1
|
Poltavski DM, Cunha AT, Tan J, Sucov HM, Makita T. Lineage-specific intersection of endothelin and GDNF signaling in enteric nervous system development. eLife 2024; 13:RP96424. [PMID: 39641974 PMCID: PMC11623925 DOI: 10.7554/elife.96424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Two major ligand-receptor signaling axes - endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret - are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates. Both Cre lines result in Hirschsprung disease when combined with conditional Ednrb or conditional Ret alleles. In vitro explant assays and analysis of lineage-labeled mutant embryos show that GDNF but not Edn3 is a migration cue for cells of both lineages. Instead, Edn3-Ednrb function is required in both for GDNF responsiveness albeit in different ways: by expanding the Ret+ population in the Pax2Cre lineage, and by supporting Ret function in Wnt1Cre-derived cells. Our results demonstrate that two distinct lineages of progenitors give rise to the ENS, and that these divergently utilize endothelin signaling to support migration to the hindgut.
Collapse
Affiliation(s)
- Denise M Poltavski
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Alexander T Cunha
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Jaime Tan
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| | - Takako Makita
- Department of Regenerative Medicine and Cell Biology, Medical University of South CarolinaCharlestonUnited States
| |
Collapse
|
2
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Hines MA, Taneyhill LA. Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development. Dev Dyn 2024. [PMID: 39381860 DOI: 10.1002/dvdy.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNA sequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 (Elp1) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its function in placode cells during trigeminal gangliogenesis has not been investigated. RESULTS To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches also appeared to exhibit reduced axon outgrowth to target tissues. CONCLUSIONS These findings reveal a new role for Elp1 in placode-derived neurons during chick trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD.
Collapse
Affiliation(s)
- Margaret A Hines
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Singh K, Jayaram M, Hanumantharaju A, Tõnissoo T, Jagomäe T, Mikheim K, Muthuraman S, Gilbert SF, Plaas M, Schäfer MKE, Innos J, Lilleväli K, Philips MA, Vasar E. The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice. Sci Rep 2024; 14:22593. [PMID: 39349721 PMCID: PMC11442611 DOI: 10.1038/s41598-024-73358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Deletions and malfunctions of the IgLON family of cell adhesion molecules are associated with anatomical, behavioral, and metabolic manifestations of neuropsychiatric disorders. We have previously shown that IgLON genes are expressed in sensory nuclei/pathways and that IgLON proteins modulate sensory processing. Here, we examined the expression of IgLON alternative promoter-specific isoforms during embryonic development and studied the sensory consequences of the anatomical changes when one of the IgLON genes, Negr1, is knocked out. At the embryonal age of E12.5 and E13.5, various IgLONs were distributed differentially and dynamically in the developing sensory areas within the central and peripheral nervous system, as well as in limbs and mammary glands. Sensory tests showed that Negr1 deficiency causes differences in vestibular function and temperature sensitivity in the knockout mice. Sex-specific differences were noted across olfaction, vestibular functioning, temperature regulation, and mechanical sensitivity. Our findings highlight the involvement of IgLON molecules during sensory circuit formation and suggest Negr1's critical role in somatosensory processing.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Arpana Hanumantharaju
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-221, Ria 23-204, 51010, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Kaie Mikheim
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Srirathi Muthuraman
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- The Centre of Estonian Rural Research and Knowledge, 48309, Jõgeva Alevik, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
5
|
Hines MA, Taneyhill LA. Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603323. [PMID: 39071383 PMCID: PMC11275904 DOI: 10.1101/2024.07.12.603323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNAsequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 ( Elp1 ) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its functions in placode cells during trigeminal gangliogenesis have not been investigated. Results To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches exhibited fewer axons, and abnormal interactions between placode-derived neurons and neural crest cells were observed. Conclusions These findings reveal a new role for Elp1 in chick placode-derived neurons during trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD. Bullet points Elp1 is expressed in undifferentiated neural crest cells and placode-derived neurons contributing to the trigeminal ganglion.Elp1 knockdown in trigeminal placode cells reduces trigeminal ganglion size.Elp1 depletion from trigeminal placode cells leads to aberrant target tissue innervation and disrupts proper neural crest-placodal neuron interactions in the trigeminal ganglion. Grant sponsor and number NIH R01DE024217 and NIH R03HD108480.
