thiolate to the heme iron. In summary, MD simulations suggest that Gln-451 in P450 4B1 adopts conformations that may stabilize and protect the heme-thiolate sulfenic acid; mutating this residue destabilizes the interaction, producing a redox insensitive enzyme.
Collapse
Affiliation(s)
- Matthew E. Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Hyun D. Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - Clayton J. Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jere P. Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, United States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
6
|
Li J, Zhang H, Liu G, Tang Y, Tu Y, Li W. Computational Insight Into Vitamin K 1 ω-Hydroxylation by Cytochrome P450 4F2. Front Pharmacol 2018; 9:1065. [PMID: 30319412 PMCID: PMC6167488 DOI: 10.3389/fphar.2018.01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022] Open
Abstract
Vitamin K1 (VK1) plays an important role in the modulation of bleeding disorders. It has been reported that ω-hydroxylation on the VK1 aliphatic chain is catalyzed by cytochrome P450 4F2 (CYP4F2), an enzyme responsible for the metabolism of eicosanoids. However, the mechanism of VK1 ω-hydroxylation by CYP4F2 has not been disclosed. In this study, we employed a combination of quantum mechanism (QM) calculations, homology modeling, molecular docking, molecular dynamics (MD) simulations, and combined quantum mechanism/molecular mechanism (QM/MM) calculations to investigate the metabolism profile of VK1 ω-hydroxylation. QM calculations based on the truncated VK1 model show that the energy barrier for ω-hydroxylation is about 6-25 kJ/mol higher than those at other potential sites of metabolism. However, results from the MD simulations indicate that hydroxylation at the ω-site is more favorable than at the other potential sites, which is in accordance with the experimental observation. The evaluation of MD simulations was further endorsed by the QM/MM calculation results. Our studies thus suggest that the active site residues of CYP4F2 play a determinant role in the ω-hydroxylation. Our results provide structural insights into the mechanism of VK1 ω-hydroxylation by CYP4F2 at the atomistic level and are helpful not only for characterizing the CYP4F2 functions but also for looking into the ω-hydroxylation mediated by other CYP4 enzymes.
Collapse
Affiliation(s)
- Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hongxiao Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Jennings GK, Hsu MH, Shock LS, Johnson EF, Hackett JC. Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. J Biol Chem 2018; 293:11433-11446. [PMID: 29858244 PMCID: PMC6065186 DOI: 10.1074/jbc.ra118.004044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cytochrome P450 4B1 (4B1) functions in both xenobiotic and endobiotic metabolism. An ester linkage between Glu-310 in 4B1 and the 5-methyl group of heme facilitates preferential hydroxylation of terminal (ω) methyl groups of hydrocarbons (HCs) and fatty acids compared with ω-1 sites bearing weaker C-H bonds. This preference is retained albeit diminished 4-fold for the E310A mutant, but the reason for this is unclear. Here, a crystal structure of the E310A-octane complex disclosed that noncovalent interactions maintain heme deformation in the absence of the ester linkage. Consistent with the lower symmetry of the heme, resonance Raman (RR) spectroscopy revealed large enhancements of RR peaks for high-spin HC complexes of 4B1 and the E310A mutant relative to P450 3A4. Whereas these enhancements were diminished in RR spectra of a low-spin 4B1-N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine complex, a crystal structure indicated that this inhibitor does not alter heme ruffling. RR spectra of Fe2+-CO HC complexes revealed larger effects of HC length in E310A than in 4B1, suggesting that reduced rigidity probably underlies increased E310A-catalyzed (ω-1)-hydroxylation. Diminished effects of the HC on the position of the Fe-CO stretching mode in 4B1 suggested that the ester linkage limits substrate access to the CO. Heme ruffling probably facilitates autocatalytic ester formation by reducing inhibitory coordination of Glu-310 with the heme iron. This also positions the 5-methyl for a reaction with the proposed glutamyl radical intermediate and potentially enhances oxo-ferryl intermediate reactivity for generation of the glutamyl radical to initiate ester bond formation and ω-hydroxylation.
Collapse
Affiliation(s)
- Gareth K Jennings
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Mei-Hui Hsu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Lisa S Shock
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Eric F Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037.
| | - John C Hackett
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
8
|
Roellecke K, Jäger VD, Gyurov VH, Kowalski JP, Mielke S, Rettie AE, Hanenberg H, Wiek C, Girhard M. Ligand characterization of CYP4B1 isoforms modified for high-level expression in Escherichia coli and HepG2 cells. Protein Eng Des Sel 2017; 30:205-216. [PMID: 28073960 PMCID: PMC5421619 DOI: 10.1093/protein/gzw075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/06/2016] [Indexed: 01/25/2023] Open
Abstract
Human CYP4B1, a cytochrome P450 monooxygenase predominantly expressed in the lung, inefficiently metabolizes classical CYP4B1 substrates, such as the naturally occurring furan pro-toxin 4-ipomeanol (4-IPO). Highly active animal forms of the enzyme convert 4-IPO to reactive alkylating metabolite(s) that bind(s) to cellular macromolecules. By substitution of 13 amino acids, we restored the enzymatic activity of human CYP4B1 toward 4-IPO and this modified cDNA is potentially valuable as a suicide gene for adoptive T-cell therapies. In order to find novel pro-toxins, we tested numerous furan analogs in in vitro cell culture cytotoxicity assays by expressing the wild-type rabbit and variants of human CYP4B1 in human liver-derived HepG2 cells. To evaluate the CYP4B1 substrate specificities and furan analog catalysis, we optimized the N-terminal sequence of the CYP4B1 variants by modification/truncation and established their heterologous expression in Escherichia coli (yielding 70 and 800 nmol·l-1 of recombinant human and rabbit enzyme, respectively). Finally, spectral binding affinities and oxidative metabolism of the furan analogs by the purified recombinant CYP4B1 variants were analyzed: the naturally occurring perilla ketone was found to be the tightest binder to CYP4B1, but also the analog that was most extensively metabolized by oxidative processes to numerous non-reactive reaction products.
