1
|
Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines 2022; 10:biomedicines10092306. [PMID: 36140405 PMCID: PMC9496088 DOI: 10.3390/biomedicines10092306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) is a molecule implicated in the regulation of metabolic homeostasis and inflammatory processes, and it exerts its main action through its enzymatic activity. DPP4 represents the enzyme most involved in the catabolism of incretin hormones; thus, its activity impacts appetite, energy balance, and the fine regulation of glucose homeostasis. Indeed, DPP4 inhibitors represent a class of antidiabetic agents widely used for the treatment of Type 2 diabetes mellitus (T2DM). DPP4 also acts as an adipokine and is mainly secreted by the adipose tissue, mostly from mature adipocytes of the visceral compartment, where it exerts autocrine and paracrine activities. DPP4 can disrupt insulin signaling within the adipocyte and in other target cells and tissues, where it also favors the development of a proinflammatory environment. This is likely at the basis of the presence of elevated circulating DPP4 levels in several metabolic diseases. In this review, we summarize the most recent evidence of the role of the DPP4 as an adipokine-regulating glucose/insulin metabolism and fat homeostasis, with a particular focus on clinical outcomes associated with its increased secretion in the presence of adipose tissue accumulation and dysfunction.
Collapse
|
2
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
3
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
4
|
Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420912972. [PMID: 32231442 PMCID: PMC7088130 DOI: 10.1177/1179551420912972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Natasha A Trzaskalski
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Evgenia Fadzeyeva
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9192-9201. [PMID: 31916151 DOI: 10.1007/s11356-019-07509-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1β), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1β, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-, Arish, Egypt
| | - Aya A Gaber
- Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
6
|
Murgia A, Caboni P, Cadoni E, Serra M, Marongiu F, Laconi E. A GC–MS untargeted metabolomics analysis in the plasma and liver of rats lacking dipeptidyl-peptidase type IV enzyme activity. J Physiol Biochem 2017; 73:575-582. [DOI: 10.1007/s13105-017-0588-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
|
7
|
Böhm A, Wagner R, Machicao F, Holst JJ, Gallwitz B, Stefan N, Fritsche A, Häring HU, Staiger H. DPP4 gene variation affects GLP-1 secretion, insulin secretion, and glucose tolerance in humans with high body adiposity. PLoS One 2017; 12:e0181880. [PMID: 28750074 PMCID: PMC5531535 DOI: 10.1371/journal.pone.0181880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/08/2017] [Indexed: 11/23/2022] Open
Abstract
Objective Dipeptidyl-peptidase 4 (DPP-4) cleaves and inactivates the insulinotropic hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide, collectively termed incretins. DPP-4 inhibitors entered clinical practice as approved therapeutics for type-2 diabetes in 2006. However, inter-individual variance in the responsiveness to DPP-4 inhibitors was reported. Thus, we asked whether genetic variation in the DPP4 gene affects incretin levels, insulin secretion, and glucose tolerance in participants of the TÜbingen Family study for type-2 diabetes (TÜF). Research design and methods Fourteen common (minor allele frequencies ≥0.05) DPP4 tagging single nucleotide polymorphisms (SNPs) were genotyped in 1,976 non-diabetic TÜF participants characterized by oral glucose tolerance tests and bioimpedance measurements. In a subgroup of 168 subjects, plasma incretin levels were determined. Results We identified a variant, i.e., SNP rs6741949, in intron 2 of the DPP4 gene that, after correction for multiple comparisons and appropriate adjustment, revealed a significant genotype-body fat interaction effect on glucose-stimulated plasma GLP-1 levels (p = 0.0021). Notably, no genotype-BMI interaction effects were detected (p = 0.8). After stratification for body fat content, the SNP negatively affected glucose-stimulated GLP-1 levels (p = 0.0229), insulin secretion (p = 0.0061), and glucose tolerance (p = 0.0208) in subjects with high body fat content only. Conclusions A common variant, i.e., SNP rs6741949, in the DPP4 gene interacts with body adiposity and negatively affects glucose-stimulated GLP-1 levels, insulin secretion, and glucose tolerance. Whether this SNP underlies the reported inter-individual variance in responsiveness to DPP-4 inhibitors, at least in subjects with high body fat content, remains to be shown.
