1
|
mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology 2021; 194:108629. [PMID: 34089728 DOI: 10.1016/j.neuropharm.2021.108629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.
Collapse
|
2
|
Stochastic reaction-diffusion modeling of calcium dynamics in 3D dendritic spines of Purkinje cells. Biophys J 2021; 120:2112-2123. [PMID: 33887224 PMCID: PMC8390834 DOI: 10.1016/j.bpj.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP3)-induced Ca2+ release. These Ca2+ transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca2+, requiring stochastic single-particle methods when modeling them. We use the stochastic particle simulation program MCell to simulate Ca2+ transients within a three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca2+ transporters, and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca2+ transients in different dynamical situations. We test two different models of the IP3 receptor (IP3R). The model with nonlinear concentration response of binding of activating Ca2+ reproduces experimental results better than the model with linear response because of the filtering of noise. Our results also suggest that Ca2+-dependent inhibition of the IP3R needs to be slow to reproduce experimental results. Simulations suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca2+ and IP3 production sensitizing IP3R for Ca2+-induced Ca2+ release. We also model ataxia, a loss of fine motor control assumed to be the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of Ca2+ transients. Finally, we propose possible ways of recovering Ca2+ transients under ataxia.
Collapse
|
3
|
Dadak S, Bouquier N, Goyet E, Fagni L, Levenes C, Perroy J. mGlu1 receptor canonical signaling pathway contributes to the opening of the orphan GluD2 receptor. Neuropharmacology 2016; 115:92-99. [PMID: 27276689 DOI: 10.1016/j.neuropharm.2016.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022]
Abstract
The orphan Glutamate receptor Delta2 (GluD2) intrinsic ion channel activity is indirectly triggered by glutamate through stimulation of the metabotropic glutamate receptor 1 (mGlu1), in cerebellar Purkinje cells. However, the mechanisms of GluD2 ion channel opening are entirely unknown. In this work, we investigated the signaling pathways underlying the mGlu1-induced GluD2 current, performing whole-cell voltage-clamp recordings from mGlu1 and GluD2 transfected HEK293 cells. We show that the activation of GluD2 channels via DHPG-induced mGlu1 stimulation is Gαq-dependent. Moreover, inhibition of the downstream components of the mGlu1 canonical signaling pathway PLC and PKC with U73122 and GF109203X, respectively, strongly reduced the DHPG-induced GluD2 current. These results were further confirmed on endogenous receptors at the Parallel Fiber - Purkinje Cell cerebellar synapse, indicating that the opening of the GluD2 channel by mGlu1 receptor mobilizes the canonical Gq-PLC-PKC pathway. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Selma Dadak
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France; INSERM, U1191, Montpellier, F-34094, France; Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Nathalie Bouquier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France; INSERM, U1191, Montpellier, F-34094, France; Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Elise Goyet
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France; INSERM, U1191, Montpellier, F-34094, France; Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France; INSERM, U1191, Montpellier, F-34094, France; Université de Montpellier, UMR-5203, Montpellier, F-34094, France
| | - Carole Levenes
- CNRS, UMR 8119 Neurophysics and Physiology Laboratory, Université Paris Descartes, Paris, France
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France; INSERM, U1191, Montpellier, F-34094, France; Université de Montpellier, UMR-5203, Montpellier, F-34094, France.
| |
Collapse
|
4
|
Hartmann J, Konnerth A. TRPC3‐dependent synaptic transmission in central mammalian neurons. J Mol Med (Berl) 2015; 93:983-9. [DOI: 10.1007/s00109-015-1298-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
|
5
|
Kubota H, Nagao S, Obata K, Hirono M. mGluR1-mediated excitation of cerebellar GABAergic interneurons requires both G protein-dependent and Src-ERK1/2-dependent signaling pathways. PLoS One 2014; 9:e106316. [PMID: 25181481 PMCID: PMC4152260 DOI: 10.1371/journal.pone.0106316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
Stimulation of type I metabotropic glutamate receptors (mGluR1/5) in several neuronal types induces slow excitatory responses through activation of transient receptor potential canonical (TRPC) channels. GABAergic cerebellar molecular layer interneurons (MLIs) modulate firing patterns of Purkinje cells (PCs), which play a key role in cerebellar information processing. MLIs express mGluR1, and activation of mGluR1 induces an inward current, but its precise intracellular signaling pathways are unknown. We found that mGluR1 activation facilitated spontaneous firing of mouse cerebellar MLIs through an inward current mediated by TRPC1 channels. This mGluR1-mediated inward current depends on both G protein-dependent and -independent pathways. The nonselective protein tyrosine kinase inhibitors genistein and AG490 as well as the selective extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors PD98059 and SL327 suppressed the mGluR1-mediated current responses. Following G protein blockade, the residual mGluR1-mediated inward current was significantly reduced by the selective Src tyrosine kinase inhibitor PP2. In contrast to cerebellar PCs, GABAB receptor activation in MLIs did not alter the mGluR1-mediated inward current, suggesting that there is no cross-talk between mGluR1 and GABAB receptors in MLIs. Thus, activation of mGluR1 facilitates firing of MLIs through the TRPC1-mediated inward current, which depends on not only G protein-dependent but also Src–ERK1/2-dependent signaling pathways, and consequently depresses the excitability of cerebellar PCs.