Collapse
Affiliation(s)
- Katharina Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Vera D Jäger
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Veselin H Gyurov
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - John P Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Mielke
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Hsu MH, Baer BR, Rettie AE, Johnson EF. The Crystal Structure of Cytochrome P450 4B1 (CYP4B1) Monooxygenase Complexed with Octane Discloses Several Structural Adaptations for ω-Hydroxylation. J Biol Chem 2017; 292:5610-5621. [PMID: 28167536 DOI: 10.1074/jbc.m117.775494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
P450 family 4 fatty acid ω-hydroxylases preferentially oxygenate primary C-H bonds over adjacent, energetically favored secondary C-H bonds, but the mechanism explaining this intriguing preference is unclear. To this end, the structure of rabbit P450 4B1 complexed with its substrate octane was determined by X-ray crystallography to define features of the active site that contribute to a preference for ω-hydroxylation. The structure indicated that octane is bound in a narrow active-site cavity that limits access of the secondary C-H bond to the reactive intermediate. A highly conserved sequence motif on helix I contributes to positioning the terminal carbon of octane for ω-hydroxylation. Glu-310 of this motif auto-catalytically forms an ester bond with the heme 5-methyl, and the immobilized Glu-310 contributes to substrate positioning. The preference for ω-hydroxylation was decreased in an E310A mutant having a shorter side chain, but the overall rates of metabolism were retained. E310D and E310Q substitutions having longer side chains exhibit lower overall rates, likely due to higher conformational entropy for these residues, but they retained high preferences for octane ω-hydroxylation. Sequence comparisons indicated that active-site residues constraining octane for ω-hydroxylation are conserved in family 4 P450s. Moreover, the heme 7-propionate is positioned in the active site and provides additional restraints on substrate binding. In conclusion, P450 4B1 exhibits structural adaptations for ω-hydroxylation that include changes in the conformation of the heme and changes in a highly conserved helix I motif that is associated with selective oxygenation of unactivated primary C-H bonds.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037 and
| | - Brian R Baer
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | - Allan E Rettie
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | - Eric F Johnson
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
10
|
Hartwig JF, Larsen MA. Undirected, Homogeneous C-H Bond Functionalization: Challenges and Opportunities. ACS CENTRAL SCIENCE 2016; 2:281-92. [PMID: 27294201 PMCID: PMC4898263 DOI: 10.1021/acscentsci.6b00032] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 05/19/2023]
Abstract
The functionalization of C-H bonds has created new approaches to preparing organic molecules by enabling new strategic "disconnections" during the planning of a synthetic route. Such functionalizations also have created the ability to derivatize complex molecules by modifying one or more of the many C-H bonds. For these reasons, researchers are developing new types of functionalization reactions of C-H bonds and new applications of these processes. These C-H bond functionalization reactions can be divided into two general classes: those directed by coordination to an existing functional group prior to the cleavage of the C-H bond (directed) and those occurring without coordination prior to cleavage of the C-H bond (undirected). The undirected functionalizations of C-H bonds are much less common and more challenging to develop than the directed reactions. This outlook will focus on undirected C-H bond functionalization, as well as related reactions that occur by a noncovalent association of the catalyst prior to C-H bond cleavage. The inherent challenges of conducting undirected functionalizations of C-H bonds and the methods for undirected functionalization that are being developed will be presented, along with the factors that govern selectivity in these reactions. Finally, this outlook discusses future directions for research on undirected C-H functionalization, with an emphasis on the limitations that must be overcome if this type of methodology is to become widely used in academia and in industry.
Collapse
Affiliation(s)
- John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division
of Chemical Sciences, Lawrence Berkeley
Laboratory, Berkeley, California 94720, United States
| | - Matthew A. Larsen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division
of Chemical Sciences, Lawrence Berkeley
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Nakano M, Lockhart CM, Kelly EJ, Rettie AE. Ocular cytochrome P450s and transporters: roles in disease and endobiotic and xenobiotic disposition. Drug Metab Rev 2014; 46:247-60. [PMID: 24856391 PMCID: PMC4676416 DOI: 10.3109/03602532.2014.921190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug metabolism and transport processes in the liver, intestine and kidney that affect the pharmacokinetics and pharmacodynamics of therapeutic agents have been studied extensively. In contrast, comparatively little research has been conducted on these topics as they pertain to the eye. Recently, however, catalytic functions of ocular cytochrome P450 enzymes have gained increasing attention, in large part due to the roles of CYP1B1 and CYP4V2 variants in primary congenital glaucoma and Bietti's corneoretinal crystalline dystrophy, respectively. In this review, we discuss challenges to ophthalmic drug delivery, including Phase I drug metabolism and transport in the eye, and the role of three specific P450s, CYP4B1, CYP1B1 and CYP4V2 in ocular inflammation and genetically determined ocular disease.
