1
|
Bierman R, Dave JM, Greif DM, Salzman J. Statistical analysis supports pervasive RNA subcellular localization and alternative 3' UTR regulation. eLife 2024; 12:RP87517. [PMID: 39699003 DOI: 10.7554/elife.87517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Targeted low-throughput studies have previously identified subcellular RNA localization as necessary for cellular functions including polarization, and translocation. Furthermore, these studies link localization to RNA isoform expression, especially 3' Untranslated Region (UTR) regulation. The recent introduction of genome-wide spatial transcriptomics techniques enables the potential to test if subcellular localization is regulated in situ pervasively. In order to do this, robust statistical measures of subcellular localization and alternative poly-adenylation (APA) at single-cell resolution are needed. Developing a new statistical framework called SPRAWL, we detect extensive cell-type specific subcellular RNA localization regulation in the mouse brain and to a lesser extent mouse liver. We integrated SPRAWL with a new approach to measure cell-type specific regulation of alternative 3' UTR processing and detected examples of significant correlations between 3' UTR length and subcellular localization. Included examples, Timp3, Slc32a1, Cxcl14, and Nxph1 have subcellular localization in the mouse brain highly correlated with regulated 3' UTR processing that includes the use of unannotated, but highly conserved, 3' ends. Together, SPRAWL provides a statistical framework to integrate multi-omic single-cell resolved measurements of gene-isoform pairs to prioritize an otherwise impossibly large list of candidate functional 3' UTRs for functional prediction and study. In these studies of data from mice, SPRAWL predicts that 3' UTR regulation of subcellular localization may be more pervasive than currently known.
Collapse
Affiliation(s)
- Rob Bierman
- Department of Biochemistry Stanford University, Stanford, United States
| | - Jui M Dave
- Department of Biomedical Data Science Stanford University, New Haven, United States
| | - Daniel M Greif
- Department of Biomedical Data Science Stanford University, New Haven, United States
| | - Julia Salzman
- Department of Biochemistry Stanford University, Stanford, United States
- Departments of Medicine (Cardiology) and Genetics Yale University, New Haven, United States
| |
Collapse
|
2
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
3
|
Ju HY, Youn SY, Kang J, Whang MY, Choi YJ, Han MR. Integrated analysis of spatial transcriptomics and CT phenotypes for unveiling the novel molecular characteristics of recurrent and non-recurrent high-grade serous ovarian cancer. Biomark Res 2024; 12:80. [PMID: 39135097 PMCID: PMC11318304 DOI: 10.1186/s40364-024-00632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC), which is known for its heterogeneity, high recurrence rate, and metastasis, is often diagnosed after being dispersed in several sites, with about 80% of patients experiencing recurrence. Despite a better understanding of its metastatic nature, the survival rates of patients with HGSOC remain poor. METHODS Our study utilized spatial transcriptomics (ST) to interpret the tumor microenvironment and computed tomography (CT) to examine spatial characteristics in eight patients with HGSOC divided into recurrent (R) and challenging-to-collect non-recurrent (NR) groups. RESULTS By integrating ST data with public single-cell RNA sequencing data, bulk RNA sequencing data, and CT data, we identified specific cell population enrichments and differentially expressed genes that correlate with CT phenotypes. Importantly, we elucidated that tumor necrosis factor-α signaling via NF-κB, oxidative phosphorylation, G2/M checkpoint, E2F targets, and MYC targets served as an indicator of recurrence (poor prognostic markers), and these pathways were significantly enriched in both the R group and certain CT phenotypes. In addition, we identified numerous prognostic markers indicative of nonrecurrence (good prognostic markers). Downregulated expression of PTGDS was linked to a higher number of seeding sites (≥ 3) in both internal HGSOC samples and public HGSOC TCIA and TCGA samples. Additionally, lower PTGDS expression in the tumor and stromal regions was observed in the R group than in the NR group based on our ST data. Chemotaxis-related markers (CXCL14 and NTN4) and markers associated with immune modulation (DAPL1 and RNASE1) were also found to be good prognostic markers in our ST and radiogenomics analyses. CONCLUSIONS This study demonstrates the potential of radiogenomics, combining CT and ST, for identifying diagnostic and therapeutic targets for HGSOC, marking a step towards personalized medicine.
Collapse
Affiliation(s)
- Hye-Yeon Ju
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Korea
| | - Seo Yeon Youn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Min Yeop Whang
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Korea.
| |
Collapse
|
4
|
Giacobbi NS, Mullapudi S, Nabors H, Pyeon D. The Chemokine CXCL14 as a Potential Immunotherapeutic Agent for Cancer Therapy. Viruses 2024; 16:302. [PMID: 38400076 PMCID: PMC10892169 DOI: 10.3390/v16020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
There is great enthusiasm toward the development of novel immunotherapies for the treatment of cancer, and given their roles in immune system regulation, chemokines stand out as promising candidates for use in new cancer therapies. Many previous studies have shown how chemokine signaling pathways could be targeted to halt cancer progression. We and others have revealed that the chemokine CXCL14 promotes antitumor immune responses, suggesting that CXCL14 may be effective for cancer immunotherapy. However, it is still unknown what mechanism governs CXCL14-mediated antitumor activity, how to deliver CXCL14, what dose to apply, and what combinations with existing therapy may boost antitumor immune responses in cancer patients. Here, we provide updates on the role of CXCL14 in cancer progression and discuss the potential development and application of CXCL14 as an immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (N.S.G.); (S.M.); (H.N.)
| |
Collapse
|
5
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
6
|
Pan Q, Liu R, Zhang X, Cai L, Li Y, Dong P, Gao J, Liu Y, He L. CXCL14 as a potential marker for immunotherapy response prediction in renal cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359231217966. [PMID: 38152696 PMCID: PMC10752123 DOI: 10.1177/17588359231217966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Background Epigenetic mechanisms play vital roles in the activation, differentiation, and effector function of immune cells. The breast and kidney-expressed chemokine (CXCL14) mainly contributes to the regulation of immune cells. However, its role in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in renal cell carcinoma (RCC). Objectives This study aimed to elucidate the role of CXCL14 in predicting the efficacy of immunotherapy in patients with RCC. Methods CXCL14 expression and RNA-sequencing, single-cell RNA-sequencing (scRNA-seq), and survival datasets of RCC from public databases were analyzed, and survival was compared between different CXCL14 levels. The correlation between CXCL14 and immune infiltration and human leukocyte antigen (HLA) gene expression was analyzed with TIMER2.0 and gene expression profiling interactive analysis. Institutional scRNA-seq and immunohistochemical staining analyses were used to verify the relationship between CXCL14 expression level and the efficacy of immunotherapy. Results CXCL14 was expressed in fibroblast and malignant cells in RCC, and higher expression was associated with better survival. Enrichment analysis revealed that CXCL14 is involved in immune activation, primarily in antigen procession, antigen presentation, and major histocompatibility complex assemble. CXCL14 expression was positively correlated with T-cell infiltration as well as HLA-related gene expression. Among the RCC cohort receiving nivolumab in Checkmate 025, the patients with CXCL14 high expression had better overall survival than those with CXCL14 low expression after immunotherapy. scRNA-seq revealed a cluster of CXCL14+ fibroblast in immunotherapy responders. Immunohistochemistry analysis verified that the patients with high CXCL14 expression had an increased proportion of high CD8 expression simultaneously. The expression level of CXCL14 was associated with CXCR4 expression in RCC. Conclusion CXCL14 expression is associated with immunotherapy response in RCC. It is a promising biomarker for immunotherapy response prediction and may be an effective epigenetic modulator in combination with immunotherapy approaches.
Collapse
Affiliation(s)
- Qiwen Pan
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ruiqi Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xinyue Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingling Cai
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yilin Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Pei Dong
- Department of Urology Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jianming Gao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yang Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou 510060, P. R. China
| | - Liru He
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou 510060, P. R. China
| |
Collapse
|
7
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
8
|
Egeland C, Balsevicius L, Gögenur I, Gehl J, Baeksgaard L, Garbyal RS, Achiam MP. Calcium electroporation of esophageal cancer induces gene expression changes: a sub-study of a phase I clinical trial. J Cancer Res Clin Oncol 2023; 149:16031-16042. [PMID: 37688629 PMCID: PMC10620256 DOI: 10.1007/s00432-023-05357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE In this study, we aim to investigate gene expression changes in tumor samples obtained from patients with esophageal cancer treated with calcium electroporation. Previously, local treatment with calcium electroporation has been shown to induce gene expression alterations, potentially contributing to a more tumor-hostile microenvironment. METHODS In this sub-study of a phase I clinical trial, we included five patients with esophageal cancer treated with calcium electroporation. We compared cancer-associated gene expression patterns in tumor samples before and after treatment. Furthermore, we used linear support vector regression to predict the cellular composition of tumor samples. RESULTS Using differential expression analysis, we identified the downregulation of CXCL14 and upregulation of CCL21, ANGPTL4, and CRABP2 genes. We also found a decreased predicted proportion of dendritic cells while the proportion of neutrophils was increased. CONCLUSION This study provides evidence that calcium electroporation for esophageal cancer induces local transcriptional changes and possibly alters the cellular composition of the tumor microenvironment. The results are explorative, larger studies are needed to confirm and further correlate our findings with clinical outcomes.
