1
|
Kalyn M, Garvey R, Lee H, Mbesha HA, Curry J, Saxena V, Mennigen JA, Ekker M. Differential roles of NR4A2 (NURR1) paralogs in the brain and behavior of zebrafish. J Neurochem 2024. [PMID: 39388214 DOI: 10.1111/jnc.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Dopaminergic (DAnergic) dysfunction and imbalanced dopamine (DA) levels are known contributors to the pathogenesis of numerous psychiatric and neurodegenerative disorders. Of the many identified risk factors for DA-associated disorders, nuclear receptor subfamily 4 group A2 (NR4A2; or nuclear receptor related-1 protein (NURR1)), a transcription factor involved in DAnergic differentiation, has been associated with Parkinson's disease and attention deficit hyperactive disorder (ADHD). In zebrafish, transient loss of nr4a2 was previously shown to decrease tyrosine hydroxylase (TH) expression and impair locomotion. To further characterize the roles of the two zebrafish nr4a2 paralogs, nr4a2a, and nr4a2b, we produced targeted loss-of-function mutants and examined DAnergic neuron regeneration, oxidative respiration, and behavioral traits. The loss of nr4a2a function more closely recapitulated Parkinsonian phenotypes and affected neurotrophic factor gene expression. Conversely, nr4a2b mutants displayed behavioral symptoms reminiscent of mice deficient in Nr4a2 with increased neurotrophic output. In contrast, nr4a2b mutants also displayed increased metabolic input from non-mitochondrial sources indicative of high cytosolic reactive oxygen species and perturbed mitochondrial function. The nr4a2a mutants also showed increased maximal respiration, which may suggest a compensatory mechanism to meet the metabolic requirements of DAnergic neuron health. Overall, the zebrafish mutants generated in this study helped uncover molecular mechanisms involved in DA-related disease pathologies, and in the regeneration of DAnergic neurons.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Rose Garvey
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jory Curry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
3
|
Rong D, Hu CP, Yang J, Guo Z, Liu W, Yu M. Consistent abnormal activity in the putamen by dopamine modulation in Parkinson's disease: A resting-state neuroimaging meta-analysis. Brain Res Bull 2024; 210:110933. [PMID: 38508469 DOI: 10.1016/j.brainresbull.2024.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study aimed to elucidate brain areas mediated by oral anti-parkinsonian medicine that consistently show abnormal resting-state activation in PD and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS Searches of the PubMed, Web of Science databases identified 78 neuroimaging studies including PD OFF state (PD-OFF) versus (vs.) PD ON state (PD-ON) or PD-ON versus healthy controls (HCs) or PD-OFF versus HCs data. Coordinate-based meta-analysis and functional meta-analytic connectivity modeling (MACM) were performed using the activation likelihood estimation algorithm. RESULTS Brain activation in PD-OFF vs. PD-ON was significantly changed in the right putamen and left inferior parietal lobule (IPL). Contrast analysis indicated that PD-OFF vs. HCs had more consistent activation in the right paracentral lobule, right middle frontal gyrus, right thalamus, left superior parietal lobule and right putamen, whereas PD-ON vs. HCs elicited more consistent activation in the bilateral middle temporal gyrus, left occipital gyrus, right inferior frontal gyrus and right caudate. MACM revealed coactivation of the right putamen in the direct contrast of PD-OFF vs. PD-ON. Subtraction analysis of significant coactivation clusters for PD-OFF vs. PD-ON with the medium of HCs showed effects in the sensorimotor, top-down control, and visual networks. By overlapping the MACM maps of the two analytical strategies, we demonstrated that the coactivated brain region focused on the right putamen. CONCLUSIONS The convergence of local brain regions and co-activation neural networks are involved the putamen, suggesting its potential as a specific imaging biomarker to monitor treatment efficacy. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD CRD42022304150].
Collapse
Affiliation(s)
- Danyan Rong
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Chuan-Peng Hu
- School of Psychology, Nanjing Normal University, No.122, Ninghai Road, Gulou District, Nanjing, Jiangsu 210024, China
| | - Jiaying Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhiying Guo
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
5
|
Gwon Y, Kim JH, Lee SW. Quantification of Plasma Dopamine in Depressed Patients Using Silver-Enriched Silicon Nanowires as SERS-Active Substrates. ACS Sens 2024; 9:870-882. [PMID: 38354414 DOI: 10.1021/acssensors.3c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A decrease in the levels of dopamine (DA)─a key catecholamine biomarker for major depressive disorder─highlights the need for quantitative analysis of biological fluids to aid in the early diagnosis of diverse neuropsychiatric disorders. This study developed silicon nanowires enriched with silver nanoparticles to serve as a surface-enhanced Raman scattering (SERS) substrate to enable precise and sensitive quantification of blood plasma DA levels in humans. The silver-enriched silicon nanowires (SiNWs@Ag) yielded flower-like assemblies with densely populated SERS "hot spots," allowing sensitive DA detection. By correlating DA concentration with Raman intensity at 1156 cm-1, the plasma DA levels in treatment-naïve patients with major depression (n = 18) were 2 orders of magnitude lower than those in healthy controls (n = 18) (6.56 × 10-10 M vs 1.43 × 10-8 M). The plasma DA concentrations differed significantly between the two groups (two-tailed p = 5.77×10-7), highlighting a distinct demarcation between depression patients and healthy controls. Furthermore, the SiNWs@Ag substrate effectively differentiated between DA and norepinephrine (NE) in mixtures at nanomolar levels, demonstrating its selective detection capability. This study represents the first report on the quantitative detection of DA levels in human blood samples from individuals with major depression using an SERS technique, emphasizing its potential clinical utility in the evaluation and diagnosis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Youngju Gwon
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, Gachon University, Incheon 21565, South Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| |
Collapse
|
6
|
Hyun TH, Cho WJ. High-Performance FET-Based Dopamine-Sensitive Biosensor Platform Based on SOI Substrate. BIOSENSORS 2023; 13:bios13050516. [PMID: 37232877 DOI: 10.3390/bios13050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Dopamine is a catecholamine neurotransmitter that plays a significant role in the human central nervous system, even at extremely low concentrations. Several studies have focused on rapid and accurate detection of dopamine levels using field-effect transistor (FET)-based sensors. However, conventional approaches have poor dopamine sensitivity with values <11 mV/log [DA]. Hence, it is necessary to increase the sensitivity of FET-based dopamine sensors. In the present study, we proposed a high-performance dopamine-sensitive biosensor platform based on dual-gate FET on a silicon-on-insulator substrate. This proposed biosensor overcame the limitations of conventional approaches. The biosensor platform consisted of a dual-gate FET transducer unit and a dopamine-sensitive extended gate sensing unit. The capacitive coupling between the top- and bottom-gate of the transducer unit allowed for self-amplification of the dopamine sensitivity, resulting in an increased sensitivity of 373.98 mV/log[DA] from concentrations 10 fM to 1 μM. Therefore, the proposed FET-based dopamine sensor is expected to be widely applied as a highly sensitive and reliable biosensor platform, enabling fast and accurate detection of dopamine levels in various applications such as medical diagnosis and drug development.