Collapse
Affiliation(s)
- Mariko Nakano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Catherine M. Lockhart
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Edward J. Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Allan E. Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 2013; 79:2692-702. [PMID: 23416995 PMCID: PMC3623170 DOI: 10.1128/aem.03767-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 01/24/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Aleksey Porollo
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ying Wai Lam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | | | - Jagjit S. Yadav
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Edson KZ, Rettie AE. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr Top Med Chem 2013; 13:1429-40. [PMID: 23688133 PMCID: PMC4245146 DOI: 10.2174/15680266113139990110] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023]
Abstract
The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20- hydroxyeicosatetraenoic acid, or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases.
Collapse
Affiliation(s)
- Katheryne Z. Edson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195
| | - Allan E. Rettie
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, Phone: 206-685-0615, Fax: 206-685-3252
| |
Collapse
|
14
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
15
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A Regioselective Biocatalyst for Alkane Activation under Mild Conditions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Bordeaux M, Galarneau A, Fajula F, Drone J. A regioselective biocatalyst for alkane activation under mild conditions. Angew Chem Int Ed Engl 2011; 50:2075-9. [PMID: 21344555 DOI: 10.1002/anie.201005597] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/20/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Mélanie Bordeaux
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM2/UM1, 8, rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
18
|
|
19
|
Johnston JB, Ouellet H, Podust LM, Ortiz de Montellano PR. Structural control of cytochrome P450-catalyzed ω-hydroxylation. Arch Biochem Biophys 2010; 507:86-94. [PMID: 20727847 DOI: 10.1016/j.abb.2010.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/25/2022]
Abstract
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C-H bond hydroxylation depends on the bond strength, and the primary C-H bond of a terminal methyl group is stronger than the secondary or tertiary C-H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C-H bond unless the protein structure specifically enforces primary C-H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω-1)-site.
Collapse
Affiliation(s)
- Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California-San Francisco, CA 94158-2517, United States
| | | | | | | |
Collapse
|
20
|
Guisado-Barrios G, Slawin AM, Richens DT. Iron complexes of new hydrophobic derivatives of tris(2-pyridylmethyl)amine: synthesis, characterization, and catalysis of alkane oxygenation by H2O2. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.506216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gregorio Guisado-Barrios
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| | - Alexandra M.Z. Slawin
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| | - David T. Richens
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| |
Collapse
|
21
|
Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2009; 106:20687-92. [PMID: 19933331 PMCID: PMC2791619 DOI: 10.1073/pnas.0907398106] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) produces a variety of methyl-branched lipids that serve important functions, including modulating the immune response during pathogenesis and contributing to a robust cell wall that is impermeable to many chemical agents. Here, we report characterization of Mtb CYP124 (Rv2266) that includes demonstration of preferential oxidation of methyl-branched lipids. Spectrophotometric titrations and analysis of reaction products indicate that CYP124 tightly binds and hydroxylates these substrates at the chemically disfavored omega-position. We also report X-ray crystal structures of the ligand-free and phytanic acid-bound protein at a resolution of 1.5 A and 2.1 A, respectively, which provide structural insights into a cytochrome P450 with predominant omega-hydroxylase activity. The structures of ligand-free and substrate-bound CYP124 reveal several differences induced by substrate binding, including reorganization of the I helix and closure of the active site by elements of the F, G, and D helices that bind the substrate and exclude solvent from the hydrophobic active site cavity. The observed regiospecific catalytic activity suggests roles of CYP124 in the physiological oxidation of relevant Mtb methyl-branched lipids. The enzymatic specificity and structures reported here provide a scaffold for the design and testing of specific inhibitors of CYP124.
Collapse
Affiliation(s)
- Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Petrea M. Kells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517
| | | |
Collapse
|
22
|
Nakano M, Kelly EJ, Rettie AE. Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase. Drug Metab Dispos 2009; 37:2119-22. [PMID: 19661213 DOI: 10.1124/dmd.109.028530] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bietti's crystalline dystrophy is an ocular disease that is strongly associated with polymorphisms in the CYP4V2 gene. CYP4 enzymes are typically microsomal fatty acid omega-hydroxylases that function together with mitochondrial and peroxisomal beta-oxidation enzymes to degrade cellular lipids. Indeed, ocular and peripheral cells cultured from patients with Bietti's have been reported to exhibit abnormal lipid metabolism. However, CYP4V2 possesses low sequence homology to other members of the CYP4 family. Therefore, we cloned and expressed CYP4V2 and analyzed the functional characteristics of this new cytochrome P450 enzyme. We find that CYP4V2 is a selective omega-hydroxylase of saturated, medium-chain fatty acids with relatively high catalytic efficiency toward myristic acid. Moreover, N-hydroxy-N'-(4-n-butyl-2-methylphenyl formamidine) (HET0016) is a nanomolar inhibitor of the enzyme. Therefore, CYP4V2 exhibits catalytic functions typical of a human CYP4 enzyme, but with a distinctive chain-length selectivity coupled with high omega-hydroxylase specificity. Consequently, defective omega-oxidation of ocular fatty acids/lipids secondary to mutations in the CYP4V2 gene appears to be a plausible mechanism underlying Bietti's crystalline dystrophy.