Collapse
Affiliation(s)
- Anja Böhm
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Fausto Machicao
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Jens Juul Holst
- Section of Translational Metabolic Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Baptist Gallwitz
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Nutritional and Preventive Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Interfaculty Center for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Interfaculty Center for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
8
|
Faidley TD, Leiting B, Pryor KD, Lyons K, Hickey GJ, Thompson DR. Inhibition of Dipeptidyl-Peptidase IV Does Not Increase Circulating IGF-1 Concentrations in Growing Pigs. Exp Biol Med (Maywood) 2016; 231:1373-8. [PMID: 16946406 DOI: 10.1177/153537020623100811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The enzyme dipeptidyl peptidase-IV (DPP-IV) inactivates a variety of bioactive peptides, including glucagon-like peptide-1 (GLP-1) and growth hormone releasing hormone (GHRH). Inhibiting DPP-IV in order to increase circulating GLP-1 is of interest as a treatment for Type II diabetes. Inactivation of DPP-IV may also increase circulating GHRH, potentially enhancing growth in domestic animals. To test the hypothesis that inhibition of DPP-IV activity will influence the growth hormone/IGF-1 axis, growing pigs (Sus scrofa domesticus, 78 kg) were treated with a DPP-IV inhibitor (Compound 1, the 2,5-difluorophenyl analog of the triazolopiperazine MK0431, sitagliptin), and plasma concentrations of IGF-1 were monitored. Pigs were administered either sterile saline (0.11 ml/kg followed by a continuous infusion at 2 ml/hr for 72 hrs, controls, n = 2), Compound 1 (2.78 mg/kg followed by a continuous infusion at 0.327 mg/kg·hr for 72 hrs, n = 4) or GHRH (0.11 ml/kg sterile saline, followed by a continuous infusion of GHRH at 2.5 μg/kg hr for 48 hrs, n = 4). Plasma concentrations of Compound 1 were maintained at 1 μM, which resulted in a 90% inhibition of circulating DPP-IV activity. Relative to the predose 24-hr period, area under the IGF-1 concentration curve (AUC) tended to be lower (P = 0.062) with Compound 1 (–79 ± 130 ng/ml hr) than controls (543 ± 330 ng/ml hr). GHRH treatment increased the IGF-1 AUC (1210 ± 160 ng/ml hr, P = 0.049 vs. controls and P = 0.001 vs. Compound 1). We conclude that inhibition of DPP-IV does not alter the circulating levels of IGF-1 in the growing pig.
Collapse
Affiliation(s)
- T D Faidley
- Department of Pharmacology, Merck Research Laboratories, Branchburg Farm, 203 River Road, Somerville, NJ 08876, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Pratley RE, Salsali A, Matfin G. Review: Inhibition of dipeptidyl peptidase-4 with vildagliptin: a potential new treatment for type 2 diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514060060040201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus is a growing problem in most parts of the world. There is now good evidence that controlling hyperglycaemia can help prevent many of the serious complications associated with the disease. Despite this evidence and the availability of several classes of oral antidiabetic agents and insulin, many people with diabetes do not achieve adequate glycaemic control (i.e. HbA1C< 6.5 or 7.0%). Thus, there is an urgent unmet medical need to develop new and better treatments for type 2 diabetes. Among the most promising new classes of drugs for type 2 diabetes are those that leverage the incretin hormone glucagon-like peptide-1 (GLP-1). Vildagliptin, an orally available, potent and specific inhibitor of dipeptidyl peptidase-4 (DPP-4), the enzyme that rapidly inactivates GLP-1, augments endogenous active GLP-1 and gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) and reduces hyperglycaemia in patients with type 2 diabetes. Studies to date in patients exposed for up to one year indicate that vildagliptin produces clinically significant reductions in HbA1C when used as monotherapy and in combination with metformin, glimepiride, or insulin. In general, the drug has proved to be well tolerated with low rates of hypoglycaemia and gastrointestinal side effects (including nausea) and no weight gain or oedema.
Collapse
Affiliation(s)
- Richard E Pratley
- Diabetes and Metabolism Translational Medicine Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Vermont College of Medicine, USA,
| | - Afshin Salsali
- Diabetes and Metabolism Translational Medicine Unit, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Vermont College of Medicine, USA
| | - Glenn Matfin
- Novo Nordisk Inc. 100 College Road West, Princeton, New Jersey 08540, USA, Division of Endocrinology and Diabetes, Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Kim SH, Jung E, Yoon MK, Kwon OH, Hwang DM, Kim DW, Kim J, Lee SM, Yim HJ. Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo. Eur J Pharmacol 2016; 788:54-64. [PMID: 27298192 DOI: 10.1016/j.ejphar.2016.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/24/2023]
Abstract
Gemigliptin, a novel dipeptidyl peptidase (DPP)-4 inhibitor, is approved for use as a monotherapy or in combination therapy to treat hyperglycemia in patients with type 2 diabetes mellitus. In this study, we investigated the pharmacological profiles of gemigliptin in vitro and in vivo and compared them to those of the other DPP-4 inhibitors. Gemigliptin was a reversible and competitive inhibitor with a Ki value of 7.25±0.67nM. Similar potency was shown in plasma from humans, rats, dogs, and monkeys. The kinetics of DPP-4 inhibition by gemigliptin was characterized by a fast association and a slow dissociation rate compared to sitagliptin (fast on and fast off rate) or vildagliptin (slow on and slow off rate). In addition, gemigliptin showed at least >23,000-fold selectivity for DPP-4 over various proteases and peptidases, including DPP-8, DPP-9, and fibroblast activation protein (FAP)-α. In the rat, dog, and monkey, gemigliptin showed more potent DPP-4 inhibitory activity in vivo compared with sitagliptin. In mice and dogs, gemigliptin prevented the degradation of active glucagon-like peptide-1 by DPP-4 inhibition, which improved glucose tolerance by increasing insulin secretion and reducing glucagon secretion during an oral glucose tolerance test. The long-term anti-hyperglycemic effect of gemigliptin was evaluated in diet-induced obese mice and high-fat diet/streptozotocin-induced diabetic mice. Gemigliptin dose-dependently decreased hemoglobin A1c (HbA1c) levels and ameliorated β-cell damage. In conclusion, gemigliptin is a potent, long-acting, and highly selective DPP-4 inhibitor and can be a safe and effective drug for the long-term treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sung-Ho Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eunsoo Jung
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Min Kyung Yoon
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - O Hwan Kwon
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Dal-Mi Hwang
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Dong-Wook Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyeon Joo Yim
- LG Life Sciences Ltd., R&D Park, Daejeon 34122, Republic of Korea.