Collapse
Affiliation(s)
- Charlotte Egeland
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lukas Balsevicius
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
- Graduate School of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koege, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Oncology and Palliative Care, Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Zealand University Hospital, Roskilde, Denmark
| | - Lene Baeksgaard
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rajendra Singh Garbyal
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Patrick Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hashemi SF, Khorramdelazad H. The cryptic role of CXCL17/CXCR8 axis in the pathogenesis of cancers: a review of the latest evidence. J Cell Commun Signal 2023; 17:409-422. [PMID: 36352331 PMCID: PMC10409701 DOI: 10.1007/s12079-022-00699-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Chemokines are immune system mediators that mediate various activities and play a role in the pathogenesis of several cancers. Among these chemokines, C-X-C motif chemokine 17 (CXCL-17) is a relatively novel molecule produced along the airway epithelium in physiological and pathological conditions, and evidence shows that it plays a homeostatic role in most cases. CXCL17 has a protective role in some cancers and a pathological role in others, such as liver and lung cancer. This chemokine, along with its possible receptor termed G protein-coupled receptor 35 (GPR35) or CXCR8, are involved in recruiting myeloid cells, regulating angiogenesis, defending against pathogenic microorganisms, and numerous other mechanisms. Considering the few studies that have been performed on the dual role of CXCL17 in human malignancies, this review has investigated the possible pro-tumor and anti-tumor roles of this chemokine, as well as future treatment options in cancer therapy.
Collapse
Affiliation(s)
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Suzuki H, Yamamoto T. CXCL14-like immunoreactivity in somatostatin-producing cells of the Japanese quail (Coturnix japonica) pancreas. Anat Histol Embryol 2023; 52:158-162. [PMID: 36148519 DOI: 10.1111/ahe.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
This study examines chemokine CXCL14-like peptide distribution in the Japanese quail (Coturnix japonica) pancreas using a specific anti-human CXCL14 antibody. CXCL14-immunoreactive cells were observed in the pancreatic islet peripheral region. The staining was abolished after pre-absorbing the antibody with recombinant human CXCL14. CXCL14-immunoreactive cells were immuno-positive for somatostatin, but not glucagon and insulin. CXCL14 secreted from somatostatin-producing cells might participate in insulin secretion modulation together with somatostatin. In addition, CXCL14 might participate in glucose homeostasis in co-operation with somatostatin and growth hormone.
Collapse
Affiliation(s)
- Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
12
|
Lufkin L, Samanta A, Baker D, Lufkin S, Schulze J, Ellis B, Rose J, Lufkin T, Kraus P. Glis1 and oxaloacetate in nucleus pulposus stromal cell somatic reprogramming and survival. Front Mol Biosci 2022; 9:1009402. [PMID: 36406265 PMCID: PMC9671658 DOI: 10.3389/fmolb.2022.1009402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Regenerative medicine aims to repair degenerate tissue through cell refurbishment with minimally invasive procedures. Adipose tissue (FAT)-derived stem or stromal cells are a convenient autologous choice for many regenerative cell therapy approaches. The intervertebral disc (IVD) is a suitable target. Comprised of an inner nucleus pulposus (NP) and an outer annulus fibrosus (AF), the degeneration of the IVD through trauma or aging presents a substantial socio-economic burden worldwide. The avascular nature of the mature NP forces cells to reside in a unique environment with increased lactate levels, conditions that pose a challenge to cell-based therapies. We assessed adipose and IVD tissue-derived stromal cells through in vitro transcriptome analysis in 2D and 3D culture and suggested that the transcription factor Glis1 and metabolite oxaloacetic acid (OAA) could provide NP cells with survival tools for the harsh niche conditions in the IVD.
Collapse
Affiliation(s)
- Leon Lufkin
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States,The Clarkson School, Clarkson University, Potsdam, NY, United States
| | - Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - DeVaun Baker
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Sina Lufkin
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | | | - Benjamin Ellis
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Jillian Rose
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States,*Correspondence: Petra Kraus,
| |
Collapse
|
13
|
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front Immunol 2022; 13:977485. [PMID: 36119080 PMCID: PMC9478335 DOI: 10.3389/fimmu.2022.977485] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue macrophage (ATM) has been appreciated for its critical contribution to obesity-associated metabolic diseases in recent years. Here, we discuss the regulation of ATM on both metabolic homeostatsis and dysfunction. In particular, the macrophage polarization and recruitment as well as the crosstalk between ATM and adipocyte in thermogenesis, obesity, insulin resistance and adipose tissue fibrosis have been reviewed. A better understanding of how ATM regulates adipose tissue remodeling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- *Correspondence: Yifu Qiu,
| |
Collapse
|
14
|
Kumar A, Mohamed E, Tong S, Chen K, Mukherjee J, Lim Y, Wong CM, Boosalis Z, Shai A, Pieper RO, Gupta N, Perry A, Bollen AW, Molinaro AM, Solomon DA, Shieh JTC, Phillips JJ. CXCL14 Promotes a Robust Brain Tumor-Associated Immune Response in Glioma. Clin Cancer Res 2022; 28:2898-2910. [PMID: 35511927 PMCID: PMC9250623 DOI: 10.1158/1078-0432.ccr-21-2830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE The immunosuppressive tumor microenvironment present in the majority of diffuse glioma limits therapeutic response to immunotherapy. As the determinants of the glioma-associated immune response are relatively poorly understood, the study of glioma with more robust tumor-associated immune responses may be particularly useful to identify novel immunomodulatory factors that can promote T-cell effector function in glioma. EXPERIMENTAL DESIGN We used multiplex immune-profiling, proteomic profiling, and gene expression analysis to define the tumor-associated immune response in two molecular subtypes of glioma and identify factors that may modulate this response. We then used patient-derived glioma cultures and an immunocompetent murine model for malignant glioma to analyze the ability of tumor-intrinsic factors to promote a CD8+ T-cell response. RESULTS As compared with isocitrate dehydrogenase (IDH)-mutant astrocytoma, MAPK-activated pleomorphic xanthoastrocytoma (PXA) harbored increased numbers of activated cytotoxic CD8+ T cells and Iba1+ microglia/macrophages, increased MHC class I expression, enrichment of genes associated with antigen presentation and processing, and increased tumor cell secretion of the chemokine CXCL14. CXCL14 promoted activated CD8+ T-cell chemotaxis in vitro, recruited tumor-infiltrating CD8+ T cells in vivo, and prolonged overall survival in a cytotoxic T-cell-dependent manner. The immunomodulatory molecule B7-H3 was also highly expressed in PXA. CONCLUSIONS We identify the MAPK-activated lower grade astrocytoma PXA as having an immune-rich tumor microenvironment and suggest this tumor may be particularly vulnerable to immunotherapeutic modulation. We also identify CXCL14 as an important determinant of the glioma-associated immune microenvironment, sufficient to promote an antitumor CD8+ T-cell response.
Collapse
Affiliation(s)
- Anupam Kumar
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Esraa Mohamed
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Schuyler Tong
- Department of Hematology Oncology, UCSF Benioff Children's Hospital - Oakland, University of California San Francisco, Oakland, California
| | - Katharine Chen
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Joydeep Mukherjee
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Yunita Lim
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Cynthia M Wong
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Zoe Boosalis
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Anny Shai
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Nalin Gupta
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Arie Perry
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Andrew W Bollen
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Annette M Molinaro
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - David A Solomon
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Joseph T C Shieh
- Division of Medical Genetics, Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Joanna J Phillips
- Brain Tumor Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
- Division of Neuropathology, Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
15
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
16
|
Tourigny DS, Zucker M, Kim M, Russo P, Coleman J, Lee CH, Carlo MI, Chen YB, Hakimi AA, Kotecha RR, Reznik E. Molecular Characterization of the Tumor Microenvironment in Renal Medullary Carcinoma. Front Oncol 2022; 12:910147. [PMID: 35837094 PMCID: PMC9275834 DOI: 10.3389/fonc.2022.910147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Renal medullary carcinoma (RMC) is a highly aggressive disease associated with sickle hemoglobinopathies and universal loss of the tumor suppressor gene SMARCB1. RMC has a relatively low rate of incidence compared with other renal cell carcinomas (RCCs) that has hitherto made molecular profiling difficult. To probe this rare disease in detail we performed an in-depth characterization of the RMC tumor microenvironment using a combination of genomic, metabolic and single-cell RNA-sequencing experiments on tissue from a representative untreated RMC patient, complemented by retrospective analyses of archival tissue and existing published data. Our study of the tumor identifies a heterogenous population of malignant cell states originating from the thick ascending limb of the Loop of Henle within the renal medulla. Transformed RMC cells displayed the hallmarks of increased resistance to cell death by ferroptosis and proteotoxic stress driven by MYC-induced proliferative signals. Specifically, genomic characterization of RMC tumors provides substantiating evidence for the recently proposed dependence of SMARCB1-difficient cancers on proteostasis modulated by an intact CDKN2A-p53 pathway. We also provide evidence that increased cystine-mTORC-GPX4 signaling plays a role in protecting transformed RMC cells against ferroptosis. We further propose that RMC has an immune landscape comparable to that of untreated RCCs, including heterogenous expression of the immune ligand CD70 within a sub-population of tumor cells. The latter could provide an immune-modulatory role that serves as a viable candidate for therapeutic targeting.