Collapse
Affiliation(s)
- Mariko Nakano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195-7610, USA
| | | | | |
Collapse
|
23
|
|
24
|
de Vogel-van den Bosch HM, Bünger M, de Groot PJ, Bosch-Vermeulen H, Hooiveld GJEJ, Müller M. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genomics 2008; 9:231. [PMID: 18489776 PMCID: PMC2408604 DOI: 10.1186/1471-2164-9-231] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 05/19/2008] [Indexed: 12/31/2022] Open
Abstract
Background The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called 'intestinal barrier proteins'. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPARα), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPARα on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPARα-null mice. Treatment with the synthetic PPARα agonist WY14643 served as reference. Results We identified 74 barrier genes that were PPARα-dependently regulated 6 hours after activation with WY14643. For eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and oleic acid (OA) these numbers were 46, 41, and 19, respectively. The overlap between EPA-, DHA-, and WY14643-regulated genes was considerable, whereas OA treatment showed limited overlap. Functional implications inferred form our data suggested that nutrient-activated PPARα regulated transporters and phase I/II metabolic enzymes were involved in a) fatty acid oxidation, b) cholesterol, glucose, and amino acid transport and metabolism, c) intestinal motility, and d) oxidative stress defense. Conclusion We identified intestinal barrier genes that were PPARα-dependently regulated after acute activation by fatty acids. This knowledge provides a better understanding of the impact dietary fat has on the barrier function of the gut, identifies PPARα as an important factor controlling this key function, and underscores the importance of PPARα for nutrient-mediated gene regulation in intestine.
Collapse
Affiliation(s)
- Heleen M de Vogel-van den Bosch
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, PO Box 8129, NL-6700EV, Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Hardwick JP. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem Pharmacol 2008; 75:2263-75. [PMID: 18433732 DOI: 10.1016/j.bcp.2008.03.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 12/11/2022]
Abstract
The cytochrome P450 gene 4 family (CYP4) consists of a group of over 63 members that omega-hydroxylate the terminal carbon of fatty acids. In mammals, six subfamilies have been identified and three of these subfamily members show a preference in the metabolism of short (C7-C10)-CYP4B, medium (C10-C16)-CYP4A, and long (C16-C26)-CYP4F, saturated, unsaturated and branched chain fatty acids. These omega-hydroxylated fatty acids are converted to dicarboxylic acids, which are preferentially metabolized by the peroxisome beta-oxidation system to shorter chain fatty acids that are transported to the mitochondria for complete oxidation or used either to supply energy for peripheral tissues during starvation or in lipid synthesis. The differential regulation of the CYP4A and CYP4F genes during fasting, by peroxisome proliferators and in non-alcoholic fatty liver disease (NAFLD) suggests different roles in lipid metabolism. The omega-hydroxylation and inactivation of pro-inflammatory eicosanoids by members of the CYP4F subfamily and the association of the CYP4F2 and CYP4F3 genes with inflammatory celiac disease indicate an important role in the resolution of inflammation. Several human diseases have been genetically linked to the expression CYP4 gene polymorphic variants, which may link human susceptibility to diseases of lipid metabolism and the activation and resolution phases of inflammation. Understanding how the CYP4 genes are regulated during the fasting and feeding cycles and by endogenous lipids will provide therapeutic avenues in the treatment of metabolic disorders of lipid metabolism and inflammation.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine and Pharmacy (NEOUCOM/NEOUCOP), 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
26
|
Jørgensen A, Giessing AMB, Rasmussen LJ, Andersen O. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. MARINE ENVIRONMENTAL RESEARCH 2008; 65:171-186. [PMID: 18023473 DOI: 10.1016/j.marenvres.2007.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/21/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Deposit-feeding polychaetes constitute the dominant macrofauna in marine environments that tend to be depositional centers for organic matter and contaminants. Polychaetes are known to accumulate polycyclic aromatic hydrocarbons (PAHs) from both particulate and dissolved phases but less is known about the mechanisms underlying elimination of accumulated PAHs. An important pathway of elimination is through biotransformation which results in increased aqueous solubility of the otherwise hydrophobic PAHs. Biotransformation in marine polychaetes proceeds in a two phased process similar to those well studied in vertebrates, phase I enzymes belonging to the Cytochrome P450 (CYP) enzyme family, along with a few phase II enzymes have been identified in marine polychaetes. In this review we aim at highlighting advances in the mechanistic understanding of PAH biotransformation in marine polychaetes by including data obtained using analytical chemistry and molecular techniques. In marine polychaetes induction of CYP