Collapse
|
6
|
Bernardi YE, Sanchez-Vasquez E, Márquez RB, Piacentino ML, Urrutia H, Rossi I, Alcântara Saraiva KL, Pereira-Neves A, Ramirez MI, Bronner ME, de Miguel N, Strobl-Mazzulla PH. miR-203 secreted in extracellular vesicles mediates the communication between neural crest and placode cells required for trigeminal ganglia formation. PLoS Biol 2024; 22:e3002074. [PMID: 39038054 PMCID: PMC11293684 DOI: 10.1371/journal.pbio.3002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.
Collapse
Affiliation(s)
- Yanel E. Bernardi
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Estefania Sanchez-Vasquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Rocío Belén Márquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Michael L. Piacentino
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Hugo Urrutia
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Izadora Rossi
- Laboratorio de biologia molecular e sistematica de tripanossomatideos, Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Brazil
| | | | | | - Marcel I. Ramirez
- Laboratorio de biologia molecular e sistematica de tripanossomatideos, Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Brazil
| | - Marianne E. Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Natalia de Miguel
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Pablo H. Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| |
Collapse
|
7
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
9
|
Bardhan S, Bhargava N, Dighe S, Vats N, Naganathan SR. Emergence of a left-right symmetric body plan in vertebrate embryos. Curr Top Dev Biol 2024; 159:310-342. [PMID: 38729680 DOI: 10.1016/bs.ctdb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.
Collapse
Affiliation(s)
- Siddhartha Bardhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Nandini Bhargava
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Swarali Dighe
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Neha Vats
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
10
|
Griffin C, Saint-Jeannet JP. In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. Dev Biol 2024; 506:20-30. [PMID: 38052294 PMCID: PMC10843546 DOI: 10.1016/j.ydbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
11
|
Steinhart MR, van der Valk WH, Osorio D, Serdy SA, Zhang J, Nist-Lund C, Kim J, Moncada-Reid C, Sun L, Lee J, Koehler KR. Mapping oto-pharyngeal development in a human inner ear organoid model. Development 2023; 150:dev201871. [PMID: 37796037 PMCID: PMC10698753 DOI: 10.1242/dev.201871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.
Collapse
Affiliation(s)
- Matthew R. Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wouter H. van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery; Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW); Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Daniel Osorio
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara A. Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cynthia Moncada-Reid
- Speech and Hearing Bioscience and Technology (SHBT) Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
13
|
Thiery AP, Buzzi AL, Hamrud E, Cheshire C, Luscombe NM, Briscoe J, Streit A. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border. eLife 2023; 12:e82717. [PMID: 37530410 PMCID: PMC10425176 DOI: 10.7554/elife.82717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border 'specifiers' typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of 'border located undecided progenitors' (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor's daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Eva Hamrud
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Chris Cheshire
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Nicholas M Luscombe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - James Briscoe
- Bioinformatics and Computational Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Origin of Neuroblasts in the Avian Otic Placode and Their Distributions in the Acoustic and Vestibular Ganglia. BIOLOGY 2023; 12:biology12030453. [PMID: 36979145 PMCID: PMC10045822 DOI: 10.3390/biology12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
Collapse
|
16
|
Bernardi YE, Sanchez-Vasquez E, Piacentino ML, Urrutia H, Rossi I, Saraiva KLA, Pereira-Neves A, Ramirez MI, Bronner ME, de Miguel N, Strobl-Mazzulla PH. Extracellular vesicle-localized miR-203 mediates neural crest-placode communication required for trigeminal ganglia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532527. [PMID: 36993487 PMCID: PMC10055076 DOI: 10.1101/2023.03.14.532527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, we show that the microRNA-(miR)203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. Reciprocally, loss of miR-203 function in placode, but not neural crest, cells perturbs trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses a miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.