Collapse
Affiliation(s)
- Tae-Hwan Hyun
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|
7
|
Liu S, Dong J, Fang X, Yan X, Zhang H, Hu Y, Zhu Q, Li R, Liu Q, Liu S, Liao C, Jiang G. Nanoscale Zinc-Based Metal-Organic Frameworks Induce Neurotoxicity by Disturbing the Metabolism of Catecholamine Neurotransmitters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5380-5390. [PMID: 36942846 DOI: 10.1021/acs.est.2c09740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a group of new nanomaterials, nanoscale metal-organic frameworks (MOFs) are widely applied in the biomedical field, exerting unknown risks to the human body, especially the central nervous system. Herein, the impacts of MOF-74-Zn nanoparticles on neurological behaviors and neurotransmitter metabolism are explored in both in vivo and in vitro assays modeled by C57BL/6 mice and PC12 cells, respectively. The mice exhibit increased negative-like behaviors, as demonstrated by the observed decrease in exploring behaviors and increase in despair-like behaviors in the open field test and forced swimming test after exposure to low doses of MOF-74-Zn nanoparticles. Disorders in the catecholamine neurotransmitter metabolism may be responsible for the MOF-74-Zn-induced abnormal behaviors. Part of the reason for this is the inhibition of neurotransmitter synthesis caused by restrained neurite extension. In addition, MOF-74-Zn promotes the translocation of more calcium into the cytoplasm, accelerating the release and uptake and finally resulting in an imbalance between synthesis and catabolism. Taken together, the results from this study indicate the human toxicity risks of nanoscale low-toxicity metal-based MOFs and provide valuable insight into the rational and safe use of MOF nanomaterials.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
8
|
Ediga MG, Annapureddy S, Salikineedy K, Nimgampalle M. Aspartame consumption causes cognitive impairment in streptozotocin-induced diabetic Wistar rats. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Andrade-Oliva MDLA, Debray-García Y, Morales-Figueroa GE, Escamilla-Sánchez J, Amador-Muñoz O, Díaz-Godoy RV, Kleinman M, Florán B, Arias-Montaño JA, De Vizcaya-Ruiz A. Effect of subchronic exposure to ambient fine and ultrafine particles on rat motor activity and ex vivo striatal dopaminergic transmission. Inhal Toxicol 2023; 35:1-13. [PMID: 36325922 DOI: 10.1080/08958378.2022.2140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Michael Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
10
|
Gasmi A, Nasreen A, Menzel A, Gasmi Benahmed A, Pivina L, Noor S, Peana M, Chirumbolo S, Bjørklund G. Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010210. [PMID: 36615404 PMCID: PMC9822089 DOI: 10.3390/molecules28010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Neurotransmitters (NTs) are biologically active chemicals, which mediate the electrochemical transmission between neurons. NTs control numerous organic functions particularly crucial for life, including movement, emotional responses, and the physical ability to feel pleasure and pain. These molecules are synthesized from simple, very common precursors. Many types of NTs have both excitatory and inhibitory effects. Neurotransmitters' imbalance can cause many diseases and disorders, such as Parkinson's disease, depression, insomnia, increased anxiety, memory loss, etc. Natural food sources containing NTs and/or their precursors would be a potential option to help maintain the balance of NTs to prevent brain and psychiatric disorders. The level of NTs could be influenced, therefore, by targeting dietary habits and nutritional regimens. The progressive implementation of nutritional approaches in clinical practice has made it necessary to infer more about some of the nutritional NTs in neuropsychiatry. However, the importance of the intake of nutritional NTs requires further understanding, since there are no prior significant studies about their bioavailability, clinical significance, and effects on nerve cells. Interventional strategies supported by evidence should be encouraged.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Aniqa Nasreen
- Department of Physiology, King Edward Medical University, Lahore 54000, Pakistan
| | - Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Sàdaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence:
| |
Collapse
|
11
|
Hurben AK, Tretyakova NY. Role of Protein Damage Inflicted by Dopamine Metabolites in Parkinson's Disease: Evidence, Tools, and Outlook. Chem Res Toxicol 2022; 35:1789-1804. [PMID: 35994383 PMCID: PMC10225972 DOI: 10.1021/acs.chemrestox.2c00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine is an important neurotransmitter that plays a critical role in motivational salience and motor coordination. However, dysregulated dopamine metabolism can result in the formation of reactive electrophilic metabolites which generate covalent adducts with proteins. Such protein damage can impair native protein function and lead to neurotoxicity, ultimately contributing to Parkinson's disease etiology. In this Review, the role of dopamine-induced protein damage in Parkinson's disease is discussed, highlighting the novel chemical tools utilized to drive this effort forward. Continued innovation of methodologies which enable detection, quantification, and functional response elucidation of dopamine-derived protein adducts is critical for advancing this field. Work in this area improves foundational knowledge of the molecular mechanisms that contribute to dopamine-mediated Parkinson's disease progression, potentially assisting with future development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Le TV, Lee SW. Core-shell Au-Ag nanoparticles as colorimetric sensing probes for highly selective detection of a dopamine neurotransmitter under different pH conditions. Dalton Trans 2022; 51:15675-15685. [PMID: 36172825 DOI: 10.1039/d2dt02185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dopamine (DA) is a vital biomarker for the early diagnosis of dopaminergic dysfunction; therefore, it is important to establish a direct and selective detection tool for DA neurotransmitters. This work reports facilely synthesized Au-Ag core-shell nanoparticles (Au@Ag NPs) as colorimetric sensing probes for highly selective detection of the DA neurotransmitter. Our sensing strategy is based on DA-mediated aggregation of the Au@Ag NPs, which can show a distinct color transition from yellow to greenish grey. With the increase of pH from 6 to 10, the response time of colorimetric transition was significantly reduced by a factor of 10 and the limit of detection (LOD) for DA by a spectroscopic device was estimated to be 0.08 μM. Notably, optimized sensing probes of Au@Ag NPs at pH 10 demonstrated an excellent selectivity to DA against various interfering components (including catecholamines (norepinephrine and epinephrine), lysine, glutamic acid, glucose, or metal ions). Our sensing system also exhibited the reliable detection of DA in spiked human serum with the relative standard deviation lower than 4.0%, suggesting its possible application to the direct detection of DA in biological fluids.
Collapse
Affiliation(s)
- Thanh-Van Le
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 461-701, South Korea.
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 461-701, South Korea.
| |
Collapse
|
13
|
Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry 2022; 12:541-557. [PMID: 35582335 PMCID: PMC9048451 DOI: 10.5498/wjp.v12.i4.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/28/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness that affects several brain domains with relation to cognition and behaviour. SCZ symptoms are typically classified into three categories, namely, positive, negative, and cognitive. The etiology of SCZ is thought to be multifactorial and poorly understood. Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ. Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ. Many factors, including synaptic structure changes, aberrant expression of plasticity-related genes, and abnormal synaptic transmission, may influence synaptic plasticity and play vital roles in SCZ. In this article, we briefly summarize the morphology of the synapse, the neurobiology of synaptic plasticity, and the role of synaptic plasticity, and review potential mechanisms underlying abnormal synaptic plasticity in SCZ. These abnormalities involve dendritic spines, postsynaptic density, and long-term potentiation-like plasticity. We also focus on cognitive dysfunction, which reflects impaired connectivity in SCZ. Additionally, the potential targets for the treatment of SCZ are discussed in this article. Therefore, understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy.