enzyme activity after exposure to PAHs and the mechanism behind this is currently not well established. Conflicting results regarding the inducibility of CYP enzymes from polychaetes have led to the suggestion that induction in polychaetes is mediated through a different mechanistic pathway, which is corroborated by the apparent lack of an AhR homologous in marine polychaetes. Also, none of the currently identified CYP genes from marine polychaetes are isoforms of those regulated by the AhR in vertebrates. Relatively few studies of phase II enzymes in marine polychaetes are currently available and most of these studies have not measured the activity of specific phase II enzymes and identified phase II metabolites but used an extraction technique only allowing determination of the overall amount of phase II metabolites. Studies in insects and various marine invertebrates suggest that in invertebrates, enzymes in the important phase II enzyme family, UDP-glucuronosyl transferases primarily use glucoside as co-substrate as opposed to the vertebrate cosubstrate glucuronic acid. Recent studies in marine polychaetes have however identified glucuronidation of PAHs indicating no mechanistic difference in co-substrate preference among UDP-glucuronosyl transferases between vertebrates and marine polychaetes but it might suggest a mechanistic difference between marine polychaetes and insects.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
27
|
Donelson E, Chen L, Zhang X, Goswami P, Song BJ, Hardwick JP. Genomic structure and regulation of the rat hepatic CYP4F1 gene by peroxisome proliferators. Arch Biochem Biophys 2008; 472:1-16. [PMID: 18262487 DOI: 10.1016/j.abb.2008.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/17/2022]
Abstract
The rat hepatic gene CYP4F1 encodes a fatty acid omega hydroxylase P450 that metabolizes proinflammatory eicosanoids and long-chain fatty acids. We have completely sequenced the CYP4F1 gene (Accession Nos. AF200361 and AF181083), identified multiple transcription start sites, and characterized a strong core promoter region, -760/116, induced by retinoic acids and peroxisome proliferators in rat hepatoma McA-RH7777 cells. Three peroxisome proliferator responsive elements (PPRE) bind both PPARalpha/RXRalpha and HNF4alpha. Co-transfection of McA-RH7777 cells with the -760/116 reporter construct and PPARalpha/RXRalpha or HNF4alpha showed that HNF4alpha activated while PPARalpha/RXRalpha inhibited CYP4F1 promoter activity. Treating cells with Wy14,643 reversed all initial effects, indicating co-regulation of CYP4F1 gene transcription by PPARalpha/RXRalpha and HNF4alpha. Chromatin immunoprecipitation analysis of cells treated with Wy14,643 showed association of PPARalpha/RXRalpha with the active transcription of the CYP4F1 gene while in clofibrate treated rats HNF4alpha binds during gene repression, suggesting differential regulation of the CYP4F1 gene in vivo and in cell lines.
Collapse
Affiliation(s)
- Ellen Donelson
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, P.O. Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | |
Collapse
|
28
|
Baer BR, Rettie AE. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug Metab Rev 2006; 38:451-76. [PMID: 16877261 DOI: 10.1080/03602530600688503] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CYP4B1 belongs to the mammalian CYP4 enzyme family that also includes CYP4A, 4F, 4V, 4X, and 4Z subfamilies. CYP4B1 shares with other CYP4 proteins a capacity to omega-hydroxylate medium-chain fatty acids, which may be related to an endogenous role for the enzyme. CYP4B1 also participates in the metabolism of certain xenobiotics that are protoxic, including valproic acid, 3-methylindole, 4-ipomeanol, 3-methoxy-4-aminoazobenzene, and numerous aromatic amines. Although these compounds have little in common structurally or chemically, their metabolism by CYP4B1 leads to tissue-specific toxicities in several experimental animals. The bioactivation capabilities of rabbit CYP4B1 have also attracted attention in the cancer community and form the basis of a potential therapeutic strategy involving prodrug activation by the CYP4B1 transgene. The metabolic capabilities of human CYP4B1 are less clear due to difficulties in heterologous expression and existence of alternatively spliced products. Also, many CYP4B1 enzymes covalently bind their heme, a posttranslational modification unique to the CYP4 family of P450s, but common to the mammalian peroxidases. These varied characteristics render CYP4B1 an interesting and enigmatic investigational target.
Collapse
Affiliation(s)
- Brian R Baer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
29
|
|
30
|
Meinhold P, Peters M, Hartwick A, Hernandez A, Arnold F. Engineering Cytochrome P450 BM3 for Terminal Alkane Hydroxylation. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200505465] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
van Beilen JB, Funhoff EG. Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 2005; 16:308-14. [PMID: 15961032 DOI: 10.1016/j.copbio.2005.04.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/01/2005] [Accepted: 04/14/2005] [Indexed: 11/29/2022]
Abstract
As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.
Collapse
Affiliation(s)
- Jan B van Beilen
- Swiss Federal Institute of Technology Zürich, Institute of Biotechnology, Wolfgang-Pauli Strasse 16, CH-8093, Zürich, Switzerland.