Collapse
Affiliation(s)
- Hideo Kubota
- Materials Management, Medical Hospital, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan
- * E-mail: (HK); (MH)
| | - Soichi Nagao
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kunihiko Obata
- Obata Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Moritoshi Hirono
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Obata Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HK); (MH)
| |
Collapse
|
6
|
Sekerková G, Watanabe M, Martina M, Mugnaini E. Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes. Brain Struct Funct 2013; 219:719-49. [PMID: 23503970 DOI: 10.1007/s00429-013-0531-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/19/2013] [Indexed: 11/26/2022]
Abstract
Sublineage diversification of specific neural cell classes occurs in complex as well as simply organized regions of the central and peripheral nervous systems; the significance of the phenomenon, however, remains insufficiently understood. The unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons that occur at high density in vestibulocerebellum. As they are classified into subsets that differ in chemical phenotypes, intrinsic properties, and lobular distribution, they represent a valuable neuronal model to study subclass diversification. In this study, we show that cerebellar UBCs of adult rats and mice form two subclasses-type I and type II UBCs-defined by somatodendritic expression of calretinin (CR), mGluR1α, phospholipases PLCβ1 and PLCβ4, and diacylglycerol kinase-beta (DGKβ). We demonstrate that PLCβ1 is associated only with the CR(+) type I UBCs, while PLCβ4 and DGKβ are exclusively present in mGluR1α(+) type II UBCs. Notably, all PLCβ4(+) UBCs, representing about 2/3 of entire UBC population, also express mGluR1α. Furthermore, our data show that the sum of CR(+) type I UBCs and mGluR1α(+) type II UBCs accounts for the entire UBC class identified with Tbr2 immunolabeling. The two UBC subtypes also show a very different albeit somehow overlapping topographical distribution as illustrated by detailed cerebellar maps in this study. Our data not only complement and extend the previous knowledge on the diversity and subclass specificity of the chemical phenotypes within the UBC population, but also provide a new angle to the understanding of the signaling networks in type I and type II UBCs.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, 5-465 Searle bldg. 320 E. Superior str, Chicago, IL, 60611, USA,
| | | | | | | |
Collapse
|
7
|
Hartmann J, Henning HA, Konnerth A. mGluR1/TRPC3-mediated Synaptic Transmission and Calcium Signaling in Mammalian Central Neurons. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006726. [PMID: 21441586 DOI: 10.1101/cshperspect.a006726] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian brain. They are particularly important for synaptic signaling and plasticity in the cerebellum. Unlike ionotropic glutamate receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar Purkinje cells a complex postsynaptic response consisting of two distinct signal components, namely a local dendritic calcium signal and a slow excitatory postsynaptic potential. The basic mechanisms underlying these synaptic responses were clarified in recent years. First, the work of several groups established that the dendritic calcium signal results from IP(3) receptor-mediated calcium release from internal stores. Second, it was recently found that mGluR1-mediated slow excitatory postsynaptic potentials are mediated by the transient receptor potential channel TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel for glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Jana Hartmann
- Institute of Neuroscience and Center for Integrated Protein Science, Technical University of Munich, Germany.