Collapse
Affiliation(s)
- Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
14
|
Caravaggio F, Barnett AJ, Nakajima S, Iwata Y, Kim J, Borlido C, Mar W, Gerretsen P, Remington G, Graff-Guerrero A. The effects of acute dopamine depletion on resting-state functional connectivity in healthy humans. Eur Neuropsychopharmacol 2022; 57:39-49. [PMID: 35091322 DOI: 10.1016/j.euroneuro.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Alpha-methyl-para-tyrosine (AMPT), a competitive inhibitor of tyrosine hydroxylase, can be used to deplete endogenous dopamine in humans. We examined how AMPT-induced dopamine depletion alters resting-state functional connectivity of the basal ganglia, and canonical resting-state networks, in healthy humans. Fourteen healthy participants (8 females; age [mean ± SD] = 27.93 ± 9.86) completed the study. Following dopamine depletion, the caudate showed reduced connectivity with the medial prefrontal cortex (mPFC) (Cohen's d = 1.89, p<.0001). Moreover, the caudate, putamen, globus pallidus, and midbrain all showed reduced connectivity with the occipital cortex (Cohen's d = 1.48-1.90; p<.0001-0.001). Notably, the dorsal caudate showed increased connectivity with the sensorimotor network (Cohen's d = 2.03, p=.002). AMPT significantly decreased self-reported motivation (t(13)=4.19, p=.001) and increased fatigue (t(13)=4.79, p=.0004). A greater increase in fatigue was associated with a greater reduction in connectivity between the substantia nigra and the mPFC (Cohen's d = 3.02, p<.00001), while decreased motivation was correlated with decreased connectivity between the VTA and left sensorimotor cortex (Cohen's d = 2.03, p=.00004). These findings help us to better understand the role of dopamine in basal ganglia function and may help us better understand neuropsychiatric diseases where abnormal dopamine levels are observed.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada.
| | - Alexander J Barnett
- Center for Neuroscience, University of California, Davis, 1515 Newton Ct, Davis, California 95618, United States of America
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, 2 Chome-15-45 Mita, Tokyo 108-8345, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, 4 Chome-4-37 Takeda, Kofu 400-8510, Japan
| | - Julia Kim
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Carol Borlido
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Wanna Mar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Gary Remington
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
15
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Lisek M, Boczek T, Stragierowicz J, Wawrzyniak J, Guo F, Klimczak M, Kilanowicz A, Zylinska L. Hexachloronaphthalene (HxCN) impairs the dopamine pathway in an in vitro model of PC12 cells. CHEMOSPHERE 2022; 287:132284. [PMID: 34563782 DOI: 10.1016/j.chemosphere.2021.132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Among polychlorinated naphthalenes (PCNs), listed by the Stockholm convention as Persistent Organic Pollutants (POPs), hexachloronaphthalenes are considered the most toxic and raise the highest concern. Of these, 1,2,3,5,6,7-hexachloronaphthalanene (PCN67) is considered the main congener affecting human health due to its hepatotoxicity and its ability to disturb the reproductive, endocrine, and hematological systems. It is also prevalent in human serum/plasma, milk, and adipose tissue. However, little is known about its neurotoxicity, despite the fact that anorectic effects have been observed in workers occupationally exposed to PCNs and in animal research on PCN67. Since dopamine is involved in many aspects of food intake, the aim of this study was to confirm whether PCN67 affects dopamine synthesis in differentiated PC12 cells, a widely used model of neurosecretion. Our results show that exposure to PCN67 resulted in diminished dopamine content and release. Moreover, PCN67 also affected the expression of tyrosine hydroxylase and lowered the expression of vesicular monoamine transporter 1 (VMAT1). In addition, significantly lower expression of antioxidant enzymes, including catalase, glutathione peroxidase and copper/zinc superoxide dismutase, was observed in comparison to the vehicle. In conclusion, PCN67 appears to disturb dopaminergic transmission by altering tyrosine hydroxylation, reducing VMAT1 expression and impairing antioxidant protection. Our study provides a potential mechanism for how PCN67 may cause dopamine deficiency and contribute to neuronal death by affecting cellular antioxidant potency; however, this conclusion requires further research.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | | | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, Liaoning province, China.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
17
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Cioates Negut C, Gheorghe SS, Stefan-van Staden RI, van Staden JF. Fast screening test for molecular recognition of levodopa and dopamine in biological samples using 3D printed stochastic microsensors. J Pharm Biomed Anal 2021; 205:114292. [PMID: 34375784 DOI: 10.1016/j.jpba.2021.114292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The simultaneous assay of levodopa and dopamine is essential for diagnosis and treatment of neurodegenerative diseases and brain cancer. 3D stochastic microsensors based on multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and 1-adamantyloleamide (AOA) was used for the simultaneous molecular recognition of levodopa and dopamine in biological samples (whole blood, urine, and brain tissue). The proposed 3D stochastic microsensors presented low limits of quantification, and high sensitivities. High selectivity was recorded versus neurotransmitters such as epinephrine, norepinephrine, serotonin, and glutamate. High recoveries were obtained for the assay of both levodopa and dopamine in whole blood, urine, and tumor tissue samples.
Collapse
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
| | - Sorin Sebastian Gheorghe
- Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania; Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, Bucharest, Romania.
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania
| |
Collapse
|
19
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Ye S, Zhong J, Huang J, Chen L, Yi L, Li X, Lv J, Miao J, Li H, Chen D, Li C. Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson's disease model through DNMT1 nuclear translocation and SNCA's methylation. Biomed Pharmacother 2021; 141:111832. [PMID: 34153844 DOI: 10.1016/j.biopha.2021.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022] Open
Abstract
The pathological characteristics of Parkinson's disease (PD) include dopaminergic neuron damage, specifically disorders caused by dopamine synthesis, in vivo. Plastrum testudinis extract (PTE) and its bioactive ingredient ethyl stearate (PubChem CID: 8122) were reported to be correlated with tyrosine hydroxylase (TH), which is a biomarker of dopaminergic neurons. This suggests that PTE and its small-molecule active ingredient ethyl stearate have potential for development as a therapeutic drug for PD. In this study, we treated 6-hydroxydopamine (6-OHDA)-induced model rats and PC12 cells with PTE. The mechanism of action of PTE and ethyl stearate was investigated by western blotting, bisulfite sequencing PCR (BSP), real-time PCR, immunofluorescence and siRNA transfection. PTE effectively upregulated the TH expression and downregulated the alpha-synuclein expression in both the substantia nigra and the striatum of the midbrain in a PD model rat. The PC12 cell model showed that both PTE and its active monomer ethyl stearate significantly promoted TH expression and blocked alpha-synuclein, agreeing with the in vivo results. BSP showed that PTE and ethyl stearate increased the methylation level of the Snca intron 1 region. These findings suggest that some of the protective effects of PTE on dopaminergic neurons are mediated by ethyl stearate. The mechanism of ethyl stearate may involve disrupting the abnormal aggregation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) with alpha-synuclein by releasing DNMT1, upregulating Snca intron 1 CpG island methylation, and ultimately, reducing the expression of alpha-synuclein.