| | | |
Collapse
|
32
|
Mezentsev A, Mastyugin V, Seta F, Ashkar S, Kemp R, Reddy DS, Falck JR, Dunn MW, Laniado-Schwartzman M. Transfection of Cytochrome P4504B1 into the Cornea Increases Angiogenic Activity of the Limbal Vessels. J Pharmacol Exp Ther 2005; 315:42-50. [PMID: 16009741 DOI: 10.1124/jpet.105.088211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Injury to the ocular surface induces the production of the corneal epithelial-derived 12-hydroxyeicosatetrienoic acid (12-HETrE), which exhibits stereospecific potent inflammatory and angiogenic properties and is formed by a cytochrome P450 (P450) enzyme, CYP4B1. We have cloned the rabbit corneal CYP4B1 into the expression plasmid pIRES2-enhanced green fluorescent protein (EGFP) and examined the effect of CYP4B1 overexpression on corneal inflammation in vivo and limbal vessel sprouting ex vivo. Cultured rabbit corneal epithelial cells transfected with pIRES2-EGFP-CYP4B1 metabolized arachidonic acid to 12-HETrE at a rate five times higher than that of pIRES2-EGFP-transfected cells (3.53 +/- 0.08 versus 0.62 +/- 0.10 nmol/h/10(6) cells; mean +/- S.E.M., n = 6, p < 0.05), indicating a functional expression of the CYP4B1. Injection of either plasmid into the rabbit cornea resulted in EGFP fluorescence in the corneal epithelium. However, corneal neovascularization, as measured by the length of penetrating blood vessels, was significantly greater in the corneas of eyes transfected with the pIRES2-CYP4B1 compared with pIRES2-EGFP. Corneal-limbal explants from eyes transfected with pIRES2-CYP4B1 showed a marked angiogenic activity (46 +/- 10 versus 12 +/- 3 mm capillary length, n = 6, p < 0.05), which correlated with increased levels of 12-HETrE, the CYP4B1-derived angiogenic 12-hydroxyeicosanoid (0.93 +/- 0.18 versus 0.15 +/- 0.02 pmol/explant, n = 6, p < 0.05), and was inhibited (76 +/- 5%) by the P450 inhibitor 17-octadecynoic acid. The results further implicate the corneal CYP4B1 as a component of the inflammatory and angiogenic cascade initiated by injury to the ocular surface and raise the possibility of a new therapeutic target for preventing corneal neovascularization, namely, the CYP4B1-12-HETrE system.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB. Rhodium boryl complexes in the catalytic, terminal functionalization of alkanes. J Am Chem Soc 2005; 127:2538-52. [PMID: 15725009 DOI: 10.1021/ja045090c] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of studies have been conducted by experimental and theoretical methods on the synthesis, structures, and reactions of CpRh boryl complexes that are likely intermediates in the rhodium-catalyzed regioselective, terminal functionalization of alkanes. The photochemical reaction of CpRh(eta(6)-C(6)Me(6)) with pinacolborane (HBpin) generates the bisboryl complex CpRh(H)(2)(Bpin)(2) (2), which reacts with neat HBpin to generate CpRh(H)(Bpin)(3) (3). X-ray diffraction, density functional theory (DFT) calculations, and NMR spectroscopy suggest a weak, but measurable, B-H bonding interaction. Both 2 and 3 dissociate HBpin and coordinate PEt(3) or P(p-Tol)(3) to generate the conventional rhodium(III) species CpRh(PEt(3))(H)(Bpin) (4) and CpRh[P(p-tol)(3)](Bpin)(2) (5). Compounds 2 and 3 also react with alkanes and arenes to form alkyl- and arylboronate esters at temperatures similar to or below those of the catalytic borylation of alkanes and arenes. Further, these compounds were observed directly in catalytic reactions. The enthalpies and free energies for generation of the 16-electron intermediate and for the C-H bond cleavage and B-C bond formation have been calculated with DFT. These results strongly suggest that the C-H bond cleavage process occurs by a metal-assisted sigma-bond metathesis mechanism to generate a borane complex that isomerizes if necessary to place the alkyl group cis to the boryl group. This complex with cis boryl and alkyl groups then undergoes B-C bond formation by a second sigma-bond metathesis to generate the final functionalized product.
Collapse
Affiliation(s)
- John F Hartwig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rewitz KF, Kjellerup C, Jørgensen A, Petersen C, Andersen O. Identification of two Nereis virens (Annelida: Polychaeta) cytochromes P450 and induction by xenobiotics. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:89-96. [PMID: 15313451 DOI: 10.1016/j.cca.2004.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 05/18/2004] [Accepted: 05/25/2004] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme catalysed metabolism of xenobiotics such as polycyclic aromatic hydrocarbons (PAHs) are known to occur in polychaetes. Yet specific polychaete CYP enzymes have so far not been identified. Here, we report two partial CYP cDNA sequences, both of 453 bp, characterised from Nereis virens. These are the first CYP sequences reported in annelids. The deduced amino acid sequences both share highest identities to mammalian CYP4F enzymes (61% and 58%), indicating membership of the CYP4 family (accordingly, referred to as CYP41 and CYP42, respectively). The CYP42 gene expression was significantly higher in vehicle controls (corn oil) compared to untreated controls. Clofibrate increased the expression of the CYP42 genes. The induction by clofibrate and corn oil indicates regulatory similarities to vertebrate CYP4 enzymes, which are primarily involved in the metabolism of endogenous compounds such as fatty acids. Crude oil and benz(a)anthracene significantly induced CYP42 gene expression 2.6-fold, and because CYP enzymes often are induced by their own substrates, this induction may indicate involvement of N. virens CYP4 enzymes in the detoxification of environmental contaminants such as PAHs. The present study demonstrates that these N. virens CYP genes are transcriptionally inducible, and suggests that N. virens CYP4 enzymes may be involved in the metabolism of both exogenous and endogenous compounds.
Collapse
Affiliation(s)
- K F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
35
|
Peters MW, Meinhold P, Glieder A, Arnold FH. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 2004; 125:13442-50. [PMID: 14583039 DOI: 10.1021/ja0303790] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 BM-3 from Bacillus megaterium was engineered using a combination of directed evolution and site-directed mutagenesis to hydroxylate linear alkanes regio- and enantioselectively using atmospheric dioxygen as an oxidant. BM-3 variant 9-10A-A328V hydroxylates octane at the 2-position to form S-2-octanol (40% ee). Another variant, 1-12G, also hydroxylates alkanes larger than hexane primarily at the 2-position but forms R-2-alcohols (40-55% ee). These biocatalysts are highly active (rates up to 400 min(-1)) and support thousands of product turnovers. The regio- and enantioselectivities are retained in whole-cell biotransformations with Escherichia coli, where the engineered P450s can be expressed at high levels and the cofactor is supplied endogenously.