Collapse
Affiliation(s)
- Yanel E Bernardi
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| | - Estefania Sanchez-Vasquez
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| | | | - Hugo Urrutia
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Izadora Rossi
- Laboratorio de biologia molecular e sistematica de tripanossomatideos. Instituto Carlos Chagas, Fiocruz Parana, BRAZIL
| | | | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, BRAZIL
| | - Marcel Ivan Ramirez
- Laboratorio de biologia molecular e sistematica de tripanossomatideos. Instituto Carlos Chagas, Fiocruz Parana, BRAZIL
| | | | - Natalia de Miguel
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, ARGENTINA
| | - Pablo H. Strobl-Mazzulla
- Laboratory of Developmental Biology. Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM. Chascomús, ARGENTINA
- Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, ARGENTINA
| |
Collapse
|
17
|
Neurogenin 2 and Neuronal Differentiation 1 Control Proper Development of the Chick Trigeminal Ganglion and Its Nerve Branches. J Dev Biol 2023; 11:jdb11010008. [PMID: 36810460 PMCID: PMC9953625 DOI: 10.3390/jdb11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical embryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives, and transcriptionally activates neuronal differentiation genes such as Neuronal Differentiation 1 (NeuroD1). Little is known, however, about the role of Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigeminal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken together, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying trigeminal ganglion formation and may also provide insight into general cranial gangliogenesis and diseases of the peripheral nervous system.
Collapse
|
18
|
Tang PC, Chen L, Singh S, Groves AK, Koehler KR, Liu XZ, Nelson RF. Early Wnt Signaling Activation Promotes Inner Ear Differentiation via Cell Caudalization in Mouse Stem Cell-Derived Organoids. Stem Cells 2023; 41:26-38. [PMID: 36153788 PMCID: PMC9887082 DOI: 10.1093/stmcls/sxac071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
The inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
- Department of Otolaryngology– Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Xue Zhong Liu
- Department of Otolaryngology—Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rick F Nelson
- Department of Otolaryngology—Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
20
|
Conti E, Harschnitz O. Human stem cell models to study placode development, function and pathology. Development 2022; 149:276462. [DOI: 10.1242/dev.200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.
Collapse
Affiliation(s)
- Eleonora Conti
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| | - Oliver Harschnitz
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| |
Collapse
|
21
|
Michiue T, Tsukano K. Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos. J Dev Biol 2022; 10:35. [PMID: 36135368 PMCID: PMC9504399 DOI: 10.3390/jdb10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
22
|
Jawaid S, Herring AI, Getsy PM, Lewis SJ, Watanabe M, Kolesova H. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion. J Anat 2022; 241:230-244. [PMID: 35396708 PMCID: PMC9296033 DOI: 10.1111/joa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.
Collapse
Affiliation(s)
- Safdar Jawaid
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Amanda I. Herring
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Paulina M. Getsy
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Stephen J. Lewis
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Michiko Watanabe
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Hana Kolesova
- Department of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
23
|
Chowdhury R, Roure A, le Pétillon Y, Mayeur H, Daric V, Darras S. Highly distinct genetic programs for peripheral nervous system formation in chordates. BMC Biol 2022; 20:152. [PMID: 35761237 PMCID: PMC9238270 DOI: 10.1186/s12915-022-01355-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vertebrates develop their peripheral nervous system (PNS) from transient unique embryonic structures, the neural crest, and the ectodermal placodes that are located at the border of the forming central nervous system. By contrast, in the invertebrate chordates, amphioxus and ascidians, a large part of the PNS originates at the opposite of the embryo, in the ventral ectoderm. In both groups, a biphasic mechanism regulates ventral PNS formation: high BMP levels specify a neurogenic territory within which glutamatergic epidermal sensory neuron formation is controlled by the Notch pathway. Given these similarities and the phylogenetic relationships within chordates, it is likely that ventral PNS is an ancestral feature in chordates and that it has been lost in vertebrates.
Results
In order to get insights into the molecular control of ventral PNS formation and to test the hypothesis of their homology and potential contribution to the emergence of vertebrate PNS, we undertook a close comparison of ventral PNS formation in the ascidian Phallusia mammillata and the amphioxus Branchiostoma lanceolatum. Using timed RNA-seq series, we identified novel markers of the ventral PNS during different phases of its development in both species. By extensively determining the expression of paralogous and orthologous genes, we observed that only a minority of genes have a shared expression in the ventral PNS. However, a large fraction of ventral PNS orthologous genes are expressed in the dorsally forming PNS of vertebrates.
Conclusions
Our work has significantly increased the molecular characterization of ventral PNS formation in invertebrate chordates. The low observed conservation of gene expression in the ventral PNS suggests that the amphioxus and ascidian ventral PNS are either not homologous, or alternatively extensive drift has occurred in their regulatory mechanisms following a long period (600 My) of separate evolution and accelerated evolution in the ascidian lineage. The homology to genes expressed in the dorsally forming PNS of vertebrates suggests that ancestral sensory neurons gene networks have been redeployed in vertebrates.