Collapse
Affiliation(s)
- Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Jiapei Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lichun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, PR China
| | - Jianping Lv
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Jifei Miao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China; Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
21
|
Tarhan T, Dündar A, Okumuş V, Çulha M. Synthesis and Characterization of Bionanomaterials and Evaluation of Their Antioxidant, Antibacterial, and DNA Cleavage Activities. ChemistrySelect 2021. [DOI: 10.1002/slct.202004773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tuba Tarhan
- Mardin Artuklu University Vocational High School of Health Services 47100 Mardin Turkey
| | - Abdurrahman Dündar
- Mardin Artuklu University Vocational High School of Health Services 47100 Mardin Turkey
| | - Veysi Okumuş
- Department of Biology Faculty of Science Siirt University 56100 Siirt Turkey
| | - Mustafa Çulha
- Sabancı University Materials Science and Nanoengineering 34956 Tuzla/İstanbul Turkey
| |
Collapse
|
22
|
Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules 2021; 11:biom11040612. [PMID: 33924103 PMCID: PMC8074325 DOI: 10.3390/biom11040612] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) usually presents in older adults and typically has both motor and non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopaminergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is an integrative medicine and health strategy that highlights five treatment options for people with Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins following the diagnosis and throughout any additional treatment processes, especially vis-à-vis consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine agonist, compounds that preserve residual dopamine, and other specific motor/non-motor-related compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective. Maintenance uses complementary and alternative medicine substances that potentially support and protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to achieve stability with neuroprotection. The ultimate goal of any management program is to improve the quality-of-life for a person with Parkinson’s disease.
Collapse
|
23
|
Serotonin/dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesia: An update. PROGRESS IN BRAIN RESEARCH 2021; 261:287-302. [PMID: 33785132 DOI: 10.1016/bs.pbr.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ample evidence suggests that the serotonergic system plays a major role in several aspects of Parkinson's disease. In this review, we focus on the interplay between dopamine and serotonin in the appearance of L-DOPA-induced dyskinesia (LID), the most troublesome side effect of L-DOPA therapy. Indeed, while this drug exerts significant amelioration of motor symptoms during the first few years of treatment, eventually, most of patients experience dyskinesias, which limit the use of L-DOPA in advanced stages of disease. Here, we present the mechanisms underlying LID and the role of serotonin neurons, review preclinical and clinical data, and discuss possible therapeutic strategies.
Collapse
|
24
|
Tang S, Rauch M, Montag M, Diskin-Posner Y, Ben-David Y, Milstein D. Catalytic Oxidative Deamination by Water with H 2 Liberation. J Am Chem Soc 2020; 142:20875-20882. [PMID: 33237749 PMCID: PMC7729941 DOI: 10.1021/jacs.0c10826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/05/2023]
Abstract
Selective oxidative deamination has long been considered to be an important but challenging transformation, although it is a common critical process in the metabolism of bioactive amino compounds. Most of the synthetic methods developed so far rely on the use of stoichiometric amounts of strong and toxic oxidants. Here we present a green and efficient method for oxidative deamination, using water as the oxidant, catalyzed by a ruthenium pincer complex. This unprecedented reaction protocol liberates hydrogen gas and avoids the use of sacrificial oxidants. A wide variety of primary amines are selectively transformed to carboxylates or ketones in good to high yields. It is noteworthy that mechanistic experiments and DFT calculations indicate that in addition to serving as the oxidant, water also plays an important role in assisting the hydrogen liberation steps involved in amine dehydrogenation.
Collapse
Affiliation(s)
- Shan Tang
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Rauch
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Montag
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehoshoa Ben-David
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department
of Organic Chemistry, and Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Andrade-Oliva MDLA, Escamilla-Sánchez J, Debray-García Y, Morales-Rubio RA, González-Pantoja R, Uribe-Ramírez M, Amador-Muñoz O, Díaz-Godoy RV, De Vizcaya-Ruiz A, Arias-Montaño JA. In vitro exposure to ambient fine and ultrafine particles alters dopamine uptake and release, and D 2 receptor affinity and signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103484. [PMID: 32942001 DOI: 10.1016/j.etap.2020.103484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The exposure to environmental pollutants, such as fine and ultrafine particles (FP and UFP), has been associated with increased risk for Parkinson's disease, depression and schizophrenia, disorders related to altered dopaminergic transmission. The striatum, a neuronal nucleus with extensive dopaminergic afferents, is a target site for particle toxicity, which results in oxidative stress, inflammation, astrocyte activation and modifications in dopamine content and D2 receptor (D2R) density. In this study we assessed the in vitro effect of the exposure to FP and UFP on dopaminergic transmission, by evaluating [3H]-dopamine uptake and release by rat striatal isolated nerve terminals (synaptosomes), as well as modifications in the affinity and signaling of native and cloned D2Rs. FP and UFP collected from the air of Mexico City inhibited [3H]-dopamine uptake and increased depolarization-evoked [3H]-dopamine release in striatal synaptosomes. FP and UFP also enhanced D2R affinity for dopamine in membranes from either rat striatum or CHO-K1 cells transfected with the long isoform of the human D2R (hD2LR)2LR). In CHO-K1-hD2L In CHO-K1-hD2LR cells or striatal slices, FP and UFP increased the potency of dopamine or the D2R agonist quinpirole, respectively, to inhibit forskolin-induced cAMP formation. The effects were concentration-dependent, with UFP being more potent than FP. These results indicate that FP and UFP directly affect dopaminergic transmission.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Yazmín Debray-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico; Departamento de Investigación en Inmunología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Ciudad de México, Mexico
| | - Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Raúl González-Pantoja
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Omar Amador-Muñoz
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Investigación Científica s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Carretera México Toluca s/n, La Marquesa, 52750, Ocoyoacac, Estado de México, Mexico
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
26
|
Popova NK, Kulikov AV, Naumenko VS. Spaceflight and brain plasticity: Spaceflight effects on regional expression of neurotransmitter systems and neurotrophic factors encoding genes. Neurosci Biobehav Rev 2020; 119:396-405. [PMID: 33086127 DOI: 10.1016/j.neubiorev.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The critical problem of space exploration is the effect of long-term space travel on brain functioning. Current information concerning the effects of actual spaceflight on the brain was obtained on rats and mice flown on five missions of Soviet/Russian biosatellites, NASA Neurolab Mission STS90, and International Space Station (ISS). The review provides converging lines of evidence that: 1) long-term spaceflight affects both principle regulators of brain neuroplasticity - neurotransmitters (5-HT and DA) and neurotrophic factors (CDNF, GDNF but not BDNF); 2) 5-HT- (5-HT2A receptor and MAO A) and especially DA-related genes (TH, MAO A, COMT, D1 receptor, CDNF and GDNF) belong to the risk neurogenes; 3) brain response to spaceflight is region-specific. Substantia nigra, striatum and hypothalamus are highly sensitive to the long-term spaceflight: in these brain areas spaceflight decreased the expression of both DA-related and neurotrophic factors genes. Since DA system is involved in the regulation of movement and cognition the data discussed in the review could explain dysfunction of locomotion and behavior of astronauts and direct further investigations to the DA system.