| |
Collapse
|
11
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Abstract
Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
13
|
Tasyurek HM, Altunbas HA, Balci MK, Sanlioglu S. Incretins: their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev 2014; 30:354-71. [PMID: 24989141 DOI: 10.1002/dmrr.2501] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022]
Abstract
Therapies targeting the action of incretin hormones have been under close scrutiny in recent years. The incretin effect has been defined as postprandial enhancement of insulin secretion by gut-derived factors. Likewise, incretin mimetics and incretin effect amplifiers are the two different incretin-based treatment strategies developed for the treatment of diabetes. Although, incretin mimetics produce effects very similar to those of natural incretin hormones, incretin effect amplifiers act by inhibiting dipeptidyl peptidase-4 (DPP-4) enzyme to increase plasma concentration of incretins and their biologic effects. Because glucagon-like peptide-1 (GLP-1) is an incretin hormone with various anti-diabetic actions including stimulation of glucose-induced insulin secretion, inhibition of glucagon secretion, hepatic glucose production and gastric emptying, it has been evaluated as a novel therapeutic agent for the treatment of type 2 diabetes mellitus (T2DM). GLP-1 also manifests trophic effects on pancreas such as pancreatic beta cell growth and differentiation. Because DPP-4 is the enzyme responsible for the inactivation of GLP-1, DPP-4 inhibition represents another potential strategy to increase plasma concentration of GLP-1 to enhance the incretin effect. Thus, anti-diabetic properties of these two classes of drugs have stimulated substantial clinical interest in the potential of incretin-based therapeutic agents as a means to control glucose homeostasis in T2DM patients. Despite this fact, clinical use of GLP-1 mimetics and DPP-4 inhibitors have raised substantial concerns owing to possible side effects of the treatments involving increased risk for pancreatitis, and C-cell adenoma/carcinoma. Thus, controversial issues in incretin-based therapies under development are reviewed and discussed in this manuscript.
Collapse
|
14
|
Hsu T, Chen CT, Tsai TY, Cheng JH, Wu SY, Chang CN, Chien CH, Yeh KC, Huang YW, Huang CL, Huang CY, Wu SH, Chiang YK, Wang MH, Chao YS, Chen X, Jiaang WT. (1,3-Diphenyl-1H-Pyrazol-4-yl)-Methylamine Analogues as Inhibitors of Dipeptidyl Peptidases. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Malin SK, Huang H, Mulya A, Kashyap SR, Kirwan JP. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome. Peptides 2013; 47:142-7. [PMID: 23872069 PMCID: PMC3825405 DOI: 10.1016/j.peptides.2013.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 12/29/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P<0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P<0.001) and decreased HOMA-IR by 15% (P<0.05). Training decreased plasma DPP-4 by 10% (421.8±30.1 vs. 378.3±32.5ng/ml; P<0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r=-0.59; P<0.04), HOMA-IR (r=0.59; P<0.04) and fat oxidation (r=-0.54; P<0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r=-0.64; P<0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Hazel Huang
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sangeeta R. Kashyap
- Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, OH
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
16
|
|
17
|
Liu QC, Guo TT, Zhang L, Yu Y, Wang P, Yang JF, Li YX. Synthesis and biological evaluation of oleanolic acid derivatives as PTP1B inhibitors. Eur J Med Chem 2013; 63:511-22. [DOI: 10.1016/j.ejmech.2013.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
|
18
|
|
19
|
Akarte AS, Srinivasan B, Gandhi S. A novel long acting DPP-IV inhibitor PKF-275-055 stimulates β-cell proliferation resulting in improved glucose homeostasis in diabetic rats. Biochem Pharmacol 2012; 83:241-52. [DOI: 10.1016/j.bcp.2011.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 11/27/2022]
|
20
|
Parsa KVL, Pal M. Preclinical development of dipeptidyl peptidase IV inhibitor alogliptin: a brief overview. Expert Opin Drug Discov 2011; 6:855-69. [DOI: 10.1517/17460441.2011.588695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Minkiewicz P, Dziuba J, Michalska J. Bovine meat proteins as potential precursors of biologically active peptides--a computational study based on the BIOPEP database. FOOD SCI TECHNOL INT 2011; 17:39-45. [PMID: 21364044 DOI: 10.1177/1082013210368461] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the present study was to perform an in silico evaluation of bovine meat proteins as potential precursors of biologically active peptides, as well as to determine whether such peptides can be released by selected proteolytic enzymes. The sequences of 19 bovine meat proteins were processed using the BIOPEP database and program. The profiles of potential biological activity of protein fragments were determined and the following parameters were calculated: the frequency of occurrence of fragments with given activity (A), the frequency of release of fragments with given activity by selected enzymes (A(E)), and the relative frequency of release of fragments with given activity by selected enzymes (W). Among the examined proteins, collagen and elastin appear to be the richest potential source of bioactive peptides, in particular of angiotensin-converting enzyme inhibitors, antithrombotic fragments, inhibitors of dipeptidyl peptidase IV and peptides regulating gastric mucosal activity. The high number of bioactive fragments in collagen and elastin is associated with a high content of glycine and proline, amino acids that are most abundant in biologically active fragments. Of the two investigated proteolytic enzymes, Proteinase K - an enzyme with broad specificity (e.g., against peptide bonds formed by the carboxyl groups of proline) can release considerably more biologically active fragments than Proteinase P1 - an enzyme with narrow specificity, not including proline residues.