Collapse
|
24
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
25
|
Neuhuber WL, Berthoud HR. Functional anatomy of the vagus system - Emphasis on the somato-visceral interface. Auton Neurosci 2021; 236:102887. [PMID: 34634680 PMCID: PMC8627476 DOI: 10.1016/j.autneu.2021.102887] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Due to its pivotal role in autonomic networks, the vagus attracts continuous interest from both basic scientists and clinicians. In particular, recent advances in vagus nerve stimulation strategies and their application to pathological conditions beyond epilepsy provide a good opportunity to recall basic features of vagal peripheral and central anatomy. In addition to the "classical" vagal brainstem nuclei, i.e., dorsal motor nucleus, nucleus ambiguus and nucleus tractus solitarii, the spinal trigeminal and paratrigeminal nuclei come into play as targets of vagal afferents. On the other hand, the nucleus of the solitary tract receives and integrates not only visceral but also somatic afferents. Thus, the vagus system participates significantly in what may be defined as "somato-visceral interface".
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University, Krankenhausstrasse 9, Erlangen, Germany.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
26
|
Washausen S, Knabe W. Responses of Epibranchial Placodes to Disruptions of the FGF and BMP Signaling Pathways in Embryonic Mice. Front Cell Dev Biol 2021; 9:712522. [PMID: 34589483 PMCID: PMC8473811 DOI: 10.3389/fcell.2021.712522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Placodes are ectodermal thickenings of the embryonic vertebrate head. Their descendants contribute to sensory organ development, but also give rise to sensory neurons of the cranial nerves. In mammals, the signaling pathways which regulate the morphogenesis and neurogenesis of epibranchial placodes, localized dorsocaudally to the pharyngeal clefts, are poorly understood. Therefore, we performed mouse whole embryo culture experiments to assess the impact of pan-fibroblast growth factor receptor (FGFR) inhibitors, anti-FGFR3 neutralizing antibodies or the pan-bone morphogenetic protein receptor (BMPR) inhibitor LDN193189 on epibranchial development. We demonstrate that each of the three paired epibranchial placodes is regulated by a unique combination of FGF and/or bone morphogenetic protein (BMP) signaling. Thus, neurogenesis depends on fibroblast growth factor (FGF) signals, albeit to different degrees, in all epibranchial placodes (EP), whereas only EP1 and EP3 significantly rely on neurogenic BMP signals. Furthermore, individual epibranchial placodes vary in the extent to which FGF and/or BMP signals (1) have access to certain receptor subtypes, (2) affect the production of Neurogenin (Ngn)2+ and/or Ngn1+ neuroblasts, and (3) regulate either neurogenesis alone or together with structural maintenance. In EP2 and EP3, all FGF-dependent production of Ngn2+ neuroblasts is mediated via FGFR3 whereas, in EP1, it depends on FGFR1 and FGFR3. Differently, production of FGF-dependent Ngn1+ neuroblasts almost completely depends on FGFR3 in EP1 and EP2, but not in EP3. Finally, FGF signals turned out to be responsible for the maintenance of both placodal thickening and neurogenesis in all epibranchial placodes, whereas administration of the pan-BMPR inhibitor, apart from its negative neurogenic effects in EP1 and EP3, causes only decreases in the thickness of EP3. Experimentally applied inhibitors most probably not only blocked receptors in the epibranchial placodes, but also endodermal receptors in the pharyngeal pouches, which act as epibranchial signaling centers. While high doses of pan-FGFR inhibitors impaired the development of all pharyngeal pouches, high doses of the pan-BMPR inhibitor negatively affected only the pharyngeal pouches 3 and 4. In combination with partly concordant, partly divergent findings in other vertebrate classes our observations open up new approaches for research into the complex regulation of neurogenic placode development.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
27
|
Fleury V, Peaucelle A, Abourachid A, Plateau O. Second-order division in sectors as a prepattern for sensory organs in vertebrate development. Theory Biosci 2021; 141:141-163. [PMID: 34128197 DOI: 10.1007/s12064-021-00350-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
We present in vivo observations of chicken embryo development which show that the early chicken embryo presents a principal structure made out of concentric rings and a secondary structure composed of radial sectors. During development, physical forces deform the main rings into axially directed, antero-posterior tubes, while the sectors roll up to form cylinders that are perpendicular to the antero-posterior axis. As a consequence, the basic structure of the chicken embryo is a series of encased antero-posterior tubes (gut, neural tube, body envelope, amnion, chorion) decorated with smaller orifices (ear duct, eye stalk, nasal duct, gills, mouth) forming at right angles to the main body axis. We argue that the second-order divisions reflect the early pattern of cell cleavage, and that the transformation of radial and orthoradial lines into a body with sensory organs is a generic biophysical mechanism more general than the chicken embryo.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.