Collapse
Affiliation(s)
- David S. Tourigny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, United States
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Mark Zucker
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Russo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jonathan Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria I. Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A. Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ritesh R. Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| |
Collapse
|
17
|
Tian PF, Ma YC, Yue DS, Liang F, Li CG, Chen C, Zhang H, Sun XY, Huang WH, Zhang ZF, Zhou GB, Wang GZ, Zhang B, Wang CL. Plasma CXCL14 as a Candidate Biomarker for the Diagnosis of Lung Cancer. Front Oncol 2022; 12:833866. [PMID: 35769715 PMCID: PMC9235466 DOI: 10.3389/fonc.2022.833866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Effective biomarkers for early diagnosis of lung cancer are needed. Previous studies have indicated positive associations between abnormal circulating cytokines and the etiology of lung cancer. Methods Blood samples were obtained from 286 patients with pretreatment lung cancer and 80 healthy volunteers. Circulating cytokine levels were detected with a Luminex assay and enzyme-linked immunosorbent assay (ELISA). Urine samples were obtained from 284 patients and 122 healthy volunteers. CXC chemokine ligand 14 (CXCL14) expression in tumors and nontumor regions of lung tissues from 133 lung cancer cases was detected by immunohistochemical (IHC) staining and immunofluorescence (IF) staining of formalin fixed paraffin-embedded (FFPE) tissues. Results Compared with healthy volunteers, a 65.7-fold increase was observed in the level of CXCL14 in the plasma of lung cancer patients, and a 1.7-fold increase was observed in the level of CXCL14 in the urine of lung cancer patients, achieving a 0.9464 AUC (area under the curve) value and a 0.6476 AUC value for differentiating between lung cancer patients and healthy volunteers, respectively. Stromal CXCL14 expression was significantly associated with advanced pathologic stage (P<0.001), pathologic N stage (P<0.001), and recurrence and metastasis (P=0.014). Moreover, multivariate analysis suggested stromal CXCL14 expression as an independent predictor of DFS and OS. Conclusions Our study demonstrates that CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer. Impact CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer.
Collapse
Affiliation(s)
- Peng-Fei Tian
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Yu-Chen Ma
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fan Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiao-Yan Sun
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wu-Hao Huang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Chang-Li Wang, ; Bin Zhang, ; Gui-Zhen Wang,
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Chang-Li Wang, ; Bin Zhang, ; Gui-Zhen Wang,
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Chang-Li Wang, ; Bin Zhang, ; Gui-Zhen Wang,
| |
Collapse
|
18
|
Kim H, Won BH, Choi JI, Lee I, Lee JH, Park JH, Choi YS, Kim JH, Cho S, Lim JB, Lee BS. BRAK and APRIL as novel biomarkers for ovarian tumors. Biomark Med 2022; 16:717-729. [PMID: 35588310 DOI: 10.2217/bmm-2021-1014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate BRAK and APRIL in serum samples from healthy patients and an ovarian tumor group and analyze their effective value as biomarkers. Materials & methods: BRAK and APRIL were measured in 197 serum samples including 34 healthy controls, 48 patients with benign ovarian cysts and 115 patients with ovarian cancer, and the best statistical cutoff values were calculated. Then, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value for selected cutoff points were assessed. Results: The healthy control group had statistically significant higher BRAK and lower APRIL than the ovarian tumor group. BRAK was excellent for differentiating healthy patients from patients with ovarian tumors, showing area under the receiver operating characteristic curve 0.983, 98.16% sensitivity and 100% specificity. When BRAK was combined with APRIL and CA-125, it also played a role in distinguishing benign cysts from malignancies with area under the curve 0.864, 81.74% sensitivity and 79.17% specificity. Conclusions: BRAK and APRIL are good candidates for ovarian tumor biomarkers.
Collapse
Affiliation(s)
- Heeyon Kim
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bo Hee Won
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea
| | - Jae Il Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Inha Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hoon Lee
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, 16995, South Korea
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Hoon Kim
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - SiHyun Cho
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | | |
Collapse
|
19
|
McFadyen JD, Peter K. Platelet CXCL14: introducing a new player and potential therapeutic target in thromboinflammation. Cardiovasc Res 2021; 117:645-647. [PMID: 33367481 DOI: 10.1093/cvr/cvaa351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James D McFadyen
- Atherothrombosis & Vascular Biology Program, Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Clinical Haematology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis & Vascular Biology Program, Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Matsushita Y, Hasegawa Y, Takebe N, Onodera K, Shozushima M, Oda T, Nagasawa K, Honma H, Nata K, Sasaki A, Ishigaki Y. Serum C-X-C motif chemokine ligand 14 levels are associated with serum C-peptide and fatty liver index in type 2 diabetes mellitus patients. J Diabetes Investig 2021; 12:1042-1049. [PMID: 33063457 PMCID: PMC8169342 DOI: 10.1111/jdi.13438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS/INTRODUCTION Recent studies have suggested C-X-C motif chemokine ligand 14 (CXCL14), secreted from adipose tissue, to play an important role in the pathogenesis of metabolic syndrome. However, the clinical significance of CXCL14 in humans has not been elucidated. This study aimed to assess correlations between serum CXCL14 levels and clinical parameters in patients with type 2 diabetes mellitus. MATERIALS AND METHODS In total, 176 individuals with type 2 diabetes mellitus were recruited. Serum CXCL14 concentrations were determined by enzyme-linked immunosorbent assay. We examined the associations of serum CXCL14 levels with laboratory values, abdominal computed tomography image information, surrogate markers used for evaluating the pathological states of diabetes, obesity and atherosclerosis. RESULTS Serum CXCL14 levels correlated positively with body mass index, waist circumference, subcutaneous and visceral fat areas, and serum alanine transaminase, uric acid, total cholesterol, low-density lipoprotein cholesterol, triglycerides and C-peptide (CPR) levels. In contrast, CXCL14 levels correlated inversely with age, pulse wave velocity and serum adiponectin levels. Multiple linear regression analysis showed serum levels of CPR (β = 0.227, P = 0.038) and the fatty liver index (β = 0.205, P = 0.049) to be the only parameters showing independent statistically significant associations with serum CXCL14 levels. CONCLUSIONS Serum CXCL14 levels were independently associated with serum CPR and fatty liver index in patients with type 2 diabetes mellitus. In these patients, a high serum CPR concentration might reflect insulin resistance rather than β-cell function, because CXCL14 showed simple correlations with obesity-related parameters. Collectively, these data suggested that serum CXCL14 levels in type 2 diabetes patients might be useful predictors of elevated serum CPR and hepatic steatosis.
Collapse
Affiliation(s)
- Yuriko Matsushita
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Noriko Takebe
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Ken Onodera
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Masaharu Shozushima
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Kan Nagasawa
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Hiroyuki Honma
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| | - Koji Nata
- Division of Medical BiochemistrySchool of PharmacyIwate Medical UniversityYahabaJapan
| | - Akira Sasaki
- Department of SurgeryIwate Medical UniversityYahabaJapan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineIwate Medical UniversityYahabaJapan
| |
Collapse
|
21
|
Gowhari Shabgah A, Haleem Al-Qaim Z, Markov A, Valerievich Yumashev A, Ezzatifar F, Ahmadi M, Mohammad Gheibihayat S, Gholizadeh Navashenaq J. Chemokine CXCL14; a double-edged sword in cancer development. Int Immunopharmacol 2021; 97:107681. [PMID: 33932697 DOI: 10.1016/j.intimp.2021.107681] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a leading cause of death worldwide and imposes a substantial financial burden. Therefore, it is essential to develop cost-effective approaches to inhibit tumor growth and development. The imbalance of cytokines and chemokines play an important role among different mechanisms involved in cancer development. One of the strongly conserved chemokines that is constitutively expressed in skin epithelia is the chemokine CXCL14. As a member of the CXC subfamily of chemokines, CXCL14 is responsible for the infiltration of immune cells, maturation of dendritic cells, upregulation of major histocompatibility complex (MHC)-I expression, and cell mobilization. Moreover, dysregulation of CXCL14 in several cancers has been identified by several studies. Depending on the type or origin of the tumor and components of the tumor microenvironment, CXCL14 plays a conflicting role in cancer. Although fibroblast-derived CXCL14 has a tumor-supportive role, epithelial-derived CXCL14 mainly inhibits tumor progression. Hence, this review will elucidate what is known on the mechanisms of CXCL14 and its therapeutic approaches in tumor treatment. CXCL14 is a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
22
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
23
|
Qi J, Li J, Wang Y, Wang W, Zhu Q, He Y, Lu Y, Wu H, Li X, Zhu Z, Ding Y, Xu R, Sun Y. Novel role of CXCL14 in modulating STAR expression in luteinized granulosa cells: implication for progesterone synthesis in PCOS patients. Transl Res 2021; 230:55-67. [PMID: 33129993 DOI: 10.1016/j.trsl.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-age women. Reduced progesterone levels are associated with luteal phase deficiency in women with PCOS. The levels of C-X-C motif chemokine ligand-14 (CXCL14) were previously reported to be decreased in human-luteinized granulosa (hGL) cells derived from PCOS patients. However, the function of CXCL14 in hGL cells and whether CXCL14 affects the synthesis of progesterone in hGL cells remain unclear. In the present study, the levels of CXCL14 were reduced in follicular fluid and hGL cells in PCOS patients, accompanied by decreased progesterone levels in follicular fluid and decreased steroidogenic acute regulatory (STAR) expression in hGL cells. CXCL14 administration partially reversed the low progesterone production and STAR expression in hGL cells obtained from PCOS patients. In primary hGL cells, CXCL14 upregulated STAR expression and progesterone production. CXCL14 activated the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and CREB inhibitor attenuated the modulation of StAR expression by CXCL14. P38 and Jun N-terminal kinase (JNK) pathways were also activated by CXCL14 and inhibition of p38 and JNK attenuated the increase of phosphorylation of CREB, STAR expression and progesterone production caused by CXCL14. Our findings revealed the novel role of CXCL14 in upregulation of STAR expression and progesterone synthesis through CREB phosphorylation via activation of p38 and JNK pathways in hGL cells. This is likely contributing to the dysfunction in steroidogenesis in granulosa cells from PCOS patients.