Collapse
Affiliation(s)
- P Minkiewicz
- University of Warmia and Mazury in Olsztyn, Chair of Food Biochemistry, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland
| | | | | |
Collapse
|
22
|
Singh S, Sethi S, Khanna V, Benjamin B, Kant R, Sattigeri J, Bansal VS, Bhatnagar PK, Davis JA. RBx-0597, a potent, selective and slow-binding inhibitor of dipeptidyl peptidase-IV for the treatment of type 2 diabetes. Eur J Pharmacol 2011; 652:157-63. [DOI: 10.1016/j.ejphar.2010.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 05/31/2010] [Accepted: 06/03/2010] [Indexed: 01/20/2023]
|
23
|
Meng W, Brigance RP, Chao HJ, Fura A, Harrity T, Marcinkeviciene J, O'Connor SP, Tamura JK, Xie D, Zhang Y, Klei HE, Kish K, Weigelt CA, Turdi H, Wang A, Zahler R, Kirby MS, Hamann LG. Discovery of 6-(aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamides as potent, selective dipeptidyl peptidase-4 (DPP4) inhibitors. J Med Chem 2010; 53:5620-8. [PMID: 20684603 DOI: 10.1021/jm100634a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.
Collapse
Affiliation(s)
- Wei Meng
- Departments of Discovery Chemistry, Bristol-Myers Squibb, Research and Development, Princeton, New Jersey 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jain S, Saraf S. Type 2 diabetes mellitus—Its global prevalence and therapeutic strategies. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2010. [DOI: 10.1016/j.dsx.2008.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Mentlein R. Mechanisms underlying the rapid degradation and elimination of the incretin hormones GLP-1 and GIP. Best Pract Res Clin Endocrinol Metab 2009; 23:443-52. [PMID: 19748062 DOI: 10.1016/j.beem.2009.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP, gastric inhibitory peptide) are secreted from intestinal L and K cells and stimulate insulin secretion from pancreatic beta cells. However, they are immediately inactivated mainly via N-terminal degradation by dipeptidyl peptidase IV (DPP IV, CD26), a specialised enzyme located on the cell surface enzyme of endothelial, epithelial and some other cell types. Cleavage by neprilysin (neutral endopeptidase) is a minor degradation route, and renal clearance eliminates incretin/fragments, but appears of less importance for regulating incretin bioactivities. Based on these observations two novel types of drugs for the treatment of type 2 diabetes have been developed: DPP IV inhibitors and DPP IV-resistant incretin analogues. Both have distinct advantages and disadvantages. Potential side effects of DPP IV inhibitors may result from affecting the bioactivity of other hormones, neuropeptides or chemokines and also by their cross-reactivity with DPP IV-related enzymes.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
26
|
Wu J, Chen Y, Shi X, Gu W. Dipeptidyl peptidase IV(DPP IV): a novel emerging target for the treatment of type 2 diabetes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1007-4376(09)60061-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Liu X, Harada N, Yamane S, Kitajima L, Uchida S, Hamasaki A, Mukai E, Toyoda K, Yamada C, Yamada Y, Seino Y, Inagaki N. Effects of long-term dipeptidyl peptidase-IV inhibition on body composition and glucose tolerance in high fat diet-fed mice. Life Sci 2009; 84:876-81. [PMID: 19358859 DOI: 10.1016/j.lfs.2009.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/28/2009] [Indexed: 11/29/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) are major incretins associated with body weight regulation. Dipeptidyl peptidase-IV (DPP-IV) inhibitor increases plasma active GLP-1 and GIP. However, the magnitude of the effects of enhanced GLP-1 and GIP signaling by long-term DPP-IV inhibition on body weight and insulin secretion has not been determined. In this study, we compared the effects of long-term DPP-IV inhibition on body composition and insulin secretion of high fat diet (HFD)-fed wild-type (WT) and GLP-1R knockout (GLP-1R(-/-)) mice. MAIN METHODS HFD-fed WT and GLP-1R(-/-) mice were treated with or without DPP-IV inhibitor by drinking water. Food and water intake and body weight were measured during 8 weeks of study. CT-based body composition analysis, Oral glucose tolerance test (OGTT), batch incubation study for insulin secretion and quantitative RT-PCR for expression of incretin receptors in isolated islets were performed at the end of study. KEY FINDINGS DPP-IV inhibitor had no effect on food and water intake and body weight, but increased body fat mass in GLP-1R(-/-) mice. DPP-IV inhibitor-treated WT and GLP-1R(-/-) mice both showed increased insulin secretion in OGTT. In isolated islets of DPP-IV inhibitor-treated WT and GLP-1R(-/-) mice, glucose-induced insulin secretion was increased and insulin secretion in response to GLP-1 or GIP was preserved, without downregulation of incretin receptor expression. SIGNIFICANCE Long-term DPP-IV inhibition may maintain body composition through counteracting effects of GLP-1 and GIP while improving glucose tolerance by increasing glucose-induced insulin secretion through the synergistic effects of GLP-1 and GIP.