| | | | | |
Collapse
|
8
|
Marzban H, Chung SH, Pezhouh MK, Feirabend H, Watanabe M, Voogd J, Hawkes R. Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus). J Comp Neurol 2010; 518:2221-39. [PMID: 20437525 DOI: 10.1002/cne.22328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chick is a well-understood developmental model of cerebellar pattern formation,but we know much less about the patterning of the adult chicken cerebellum. Therefore an expression study of two Purkinje cell stripe antigens-zebrin II/aldolase C and phospholipase Cbeta4 (PLCbeta4)-has been carried out in the adult chicken (Gallus domesticus). The mammalian cerebellar cortex is built around transverse expression domains ("transverse zones"), each of which is further subdivided into parasagittally oriented stripes. The results from the adult chicken reveal a similar pattern. Five distinct transverse domains were identified. In the anterior lobe a uniformly zebrin II-immunopositive/PLCbeta4-immunonegative lingular zone (LZ; lobule I) and a striped anterior zone (AZ; lobules II-VIa) were distinguished. A central zone (CZ; approximately lobules VIa-VIIIa,b) and a posterior zone (PZ; approximately lobules VIIIa,b-IXc,d) were distinguished in the posterior lobe. Finally, the nodular zone (NZ; lobule X) is uniformly zebrin II-immunoreactive and is innervated by vestibular mossy fibers. Lobule IXc,d is considered as a transitional region between the PZ and the NZ, because the vestibular mossy fiber projection extends into these lobules and because they receive optokinetic mossy and climbing fiber input. It is proposed that the zebrin II-immunonegative P3- stripe corresponds to the lateral vermal B zone of the mammalian cerebellum and that the border between the avian homologs of the mammalian vermis and hemispheres is located immediately lateral to P3-. Thus, there seem to be transverse zones in chicken that are plausible homologs of those identified in mammals, together with an LZ that is characteristic of birds.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology & Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Ikeda M, Hirono M, Sugiyama T, Moriya T, Ikeda-Sagara M, Eguchi N, Urade Y, Yoshioka T. Phospholipase C-beta4 is essential for the progression of the normal sleep sequence and ultradian body temperature rhythms in mice. PLoS One 2009; 4:e7737. [PMID: 19898623 PMCID: PMC2770323 DOI: 10.1371/journal.pone.0007737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022] Open
Abstract
Background The sleep sequence: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the β4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-β4-deficient mutant (PLC-β4−/−) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-β4−/− mice, however. Methodology/Principal Findings Therefore, we analyzed 24-h sleep electroencephalogram in PLC-β4−/− mice. PLC-β4−/− mice exhibited normal non-REM sleep both during the day and nighttime. PLC-β4−/− mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-β4−/− mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22°C–4°C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca2+ mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-β4−/− mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-β4−/− mice. Conclusions/Significance These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-β4−/− mice.
Collapse
Affiliation(s)
- Masayuki Ikeda
- Department of Chronobiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Maike D. Glitsch
- Department of Physiology Anatomy, and GeneticsOxford UniversityOxfordUK
| |
Collapse
|
11
|
Hartmann J, Konnerth A. Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells. Acta Physiol (Oxf) 2009. [DOI: 10.1111/j.1748-1716.2008.01923.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008; 59:392-8. [PMID: 18701065 DOI: 10.1016/j.neuron.2008.06.009] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/21/2008] [Accepted: 06/06/2008] [Indexed: 11/24/2022]
Abstract
In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.
Collapse
|
13
|
Jin Y, Kim SJ, Kim J, Worley PF, Linden DJ. Long-term depression of mGluR1 signaling. Neuron 2007; 55:277-87. [PMID: 17640528 PMCID: PMC2063510 DOI: 10.1016/j.neuron.2007.06.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/05/2007] [Accepted: 06/29/2007] [Indexed: 11/17/2022]
Abstract
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.
Collapse
Affiliation(s)
- Yunju Jin
- Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute Medical Research Center, Korea
| | | | | | | | | |
Collapse
|
14
|
Nomura S, Fukaya M, Tsujioka T, Wu D, Watanabe M. Phospholipase Cβ3 is distributed in both somatodendritic and axonal compartments and localized around perisynapse and smooth endoplasmic reticulum in mouse Purkinje cell subsets. Eur J Neurosci 2007; 25:659-72. [PMID: 17298601 DOI: 10.1111/j.1460-9568.2007.05334.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phospholipase Cbeta3 (PLCbeta3) and PLCbeta4 are the two major isoforms in cerebellar Purkinje cells (PCs), displaying reciprocal expression across the cerebellum. Here, we examined subcellular distribution of PLCbeta3 in the mouse cerebellum by producing specific antibody. PLCbeta3 was detected as a particulate pattern of immunostaining in various PC elements. Like PLCbeta4, PLCbeta3 was richly distributed in somatodendritic compartments, where it was colocalized with molecules constituting the metabotropic glutamate receptor (mGluR1) signalling pathway, i.e. mGluR1alpha, G alpha q/G alpha 11 subunits of G q protein, inositol 1,4,5-trisphosphate receptor IP3R1, Homer1, protein kinase C PKCgamma, and diacylglycerol lipase DAGLalpha. Unlike PLCbeta4, PLCbeta3 was also distributed at low to moderate levels in PC axons, which were intense for IP3R1 and PKCgamma, low for G alpha q/G alpha 11, and negative for mGluR1alpha, Homer1, and DAGLalpha. By immunoelectron microscopy, PLCbeta3 was preferentially localized around the smooth endoplasmic reticulum in spines, dendrites, and axons of PCs, and also accumulated at the perisynapse of parallel fibre-PC synapses. Consistent with the ultrastructural localization, PLCbeta3 was biochemically enriched in the microsomal and postsynaptic density fractions. These results suggest that PLCbeta3 plays a major role in mediating mGluR1-dependent synaptic transmission, plasticity, and integration in PLCbeta3-dominant PCs, through eliciting Ca2+ release, protein phosphorylation, and endocannabinoid production at local somatodendritic compartments. Because PLCbeta3 can be activated by G betagamma subunits liberated from Gi/o and Gs proteins as well, axonal PLCbeta3 seems to modulate the conduction of action potentials through mediating local Ca2+ release and protein phosphorylation upon activation of a variety of G protein-coupled receptors other than mGluR1.