Collapse
Affiliation(s)
- Jia Qi
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiaxing Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yaqiong He
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yao Lu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hasiximuke Wu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xinyu Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zhenyi Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ying Ding
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Rui Xu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
24
|
Zhao YJ, Xiao J, Huangyang MD, Zhao R, Wang Q, Zhang Y, Li JT. Transcriptome sequencing and analysis for the pigmentation of scale and skin in common carp (Cyprinus carpio). Mol Biol Rep 2021; 48:2399-2410. [PMID: 33742327 DOI: 10.1007/s11033-021-06273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jun Xiao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Mei-Di Huangyang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
25
|
Yamamoto T, Sasaguri K, Mizumoto N, Suzuki H. The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus. Acta Histochem Cytochem 2020; 53:121-129. [PMID: 33177784 PMCID: PMC7642483 DOI: 10.1267/ahc.20-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have proposed that the chemokine CXCL14 not only has a chemotactic activity, but also functions as a neuromodulator and/or neurotransmitter. In this study, we investigated the distribution of CXCL14 immunoreactive structures in the rat spinal cord and clarified the association of these structures with somatostatin, glutamic acid decarboxylase (GAD; a marker for GABAergic neurons), and neuropeptide Y (NPY). CXCL14 immunoreactive fibers and puncta were observed in lamina II, which modulates somatosensation including nociception, and the lateral spinal nucleus of the spinal dorsal horn at cervical, thoracic, and lumber spinal cord levels. These CXCL14 immunoreactive structures were also immuno-positive for somatostatin, but were immuno-negative for GAD and NPY. In the cervical lateral spinal nucleus, CXCL14 immunoreactive puncta, which were also immuno-positive for somatostatin, existed along the proximal dendrites of some of GABAergic neurons. Together, these results suggest that CXCL14 contributes to the modulation of somatosensation in concert with somatostatin. Neurons targeted by the CXCL14 fiber system include GABAergic neurons located in the lateral spinal nucleus suggesting that CXCL14 with somatostatin can influence the GABAergic neuron function.
Collapse
Affiliation(s)
- Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, School of Medicine
| | | | - Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka
| |
Collapse
|
26
|
Overexpression of CXCL14 Alleviates Ventilator-Induced Lung Injury through the Downregulation of PKM2-Mediated Cytokine Production. Mediators Inflamm 2020; 2020:7650978. [PMID: 32774150 PMCID: PMC7396076 DOI: 10.1155/2020/7650978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation (MV), which strongly impacts the outcome of ventilated patients. Current evidences indicated that inflammation is a major contributor to the pathogenesis of VILI. Our results showed that MV induced excessive proinflammatory cytokine productions together with decreased CXCL14 and increased PKM2 expressions in injured lungs. In addition, CXCL14 overexpression downregulated PKM2 expression and attenuated VILI with reduced inflammation. Moreover, the overexpression of PKM2 markedly diminished the protective effects of CXCL14 against VILI as reflected by worsened morphology and increased cytokine production, whereas PKM2 knockdown decreased cytokine production and attenuated VILI. Collectively, these results suggested that CXCL14 overexpression attenuates VILI through the downregulation of PKM2-mediated proinflammatory cytokine production.
Collapse
|
27
|
Niu L, Zheng Z, Xue Q, Cheng H, Liu Y, Wang H, Hu X, Zhang A, Liu B, Xu X. Two coupled mutations abolished the binding of CEBPB to the promoter of CXCL14 that displayed an antiviral effect on PRRSV by activating IFN signaling. FASEB J 2020; 34:11257-11271. [PMID: 32648265 DOI: 10.1096/fj.202000477r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease of pigs worldwide. Our previous study revealed that Tongcheng (TC) pigs display higher resistance to PRRS than Largewhite (LW) pigs, but the genetic mechanism remains unknown. Here, we first confirmed that CXCL14 was downregulated in lungs and porcine alveolar macrophages (PAMs) responding to PRRS virus (PRRSV) infection, but the decline in LW pigs was more obvious than that in TC pigs. Then, we found that the overexpression of CXCL14 activated type-I interferon (IFN-I) signaling by upregulating interferon beta (IFNB), which plays a major role in the antiviral effect. To further decipher the mechanism underlying its differential expression, we characterized the core promoter of CXCL14 as being located from -145 to 276 bp of the transcription start site (TSS) and identified two main haplotypes that displayed significant differential transcriptional activities. We further identified two coupled point mutations that altered the binding status of CEBPB and were responsible for the differential expression in TC and LW pigs. The regulatory effect of CEBPB on CXCL14 was further confirmed by RNA interference (RNAi) and chromatin immunoprecipitation (ChIP), providing crucial clues for deciphering the mechanism of CXCL14 downregulation in unusual conditions. The present study revealed the potential antiviral effect of CXCL14, occurring via activation of interferon signaling, and suggested that CXCL14 contributes to the PRRS resistance of TC pigs.
Collapse
Affiliation(s)
- Lizhu Niu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qianjing Xue
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huijun Cheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanling Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Anding Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xuewen Xu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
28
|
Sata Y, Nakajima T, Fukuyo M, Matsusaka K, Hata A, Morimoto J, Rahmutulla B, Ito Y, Suzuki H, Yoshino I, Kaneda A. High expression of CXCL14 is a biomarker of lung adenocarcinoma with micropapillary pattern. Cancer Sci 2020; 111:2588-2597. [PMID: 32403160 PMCID: PMC7385370 DOI: 10.1111/cas.14456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma with micropapillary pattern (MPP) has an aggressive malignant behavior. Limited resection should be avoided because of its high recurrence rate. If adenocarcinoma with MPP is diagnosed preoperatively, the selection of proper treatment is possible. To explore a preoperative biomarker for diagnosing MPP, we undertook RNA sequencing analysis of 25 clinical samples as the training set, including 6 MPP, 16 other adenocarcinoma subtypes, and 3 normal lung tissues. Unsupervised hierarchical clustering analysis suggested a presence of subgroup with MPP showing different gene expression phenotype. We extracted differentially expressed genes with high expression levels in MPP samples, and chose VSIG1, CXCL14, and BAMBI as candidate biomarkers for MPP. Reverse transcription-quantitative PCR analysis confirmed a significantly higher expression of VSIG1 (P = .03) and CXCL14 (P = .02) in MPP than others. In a validation set of 4 MPP and 4 non-MPP samples, CXCL14 expression was validated to be significantly higher in MPP than in non-MPP (P = .04). Comparing a total of 10 MPP and 20 non-MPP samples, the area under the curve of CXCL14 to distinguish MPP from others was 0.89. The threshold value was 0.0116, corresponding to sensitivity 80% and specificity 90%. In immunostaining of CXCL14, the staining score was significantly higher in MPP cases than others, where not only the MPP component but also other components showed heterogeneous staining in adenocarcinoma tissues with MPP. Moreover, a higher staining score of CXCL14 was significantly associated with poorer prognosis in all patients (P = .01) or within cases in stage I-III (P = .01). In summary, we identified CXCL14 as a possible diagnostic biomarker of MPP.