| | - Alexis Peaucelle
- UMR 1318, Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Anick Abourachid
- Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France
| | - Olivia Plateau
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.,Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France.,Département de Géosciences, Université de Fribourg, Ch. du Musée 6, 1700, Fribourg, Switzerland
| |
Collapse
|
28
|
Abstract
The jugular-nodose ganglia contain the sensory peripheral neurons of the vagus nerve, linking visceral organs to the medulla oblongata. Accessing these ganglia in smaller animals without damaging the vascular and neural structures may be challenging, as ganglionic fibers imbed deeply into the carotid sheath, and vagal parasympathetic fibers cross through the interior of the ganglia. We describe a practical protocol for locating and accessing the mouse jugular-nodose ganglia in vivo, including instructions for intraganglionic injections and postperfusion dissection. For complete details on the use and execution of this protocol, please refer to Han et al. (2018). Practical approach to locate the mouse jugular-nodose ganglia Detailed instructions on how to perform intraganglionic injections Detailed description of ganglia-preserving postperfusion dissection
Collapse
|
29
|
Dubey A, Yu J, Liu T, Kane MA, Saint-Jeannet JP. Retinoic acid production, regulation and containment through Zic1, Pitx2c and Cyp26c1 control cranial placode specification. Development 2021; 148:dev193227. [PMID: 33531433 PMCID: PMC7903997 DOI: 10.1242/dev.193227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
30
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
31
|
Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 2021; 777:145468. [PMID: 33539942 DOI: 10.1016/j.gene.2021.145468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The environment contains a large extent of chemical information, which could be detected as olfactory sense. Olfactory in vertebrates plays important roles on many aspects during life time, including localizing prey or food, avoiding predators, mating behavior and social communication. Considering the essential role of olfactory receptors in the specific recognition of diverse stimuli, understanding the evolutionary dynamics of olfactory receptors in teleost means a lot, especially in the allotetraploid common carp, who has undergone the fourth whole-genome duplication event. Here, we identified the whole set of olfactory receptor genes in representative teleosts and found a significant contraction in common carp when compared with other teleosts. Odorant receptor genes (OR) occupy the most among four groups of olfactory receptors, including 33 functional genes and 16 pseudogenes. Furthermore, 6 trace amine-associated receptor (TAAR) genes (including 1 pseudogene), 7 odorant-related-A receptor genes, and 10 olfactory C family receptor genes (including 3 pseudogenes) were identified in common carp. Phylogenetic and motif analysis were performed to illustrate the phylogenetic relationship and structural conservation of teleost olfactory receptors. Selection pressure analysis suggested that olfactory receptor groups in common carp were all under relaxed purifying-selection. Additionally, gene expression divergences for olfactory receptor genes were investigated during embryonic development stages of common carp. We aim to determine the abundance of common carp olfactory receptor genes, explore the evolutionary fate and expression dynamics, and provide some genomic clues for the evolution of polyploid olfactory after whole-genome duplication and for future studies of teleost olfactory.
Collapse
|
32
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
33
|
Taste buds are not derived from neural crest in mouse, chicken, and zebrafish. Dev Biol 2020; 471:76-88. [PMID: 33326797 DOI: 10.1016/j.ydbio.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Our lineage tracing studies using multiple Cre mouse lines showed a concurrent labeling of abundant taste bud cells and the underlying connective tissue with a neural crest (NC) origin, warranting a further examination on the issue of whether there is an NC derivation of taste bud cells. In this study, we mapped NC cell lineages in three different models, Sox10-iCreERT2/tdT mouse, GFP+ neural fold transplantation to GFP- chickens, and Sox10-Cre/GFP-RFP zebrafish model. We found that in mice, Sox10-iCreERT2 specifically labels NC cell lineages with a single dose of tamoxifen at E7.5 and that the labeled cells were widely distributed in the connective tissue of the tongue. No labeled cells were found in taste buds or the surrounding epithelium in the postnatal mice. In the GFP+/GFP- chicken chimera model, GFP+ cells migrated extensively to the cranial region of chicken embryos ipsilateral to the surgery side but were absent in taste buds in the base of oral cavity and palate. In zebrafish, Sox10-Cre/GFP-RFP faithfully labeled known NC-derived tissues but did not label taste buds in lower jaw or the barbel. Our data, together with previous findings in axolotl, indicate that taste buds are not derived from NC cells in rodents, birds, amphibians or teleost fish.