Collapse
Affiliation(s)
- Sachi Nomura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | |
Collapse
|
15
|
Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 2007; 502:857-71. [PMID: 17436294 DOI: 10.1002/cne.21352] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mediolateral boundaries divide the mouse cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Various expression markers reveal this complexity, and detailed maps have been constructed based on the differential expression of zebrin II/aldolase C in a Purkinje cell subset. Recently, phospholipase (PL) Cbeta4 expression in adult mice was shown to be restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. The Purkinje cell expression of PLCbeta4 during embryogenesis and postnatal development begins just before birth in a subset of Purkinje cells that are clustered to form a reproducible array of parasagittal stripes. Double label and serial section immunocytochemistry revealed that the early PLCbeta4-immunoreactive clusters in the neonate are complementary to those previously identified by neurogranin expression. The PLCbeta4 expression pattern can be traced continuously from embryo to adult, revealing the continuity of the topographical map from perinatal to adult cerebella. The only exception, as has been seen for other antigenic markers, is that transient PLCbeta4 expression (which subsequently disappears) is seen in some Purkinje cell stripes during the second postnatal week. Furthermore, the data confirm that some adult Purkinje cell stripes are composite in origin, being derived from two or more distinct embryonic clusters. Thus, the zone and stripe topography of the cerebellum is conserved from embryo to adult, confirming that the early- and late-antigenic markers share a common cerebellar topography.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
16
|
Canepari M, Ogden D. Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones. J Physiol 2006; 573:65-82. [PMID: 16497716 PMCID: PMC1779706 DOI: 10.1113/jphysiol.2005.103770] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of L-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated transient K+ conductance was seen prior to the slow EPSC (sEPSC). It was seen only in PNs previously allowed to fire spontaneously or held at depolarized potentials for several seconds and was slowly inhibited by agatoxin IVA, which blocks P/Q-type Ca2+ channels. It peaked in 148 ms, had well-defined kinetics and, unlike the sEPSC, was abolished by the phospholipase C (PLC) inhibitor U73122. It was blocked by the BK Ca2+-activated K+ channel blocker iberiotoxin and unaffected by apamin, indicating selective activation of BK channels by PLC-dependent store-released Ca2+. The K+ conductance and underlying transient Ca2+ release showed a highly reproducible delay of 99.5 ms following PF burst stimulation, with a precision of 1-2 ms in repeated responses of the same PN, and a subsequent fast rise and fall of Ca2+ concentration. Analysis of Ca2+ signals showed that activation of the K+ conductance by Ca2+ release occurred in small dendrites and subresolution structures, most probably spines. The results show that PF burst stimulation activates two pathways of mGluR1 signalling in PNs. First, transient, PLC-dependent Ca2+ release from stores with precisely reproducible timing and second, slower Ca2+ influx in the cation-permeable sEPSC channel. The priming by prior Ca2+ influx in P/Q-type Ca2+ channels may determine the path of mGluR1 signalling. The precise timing of PLC-mediated store release may be important for interactions of PF mGluR1 signalling with other inputs to the PN.
Collapse
Affiliation(s)
- Marco Canepari
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
17
|
Sarna JR, Marzban H, Watanabe M, Hawkes R. Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 2006; 496:303-13. [PMID: 16566000 DOI: 10.1002/cne.20912] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transverse boundaries divide the cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Several molecules believed to mediate long-term depression at the parallel fiber-Purkinje cell synapse are known to be expressed in stripes. We have therefore explored the distributions of phospholipase Cbeta3 and phospholipase Cbeta4, key components in the transduction of type 1 metabotropic glutamate receptor-mediated responses. The data reveal that both phospholipase Cbeta isotypes are expressed strongly in the mouse cerebellum in subsets of Purkinje cells. The two distributions are distinct and largely nonoverlapping. The pattern of phospholipase Cbeta3 expression is unique, revealing stripes in three of the four transverse zones and a uniform distribution in the fourth. In contrast, phospholipase Cbeta4 appears to be confined largely to the Purkinje cells that are phospholipase Cbeta3-negative. PLCbeta3 is restricted to the zebrin II-immunopositive Purkinje cell subset. Not all zebrin II-immunoreactive Purkinje cells express PLCbeta3: in lobules IX and X it is restricted to that zebrin II-immunopositive subset that also expresses the small heat shock protein HSP25. PLCbeta4 expression is restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. These nonoverlapping expression patterns suggest that long-term depression may be manifested differently between cerebellar modules.