Collapse
Affiliation(s)
- Matthew W Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
36
|
Cheesman MJ, Baer BR, Zheng YM, Gillam EMJ, Rettie AE. Rabbit CYP4B1 engineered for high-level expression in Escherichia coli: ligand stabilization and processing of the N-terminus and heme prosthetic group. Arch Biochem Biophys 2003; 416:17-24. [PMID: 12859977 DOI: 10.1016/s0003-9861(03)00278-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hemoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme.
Collapse
Affiliation(s)
- Matthew J Cheesman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
37
|
Rock DA, Perkins BNS, Wahlstrom J, Jones JP. A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Arch Biochem Biophys 2003; 416:9-16. [PMID: 12859976 DOI: 10.1016/s0003-9861(03)00228-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of enzymes from the cytochrome P450 family show atypical (non-Michaelis-Menten) kinetic behavior resulting from substrate activation, inhibition, partial inhibition, biphasic saturation, or autoactivation. Herein, we provide a technique that can identify multiple substrate occupancy in the same active site of a P450 as a result of an altered kinetic profile. Using an isotope effect on product ratios confirms that the enzyme-substrate (ES) complex responsible for omega hydroxylation of palmitic acid (palmitate) is in rapid equilibrium with the ES complex that leads to omega-1 hydroxylation of palmitate. Co-incubation of a second substrate, lauric acid (laurate), results in a change in the ratio of omega to omega-1 hydroxylated palmitate. Furthermore, an isotope effect on palmitate is observed when deuterated laurate is co-incubated with non-deuterated palmitate. These results are only consistent with both substrates being in the same active site simultaneously. This mode of binding explains how the F87A mutant of P450BM3 is able to produce the omega alcohol, a product that arises from the high-energy primary radical.
Collapse
Affiliation(s)
- Dan A Rock
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
38
|
Isern J, Meseguer A. Hormonal regulation and characterisation of the mouse Cyp4b1 gene 5'-flanking region. Biochem Biophys Res Commun 2003; 307:139-47. [PMID: 12849993 DOI: 10.1016/s0006-291x(03)01081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Cyp4b1 structural gene comprises 12 exons that span approximately 23kb. The transcriptional initiation site, mapped by 5(')-RACE and primer extension analyses from kidney mRNA, was found to be 34-bp upstream of the translation initiation site. Cyp4b1 mRNA expression was found restricted to kidney and androgenic up-regulation in several mouse strains was observed. Spatial location investigated by in situ hybridisation revealed abundant and specific expression of Cyp4b1 mRNA in the proximal tubules of the renal cortex. A 1.8-kb murine Cyp4b1 5(')-flanking region, which encompasses a TATA box-like sequence and several putative transcription factor-binding sites, was isolated. Transient transfection studies with different Cyp4b1 promoter constructs indicated that this flanking region exhibits promoter activity when expressed in different cell lines and that a 98-truncated fragment represents the minimal sequence required for basal transcription. Androgen responsiveness was examined by cotransfection with an androgen receptor expression vector, in the presence of androgens.
Collapse
Affiliation(s)
- Joan Isern
- Centre d'Investigacions en Bioqui;mica i Biologia Molecular, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, Barcelona 08035, Spain
| | | |
Collapse
|
39
|
Glieder A, Farinas ET, Arnold FH. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 2002; 20:1135-9. [PMID: 12368811 DOI: 10.1038/nbt744] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.
Collapse
Affiliation(s)
- Anton Glieder
- Institute of Biotechnology, Technical University of Graz, Petersgasse 12, A-8010 Graz, Austria
| | | | | |
Collapse
|
40
|
Bylund J, Zhang C, Harder DR. Identification of a novel cytochrome P450, CYP4X1, with unique localization specific to the brain. Biochem Biophys Res Commun 2002; 296:677-84. [PMID: 12176035 DOI: 10.1016/s0006-291x(02)00918-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel cytochrome P450 (P450 or CYP) isoform belonging to the CYP4 family was cloned with reverse transcription-polymerase chain reaction from rat brain. The nucleotide sequence contained an open reading frame coding for 507 amino acids. The deduced amino acid sequence showed 41-51% identity with that of members of the rat CYP4 subfamilies 4A, 4B, and 4F. The enzyme was designated CYP4X1. Northern blot analysis showed that CYP4X1 is highly and specifically expressed in the brain. In situ hybridization experiments suggest that CYP4X1 is mainly expressed in neurons in different regions, e.g., the brain stem, hippocampus, cortex, and cerebellum as well as in vascular endothelial cells. The function of this novel P450 enzyme is unknown, but the expression pattern of CYP4X1 suggests that it is possible that CYP4X1 plays a role in neurovascular function. The catalytic properties and physiological function of CYP4X1 are currently under investigation.
Collapse
Affiliation(s)
- Johan Bylund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
41
|
Jones JP, Mysinger M, Korzekwa KR. Computational models for cytochrome P450: a predictive electronic model for aromatic oxidation and hydrogen atom abstraction. Drug Metab Dispos 2002; 30:7-12. [PMID: 11744605 DOI: 10.1124/dmd.30.1.7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental observations suggest that electronic characteristics play a role in the rates of substrate oxidation for cytochrome P450 enzymes. For example, the tendency for oxidation of a certain functional group generally follows the relative stability of the radicals that are formed (e.g., N-dealkylation > O-dealkylation > 2 degrees carbon oxidation > 1 degree carbon oxidation). In addition, results show that useful correlations between the rates of product formation can be developed using electronic models. In this article, we attempt to determine whether a combined computational model for aromatic and aliphatic hydroxylation can be developed. Toward this goal, we used a combination of experimental data and semiempirical molecular orbital calculations to predicted activation energies for aromatic and aliphatic hydroxylation. The resulting model extends the predictive capacity of our previous aliphatic hydroxylation model to include the second most important group of oxidations, aromatic hydroxylation. The combined model can account for about 83% of the variance in the data for the 20 compounds in the training set and has an error of about 0.7 kcal/mol.