Collapse
|
34
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
35
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
36
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
37
|
Hogan AVC, Watanabe A, Balanoff AM, Bever GS. Comparative growth in the olfactory system of the developing chick with considerations for evolutionary studies. J Anat 2020; 237:225-240. [PMID: 32314400 PMCID: PMC7369194 DOI: 10.1111/joa.13197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the long-held assumption that olfaction plays a relatively minor role in the behavioral ecology of birds, crown-group avians exhibit marked phylogenetic variation in the size and form of the olfactory apparatus. As part of a larger effort to better understand the role of olfaction and olfactory tissues in the evolution and development of the avian skull, we present the first quantitative analysis of ontogenetic scaling between olfactory features [olfactory bulbs (OBs) and olfactory turbinates] and neighboring structures (cerebrum, total brain, respiratory turbinates) based on the model organism Gallus gallus. The OB develops under the predictions of a concerted evolutionary model with rapid early growth that is quickly overcome by the longer, sustained growth of the larger cerebrum. A similar pattern is found in the nasal cavity where the morphologically simple (non-scrolled) olfactory turbinates appear and mature early, with extended growth characterizing the larger and scrolled respiratory turbinates. Pairwise regressions largely recover allometric relationships among the examined structures, with a notable exception being the isometric trajectory of the OB and olfactory turbinate. Their parallel growth suggests a unique regulatory pathway that is likely driven by the morphogenesis of the olfactory nerve, which serves as a structural bridge between the two features. Still, isometry was not necessarily expected given that the olfactory epithelium covers more than just the turbinate. These data illuminate a number of evolutionary hypotheses that, moving forward, should inform tradeoffs and constraints between the olfactory and neighboring systems in the avian head.
Collapse
Affiliation(s)
- Aneila V. C. Hogan
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Akinobu Watanabe
- Department of AnatomyNew York Institute of Technology College of Osteopathic MedicineNew YorkNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Life Sciences DepartmentVertebrates DivisionNatural History MuseumLondonUK
| | - Amy M. Balanoff
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMDUSA
| | - Gabriel S. Bever
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
38
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
39
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
40
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
41
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
42
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
43
|
Wang L, Xie J, Zhang H, Tsang LH, Tsang SL, Braune EB, Lendahl U, Sham MH. Notch signalling regulates epibranchial placode patterning and segregation. Development 2020; 147:dev.183665. [PMID: 31988190 PMCID: PMC7044445 DOI: 10.1242/dev.183665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022]
Abstract
Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.
Collapse
Affiliation(s)
- Li Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Junjie Xie
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Long Hin Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Mai Har Sham
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
44
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
45
|
Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey. Neuroreport 2019; 30:533-537. [PMID: 30896676 DOI: 10.1097/wnr.0000000000001231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vagal capsaicin-sensitive afferent C-fibers play an important role in the maintenance of visceral homeostasis and contribute to symptoms in visceral diseases. Based on their developmental origin two functionally distinct types of vagal C-fibers are recognized: those with neurons in the vagal nodose ganglia (derived from epibranchial placodes) and in the vagal jugular ganglia (from neural crest). Studies in nonprimate species demonstrated that the vagal nodose and jugular C-fibers differ in activation profile, neurotrophic regulation, and expression of neurotransmitters. We hypothesized that the expression of selected markers related to key phenotypic properties of vagal C-fibers in the cynomolgus monkey is similar to that reported in nonprimate species. We performed single-cell RT-PCR on nodose and jugular putative C-fiber (TRPV1-positive) neurons isolated from the cynomolgus monkey. We found that the expression of purinergic P2X receptors that underlie selective responsiveness of nodose C-fiber terminals to ATP was conserved in that P2X2 and P2X3 subunits were expressed in nodose, but only P2X3 subunit was expressed in jugular TRPV1-positive neurons. Also conserved was the preferential expression of neurotrophic receptor TrkB in the nodose and preprotachykinin-A in the jugular TRPV1-positive neurons. Several key distinctions in gene expression between nodose and jugular TRPV1-positive (C-fiber) neurons that have been noted in mice, rats, and guinea pigs, are conserved in the cynomolgus monkey. Our results support the translatability of distinct vagal C-fiber phenotypes to primates.