Collapse
Affiliation(s)
- Nina K Popova
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Alexander V Kulikov
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
27
|
Chantranupong L, Saulnier JL, Wang W, Jones DR, Pacold ME, Sabatini BL. Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. eLife 2020; 9:59699. [PMID: 33043885 PMCID: PMC7575323 DOI: 10.7554/elife.59699] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Neurons communicate by the activity-dependent release of small-molecule neurotransmitters packaged into synaptic vesicles (SVs). Although many molecules have been identified as neurotransmitters, technical limitations have precluded a full metabolomic analysis of SV content. Here, we present a workflow to rapidly isolate SVs and to interrogate their metabolic contents at high-resolution using mass spectrometry. We validated the enrichment of glutamate in SVs of primary cortical neurons using targeted polar metabolomics. Unbiased and extensive global profiling of SVs isolated from these neurons revealed that the only detectable polar metabolites they contain are the established neurotransmitters glutamate and GABA. In addition, we adapted the approach to enable quick capture of SVs directly from brain tissue and determined the neurotransmitter profiles of diverse brain regions in a cell-type-specific manner. The speed, robustness, and precision of this method to interrogate SV contents will facilitate novel insights into the chemical basis of neurotransmission.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Jessica L Saulnier
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Wengang Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Drew R Jones
- New York University School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, New York, United States
| | - Michael E Pacold
- Department of Radiation Oncology, New York University Langone Medical Center, New York, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
28
|
Kim SM, Cho SY, Kim MW, Roh SR, Shin HS, Suh YH, Geum D, Lee MA. Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells. Mol Cells 2020; 43:551-571. [PMID: 32522891 PMCID: PMC7332357 DOI: 10.14348/molcells.2020.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | | | - Min Woong Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Seung Ryul Roh
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Hee Sun Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongho Geum
- Department of Medical Science, Korea University Medical School, Seoul 02841, Korea
| | - Myung Ae Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 6499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
29
|
Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells 2020; 9:cells9061489. [PMID: 32570916 PMCID: PMC7349799 DOI: 10.3390/cells9061489] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the motor system. It is primarily due to substantial loss of midbrain dopamine (mDA) neurons in the substantia nigra pars compacta and to decreased innervation to the striatum. Although existing drug therapy available can relieve the symptoms in early-stage PD patients, it cannot reverse the pathogenic progression of PD. Thus, regenerating functional mDA neurons in PD patients may be a cure to the disease. The proof-of-principle clinical trials showed that human fetal graft-derived mDA neurons could restore the release of dopamine neurotransmitters, could reinnervate the striatum, and could alleviate clinical symptoms in PD patients. The invention of human-induced pluripotent stem cells (hiPSCs), autologous source of neural progenitors with less ethical consideration, and risk of graft rejection can now be generated in vitro. This advancement also prompts extensive research to decipher important developmental signaling in differentiation, which is key to successful in vitro production of functional mDA neurons and the enabler of mass manufacturing of the cells required for clinical applications. In this review, we summarize the biology and signaling involved in the development of mDA neurons and the current progress and methodology in driving efficient mDA neuron differentiation from pluripotent stem cells.
Collapse
|
30
|
Kamal Eddin FB, Fen YW. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020; 25:molecules25122769. [PMID: 32549390 PMCID: PMC7356898 DOI: 10.3390/molecules25122769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson’s disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
31
|
Nutt JG, Curtze C, Hiller A, Anderson S, Larson PS, Van Laar AD, Richardson RM, Thompson ME, Sedkov A, Leinonen M, Ravina B, Bankiewicz KS, Christine CW. Aromatic L-Amino Acid Decarboxylase Gene Therapy Enhances Levodopa Response in Parkinson's Disease. Mov Disord 2020; 35:851-858. [PMID: 32149427 PMCID: PMC7318280 DOI: 10.1002/mds.27993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As Parkinson's disease progresses, levodopa treatment loses efficacy, partly through the loss of the endogenous dopamine-synthesizing enzyme L-amino acid decarboxylase (AADC). In the phase I PD-1101 study, putaminal administration of VY-AADC01, an investigational adeno-associated virus serotype-2 vector for delivery of the AADC gene in patients with advanced Parkinson's disease, was well tolerated, improved motor function, and reduced antiparkinsonian medication requirements. OBJECTIVES This substudy aimed to determine whether the timing and magnitude of motor response to intravenous levodopa changed in PD-1101 patients after VY-AADC01 administration. METHODS Participants received 2-hour threshold (0.6 mg/kg/h) and suprathreshold (1.2 mg/kg/h) levodopa infusions on each of 2 days, both before and approximately 6 months after VY-AADC01. Infusion order was randomized and double blinded. Unified Parkinson's Disease Rating Scale motor scores, finger-tapping speeds, and dyskinesia rating scores were assessed every 30 minutes for 1 hour before and ≥3 hours after start of levodopa infusion. RESULTS Of 15 PD-1101 patients, 13 participated in the substudy. Unified Parkinson's Disease Rating Scale motor score area under the curve responses to threshold and suprathreshold levodopa infusions increased by 168% and 67%, respectively, after VY-AADC01; finger-tapping speeds improved by 162% and 113%, and dyskinesia scores increased by 208% and 72%, respectively, after VY-AADC01. Adverse events (mild/moderate severity) were reported in 5 participants during levodopa infusions pre-VY-AADC01 and 2 participants post-VY-AADC01 administration. CONCLUSIONS VY-AADC01 improved motor responses to intravenous levodopa given under controlled conditions. These data and findings from the parent study support further clinical development of AADC gene therapy for people with Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- John G Nutt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Amie Hiller
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon Anderson
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Amber D Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marin E Thompson
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | | | | | - Bernard Ravina
- Voyager Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Chadwick W Christine
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Gunawardhana SM, Bulgakova GA, Barybin AM, Thomas SR, Lunte SM. Progress toward the development of a microchip electrophoresis separation-based sensor with electrochemical detection for on-line in vivo monitoring of catecholamines. Analyst 2020; 145:1768-1776. [PMID: 31915763 PMCID: PMC7127871 DOI: 10.1039/c9an01980d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of a separation-based sensor for catecholamines based on microdialysis (MD) coupled to microchip electrophoresis (ME) with electrochemical (EC) detection is described. The device consists of a pyrolyzed photoresist film working electrode and a poly(dimethylsiloxane) microchip with a flow-gated sample injection interface. The chip was partially reversibly sealed to the glass substrate by selectively exposing only the top section of the chip to plasma. This partially reversible chip/electrode integration process not only allows the reuse of the working electrode but also greatly enhanced the reproducibility of electrode alignment with the separation channel. The developed MD-ME-EC system was then tested using l-DOPA, 3-O-MD, HVA, DOPAC, and dopamine standards, which were separated in less than 100 seconds using a background electrolyte consisting of 15 mM sodium phosphate (pH 7.4), 15 mM sodium dodecyl sulfate, and 2.5 mM boric acid. A potential of +1.0 V vs. Ag/AgCl was used for amperometric detection of the analytes. The device was evaluated for on-line monitoring of the conversion of l-DOPA to dopamine in vitro and for monitoring dopamine release in an anesthetized rat in vivo following high K+ stimulation. The system was able to detect stimulated dopamine release in vivo but not endogenous levels of dopamine.