Collapse
Affiliation(s)
- Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
42
|
Kahn RA, Le Bouquin R, Pinot F, Benveniste I, Durst F. A conservative amino acid substitution alters the regiospecificity of CYP94A2, a fatty acid hydroxylase from the plant Vicia sativa. Arch Biochem Biophys 2001; 391:180-7. [PMID: 11437349 DOI: 10.1006/abbi.2001.2415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid omega-hydroxylation is involved in the biosynthesis of the plant cuticle, formation of plant defense signaling molecules, and possibly in the rapid catabolism of free fatty acids liberated under stress conditions. CYP94A2 is a cytochrome P450-dependent medium-chain fatty acid hydroxylase that was recently isolated from Vicia sativa. Contrary to CYP94A1 and CYP86A1, two other fatty acid hydroxylases previously characterized in V. sativa and Arabidopsis thaliana, CYP94A2 is not a strict omega-hydroxylase, but exhibits chain-length-dependent regioselectivity of oxidative attack. Sequence alignments of CYP94A2 with CYP94A1 and molecular modeling studies suggested that F494, located in SRS-6 (substrate recognition site) was involved in substrate recognition and positioning. Indeed, a conservative amino acid substitution at that position markedly altered the regiospecificity of CYP94A2. The observed shift from omega toward omega-1 hydroxylation was prominent with lauric acid as substrate and declined with increasing fatty acid chain length.
Collapse
Affiliation(s)
- R A Kahn
- Département d'Enzymologie Cellulaire et Moléculaire, Institut de Biologie Moléculaire des Plantes-CNRS UPR 406, 28 rue Goethe, Strasbourg Cedex, F-67083, France
| | | | | | | | | |
Collapse
|
43
|
Higgins L, Korzekwa KR, Rao S, Shou M, Jones JP. An assessment of the reaction energetics for cytochrome P450-mediated reactions. Arch Biochem Biophys 2001; 385:220-30. [PMID: 11361021 DOI: 10.1006/abbi.2000.2147] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regioselectivity is used to determine the absolute energetic differences for four different reactions catalyzed by P450. Abstraction of a hydrogen from a benzylic carbon containing a chlorine has a 1.0 kcal/mol lower barrier than abstraction from a simple benzylic carbon, which in turn is 0.4 to 0.9 kcal/mol lower than abstraction from the methyl group of an aromatic ether and 0.1 to 0.6 kcal/mol easier than aromatic hydroxylation. Isotope effects are used to determine if the enzyme-substrate complexes leading to each product, from a given substrate, are in rapid equilibrium. For all enzymes isotopically sensitive branching is observed from the benzylic carbon upon deuterium incorporation at that position to each of the other positions, indicating that each product arises from the same active oxygen species. The energetic differences determined experimentally are accurately reproduced by theoretical hydrogen atom abstractions at both the AM1 semiempirical and DFT levels of theory.
Collapse
Affiliation(s)
- L Higgins
- Department of Medicinal Chemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K. Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for alpha-hydroxylation. Lipids 2000; 35:365-71. [PMID: 10858020 DOI: 10.1007/s11745-000-533-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fatty acid alpha-hydroxylase from Sphingomonas paucimobilis is an unusual cytochrome P450 enzyme that hydroxylates the alpha-carbon of fatty acids in the presence of H2O2. Herein, we describe our investigation concerning the utilization of various substrates and the optical configuration of the alpha-hydroxyl product using a recombinant form of this enzyme. This enzyme can metabolize saturated fatty acids with carbon chain lengths of more than 10. The Km value for pentadecanoic acid (C15) was the smallest among the saturated fatty acids tested (C10-C18) and that for myristic acid (C14) showed similar enzyme kinetics to those seen for C15. As shorter or longer carbon chain lengths were used, Km values increased. The turnover numbers for fatty acids with carbon chain lengths of more than 11 were of the same order of magnitude (10(3) min(-1)), but the turnover number for undecanoic acid (C11) was less. Dicarboxylic fatty acids and methyl myristate were not metabolized, but monomethyl hexadecanedioate and omega-hydroxypalmitic acid were metabolized, though with lower turnover values. Arachidonic acid was a good substrate, comparable to C14 or C15. The metabolite of arachidonic acid was only alpha-hydroxyarachidonic acid. Alkanes, fatty alcohols, and fatty aldehydes were not utilized as substrates. Analysis of the optical configurations of the alpha-hydroxylated products demonstrated that the products were S-enantiomers (more than 98% enantiomerically pure). These results suggested that this P450 enzyme is strictly responsible for fatty acids and catalyzes highly stereo- and regioselective hydroxylation, where structure of omega-carbon and carboxyl carbon as well as carbon chain length of fatty acids are important for substrate-enzyme interaction.
Collapse
Affiliation(s)
- I Matsunaga
- Department of Molecular Regulation, Osaka City University Medical School, Osaka, Japan.
| | | | | | | | | |
Collapse
|