Collapse
Affiliation(s)
- Justyna R Sarna
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
18
|
Smits SM, van der Nobelen S, Hornman KJM, von Oerthel L, Burbach JPH, Smidt MP. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience 2005; 136:171-9. [PMID: 16198487 DOI: 10.1016/j.neuroscience.2005.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 06/21/2005] [Accepted: 07/19/2005] [Indexed: 11/21/2022]
Abstract
The most prominent progressive neurodegenerative movement disorder, Parkinson's disease, is attributed to selective loss of dopamine neurons in the substantia nigra pars compacta, resulting in severe deficiency of dopamine. The homeo-domain gene, Pit x 3, is essential for proper development of midbrain dopaminergic neurons in the substantia nigra pars compacta and might be involved in midbrain dopaminergic survival pathways. The mGluR1-signaling downstream-effector phospholipase C beta 4 was identified in a suppression subtractive hybridization screen comparing wild-type and Pit x 3-deficient Aphakia midbrain dopaminergic neurons. Expression pattern analysis revealed that phospholipase C beta 4 was expressed in midbrain dopaminergic neurons of the substantia nigra pars compacta and part of the ventral tegmental area, whereas expression of mGluR1alpha was predominantly observed in the more vulnerable midbrain dopaminergic neurons in the lateral substantia nigra pars compacta. However, clear expression of phospholipase C beta 4 in spared midbrain dopaminergic neurons of Aphakia mice located in the ventral tegmental area, indicated that induction and maintenance of phospholipase C beta 4 expression is Pit x 3-independent in these neurons. Furthermore, we report here a normal distribution of midbrain dopaminergic cell bodies and axonal projection to the striatum in phospholipase C beta 4-/- mice, indicating that signaling of phospholipase C beta 4 is not essential for the survival of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- S M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Doi T, Kuroda S, Michikawa T, Kawato M. Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 2005; 25:950-61. [PMID: 15673676 PMCID: PMC6725626 DOI: 10.1523/jneurosci.2727-04.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large Ca2+ signals essential for cerebellar long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses are known to be induced when PF activation precedes climbing fiber (CF) activation by 50-200 ms, consistent with cerebellar learning theories. However, large Ca2+ signals and/or LTD can also be induced by massive PF stimulation alone or by photolysis of caged Ca2+ or inositol 1,4,5-trisphosphate (IP3). To understand the spike-timing detection mechanisms in cerebellar LTD, we developed a kinetic model of Ca2+ dynamics within a Purkinje dendritic spine. In our kinetic simulation, IP3 was first produced via the metabotropic pathway of PF inputs, and the Ca2+ influx in response to the CF input triggered regenerative Ca2+-induced Ca2+ release from the internal stores via the IP3 receptors activated by the increased IP3. The delay in IP3 increase caused by the PF metabotropic pathway generated the optimal PF-CF interval. The Ca2+ dynamics revealed a threshold for large Ca2+ release that decreased as IP3 increased, and it coherently explained the different forms of LTD. At 2.5 microM IP3, CF activation after PF activation was essential to reach the threshold for the regenerative Ca2+ release. At 10 microM IP3, the same as achieved experimentally by strong IP3 photolysis, the threshold was lower, and thus large Ca2+ release was generated even without CF stimulation. In contrast, the basal 0.1 microM IP3 level resulted in an extremely high Ca2+ threshold for regenerative Ca2+ release. Thus, the results demonstrated that Ca2+ dynamics can detect spike timing under physiological conditions, which supports cerebellar learning theories.
Collapse
Affiliation(s)
- Tomokazu Doi
- ATR Computational Neuroscience Laboratories, Kansai Science City, Kyoto 619-0288, Japan.
| | | | | | | |
Collapse
|
20
|
Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, Watanabe M. Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci 2004; 20:2929-44. [PMID: 15579147 DOI: 10.1111/j.1460-9568.2004.03768.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon activation of cell surface receptors coupled to the Gq subclass of G proteins, phospholipase C (PLC) beta hydrolyses membrane phospholipid to yield a pair of second messengers, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. PLCbeta4 has been characterized as the isoform enriched in cerebellar Purkinje cells (PCs) and the retina and involved in motor and visual functions. Here we examined cellular and subcellular distributions of PLCbeta4 in adult mouse brains. Immunohistochemistry showed that high levels of PLCbeta4 were detected in the somatodendritic domain of neuronal populations expressing the metabotropic glutamate receptor (mGluR) type 1alpha, including olfactory periglomerular cells, neurons in the bed nucleus anterior commissure, thalamus, substantia nigra, inferior olive, and unipolar brush cells and PCs in the cerebellum. Low to moderate levels were detected in many other mGluR1alpha-positive neurons and in a few mGluR1alpha-negative neurons. In PCs, immunogold electron microscopy localized PLCbeta4 to the perisynapse, at which mGluR1alpha is concentrated, and to the smooth endoplasmic reticulum in dendrites and spines, an intracellular Ca2+ store gated by IP3 receptors. In the cerebellum, immunoblot demonstrated its concentrated distribution in the post-synaptic density and microsomal fractions, where mGluR1alpha and type 1 IP3 receptor were also greatly enriched. Furthermore, PLCbeta4 formed coimmunoprecipitable complexes with mGluR1alpha, type 1 IP3 receptor and Homer 1. These results suggest that PLCbeta4 is preferentially localized in the perisynapse and smooth endoplasmic reticulum as a component of the physically linked phosphoinositide signaling complex. This close molecular relationship might provide PLCbeta4 with a high-fidelity effector function to mediate various neuronal responses under physiological and pathophysiological conditions.