Collapse
Affiliation(s)
- Shamal M Gunawardhana
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. and Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Galina A Bulgakova
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. and Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Anton M Barybin
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. and Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Sara R Thomas
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. and Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA. and Department of Chemistry, University of Kansas, Lawrence, KS, USA and Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
33
|
Lee PW, Wang TY, Chang YH, Lee SY, Chen SL, Wang ZC, Chen PS, Chu CH, Huang SY, Tzeng NS, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB. ALDH2 Gene: Its Effects on the Neuropsychological Functions in Patients with Opioid Use Disorder Undergoing Methadone Maintenance Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:136-144. [PMID: 31958914 PMCID: PMC7006970 DOI: 10.9758/cpn.2020.18.1.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
Objective Patients with opioid use disorder (OUD) have impaired attention, inhibition control, and memory function. The aldehyde dehydrogenase 2(ALDH2) gene has been associated with OUD and ALDH2 gene polymorphisms may affect aldehyde metabolism and cognitive function in other substance use disorder. Therefore, we aimed to investigate whether ALDH2 genotypes have significant effects on neuropsychological functions in OUD patients undergoing methadone maintenance therapy (MMT). Methods OUD patients undergoing MMT were investigated and followed-up for 12 weeks. ALDH2 gene polymorphisms were genotyped. Connors' Continuous Performance Test (CPT) and the Wechsler Memory Scale-Revised (WMS-R) were administered at baseline and after 12 weeks of MMT. Multivariate linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between the ALDH2 genotypes and performance on the CPTs and WMS-R. Results We enrolled 86 patients at baseline; 61 patients completed the end-of-study assessments. The GEE analysis showed that, after the 12 weeks of MMT, OUD patients with the ALDH2 *1/*2+*2/*2 (ALDH2 inactive) genotypes had significantly higher commission error T-scores (p= 0.03), significantly lower hit reaction time T-scores (p= 0.04), and significantly lower WMS-R visual memory index scores (p= 0.03) than did patients with the ALDH2 1*/*1 (ALDH2 active) genotype. Conclusion OUD patients with the ALDH2 inactive genotypes performed worse in cognitive domains of attention, impulse control, and memory than did those with the ALDH2 active genotype. We conclude that the ALDH2 gene is important in OUD and is associated with neuropsychological performance after MMT.
Collapse
Affiliation(s)
- Po-Wei Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Department of Psychology, Asia University, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Department of Psychiatry, Kaohsiung Veterans General Hospital, Taiwan
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Graduate Institute of Medicine, College of Medicine, Taiwan.,Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ze-Cheng Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, China.,Beijing YiNing Hospital, Beijing, China
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsien Chu
- 0Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, China.,Beijing YiNing Hospital, Beijing, China.,Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1039. [PMID: 32075167 PMCID: PMC7071053 DOI: 10.3390/s20041039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays, several neurological disorders and neurocrine tumours are associated with dopamine (DA) concentrations in various biological fluids. Highly accurate and ultrasensitive detection of DA levels in different biological samples in real-time can change and improve the quality of a patient's life in addition to reducing the treatment cost. Therefore, the design and development of diagnostic tool for in vivo and in vitro monitoring of DA is of considerable clinical and pharmacological importance. In recent decades, a large number of techniques have been established for DA detection, including chromatography coupled to mass spectrometry, spectroscopic approaches, and electrochemical (EC) methods. These methods are effective, but most of them still have some drawbacks such as consuming time, effort, and money. Added to that, sometimes they need complex procedures to obtain good sensitivity and suffer from low selectivity due to interference from other biological species such as uric acid (UA) and ascorbic acid (AA). Advanced materials can offer remarkable opportunities to overcome drawbacks in conventional DA sensors. This review aims to explain challenges related to DA detection using different techniques, and to summarize and highlight recent advancements in materials used and approaches applied for several sensor surface modification for the monitoring of DA. Also, it focuses on the analytical features of the EC and optical-based sensing techniques available.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
35
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
36
|
Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4609702. [PMID: 31687080 PMCID: PMC6803728 DOI: 10.1155/2019/4609702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The etiology of Parkinson's disease (PD) is linked with cellular inclusions in the substantia nigra pars compacta region of the brain that are enriched in the misfolded presynaptic protein α-synuclein (αS) and death of the dopaminergic neurons. Brain iron homeostasis governs both neurotransmission and neurodegeneration; hence, the role of iron in PD progression and neuronal health is apparent. Elevated iron deposits become prevalent in the cerebral region upon aging and even more so in the PD brain. Structural as well as oxidative modifications can result from coordination of αS with redox active iron, which could have functional and/or pathological implications. In this review, we will discuss iron-mediated αS aggregation, alterations in iron metabolism, and the role of the iron-dopamine couple. Moreover, iron interactions with N-terminally acetylated αS, the physiologically relevant form of the human protein, will be addressed to shed light on the current understanding of protein dynamics and the physiological environment in the disease state. Oxidative pathways and biochemical alterations resulting from aberrant iron-induced chemistry are the principal focus of this review in order to highlight the plethora of research that has uncovered this emerging dichotomy of iron playing both functional and disruptive roles in PD pathology.