Collapse
Affiliation(s)
- Yuki Sata
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Takahiro Nakajima
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Masaki Fukuyo
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Keisuke Matsusaka
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
- Department of PathologyChiba University HospitalChibaJapan
| | - Atsushi Hata
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Junichi Morimoto
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Bahityar Rahmutulla
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Yuki Ito
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Hidemi Suzuki
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Ichiro Yoshino
- Department of General Thoracic SurgeryGraduate School of MedicineChiba UniversityChibaJapan
| | - Atsushi Kaneda
- Department of Molecular OncologyGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
29
|
Ko HM, Moon JS, Shim HK, Lee SY, Kang JH, Kim MS, Chung HJ, Kim SH. Inhibitory effect of C-X-C motif chemokine ligand 14 on the osteogenic differentiation of human periodontal ligament cells through transforming growth factor-beta1. Arch Oral Biol 2020; 115:104733. [PMID: 32408131 DOI: 10.1016/j.archoralbio.2020.104733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to determine the expression of chemokine (C-X-C motif) ligand 14 (CXCL14) in pulpal and periodontal cells in vivo and in vitro, and investigate function of CXCL14 and its underlying mechanism in the proliferation and osteogenic differentiation of human periodontal ligament (hPDL) cells. METHODS To determine the expression level of CXCL14 in adult rat oral tissues and in hPDL cells after application of biophysical forces, RT-PCR, western blot, and histological analyses were performed. The role of CXCL14 in proliferation and osteogenic differentiation of PDL cells was evaluated by measuring dehydrogenase activity and Alizarin red S staining. RESULTS Strong immunoreactivity against CXCL14 was observed in the PDL tissues and pulpal cells of rat molar, and attenuated apparently by orthodontic biophysical forces. As seen in rat molar, highly expressed CXCL14 was observed in human dental pulp and hPDL cells, and attenuated obviously by biophysical tensile force. CXCL14 expression in hPDL cells was increased in incubation time-dependent manner. Proliferation of hPDL cells was inhibited dramatically by small interfering (si) RNA against CXCL14. Furthermore, dexamethasone-induced osteogenic mineralization was inhibited by recombinant human (rh) CXCL14, and augmented by CXCL14 siRNA. rhCXCL14 increased transforming growth factor-beta1 (TGF- β1) in hPDL cells. Inhibition of the cell proliferation and osteogenic differentiation of hPDL cells by CXCL14 siRNA and rhCXCL14 were restored by rhTGF-β1 and SB431542, respectively. CONCLUSION These results suggest that CXCL14 may play roles as a growth factor and a negative regulator of osteogenic differentiation by increasing TGF-β1 expression in hPDL cells.
Collapse
Affiliation(s)
- Hyun-Mi Ko
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hae-Kyoung Shim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Young Lee
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Min-Seok Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hyun-Ju Chung
- Dental Science Research Institute, Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
30
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
31
|
Suzuki H, Yamamoto T. Chemokine CXCL14-like immunoreactivity in the αMSH-producing cells and PRL-producing cells of the flat-tailed house gecko pituitary. J Vet Med Sci 2020; 82:408-413. [PMID: 32037367 PMCID: PMC7192720 DOI: 10.1292/jvms.19-0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The distribution pattern of chemokine CXCL14-immunoreactive cells was examined by
immunohistochemistry in the pituitary of the gecko Hemidactylus
platyurus. Immunoreactive cells were observed in the pars intermedia and pars
distalis of the pituitary, but not in the pars nervosa. All α-melanocyte-stimulating
hormone (αMSH)-producing cells were immunoreactive for CXCL14 in the pars intermedia. The
CXCL14-immunoreactive cells corresponded to prolactin (PRL)-producing cells but not to
other adenohypophyseal-hormone-producing cells in the pars distalis. CXCL14 secreted from
αMSH-producing cells and PRL-producing cells may regulate insulin release from β cells in
the pancreatic islets as well as glucose uptake in the muscle cells together with αMSH
and/or PRL. In addition, secreted CXCL14 with αMSH and/or PRL may act as a bioactive
factor regulating hormone release in the adenohypophyseal cells of the reptilian pars
distalis.
Collapse
Affiliation(s)
- Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka, Akamabunkyo-machi 1-1, Munakata, Fukuoka 811-4192, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
32
|
CXCL14 Overexpression Attenuates Sepsis-Associated Acute Kidney Injury by Inhibiting Proinflammatory Cytokine Production. Mediators Inflamm 2020; 2020:2431705. [PMID: 32317861 PMCID: PMC7150711 DOI: 10.1155/2020/2431705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
CXCL14 is a relatively novel chemokine with a wide spectrum of biological activities. The present study was designed to investigate whether CXCL14 overexpression attenuates sepsis-associated acute kidney injury (AKI) in mice. Sepsis model has been established by cecal ligation and puncture (CLP). CLP induced AKI in mice as assessed by increased renal neutrophil gelatinase-associated lipocalin (NGAL) expression and serum creatinine levels. We found that renal CXCL14 expression in the kidney was significantly decreased at 12 hours after CLP. Correlation analysis demonstrated a negative association between renal CXCL14 expression and AKI markers including serum creatinine and renal NGAL. Moreover, CXCL14 overexpression reduced cytokine (TNF-α, IL-6, and IL-1β) production and NGAL expression in the kidney and decreased serum creatinine levels. In vivo and in vitro experiments found that CXCL14 overexpression inhibited M1 macrophage polarization but increased M2 polarization. Together, these results suggest that CXCL14 overexpression attenuates sepsis-associated AKI probably through the downregulation of macrophages-derived cytokine production. However, further studies are required to elucidate the underlying mechanism.
Collapse
|
33
|
Westrich JA, Vermeer DW, Colbert PL, Spanos WC, Pyeon D. The multifarious roles of the chemokine CXCL14 in cancer progression and immune responses. Mol Carcinog 2020; 59:794-806. [PMID: 32212206 DOI: 10.1002/mc.23188] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
The chemokine CXCL14 is a highly conserved, homeostatic chemokine that is constitutively expressed in skin epithelia. Responsible for immune cell recruitment and maturation, as well as impacting epithelial cell motility, CXCL14 contributes to the establishment of immune surveillance within normal epithelial layers. Furthermore, CXCL14 is critical to upregulating major histocompatibility complex class I expression on tumor cells. Given these important roles, CXCL14 is often dysregulated in several types of carcinomas including cervical, colorectal, endometrial, and head and neck cancers. Its disruption has been shown to limit critical antitumor immune regulation and is correlated to poor patient prognosis. However, other studies have found that in certain cancers, namely pancreatic and some breast cancers, overexpression of stromal CXCL14 correlates with poor patient survival due to increased invasiveness. Contributing to the ambiguity CXCL14 plays in cancer is that the native CXCL14 receptor remains uncharacterized, although several candidate receptors have been proposed. Despite the complexity of CXCL14 functions, it remains clear that this chemokine is a key regulatory factor in cancer and represents a potential target for future cancer immunotherapies.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| |
Collapse
|
34
|
Lin Y, Chen BM, Yu XL, Yi HC, Niu JJ, Li SL. Suppressed Expression of CXCL14 in Hepatocellular Carcinoma Tissues and Its Reduction in the Advanced Stage of Chronic HBV Infection. Cancer Manag Res 2019; 11:10435-10443. [PMID: 31849533 PMCID: PMC6913250 DOI: 10.2147/cmar.s220528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
Introduction CXCL14 was a significantly under-expressed mRNA in hepatocellular carcinoma tissues according to our microarray analysis, as well as head and neck squamous cell carcinoma and cervical squamous cell carcinoma. CXCL14 was considered a tumor suppressor in some studies; however, its role in HBV infection has not been identified. Methods CXCL14 mRNA expression was quantified from 20 male HCC patients, and the fold change in cancer tissues was calculated by comparisons with normal adjacent tissues. Overall, 212 patients with chronic HBV infection and 180 HBV-free controls were recruited to investigate the association between CXCL14 polymorphisms and HBV progression as well as liver function parameters. Serum CXCL14 levels were determined by enzyme-linked immunosorbent assay (ELISA), and comparisons were made between different HBV status and different CXCL14 genotypes. Results The mRNA expression of CXCL14 was 0.33-fold in HCC tissues when compared with adjacent tissues. The frequencies of rs2237062 and rs2547, but not rs2237061, were significantly different between patients with mild hepatitis and moderate-to-severe hepatitis. Moreover, rs2237062 and rs2547 polymorphisms correlated with impaired liver function parameters. ELISA results suggested that HBV-free controls had the highest level of CXCL14, while mild hepatitis patients had low levels, and patients with moderate-to-severe hepatitis had the lowest level. GA+AA genotypes of rs2547 were associated with reduced levels of serum CXCL14 because it introduced a stop codon at residue 109. Conclusion CXCL14 was significantly suppressed in HBV-related HCC tissues, and its polymorphisms were linked with advanced stage chronic HBV infection and impaired liver function.