Collapse
Affiliation(s)
- Xibao Liu
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Novel trans-2-aryl-cyclopropylamine analogues as potent and selective dipeptidyl peptidase IV inhibitors. Bioorg Med Chem 2009; 17:2388-99. [DOI: 10.1016/j.bmc.2009.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 11/21/2022]
|
29
|
Duez H, Smith AC, Xiao C, Giacca A, Szeto L, Drucker DJ, Lewis GF. Acute dipeptidyl peptidase-4 inhibition rapidly enhances insulin-mediated suppression of endogenous glucose production in mice. Endocrinology 2009; 150:56-62. [PMID: 18801896 DOI: 10.1210/en.2008-1137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pharmacological approaches that enhance incretin action for the treatment of type 2 diabetes mellitus have recently been developed, i.e. injectable glucagon-like peptide-1 receptor (GLP-1R) agonists with prolonged plasma half-lives and orally available inhibitors of dipeptidyl peptidase (DPP)-4, the main enzyme responsible for the rapid degradation of circulating glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. The mechanism(s) underlying the glucose-lowering effect of these two pharmacotherapies differs and is not yet fully understood. Here we investigated whether acute GLP-1R activation (exendin-4) or DPP-4 inhibition (des-F-sitagliptin) modulates insulin action in mice using a hyperinsulinemic euglycemic clamp. A single iv bolus of des-F-sitagliptin (11 mg/kg) was administered to mice 15 min after the start of the clamp, and its effect was compared with a 50-ng bolus of exendin-4 or the same volume of saline. Despite matched levels of plasma glucose and insulin, within 15 min the glucose infusion rate required to maintain euglycemia was significantly greater after des-F-sitagliptin compared with saline or exendin-4. This difference was entirely due to enhancement of insulin-mediated suppression of endogenous glucose production by des-F-sitagliptin, with no difference in glucose disposal rate. These findings illustrate that DPP-4 inhibition modulates glucose homeostasis through pathways distinct from those used by GLP-1R agonists in mice.
Collapse
Affiliation(s)
- Hélène Duez
- Department of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto,Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Nagase I, Hayakawa M, Shibasaki M. ASP8497 is a novel selective and competitive dipeptidyl peptidase-IV inhibitor with antihyperglycemic activity. Biochem Pharmacol 2008; 76:98-107. [DOI: 10.1016/j.bcp.2008.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 01/30/2023]
|
31
|
Simpkins LM, Bolton S, Pi Z, Sutton JC, Kwon C, Zhao G, Magnin DR, Augeri DJ, Gungor T, Rotella DP, Sun Z, Liu Y, Slusarchyk WS, Marcinkeviciene J, Robertson JG, Wang A, Robl JA, Atwal KS, Zahler RL, Parker RA, Kirby MS, Hamann LG. Potent non-nitrile dipeptidic dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2007; 17:6476-80. [DOI: 10.1016/j.bmcl.2007.09.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
32
|
Byrd JB, Shreevatsa A, Putlur P, Foretia D, McAlexander L, Sinha T, Does MD, Brown NJ. Dipeptidyl peptidase IV deficiency increases susceptibility to angiotensin-converting enzyme inhibitor-induced peritracheal edema. J Allergy Clin Immunol 2007; 120:403-8. [PMID: 17531305 DOI: 10.1016/j.jaci.2007.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/19/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Serum dipeptidyl peptidase IV (DPPIV) activity is decreased in some individuals with ACE inhibitor-associated angioedema. ACE and DPPIV degrade substance P, an edema-forming peptide. The contribution of impaired degradation of substance P by DPPIV to the pathogenesis of ACE inhibitor-associated angioedema is unknown. OBJECTIVES We sought to determine whether DPPIV deficiency results in increased edema formation during ACE inhibition. We also sought to develop an animal model using magnetic resonance imaging to quantify ACE inhibitor-induced edema. METHODS The effect of genetic DPPIV deficiency on peritracheal edema was assessed in F344 rats after treatment with saline, captopril (2.5 mg/kg), or captopril plus the neurokinin receptor antagonist spantide (100 mug/kg) by using serial T2-weighted magnetic resonance imaging. RESULTS Serum dipeptidyl peptidase activity was dramatically decreased in DPPIV-deficient rats (P < .001). The volume of peritracheal edema was significantly greater in captopril-treated DPPIV-deficient rats than in saline-treated DPPIV-deficient rats (P = .001), saline-treated rats of the normal substrain (P < .001), or captopril-treated rats of the normal substrain (P = .001). Cotreatment with spantide attenuated peritracheal edema in captopril-treated DPPIV-deficient rats (P = .005 vs captopril-treated DPPIV-deficient rats and P = .57 vs saline-treated DPPIV-deficient rats). CONCLUSIONS DPPIV deficiency predisposes to peritracheal edema formation when ACE is inhibited through a neurokinin receptor-dependent mechanism. Magnetic resonance imaging is useful for modeling ACE inhibitor-associated angioedema in rats. CLINICAL IMPLICATIONS Genetic or environmental factors that decrease DPPIV activity might increase the risk of ACE inhibitor-associated angioedema.