Collapse
|
37
|
Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 2019; 26:5-13. [PMID: 31490017 PMCID: PMC6930825 DOI: 10.1111/cns.13207] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neurotropic B vitamins play crucial roles as coenzymes and beyond in the nervous system. Particularly vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) contribute essentially to the maintenance of a healthy nervous system. Their importance is highlighted by many neurological diseases related to deficiencies in one or more of these vitamins, but they can improve certain neurological conditions even without a (proven) deficiency. Aim This review focuses on the most important biochemical mechanisms, how they are linked with neurological functions and what deficits arise from malfunctioning of these pathways. Discussion We discussed the main role of B Vitamins on several functions in the peripheral and central nervous system (PNS and CNS) including cellular energetic processes, antioxidative and neuroprotective effects, and both myelin and neurotransmitter synthesis. We also provide an overview of possible biochemical synergies between thiamine, pyridoxine, and cobalamin and discuss by which major roles each of them may contribute to the synergy and how these functions are inter‐related and complement each other. Conclusion Taking into account the current knowledge on the neurotropic vitamins B1, B6, and B12, we conclude that a biochemical synergy becomes apparent in many different pathways in the nervous system, particularly in the PNS as exemplified by their combined use in the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Carlos Alberto Calderón-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
38
|
Verni M, De Mastro G, De Cillis F, Gobbetti M, Rizzello CG. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res Int 2019; 125:108571. [PMID: 31554105 DOI: 10.1016/j.foodres.2019.108571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023]
Abstract
Aiming at evaluating their nutritional profile and pro-technological aptitude, the flour obtained from thirteen Mediterranean faba bean accessions was fermented with Lactobacillus plantarum DPPMAB24W, a lactic acid bacteria strain previously selected for the high β-glucosidase activity. Before fermentation the flours were characterized for the chemical profile, showing wide variability in protein content (that ranged from 24.83% to 30.03%) and α-galactosides concentration. Slight differences were found among the accessions for trypsin inhibitory activity and for the presence of the antinutritional factors condensed tannins and vicine. The heterogeneity observed for the raw flours was flattened after fermentation, although the different composition of the raw matrix affected the starter performances, especially the production of organic acids. Compared to controls, fermented doughs were characterized by higher free amino acids content and higher in vitro protein digestibility, while antinutritional factors concentrations drastically decreased and in some cases they resulted completely degraded. The results obtained in this study confirmed that fermentation can be considered as a major key-factor in valorizing faba bean employment as food ingredient.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Giuseppe De Mastro
- Department of Agricultural and Environmental Science, University of Bari, Bari, Italy
| | - Francesca De Cillis
- Department of Agricultural and Environmental Science, University of Bari, Bari, Italy
| | | | | |
Collapse
|
39
|
Wang F, Li S, Xiang J, Li F. Transcriptome analysis reveals the activation of neuroendocrine-immune system in shrimp hemocytes at the early stage of WSSV infection. BMC Genomics 2019; 20:247. [PMID: 30922216 PMCID: PMC6437892 DOI: 10.1186/s12864-019-5614-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Background Functional communications between nervous, endocrine and immune systems are well established in both vertebrates and invertebrates. Circulating hemocytes act as fundamental players in this crosstalk, whose functions are conserved during the evolution of the main groups of metazoans. However, the roles of the neuroendocrine-immune (NEI) system in shrimp hemocytes during pathogen infection remain largely unknown. Results In this study, we sequenced six cDNA libraries prepared with hemocytes from Litopenaeus vannamei which were injected by WSSV (white spot syndrome virus) or PBS for 6 h using Illumina Hiseq 4000 platform. As a result, 3444 differentially expressed genes (DEGs), including 3240 up-regulated genes and 204 down-regulated genes, were identified from hemocytes after WSSV infection. Among these genes, 349 DEGs were correlated with innate immunity and categorized into seven groups based on their predictive function. Interestingly, 18 genes encoded putative neuropeptide precursors were induced significantly by WSSV infection. Furthermore, some genes were mapped to several typical processes in the NEI system, including proteolytic processing of prohormones, amino acid neurotransmitter pathways, biogenic amine biosynthesis and acetylcholine signaling pathway. Conclusions The data suggested that WSSV infection triggers the activation of NEI in shrimp, which throws a light on the pivotal roles of NEI system mediated by hemocytes in shrimp antiviral immunity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5614-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuxuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
40
|
Béreau M, Krack P, Brüggemann N, Münte TF. Neurobiology and clinical features of impulse control failure in Parkinson's disease. Neurol Res Pract 2019; 1:9. [PMID: 33324875 PMCID: PMC7650064 DOI: 10.1186/s42466-019-0013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 12/02/2022] Open
Abstract
Impulse control disorders (ICDs) and other impulsive-compulsive related behaviours are frequent and still under recognized non-motor complications of Parkinson's disease (PD). They result from sensitization of the mesocorticolimbic pathway that arose in predisposed PD patients concomitantly with spreading of PD pathology, non-physiological dopaminergic and pulsatile administration of dopamine replacement therapy (DRT). Neuropsychiatric fluctuations (NPF) reflect the psychotropic effects of dopaminergic drugs and play a crucial role in the emergence of ICDs and behavioral addictions. Dopamine agonists (DA) which selectively target D2 and D3 receptors mostly expressed within the mesocorticolimbic pathway, are the main risk factor to develop ICDs. Neuroimaging studies suggest that dopamine agonists lead to a blunted response of the brain's reward system both during reward delivery and anticipation. Genetic predispositions are crucial for the responsiveness of the mesolimbic system and the development of ICDs with several genes having been identified. Early screening for neuropsychiatric fluctuations, reduction of DA, fractionating levodopa dosage, education of patients and their relatives, are the key strategies for diagnosis and management of ICDs and related disorders.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, University Hospital of Besançon, 25030 Besançon, Cedex France
| | - Paul Krack
- Department of Neurology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | | | - Thomas F. Münte
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
41
|
COA-Cl induces dopamine release and tyrosine hydroxylase phosphorylation: In vivo reverse microdialysis and in vitro analysis. Brain Res 2019; 1706:68-74. [PMID: 30366020 DOI: 10.1016/j.brainres.2018.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022]
Abstract
We found that local perfusion of COA-Cl (0.1, 0.4, or 1.0 mM) into the dorsal striatum of living mice produced a significant and dose-dependent increase in extracellular DA levels, with the highest dose of 1.0 mM COA-Cl producing an approximately 5-fold increase in DA. Consistent with in vivo findings, 0.1 and 0.2 mM COA-Cl significantly and dose-dependently enhanced DA release 3.0 to 5.0-fold in PC12 cells, an in vitro model of DA-responsive neurons. Interestingly, the increase in striatal DA levels by COA-Cl in vivo was similar in magnitude to that observed in PC12 cells. Treatment with 0.1 mM COA-Cl significantly increased both Ser31 and Ser40 phosphorylation of tyrosine hydroxylase (TH) in PC12 cells, and Ser40 phosphorylation in iCell neurons, without altering total TH protein levels. Further, we examined whether COA-Cl could stimulate neurite outgrowth in PC12 cells and iCell neurons and found that COA-Cl significantly induced neurite outgrowth in both cell lines. Our results provide the first evidence that COA-Cl can stimulate dose-dependent DA release and activation of TH phosphorylation, suggesting that COA-Cl may be a promising therapeutic candidate for the treatment of neurological dysfunction associated with low DA.