Collapse
Affiliation(s)
- Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China.,Institution of Infectious Diseases, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Bo-Mei Chen
- Department of Human Resources, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Xiao-Lu Yu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Huo-Chun Yi
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China.,Institution of Infectious Diseases, School of Medicine, Xiamen University, Xiamen 361004, People's Republic of China
| | - Shu-Lian Li
- Department of Gynecology, Xiamen Huli District Maternity and Child Care Hospital, Xiamen 361009, People's Republic of China
| |
Collapse
|
35
|
Zeng L, Gu N, Chen J, Jin G, Zheng Y. IRX1 hypermethylation promotes heart failure by inhibiting CXCL14 expression. Cell Cycle 2019; 18:3251-3262. [PMID: 31640472 DOI: 10.1080/15384101.2019.1673099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify the mechanism and functions of IRX1 in heart failure (HF) and provide evidence for new therapies. Bioinformatic analysis was performed to select target genes in HF cells compared to normal groups. Experimental rats were treated in a controllable manner to explore how IRX1 methylation accounted for this disease in vivo. Cardiac ultrasonic and morphologic examinations were conducted to test the mouse heart and evaluate the degree of cardiac impairment at in the level of organization. GSEA analysis revealed the relative enrichment of functions. Immunofluorescent assays, western blotting and qRT-PCR were used to determine the DNA methylation and expression levels. IRX1 was hypermethylated in heart failure and identified as a target gene by bioinformatic analysis. Transverse aortic constriction (TAC) induced heart failure in rats, while 5-aza-2'-deoxycytidine (5-Aza) alleviated heart failure in rats according to medical cardiac indexes. Western blotting and qRT-PCR revealed that a conspicuous difference in the expression of IRX1 and CXCL14 between HF and normal cardiac cells. As a result of gene methylation, left ventricular hypertrophy and cardiac fibrosis is usually accompanied by heart failure. Moreover, is the results implied that the demethylation of IRX1 improves heart failure in vivo and in vitro. IRX1 methylation induced damaged cardiac function and even heart failure, which has important implications for HF treatment and diagnosis.
Collapse
Affiliation(s)
- Longhuan Zeng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Nanyuan Gu
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Jiayi Chen
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Guangyong Jin
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| |
Collapse
|
36
|
Pijanowski L, Verburg-van Kemenade BML, Chadzinska M. A role for CXC chemokines and their receptors in stress axis regulation of common carp. Gen Comp Endocrinol 2019; 280:194-199. [PMID: 31075272 DOI: 10.1016/j.ygcen.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Although chemokines mainly function to activate leukocytes and to direct their migration, novel evidence indicates non-immune functions for chemokines within the nervous and endocrine systems. These include development of the nervous system, neuromodulation, neuroendocrine regulation and direct neurotransmitter-like actions. In order to clarify a potential role for chemokines and their receptors in the stress response of fish, we studied changes in the expression patterns of CXC ligands and their receptors in the stress axis organs of carp, during a restraint stress procedure. We showed that stress down-regulated the gene expression of CXCL9-11 (CXCb1 and CXCb2) in stress axis organs and up-regulated expression of CXCR4 chemokine receptor in NPO and pituitary. Moreover, upon stress, reduced gene expression of CXCL12a and CXCL14 was observed in the head kidney. Our results imply that in teleost fish, CXC chemokines and their receptors are involved in neuroendocrine regulation. The active regulation of their expression in stress axis organs during periods of restraint indicates a significant role in the stress response.
Collapse
Affiliation(s)
- Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
37
|
Tachibana K, Suzuki H, Yamashita M, Yamamoto T. Distribution, nature, and origin of CXCL14-immunoreactive fibers in rat parotid gland. Neurosci Lett 2019; 704:21-27. [PMID: 30930077 DOI: 10.1016/j.neulet.2019.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 02/01/2023]
Abstract
The distribution and nature of CXCL14-immunoreactive nerve fibers in salivary glands, especially the parotid gland was immunohistochemically investigated. Furthermore, the origin of parotid CXCL14-immunoreactive nerve fibers was determined by retrograde tracing experiments. CXCL14-immunoreactive nerve fibers were localized in the parotid, submandibular, and sublingual glands, particularly in the parotid gland. Double staining using identical sections revealed that a subpopulation of cells neuropeptide Y (NPY)-containing fibers was immunopositive for CXCL14 in the parotid gland. In the peripheral regions of acinar cells, CXCL14-immunoreactive fibers tended to coexist with NPY; however, perivascular NPY-immunoreactive fibers tended to be immunonegative for CXCL14. Parotid CXCL14-immunoreactive fibers were immunopositive for tyrosine hydroxylase (TH) but immunonegative for choline acetyltransferase and vasoactive intestinal peptide (VIP). After injection of horseradish peroxidase-labeled wheat germ agglutinin (WGA-HRP) in the parotid gland, retrogradely labeled neurons were seen in the superior cervical ganglion (SCG) and otic ganglion. Some of the WGA-immunoreactive somata in the SCG were immunopositive for CXCL14; however, no doubly-labeled somata were noted in the otic ganglion. These results indicate that CXCL14-immunoreactive nerve fibers originate in the SCG, and are sympathetic in nature. The coexistence of CXCL14 with NPY/TH suggests that CXCL14 may be associated with NPY/TH functions as a neuromodulatory chemokine in the parotid gland. The localization of CXCL14 nerve fibers around the acinar cells of the parotid gland indicates its involvement in acinar cell function, but not vasoconstriction.
Collapse
Affiliation(s)
- Kaname Tachibana
- Nittai Healthcare College Yoga 2-2-7, Setagaya, Tokyo 158-0087, Japan
| | - Hirohumi Suzuki
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan; Department of Biology, University of Teacher Education Fukuoka, Akamabunkyou-machi 1-1, Munakata, Fukuoka 811-4192, Japan
| | - Masako Yamashita
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan.
| |
Collapse
|
38
|
Yang XY, Ozawa S, Kato Y, Maehata Y, Izukuri K, Ikoma T, Kanamori K, Akasaka T, Suzuki K, Iwabuchi H, Kurata SI, Katoh I, Sakurai T, Kiyono T, Hata RI. C-X-C Motif Chemokine Ligand 14 is a Unique Multifunctional Regulator of Tumor Progression. Int J Mol Sci 2019; 20:E1872. [PMID: 31014014 PMCID: PMC6514660 DOI: 10.3390/ijms20081872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/27/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated. Increasing the production of CXCL14 protein by transfecting tumor cells with a CXCL14 expression vector and transplanting the cells into the back skin of immunodeficient mice suppressed tumor cell growth compared with that of parental tumor cells, suggesting that CXCL14 suppressed tumor growth in vivo. However, some studies have reported that over-expression of CXCL14, especially in stromal cells, stimulated the progression of tumor formation. Transgenic mice expressing 10-fold more CXCL14 protein than wild-type C57BL/6 mice showed reduced rates of chemical carcinogenesis, transplanted tumor growth, and metastasis without apparent side effects. CXCL14 also acts as an antimicrobial molecule. In this review, we highlight recent studies involving the identification and characterization of CXCL14 in cancer progression and discuss the reasons for the context-dependent effects of CXCL14 on tumor formation.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan.
| | - Shigeyuki Ozawa
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan.
| | - Yojiro Maehata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Kazuhito Izukuri
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Oral Science, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Takeharu Ikoma
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Keisuke Kanamori
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Tetsu Akasaka
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Critical Care Medicine and Dentistry, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Kenji Suzuki
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Hiroshi Iwabuchi
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Shun-Ichi Kurata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Iyoko Katoh
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Takashi Sakurai
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, Department of Cell Culture Technology, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Ryu-Ichiro Hata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| |
Collapse
|
39
|
Subat S, Mogushi K, Yasen M, Kohda T, Ishikawa Y, Tanaka H. Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2018; 145:675-684. [PMID: 30564899 DOI: 10.1007/s00432-018-2824-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Recent genetic studies have suggested that tumor suppressor genes are often silenced during carcinogenesis via epigenetic modification caused by methylation of promoter CpG islands. Here, we characterized genes inactivated by DNA methylation in human hepatocellular carcinoma (HCC) to identify the genes and pathways involved in DNA methylation in hepatocellular carcinoma. METHODS Eight HCC-derived cell lines were treated with a DNA demethylating agent, 5-aza-2'-deoxycytidine. Additionally, 100 pairs of primary HCC and adjacent non-cancerous tissues as well as 15 normal liver tissues were analyzed by comprehensive gene expression analysis using microarrays. Moreover, gene set enrichment analysis identified the major molecular pathways associated with DNA methylation. Validation of gene expression and DNA methylation status was performed by real-time PCR after bisulfite modification. RESULTS We showed that CXCL2, an immune-related chemokine, expression was significantly downregulated in tumor tissues and also significantly upregulated by DAC treatment in cell lines. Furthermore, we observed a statistically significant difference in methylation status between normal liver tissues and tumor tissues (P < 0.05). In addition, tumors with higher CXCL2 expression included significantly more numbers of multiple tumors than the lower expression group. CONCLUSIONS We identified CXCL2, an immune-related chemokine, decreased in hepatocellular carcinoma and the regulation mechanism may be controlled by methylation. Further studies should be warranted to examine if and to what extent the gene is actually suppressed by methylation and if there is a possibility that the CXCL2 axis plays a role for diagnosis and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sophia Subat
- Department of Systems Biology, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Epigenetics, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo, 135-8550, Japan
| | - Kaoru Mogushi
- Department of Systems Biology, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mahmut Yasen
- Department of Systems Biology, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo, 135-8550, Japan
- Department of Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Takashi Kohda
- Department of Epigenetics, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo, 135-8550, Japan.