Collapse
MESH Headings
- Animals
- Antibodies/metabolism
- Blotting, Western
- Brain/cytology
- Calbindins
- Calcium Channels/metabolism
- Calreticulin/metabolism
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Homer Scaffolding Proteins
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Situ Hybridization/methods
- Inositol 1,4,5-Trisphosphate Receptors
- Isoenzymes/immunology
- Isoenzymes/metabolism
- Membrane Transport Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Microscopy, Immunoelectron/methods
- Neurons/metabolism
- Neurons/ultrastructure
- Parvalbumins/metabolism
- Phospholipase C beta
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Receptors, AMPA/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- S100 Calcium Binding Protein G/metabolism
- Signal Transduction/physiology
- Type C Phospholipases/immunology
- Type C Phospholipases/metabolism
- Vesicular Glutamate Transport Protein 1
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hartmann J, Blum R, Kovalchuk Y, Adelsberger H, Kuner R, Durand GM, Miyata M, Kano M, Offermanns S, Konnerth A. Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci 2004; 24:5119-30. [PMID: 15175381 PMCID: PMC6729195 DOI: 10.1523/jneurosci.4193-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled metabotropic glutamate group I receptors (mGluR1s) mediate synaptic transmission and plasticity in Purkinje cells and, therefore, critically determine cerebellar motor control and learning. Purkinje cells express two members of the G-protein G(q) family, namely G(q) and G11. Although in vitro coexpression of mGluR1 with either Galpha11 or Galpha(q) produces equally well functioning signaling cascades, Galpha(q)- and Galpha11-deficient mice exhibit distinct alterations in motor coordination. By using whole-cell recordings and Ca2+ imaging in Purkinje cells, we show that Galpha(q) is required for mGluR-dependent synaptic transmission and for long-term depression (LTD). Galpha11 has no detectable contribution for synaptic transmission but also contributes to LTD. Quantitative single-cell RT-PCR analyses in Purkinje cells demonstrate a more than 10-fold stronger expression of Galpha(q) versus Galpha11. Our findings suggest an expression level-dependent action of Galpha(q) and Galpha11 for Purkinje cell signaling and assign specific roles of these two G(q) isoforms for motor coordination.
Collapse
Affiliation(s)
- J Hartmann
- Institut für Physiologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Canepari M, Auger C, Ogden D. Ca2+ ion permeability and single-channel properties of the metabotropic slow EPSC of rat Purkinje neurons. J Neurosci 2004; 24:3563-73. [PMID: 15071104 PMCID: PMC6729750 DOI: 10.1523/jneurosci.5374-03.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/04/2004] [Accepted: 02/21/2004] [Indexed: 11/21/2022] Open
Abstract
The slow EPSC (sEPSC) of cerebellar parallel fiber --> Purkinje neuron synapses is mediated by metabotropic glutamate receptor type 1 (mGluR1) activation of nonselective cation channels. Here, the channel properties were studied with uniform calibrated photorelease of L-glutamate with ionotropic receptors blocked, allowing isolation of postsynaptic processes, or with parallel fiber stimulation or mGluR1 agonist application. Evoked current and fluorescence from Ca(2+) indicators were recorded. Noise analysis of the mGluR1 current gave a single-channel conductance of 0.6 pS and showed low open probability at maximal mGluR1 activation. Similar small single-channel conductances were obtained with the mGluR1 agonist (S)-dihydroxyphenylglycine, with parallel fiber or climbing fiber stimulation. The mGluR1 current fluctuations were unaffected by potassium channel blockers. Photoreleased L-glutamate triggered a Ca(2+) concentration increase in the distal dendrites with a time course similar to that of the mGluR1 current. The proximal dendritic and somatic Ca(2+) changes were delayed with respect to the current. Ca(2+) channel blockers and the phospholipase Cdelta inhibitor 1-[6-[((17delta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione, which inhibits mGluR1-activated intracellular Ca(2+) release, did not prevent the dendritic Ca(2+) concentration increase. Polyamine naphthylacetyl spermine and cationic adamantanes that block the pore of the channel were used to vary the mGluR1 current over a wide range in each cell but still at maximal mGluR1 activation. The Ca(2+) influx was inhibited in parallel with the current. The results show that the mGluR1-activated current and the sEPSC are attributable to small-conductance, low-open probability Ca(2+)-permeable cation channels that will mediate spine-specific Ca(2+) influx during the parallel fiber sEPSP.