Collapse
Affiliation(s)
- James Brian Byrd
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The published literature was reviewed, with emphasis on recent advances in our understanding of the biology of GIP and GLP-1. GIP and GLP-1 are both secreted within minutes of nutrient ingestion and facilitate the rapid disposal of ingested nutrients. Both peptides share common actions on islet beta-cells acting through structurally distinct yet related receptors. Incretin-receptor activation leads to glucose-dependent insulin secretion, induction of beta-cell proliferation, and enhanced resistance to apoptosis. GIP also promotes energy storage via direct actions on adipose tissue, and enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis. In contrast, GLP-1 exerts glucoregulatory actions via slowing of gastric emptying and glucose-dependent inhibition of glucagon secretion. GLP-1 also promotes satiety and sustained GLP-1-receptor activation is associated with weight loss in both preclinical and clinical studies. The rapid degradation of both GIP and GLP-1 by the enzyme dipeptidyl peptidase-4 has led to the development of degradation-resistant GLP-1-receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes. These agents decrease hemoglobin A1c (HbA1c) safely without weight gain in subjects with type 2 diabetes. GLP-1 and GIP integrate nutrient-derived signals to control food intake, energy absorption, and assimilation. Recently approved therapeutic agents based on potentiation of incretin action provide new physiologically based approaches for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Wiedeman PE. DPPIV inhibition: promising therapy for the treatment of type 2 diabetes. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:63-109. [PMID: 17280902 DOI: 10.1016/s0079-6468(06)45502-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Paul E Wiedeman
- Abbott Laboratories, Department R4CP, Building AP9B, 100 Abbott Park Road, Abbott Park, IL 60064-6113, USA
| |
Collapse
|
35
|
Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diab Vasc Dis Res 2006; 3:159-65. [PMID: 17160910 DOI: 10.3132/dvdr.2006.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Inhibitors of the enzyme dipeptidyl peptidase IV (DPP IV) provide a strategy for the treatment of type 2 diabetes. DPP IV rapidly inactivates the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Inhibition of DPP IV prolongs and enhances the activity of endogenous GLP-1 and GIP, which serve as important prandial stimulators of insulin secretion and regulators of blood glucose control. In clinical trials DPP IV inhibitors (or 'gliptins') have shown efficacy and tolerability in the management of hyperglycaemia in type 2 diabetes, without causing weight gain or hypoglycaemia.
Collapse
Affiliation(s)
- Brian D Green
- School of Biological Sciences, Queens University Belfast, Belfast, BT9 5AG, UK.
| | | | | |
Collapse
|
36
|
Abstract
Until fairly recently, proteases were considered primarily to be protein-degrading enzymes. However, this view has dramatically changed and proteases are now seen as extremely important signalling molecules that are involved in numerous vital processes. Protease signalling pathways are strictly regulated, and the dysregulation of protease activity can lead to pathologies such as cardiovascular and inflammatory diseases, cancer, osteoporosis and neurological disorders. Several small-molecule drugs targeting proteases are already on the market and many more are in development. The status of human protease research and prospects for future protease-targeted drugs are reviewed here, with reference to some key examples where protease drugs have succeeded or failed.
Collapse
Affiliation(s)
- Boris Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Pei Z, Li X, von Geldern TW, Madar DJ, Longenecker K, Yong H, Lubben TH, Stewart KD, Zinker BA, Backes BJ, Judd AS, Mulhern M, Ballaron SJ, Stashko MA, Mika AK, Beno DWA, Reinhart GA, Fryer RM, Preusser LC, Kempf-Grote AJ, Sham HL, Trevillyan JM. Discovery of ((4R,5S)-5-Amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone (ABT-341), a Highly Potent, Selective, Orally Efficacious, and Safe Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. J Med Chem 2006; 49:6439-42. [PMID: 17064063 DOI: 10.1021/jm060955d] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zhonghua Pei
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yasuda N, Nagakura T, Inoue T, Yamazaki K, Katsutani N, Takenaka O, Clark R, Matsuura F, Emori E, Yoshikawa S, Kira K, Ikuta H, Okada T, Saeki T, Asano O, Tanaka I. E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, is a novel, selective and competitive dipeptidyl peptidase-IV inhibitor. Eur J Pharmacol 2006; 548:181-7. [PMID: 16973152 DOI: 10.1016/j.ejphar.2006.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/24/2006] [Accepted: 08/02/2006] [Indexed: 11/18/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors are expected to become a useful new class of anti-diabetic agent. The aim of the present study is to characterize the in vitro and in vivo profile of E3024, 3-but-2-ynyl-5-methyl-2-piperazin-1-yl-3,5-dihydro-4H-imidazo[4,5-d]pyridazin-4-one tosylate, which is a novel imidazopyridazinone-derived DPP-IV inhibitor. E3024 inhibited recombinant human and mouse DPP-IV with IC50 values of approximately 100 nM. E3024 inhibited DPP-IV in human, mouse, rat and canine plasma with IC50 values of 140 to 400 nM. In contrast, E3024 did not inhibit DPP-8 or DPP-9 activity. Kinetic analysis indicated that E3024 is a competitive DPP-IV inhibitor. In Zucker fa/fa rats, E3024 (1 mg/kg) reduced glucose excursion after glucose load, with increases in plasma insulin and active glucagon-like peptide-1 levels. In fasted rats, this compound did not cause hypoglycemia. In a rat 4-week toxicological study, no notable changes were found at doses up to 750 mg/kg. The present preclinical studies indicate that E3024 is a novel selective DPP-IV inhibitor with anti-diabetic effects and a good safety profile.