| | - Hiroshi Tanaka
- Department of Systems Biology, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
40
|
Chalin A, Lefevre B, Devisme C, Pronier C, Carrière V, Thibault V, Amiot L, Samson M. Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury. Cytokine 2018; 111:500-504. [DOI: 10.1016/j.cyto.2018.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
|
41
|
Wang Y, Weng X, Wang L, Hao M, Li Y, Hou L, Liang Y, Wu T, Yao M, Lin G, Jiang Y, Fu G, Hou Z, Meng X, Lu J, Wang J. HIC1 deletion promotes breast cancer progression by activating tumor cell/fibroblast crosstalk. J Clin Invest 2018; 128:5235-5250. [PMID: 30204129 DOI: 10.1172/jci99974] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BrCa) is the malignant tumor that most seriously threatens female health; however, the molecular mechanism underlying its progression remains unclear. Here, we found that conditional deletion of hypermethylated in cancer 1 (HIC1) in the mouse mammary gland might contribute to premalignant transformation in the early stage of tumor formation. Moreover, the chemokine (C-X-C motif) ligand 14 (CXCL14) secreted by HIC1-deleted BrCa cells bound to its cognate receptor GPR85 on mammary fibroblasts in the microenvironment and was responsible for activating these fibroblasts via the ERK1/2, Akt, and neddylation pathways, whereas the activated fibroblasts promoted BrCa progression via the induction of epithelial-mesenchymal transition (EMT) by the C-C chemokine ligand 17 (CCL17)/CC chemokine receptor 4 (CCR4) axis. Finally, we confirmed that the HIC1-CXCL14-CCL17 loop was associated with the malignant progression of BrCa. Therefore, the crosstalk between HIC1-deleted BrCa cells and mammary fibroblasts might play a critical role in BrCa development. Exploring the progression of BrCa from the perspective of microenvironment will be beneficial for identifying the potential prognostic markers of breast tumor and providing more effective treatment strategies.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Weng
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Luoyang Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yue Li
- Pathology Center, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yiwei Jiang
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohui Fu
- Pathology Center, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, China
| |
Collapse
|
42
|
Ignacio RMC, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. Chemokine Network and Overall Survival in TP53 Wild-Type and Mutant Ovarian Cancer. Immune Netw 2018; 18:e29. [PMID: 30181917 PMCID: PMC6117514 DOI: 10.4110/in.2018.18.e29] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological malignancies. Because chemokine network is involved in OC progression, we evaluated associations between chemokine expression and survival in tumor suppressor protein p53 (TP53) wild-type (TP53WT) and mutant (TP53m) OC datasets. TP53 was highly mutated in OC compared to other cancer types. Among OC subtypes, CXCL14 was predominantly expressed in clear cell OC, and CCL15 and CCL20 in mucinous OC. TP53WT endometrioid OC highly expressed CXCL14 compared to TP53m, showing better progression-free survival but no difference in overall survival (OS). TP53m serous OC highly expressed CCL8, CCL20, CXCL10 and CXCL11 compared to TP53WT. CXCL12 and CCL21 were associated with poor OS in TP53WT serous OC. CXCR2 was associated with poor OS in TP53m serous OC, while CXCL9, CCL5, CXCR4, CXCL11, and CXCL13 were associated with better OS. Taken together, specific chemokine signatures may differentially influence OS in TP53WT and TP53m OC.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
43
|
Binti Mohd Amir NAS, Mackenzie AE, Jenkins L, Boustani K, Hillier MC, Tsuchiya T, Milligan G, Pease JE. Evidence for the Existence of a CXCL17 Receptor Distinct from GPR35. THE JOURNAL OF IMMUNOLOGY 2018; 201:714-724. [PMID: 29875152 PMCID: PMC6036231 DOI: 10.4049/jimmunol.1700884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022]
Abstract
The chemokine CXCL17 is associated with the innate response in mucosal tissues but is poorly characterized. Similarly, the G protein–coupled receptor GPR35, expressed by monocytes and mast cells, has been implicated in the immune response, although its precise role is ill-defined. A recent manuscript reported that GPR35 was able to signal in response to CXCL17, which we set out to confirm in this study. GPR35 was readily expressed using transfection systems but failed to signal in response to CXCL17 in assays of β-arrestin recruitment, inositol phosphate production, calcium flux, and receptor endocytosis. Similarly, in chemotaxis assays, GPR35 did not confirm sensitivity to a range of CXCL17 concentrations above that observed in the parental cell line. We subsequently employed a real time chemotaxis assay (TAXIScan) to investigate the migratory responses of human monocytes and the monocytic cell line THP-1 to a gradient of CXCL17. Freshly isolated human monocytes displayed no obvious migration to CXCL17. Resting THP-1 cells showed a trend toward directional migration along a CXCL17 gradient, which was significantly enhanced by overnight incubation with PGE2. However, pretreatment of PGE2-treated THP-1 cells with the well-characterized GPR35 antagonist ML145 did not significantly impair their migratory responses to CXCL17 gradient. CXCL17 was susceptible to cleavage with chymase, although this had little effect its ability to recruit THP-1 cells. We therefore conclude that GPR35 is unlikely to be a bona fide receptor for CXCL17 and that THP-1 cells express an as yet unidentified receptor for CXCL17.
Collapse
Affiliation(s)
- Nurul A S Binti Mohd Amir
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - Karim Boustani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marston C Hillier
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; and
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom; .,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
44
|
Abstract
Several chemokines have important functions in mucosal immunity. While there are many chemokines, 4 of them (CCL25, CCL28, CXCL14, and CXCL17) are especially important in mucosal immunity because they are homeostatically expressed in mucosal tissues. Of these, only CCL25 and CCL28 have been widely recognized as mucosal chemokines. In this study, we review the physiology of these chemokines with specific emphasis on their function in mucosal immunity. CCL25 recruits certain important subsets of T cells that express CCR9 to the small intestine. These CCR9+ T cells also express the integrin α4β7 and have been shown to play important roles in the control of intestinal inflammation. CCL28 recruits CCR10+ IgA plasmablasts to the lactating mammary gland. The role of CXCL14 in mucosal immunity is less well defined, but a Cxcl14-/- mouse exhibits significant metabolic abnormalities. Finally, CXCL17 was the last chemokine to be described and signals through a new chemokine receptor (GPR35/CXCR8), which is expressed in a subset of macrophages that are recruited to mucosal tissues by this chemokine. We conclude that these 4 chemokines play very important roles in mucosal immunity and their continued functional characterization will likely identify novel therapeutic targets.
Collapse
Affiliation(s)
- Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, Institute of Immunology, University of California , Irvine, Irvine, California
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute of Immunology, University of California , Irvine, Irvine, California
| |
Collapse
|
45
|
Suzuki H, Yamada K, Matsuda Y, Onozuka M, Yamamoto T. CXCL14-like Immunoreactivity Exists in Somatostatin-containing Endocrine Cells, and in the Lamina Propria and Submucosal Somatostatinergic Nervous System of Mouse Alimentary Tract. Acta Histochem Cytochem 2017; 50:149-158. [PMID: 29343878 PMCID: PMC5765215 DOI: 10.1267/ahc.17015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
In the present study, we investigated the distribution of CXCL14 immunoreactive endocrine cells and neurons in mouse alimentary tract by immunohistochemistry. CXCL14 immunoreactive endocrine cells were found as closed-type cells in the stomach and open-type cells in the small intestine. The immunostaining of these endocrine cells corresponded with that of the somatostatin-containing endocrine cells. Only a few CXCL14 immunoreactive endocrine cells were seen in the large intestine. CXCL14 immunoreactive fibers were observed in the muscular layer from the stomach to the rectum with most abundance in the rectum. Many CXCL14 immunoreactive fibers were observed in the lamina propria and submucosal layer from the duodenum to the rectum with most abundance in the rectum; these fibers corresponded to the somatostatin-containing nerve fibers. Some CXCL14 immunoreactive neuronal somata that were also immuno-positive for somatostatin, were noted in the submucosal layer of the rectum. However, the remaining parts of the alimentary tract presented with almost negligible immunoreactive somata. The co-localization of CXCL14 and somatostatin suggests that CXCL14 contributes to the function of somatostatin, which include the inhibition of other endocrine and exocrine cells and the enteric nervous systems.