Collapse
|
46
|
Drake PM, Jourdeuil K, Franz-Odendaal TA. An overlooked placode: Recharacterizing the papillae in the embryonic eye of reptilia. Dev Dyn 2019; 249:164-172. [PMID: 31665553 DOI: 10.1002/dvdy.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
The papillae in the chicken embryonic eye, described as scleral papillae in the well-known Hamburger and Hamilton (1951) staging table, are one of the key anatomical features used to stage reptilian (including bird) embryos from HH30-36. These papillae are epithelial thickenings of the conjunctiva and are situated above the mesenchymal sclera. Here, we present evidence that the conjunctival papillae, which are required for the induction and patterning of the underlying scleral ossicles, require epithelial pre-patterning and have a placodal stage similar to other placode systems. We also suggest modifications to the Hamburger Hamilton staging criteria that incorporate this change in terminology (from "scleral" to "conjunctival" papillae) and provide a more detailed description of this anatomical feature that includes its placode stage. This enables a more complete and accurate description of chick embryo staging. The acknowledgment of a placode phase, which shares molecular and morphological features with other cutaneous placodes, will direct future research into the early inductive events leading to scleral ossicle formation.
Collapse
Affiliation(s)
- Paige M Drake
- Department of Medical Neuroscience, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada
| | - Karyn Jourdeuil
- Department of Animal and Avian Sciences, University of Maryland at College Park, College Park, Maryland
| | | |
Collapse
|
47
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
48
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (Na V 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2019; 596:1419-1432. [PMID: 29435993 DOI: 10.1113/jp275698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (NaV 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective NaV 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing NaV 1 blocking drugs for topical application to the respiratory tract. ABSTRACT The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (NaV 1s). We evaluated the role of TTX-sensitive and TTX-resistant NaV 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel NaV 1.7 along with TTX-resistant NaV 1.8 and NaV 1.9. Tracheal nodose neurons also expressed NaV 1.7 but, less frequently, NaV 1.8 and NaV 1.9. NaV 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other NaV 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by NaV 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective NaV 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled NaV 1 blocking drugs.
Collapse
Affiliation(s)
- M Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathophysiology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Sun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Herbstsomer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kocmalova
- Department of Pharmacology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - S N Meeker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Undem
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Washausen S, Knabe W. Chicken embryos share mammalian patterns of apoptosis in the posterior placodal area. J Anat 2019; 234:551-563. [PMID: 30734277 DOI: 10.1111/joa.12945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/04/2023] Open
Abstract
In the posterior placodal area (PPA) of C57BL/6N mice and primate-related Tupaia belangeri (Scandentia), apoptosis helps to establish morphologically separated otic and epibranchial placodes. Here, we demonstrate that basically identical patterns of apoptosis pass rostrocaudally through the Pax2+ PPA of chicken embryos. Interplacodal apoptosis eliminates unneeded cells either between the otic anlage and the epibranchial placodes 1, 2 and/or 3, respectively (type A), or between neighbouring epibranchial placodes (type B). These observations support the idea that in chicken embryos, as in mammals, interplacodal apoptosis serves to remove vestigial lateral line placodes (Washausen & Knabe, 2018, Biol Open 7, bio031815). A special case represents the recently discovered Pax2- /Sox2+ paratympanic organ (PTO) placode that has been postulated to be molecularly distinct from and developmentally independent of the ventrally adjacent first epibranchial (or 'geniculate') placode (O'Neill et al. 2012, Nat Commun 3, 1041). We show that Sox2+ (PTO placodal) cells seem to segregate from the Pax2+ geniculate placode, and that absence of Pax2 in the mature PTO placode is due to secondary loss. We further report that, between Hamburger-Hamilton (HH) stages HH14 and HH26, apoptosis in the combined anlage of the first epibranchial and PTO placodes is almost exclusively found within and/or immediately adjacent to the dorsally located PTO placode. Hence, apoptosis appears to support decision-making processes among precursor cells of the early developing PTO placode and, later, regression of the epibranchial placodes 2 and 3.
Collapse
Affiliation(s)
- Stefan Washausen
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Münster, Germany
| | - Wolfgang Knabe
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|