Collapse
Affiliation(s)
- Nobuyuki Yasuda
- Tsukuba Research laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Green BD, Flatt PR, Bailey CJ. Inhibition of dipeptidyl peptidase IV activity as a therapy of Type 2 diabetes. Expert Opin Emerg Drugs 2006; 11:525-39. [PMID: 16939389 DOI: 10.1517/14728214.11.3.525] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a ubiquitous, multifunctional, serine protease enzyme and receptor with roles in the control of endocrine and immune function, cell metabolism, growth and adhesion. As an enzyme, DPP IV cleaves the N-terminal dipeptide from the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. This inactivates the hormones, thereby cancelling their prandial insulinotropic effect. One approach to restore incretin activity as a therapy for Type 2 diabetes has been the development of DPP IV inhibitors. Inhibitors of DPP IV have shown efficacy and tolerability when used to control the hyperglycaemia of noninsulin-dependent animal models and human Type 2 diabetes. These DPP IV inhibitors prolong active incretin hormone concentrations and may exert additional antidiabetic effects. If long-term clinical trials confirm sustained and safe control of blood glucose, DPP IV inhibitors (known as 'gliptins') may be expected to provide a new treatment modality for Type 2 diabetes.
Collapse
Affiliation(s)
- Brian D Green
- Queens University Belfast, School of Biological Sciences, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland.
| | | | | |
Collapse
|
40
|
Pei Z, Li X, Longenecker K, von Geldern TW, Wiedeman PE, Lubben TH, Zinker BA, Stewart K, Ballaron SJ, Stashko MA, Mika AK, Beno DWA, Long M, Wells H, Kempf-Grote AJ, Madar DJ, McDermott TS, Bhagavatula L, Fickes MG, Pireh D, Solomon LR, Lake MR, Edalji R, Fry EH, Sham HL, Trevillyan JM. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors. J Med Chem 2006; 49:3520-35. [PMID: 16759095 DOI: 10.1021/jm051283e] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.
Collapse
Affiliation(s)
- Zhonghua Pei
- Department of Exploratory Pharmacokinetics and Pharmaceutics, Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-3500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McIntosh CHS, Demuth HU, Kim SJ, Pospisilik JA, Pederson RA. Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus. Int J Biochem Cell Biol 2006; 38:860-72. [PMID: 16442340 DOI: 10.1016/j.biocel.2005.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- University of British Columbia, Department of Cellular and Physiological Sciences, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
42
|
Abstract
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, The Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
43
|
Affiliation(s)
- Matthew C Riddle
- Section of Diabetes, Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
44
|
Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia 2006; 49:253-60. [PMID: 16416146 DOI: 10.1007/s00125-005-0107-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The incretin hormones are intestinal polypeptides that enhance postprandial insulin secretion. Gastric inhibitory polypeptide (GIP) was initially thought to regulate gastric acid secretion, whereas glucagon-like peptide-1 (GLP-1) was discovered as a result of a systematic search for intestinal insulinotropic products of proglucagon gene expression. The incretin effect is markedly impaired or absent in patients with type 2 diabetes because of decreased secretion of GLP-1 and a loss of the insulinotropic effects of GIP. Metabolic control can be restored or greatly improved by administration of exogenous GLP-1, but this peptide is almost immediately degraded by dipeptidyl peptidase IV (DPP-IV), and therefore has little clinical value. DPP-IV-resistant analogues (incretin mimetics) have been identified or developed, and inhibitors of DPP-IV have also proved effective in protecting endogenous GLP-1 (and GIP) from degradation. Both principles have been tested in clinical studies. The incretin mimetics, administered by sc injection, have demonstrated lasting improvement in HbA(1)c in patients insufficiently treated with conventional oral therapy, and their use has been associated with steady weight loss for up to 2 years. The DPP-IV inhibitors, given once or twice daily by mouth, also appear to provide lasting improvement in HbA(1)c, but are weight-neutral. The first incretin mimetic has reached the market in the US, and applications for approval of the first inhibitors are expected to be filed early in 2006.
Collapse
Affiliation(s)
- J J Holst
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
45
|
Qiao L, Baumann CA, Crysler CS, Ninan NS, Abad MC, Spurlino JC, Desjarlais RL, Kervinen J, Neeper MP, Bayoumy SS, Williams R, Deckman IC, Dasgupta M, Reed RL, Huebert ND, Tomczuk BE, Moriarty KJ. Discovery, SAR, and X-ray structure of novel biaryl-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2006; 16:123-8. [PMID: 16236500 DOI: 10.1016/j.bmcl.2005.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 11/30/2022]
Abstract
The discovery, SAR, and X-ray crystal structure of novel biarylaminoacyl-(S)-2-cyano-pyrrolidines and biarylaminoacylthiazolidines as potent inhibitors of dipeptidyl peptidase IV (DPP IV) are reported.