Collapse
Affiliation(s)
- Marco Canepari
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
23
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
24
|
Evidence for protein tyrosine phosphatase, tyrosine kinase, and G-protein regulation of the parallel fiber metabotropic slow EPSC of rat cerebellar Purkinje neurons. J Neurosci 2003. [PMID: 12764093 DOI: 10.1523/jneurosci.23-10-04066.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The slow EPSP (sEPSP) or slow EPSC (sEPSC) at parallel fiber to Purkinje neuron synapses is attributable to a nonselective cation channel coupled to activation of metabotropic type 1 glutamate receptors (mGluR1s). Photorelease of L-glutamate in 1 msec from 4-methoxy-7-nitroindolinyl-or 7-nitroindolinyl-caged glutamate in cerebellar slices was used to isolate and study postsynaptic mechanisms coupling mGluR1 to the cation channel. L-Glutamate immediately activated a glutamate transporter current, followed by the slow mGluR1-activated conductance. Inhibitors of kinases, phosphatases, and G-proteins were tested on the peak glutamate-evoked currents. No effects of the inhibitors were seen on the initial glutamate transporter currents. In contrast, the later mGluR1 currents were either unaffected or enhanced by the protein tyrosine kinase (PTK) inhibitors PP1, K252a, and staurosporine were diminished or blocked by phosphatase inhibitors but were unaffected by inhibitors of serine-threonine kinases PKA, PKC, or PKG. The selective src-PTK inhibitor PP1 (10 microm intracellularly) potentiated submaximal mGluR1 currents evoked by low L-glutamate concentrations but had no effect on maximal responses (80 or 160 microm L-glutamate). L-Glutamate-evoked mGluR1 currents and parallel fiber sEPSCs were reversibly and completely inhibited by protein tyrosine phosphatase (PTP) inhibitor bpV(phen) (50-200 microm) and by nonselective phosphatase inhibitor orthovanadate (0.5 or 1 mm). mGluR1 currents were completely inhibited by GDPbetaS applied intracellularly (5 mm). The results confirm a role for a GTPase postsynaptically, show that tyrosine phosphorylation inhibits mGluR1 coupling to the channel, and show that PTPs increase activation by tyrosine dephosphorylation most likely upstream of the sEPSP cation channel.
Collapse
|
25
|
Affiliation(s)
- Masao Ito
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
26
|
Kishimoto Y, Hirono M, Sugiyama T, Kawahara S, Nakao K, Kishio M, Katsuki M, Yoshioka T, Kirino Y. Impaired delay but normal trace eyeblink conditioning in PLCbeta4 mutant mice. Neuroreport 2001; 12:2919-22. [PMID: 11588603 DOI: 10.1097/00001756-200109170-00033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate the functional role of phospholipase Cbeta4 (PLCbeta4), which is highly expressed in the Purkinje cells of the rostral cerebellum, cerebellar long-term depression (LTD) and delay and trace eyeblink conditioning were investigated in PLCbeta4-deficient mice. Rostral cerebellar LTD and delay eyeblink conditioning were severely impaired, whereas trace eyeblink conditioning was not. These results indicate that PLCbeta4 is essential for LTD in the rostral cerebellum and delay conditioning, but not trace conditioning. Rostral cerebellar LTD may be required as a neural substrate for delay conditioning, but is not required for trace conditioning.
Collapse
Affiliation(s)
- Y Kishimoto
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 584] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
28
|
Canepari M, Papageorgiou G, Corrie JE, Watkins C, Ogden D. The conductance underlying the parallel fibre slow EPSP in rat cerebellar Purkinje neurones studied with photolytic release of L-glutamate. J Physiol 2001; 533:765-72. [PMID: 11410633 PMCID: PMC2278661 DOI: 10.1111/j.1469-7793.2001.00765.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Tetanic stimulation of parallel fibres (PFs) produces a slow EPSP (sEPSP) or slow EPSC (sEPSC) in Purkinje neurones (PNs), mediated by type 1 metabotropic glutamate receptors (mGluR1). The conductance change underlying the sEPSP was investigated with rapid photolytic release of L-glutamate from nitroindolinyl (NI)-caged glutamate with ionotropic glutamate receptors blocked, and showed a slow mGluR1-activated cation channel. 2. In cerebellar slices rapid photolytic release (t (1/2) < 0.7 ms) of 7--70 microM L-glutamate on PNs voltage clamped at -65 mV activated first a transient inward current, peaking in 8 ms, followed by a slow inward current with time course similar to the PF sEPSP, peaking at -1 nA in 700 ms. 3. The initial current was inhibited by 300 microM threo-hydroxyaspartate (THA) and did not reverse as the potential was made positive up to +50 mV, suggesting activation of electrogenic glutamate uptake. 4. The slow current was inhibited reversibly by 1 mM (R,S)-MCPG or the non-competitive mGluR1 antagonist CPCCOEt (20 microM), indicating activation of metabotropic type 1 glutamate receptors. The mGluR current was associated with increases of input conductance and membrane current noise, and reversed close to 0 mV, indicating activation of channels permeant to Na(+) and K(+). 5. The sEPSC was not blocked by Cd(2+), Co(2+), Mg(2+) or Gd(3+) ions, by the inhibitor of hyperpolarisation-activated current (I(H)) ZD7288, or by the purinoceptor inhibitor PPADS. Activation was not affected by inhibitors of phospholipase C (PLC) or protein kinase C (PKC), nor mimicked by photorelease of InsP(3) or Ca(2+). The results show that mGluR1 in PNs produces a slow activation of cation-permeable ion channels which is not mediated by PLC activation, Ca(2+) release from stores, or via the activation of PKC.