Collapse
Affiliation(s)
- Hirohumi Suzuki
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238–8580, Japan
- Department of Biology, University of Teacher Education Fukuoka, Akamabunkyo-machi 1–1, Munakata, Fukuoka 811–4192, Japan
| | - Kentaro Yamada
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238–8580, Japan
| | - Yasuhiro Matsuda
- Nittai Jyudo Therapeutic College, 2–2–7 Yoga, Setagaya, Tokyo 158–0087, Japan
| | - Minoru Onozuka
- Nittai Jyudo Therapeutic College, 2–2–7 Yoga, Setagaya, Tokyo 158–0087, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Inaoka-cho 82, Yokosuka, Kanagawa 238–8580, Japan
| |
Collapse
|
46
|
Nakayama R, Arikawa K, Bhawal UK. The epigenetic regulation of CXCL14 plays a role in the pathobiology of oral cancers. J Cancer 2017; 8:3014-3027. [PMID: 28928893 PMCID: PMC5604453 DOI: 10.7150/jca.21169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Chemokines selectively attract and activate leukocytes and play roles in a variety of homeostatic and disease processes. Explore the biological properties of CXCL14 seems complicated due to unknown functional characteristics of CXCL14 in cancer. Methods: To study the multistep process of oral cancer development, we analyzed oral samples spanning normalcy, dysplasia and cancer from multiple perspectives, revealing a cascade of progressive changes. Results: CXCL14 protein was expressed in the cytoplasm adjacent to tumors. T classification (P<0.001), clinical stage (P=0.0013) and nodal metastasis (P=0.0035) were significantly associated with CXCL14 in relationships between CXCL14 expression levels and tumor and patient characteristics. Compared with non-tumor tissue, expression of the epidermal growth factor receptor (EGFR) gene was increased in dysplasia and was further sustained in cancer. Our data show an inverse relationship between CXCL14 and EGFR expression levels in tumor cells indicating that CXCL14 expression is beneficial for tumor suppression. To explore epigenetic regulation and the impact of CXCL14 on oral cancer, analysis of CpG islands methylation in the CXCL14 promoter region indicated that the abnormal hypermethylation of that promoter region in tumor cells and tissues is one of the mechanisms causing the reduced expression. Restoration of CXCL14 expression was induced by treatment with 5-aza-2'-deoxycytidine. Using in vivo mouse models, we demonstrate that the restoration of CXCL14 expression in irradiation-induced oral carcinoma cells induces the expression of Late Cornified Envelope (LCE) genes. Conclusions: Our data suggest that LCE genes are a novel target of CXCL14 and are likely to have a tumor suppressor function through the modulation of CXCL14 expression. In conclusion, CXCL14 might play a pivotal role in the pathobiology of oral cancer, probably by regulating DNA methylation and leukocyte migration. The level of CXCL14 expression may be a valuable adjuvant parameter to predict the prognosis of patients with oral carcinoma and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Ryuji Nakayama
- Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Kazumune Arikawa
- Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan.,Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Ujjal K Bhawal
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan.,Department of Oral Health, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
47
|
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17:559-572. [PMID: 28555670 DOI: 10.1038/nri.2017.49] [Citation(s) in RCA: 1437] [Impact Index Per Article: 179.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Nisha Nagarsheth
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA.,Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Max S Wicha
- Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, University of Michigan School of Medicine, 1150 E. Medical Center Drive, Ann Arbor, Michigan 48109, USA.,The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA.,Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Collins PJ, McCully ML, Martínez-Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V, Monneau YR, Lortat-Jacob H, Legler DF, Uguccioni M, Thelen M, Piguet V, Mellado M, Moser B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J 2017; 31:3084-3097. [PMID: 28360196 PMCID: PMC5472405 DOI: 10.1096/fj.201700013r] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/13/2017] [Indexed: 12/02/2022]
Abstract
The chemokine receptor, CXC chemokine receptor 4 (CXCR4), is selective for CXC chemokine ligand 12 (CXCL12), is broadly expressed in blood and tissue cells, and is essential during embryogenesis and hematopoiesis. CXCL14 is a homeostatic chemokine with unknown receptor selectivity and preferential expression in peripheral tissues. Here, we demonstrate that CXCL14 synergized with CXCL12 in the induction of chemokine responses in primary human lymphoid cells and cell lines that express CXCR4. Combining subactive concentrations of CXCL12 with 100–300 nM CXCL14 resulted in chemotaxis responses that exceeded maximal responses that were obtained with CXCL12 alone. CXCL14 did not activate CXCR4-expressing cells (i.e., failed to trigger chemotaxis and Ca2+ mobilization, as well as signaling via ERK1/2 and the small GTPase Rac1); however, CXCL14 bound to CXCR4 with high affinity, induced redistribution of cell-surface CXCR4, and enhanced HIV-1 infection by >3-fold. We postulate that CXCL14 is a positive allosteric modulator of CXCR4 that enhances the potency of CXCR4 ligands. Our findings provide new insights that will inform the development of novel therapeutics that target CXCR4 in a range of diseases, including cancer, autoimmunity, and HIV.—Collins, P. J., McCully, M. L., Martínez-Muñoz, L., Santiago, C., Wheeldon, J., Caucheteux, S., Thelen, S., Cecchinato, V., Laufer, J. M., Purvanov, V., Monneau, Y. R., Lortat-Jacob, H., Legler, D. F., Uguccioni, M., Thelen, M., Piguet, V., Mellado, M., Moser, B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4.
Collapse
Affiliation(s)
- Paul J Collins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michelle L McCully
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Laura Martínez-Muñoz
- Department Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - César Santiago
- Department Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - James Wheeldon
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephan Caucheteux
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Julia M Laufer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Yoan R Monneau
- Institute de Biologie Structurale, Unité Mixtes de Recherche 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, Grenoble, France
| | - Hugues Lortat-Jacob
- Institute de Biologie Structurale, Unité Mixtes de Recherche 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, Grenoble, France
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Vincent Piguet
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mario Mellado
- Department Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Bernhard Moser
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom;
| |
Collapse
|
49
|
Kim HJ, Bae IH, Son ED, Park J, Cha N, Na HW, Jung C, Go YS, Kim DY, Lee TR, Shin DW. Transcriptome analysis of airborne PM 2.5-induced detrimental effects on human keratinocytes. Toxicol Lett 2017; 273:26-35. [PMID: 28341207 DOI: 10.1016/j.toxlet.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
Ambient air pollution is becoming more severe worldwide, posing a serious threat to human health. Fine airborne particles of particulate matter (PM2.5) show higher cytotoxicity than other coarse fractions. Indeed, PM2.5 induces cardiovascular or respiratory damage; however, few studies have evaluated the detrimental effect of PM2.5 to normal human skin. We used a next-generation sequencing-based (RNA-Seq) method with transcriptome and Gene Ontology (GO) enrichment analysis to determine the harmful influences of PM2.5 on human normal epidermal keratinocytes. DAVID analysis showed that the most significantly enriched GO terms were associated with epidermis-related biological processes such as "epidermis development (GO: 0008544)" and "keratinocyte differentiation (GO: 0030216)", suggesting that PM2.5 has some deleterious effects to the human epidermis. In addition, Ingenuity Pathway Analysis predicted inflammation-related signaling as one of the major PM2.5-induced signaling pathways, and pro-inflammatory cytokines as upstream regulators with symptoms similar to psoriasis as downstream effects. PM2.5 caused considerable changes in the expression of pro-inflammatory cytokines and psoriatic skin disease-related genes, might lead to epidermal dysfunctions. Our results might help to understand the mechanism of air pollution-induced skin barrier perturbation and contribute to the development of a new strategy for the prevention or recovery of the consequent damage.
Collapse
Affiliation(s)
- Hyoung-June Kim
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Il-Hong Bae
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea; College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Eui Dong Son
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Juyearl Park
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Nari Cha
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Hye-Won Na
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Changjo Jung
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - You-Seak Go
- Macrogen Inc., Seoul, 08511, Republic of Korea
| | - Dae-Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Tae Ryong Lee
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea.
| | - Dong Wook Shin
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea.
| |
Collapse
|
50
|
Ojeda AF, Munjaal RP, Lwigale PY. Knockdown of CXCL14 disrupts neurovascular patterning during ocular development. Dev Biol 2017; 423:77-91. [PMID: 28095300 DOI: 10.1016/j.ydbio.2017.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
The C-X-C motif ligand 14 (CXCL14) is a recently discovered chemokine that is highly conserved in vertebrates and expressed in various embryonic and adult tissues. CXCL14 signaling has been implicated to function as an antiangiogenic and anticancer agent in adults. However, its function during development is unknown. We previously identified novel expression of CXCL14 mRNA in various ocular tissues during development. Here, we show that CXCL14 protein is expressed in the anterior eye at a critical time during neurovascular development and in the retina during neurogenesis. We report that RCAS-mediated knockdown of CXCL14 causes severe neural defects in the eye including precocious and excessive innervation of the cornea and iris. Absence of CXCL14 results in the malformation of the neural retina and misprojection of the retinal ganglion neurons. The ocular neural defects may be due to loss of CXCL12 modulation since recombinant CXCL14 diminishes CXCL12-induced axon growth in vitro. Furthermore, we show that knockdown of CXCL14 causes neovascularization of the cornea. Altogether, our results show for the first time that CXCL14 plays a critical role in modulating neurogenesis and inhibiting ectopic vascularization of the cornea during ocular development.
Collapse
Affiliation(s)
- Ana F Ojeda
- BioSciences, Rice University, 6100 Main Street, Houston, TX, United States; Universidad Santo Tomas, sede Puerto Montt, Buenavecindad #91, Décima región de los Lagos, Chile
| | - Ravi P Munjaal
- BioSciences, Rice University, 6100 Main Street, Houston, TX, United States
| | - Peter Y Lwigale
- BioSciences, Rice University, 6100 Main Street, Houston, TX, United States.
| |
Collapse
|