Collapse
Affiliation(s)
- Lei Qiao
- Johnson and Johnson Pharmaceutical Research and Development, 665 Stockton Drive, Exton, PA 19341, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
von Geldern TW, Trevillyan JM. “The next big thing” in diabetes: clinical progress on DPP-IV inhibitors. Drug Dev Res 2006. [DOI: 10.1002/ddr.20138] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Sinclair EM, Drucker DJ. Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 2005; 20:357-65. [PMID: 16174875 DOI: 10.1152/physiol.00030.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucagon is used for the treatment of hypoglycemia, and glucagon receptor antagonists are under development for the treatment of type 2 diabetes. Moreover, glucagon-like peptide (GLP)-1 and GLP-2 receptor agonists appear to be promising therapies for the treatment of type 2 diabetes and intestinal disorders, respectively. This review discusses the physiological, pharmacological, and therapeutic actions of the proglucagon-derived peptides, with an emphasis on clinical relevance of the peptides for the treatment of human disease.
Collapse
Affiliation(s)
- Elaine M Sinclair
- Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital and the University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Deacon CF, Holst JJ. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes. Int J Biochem Cell Biol 2005; 38:831-44. [PMID: 16242377 DOI: 10.1016/j.biocel.2005.09.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide-1 is an insulinotropic hormone with antidiabetic potential due to its spectrum of effects, which include glucose-dependent stimulation of insulin and inhibition of glucagon secretion, tropic effects on the pancreatic beta-cells, inhibition of gastric emptying and the reduction of appetite. Glucagon-like peptide-1 is, however, extremely rapidly inactivated by the serine peptidase, dipeptidyl peptidase IV, so that the native peptide is not useful clinically. A new approach to utilise the beneficial effects of glucagon-like peptide-1 in the treatment of type 2 diabetes has been the development of orally active dipeptidyl peptidase IV inhibitors. Preclinical studies have demonstrated that this approach is effective in enhancing endogenous levels of glucagon-like peptide-1, resulting in improved glucose tolerance in glucose-intolerant and diabetic animal models. In recent studies of 3-12 months duration in patients with type 2 diabetes, dipeptidyl peptidase IV inhibitors have proved efficacious, both as monotherapy and when given in combination with metformin. Fasting and postprandial glucose concentrations were reduced, leading to reductions in glycosylated haemoglobin levels, while beta-cell function was preserved. Current information suggests dipeptidyl peptidase IV inhibitors are body weight neutral and are well tolerated. A number of dipeptidyl peptidase IV inhibitors are now in the late stages of clinical development. These have different properties, in terms of their duration of action and anticipated dosing frequency, but data from protracted dosing studies is presently not available to allow comparison of their clinical efficacy.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| | | |
Collapse
|
49
|
Roges OA, Baron M, Philis-Tsimikas A. The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management. Expert Opin Investig Drugs 2005; 14:705-27. [PMID: 16004598 DOI: 10.1517/13543784.14.6.705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The incretin effect is a phenomenon in which enteral glucose administration provokes greater insulin secretion than intravenous administration. The main incretins, glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1 are defective in Type 2 diabetes; whereas glucose-dependent insulinotropic peptide displays diminished effectiveness, GLP-1 secretion is decreased; thus, GLP-1 was a stronger candidate for a new class of anti-diabetic agents designed to potentiate the incretin effect. In the past decade, GLP-1 mimetics, peptidase inhibitors and GLP-1 have been developed. Early randomised trials show that these agents contribute to glucose homeostasis and enhance beta-cell function, without causing hypoglycaemia or weight gain. This review includes an historical perspective, physiology of incretins, and discussions of the pathophysiology in Type 2 diabetes, pharmacology of the main agents and randomised clinical trials published to date.
Collapse
Affiliation(s)
- Octaviano A Roges
- The Whittier Institute for Diabetes, 9894 Genesee Avenue, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
50
|
Kim KR, Rhee SD, Kim HY, Jung WH, Yang SD, Kim SS, Ahn JH, Cheon HG. KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol 2005; 518:63-70. [PMID: 16106524 DOI: 10.1016/j.ejphar.2005.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) is involved in the inactivation of glucagon-like peptide-1 (GLP-1), a potent insulinotropic peptide. Thus, DPP-IV inhibition can be an effective approach to treat type 2 diabetes mellitus by potentiating insulin secretion. This study describes the biological effects of a new DPP-IV inhibitor, KR-62436 (6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile) in vitro and in vivo. KR-62436 inhibited rat plasma DPP-IV, porcine kidney DPP-IV as well as human DPP-IV (Caco-2) with IC50 values of 0.78, 0.49, 0.14 microM, respectively. In addition, the compound (10 microM) almost completely inhibited DPP-IV-mediated degradation of GLP-1 in vitro. KR-62436 inhibited the enzyme in a competitive manner, and exhibited selectivity against several proteases including proline-specific proteases. In vivo efficacy of the compound was examined by using normal C57BL/6J mice and ob/ob mice, a type 2 diabetes animal model. Administration of KR-62436 to C57BL/6J mice either orally or subcutaneously resulted in the suppression of plasma DPP-IV activity, increase in intact GLP-1 and insulin levels in plasma. Furthermore, the plasma glucose concentrations during oral glucose tolerance test (OGTT) were reduced upon oral administration of KR-62436. This study demonstrates that KR-62436 could be a good lead compound for further development as a new anti-diabetic agent.
Collapse
Affiliation(s)
- Kwang-Rok Kim
- Medicinal Science Division, Korea Research Institute of Chemical Technology, Jang-Dong 100, Yusung Gu, TaeJon, 305-343, South Korea
| | | | | | | | | | | | | | | |
Collapse
|