Collapse
Affiliation(s)
- M Canepari
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
29
|
Miyata M, Kim HT, Hashimoto K, Lee TK, Cho SY, Jiang H, Wu Y, Jun K, Wu D, Kano M, Shin HS. Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci 2001; 13:1945-54. [PMID: 11403688 DOI: 10.1046/j.0953-816x.2001.01570.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term depression (LTD) at parallel fibre-Purkinje cell synapse of the cerebellum is thought to be a cellular substrate for motor learning. LTD requires activation of metabotropic glutamate receptor subtype 1 (mGluR1) and its downstream signalling pathways, which invariably involves phospholipase Cbetas (PLCbetas). PLCbetas consist of four isoforms (PLCbeta1-4) among which PLCbeta4 is the major isoform in most Purkinje cells in the rostral cerebellum (lobule 1 to the rostral half of lobule 6). We studied mutant mice deficient in PLCbeta4, and found that LTD was deficient in the rostral but not in the caudal cerebellum of the mutant. Basic properties of parallel fibre-Purkinje cell synapses and voltage-gated Ca2+ channel currents appeared normal. The mGluR1-mediated Ca2+ release induced by repetitive parallel fibre stimulation was absent in the rostral cerebellum of the mutant, suggesting that their LTD lesion was due to the defect in the mGluR1-mediated signalling in Purkinje cells. Importantly, the eyeblink conditioning, a simple form of discrete motor learning, was severely impaired in PLCbeta4 mutant mice. Wild-type mice developed the conditioned eyeblink response, when pairs of the conditioned stimulus (tone) and the unconditioned stimulus (periorbital shock) were repeatedly applied. In contrast, PLCbeta4 mutant mice could not learn the association between the conditioned and unconditioned stimuli, although their behavioural responses to the tone or to the periorbital shock appeared normal. These results strongly suggest that PLCbeta4 is essential for LTD in the rostral cerebellum, which may be required for the acuisition of the conditioned eyeblink response.
Collapse
Affiliation(s)
- M Miyata
- Department of Physiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hashimoto K, Miyata M, Watanabe M, Kano M. Roles of phospholipase Cbeta4 in synapse elimination and plasticity in developing and mature cerebellum. Mol Neurobiol 2001; 23:69-82. [PMID: 11642544 DOI: 10.1385/mn:23:1:69] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The beta isoforms of phospholipase C (PLCbetas) are thought to mediate signals from metabotropic glutamate receptor subtype 1 (mGluR1) that is crucial for the modulation of synaptic transmission and plasticity. Among four PLCbeta isoforms, PLCbeta4 is one of the two major isoforms expressed in cerebellar Purkinje cells. The authors have studied the roles of PLCbeta4 by analyzing PLCbeta4 knockout mice, which are viable, but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple climbing fiber innervation is clearly impaired in the rostral portion of the cerebellar vermis, where PLCbeta4 mRNA is predominantly expressed in the wild-type mice. In the adult, long-term depression is deficient at parallel fiber to Purkinje cell synapses in the rostral cerebellum of the PLCbeta4 knockout mice. The impairment of climbing fiber synapse elimination and the loss of long-term depression are similar to those seen in mice defective in mGluR1, Galphaq, or protein kinase C. Thus, the authors' results strongly suggest that PLCbeta4 is part of a signaling pathway, including the mGluR1, Galphaq and protein kinase C, which is crucial for both climbing fiber synapse elimination in the developing cerebellum and long-term depression induction in the mature cerebellum.
Collapse
Affiliation(s)
- K Hashimoto
- Department of Physiology, Kanazawa University School of Medicine, Takara-machi, Japan
| | | | | | | |
Collapse
|