Collapse
|
42
|
Mugge L, Krafcik B, Pontasch G, Alnemari A, Neimat J, Gaudin D. A Review of Biomarkers Use in Parkinson with Deep Brain Stimulation: A Successful Past Promising a Bright Future. World Neurosurg 2019; 123:197-207. [DOI: 10.1016/j.wneu.2018.11.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
43
|
Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, Rekowski P. TP10-Dopamine Conjugate as a Potential Therapeutic Agent in the Treatment of Parkinson's Disease. Bioconjug Chem 2019; 30:760-774. [PMID: 30653302 DOI: 10.1021/acs.bioconjchem.8b00894] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder for which the current treatment is not fully satisfactory. One of the major drawbacks of current PD therapy is poor penetration of drugs across the blood-brain barrier (BBB). In recent years, cell-penetrating peptides (CPPs) such as Tat, SynB, or TP10 have gained great interest due to their ability to penetrate cell membranes and to deliver different cargos to their targets including the central nervous system (CNS). However, there is no data with respect to the use of CPPs as drug carriers to the brain for the treatment of PD. In the presented research, the covalent TP10-dopamine conjugate was synthesized and its pharmacological properties were characterized in terms of its ability to penetrate the BBB and anti-parkinsonian activity. The results showed that dopamine (DA) in the form of a conjugate with TP10 evidently gained access to the brain tissue, exhibited low susceptibility to O-methylation reaction by catechol- O-methyltransferase (lower than that of DA), possessed a relatively high affinity to both dopamine D1 and D2 receptors (in the case of D1, a much higher than that of DA), and showed anti-parkinsonian activity (higher than that of l-DOPA) in the MPTP-induced preclinical animal model of PD. The presented results prove that the conjugation of TP10 with DA may be a good starting point for the development of a new strategy for the treatment of PD.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Jarosław Ruczyński
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ewelina Backtrog
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Piotr Mucha
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ivan Kocić
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Piotr Rekowski
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| |
Collapse
|
44
|
Sitagliptin and Liraglutide Modulate L-dopa Effect and Attenuate Dyskinetic Movements in Rotenone-Lesioned Rats. Neurotox Res 2019; 35:635-653. [DOI: 10.1007/s12640-019-9998-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
|
45
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
46
|
Faro LRF, Fajardo D, Durán R, Alfonso M. Characterization of acute intrastriatal effects of paraoxon on in vivo dopaminergic neurotransmission using microdialysis in freely moving rats. Toxicol Lett 2018; 299:124-128. [PMID: 30292885 DOI: 10.1016/j.toxlet.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 09/28/2018] [Indexed: 11/26/2022]
Abstract
Paraoxon (POX) is an extremely neurotoxic organophosphorous compound (OP) which main toxic mechanism is the irreversible inhibition of cholinesterase. Although the cholinergic system has always been linked as responsible for its acute effects, experimental studies have suggested that the dopaminergic system also may be a potential target for OPs. Based on this, in this study, the acute intrastriatal effects of POX on dopaminergic neurotransmission were characterized in vivo using brain microdialysis in freely moving rats. In situ administration of POX (5, 25 and 50 nmol, 60 min) significantly increased the striatal dopamine overflow (to 435 ± 79%, 1066 ± 120%, and 1861 ± 332%, respectively), whereas a lower concentration (0.5 nmol) did not affect dopamine levels. Administration of POX (25 nmol) to atropine (15 nmol) pretreated animals, produced an increase in dopamine overflow that was ∼63% smaller than those observed in animals not pretreated. Administration of POX (25 nmol) to mecamylamine (35 nmol) pretreated animals did not significantly affect the POX-induced dopamine release. Our results suggest that acute administration of POX increases the dopamine release in a concentration-dependent way, being this release dependent on acetylcholinesterase inhibition and mediated predominantly by the activation of striatal muscarinic receptors, once the muscarinic antagonist atropine partially blocks the POX-induced dopamine release.
Collapse
Affiliation(s)
- Lilian R F Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain.
| | - Daniel Fajardo
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - Miguel Alfonso
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| |
Collapse
|
47
|
Yang Y, Zhang K, Zhong J, Wang J, Yu Z, Lei X, Chen X, Quan Y, Xian J, Chen Y, Liu X, Feng H, Tan L. Stably maintained microtubules protect dopamine neurons and alleviate depression-like behavior after intracerebral hemorrhage. Sci Rep 2018; 8:12647. [PMID: 30140021 PMCID: PMC6107628 DOI: 10.1038/s41598-018-31056-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022] Open
Abstract
Mesolimbic dopamine (DA) system lesion plays a key role in the pathophysiology of depression, and our previous study demonstrated that reduced microtubule (MT) stability aggravated nigrostriatal pathway impairment after intracerebral hemorrhage (ICH). This study aimed to further investigate the occurrence regularity of depression-like behavior after ICH and determine whether maintaining MT stabilization could protect DA neurons in ventral tegmental area (VTA) and alleviate depression-like behavior after ICH. An intrastriatal injection of 20 μl of autologous blood or MT depolymerization reagent nocodazole (Noco) was used to mimic the pathology of ICH model in mice. The concentration of DA, number of DA neurons and acetylated α-tubulin (a marker for stable MT) in VTA were checked, and depression-related behavior tests were performed after ICH. A MT-stabilizing agent, epothilone B (EpoB), was administered to explore the effects of MT stabilization on DA neurons and depression-like behavior after ICH. The results showed that obvious depression-like behavior occurred at 7, 14, and 28 days (P < 0.01) after ICH. These time-points were related to significant decreases in the concentration of DA (P < 0.01) and number of DA neurons (P < 0.01) in VTA. Moreover, The decrease of acetylated α-tubulin expression after ICH and Noco injection contributed to DA neurons' impairment in VTA, and Noco injecton also aggravate ICH-induced depression-like behaviors and DA neurons' injury. Furthermore, EpoB treatment significantly ameliorated ICH and Noco-induced depression-like behaviors (P < 0.05) and increased the concentration of DA (P < 0.05) and number of DA neurons (P < 0.05) in VTA by increasing the level of acetylated α-tubulin. The results indicate that EpoB can protect DA neurons by enhancing MT stability, and alleviate post-ICH depressive behaviors. This MT-targeted therapeutic strategy shows promise as a bench-to-bedside translational method for treating depression after ICH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Kaiyuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Jun Zhong
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Zhongyuan Yu
- Battalion 3 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Yulian Quan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China.
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China.
| |
Collapse
|
48
|
Lee SY, Wang TY, Chen SL, Chang YH, Chen PS, Huang SY, Tzeng NS, Wang LJ, Lee IH, Chen KC, Yang YK, Yang YH, Chen CS, Lu RB. ALDH2 modulated changes in cytokine levels and cognitive function in bipolar disorder: A 12-week follow-up study. Aust N Z J Psychiatry 2018; 52:680-689. [PMID: 28778129 DOI: 10.1177/0004867417720517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We investigated the association of the aldehyde dehydrogenase 2 ( ALDH2) polymorphism (rs671), which is involved with the dopaminergic function, and with changes in cytokine levels and cognitive function, in a 12-week follow-up study in patients with bipolar disorder. METHODS Patients with a first diagnosis of bipolar disorder were recruited. Symptom severity and levels of plasma cytokines (tumor necrosis factor α, C-reactive protein, interleukin 6 and transforming growth factor β1) were examined during weeks 0, 1, 2, 4, 8 and 12. Neurocognitive function was evaluated at baseline and endpoint. The ALDH2 polymorphism genotype was determined. RESULTS A total of 541 patients with bipolar disorder were recruited, and 355 (65.6%) completed the 12-week follow-up. A multiple linear regression analysis showed a significant ( p = 0.000226) association between the ALDH2 polymorphism and changes in C-reactive protein levels. Different aspects of cognitive function improved in patients with different ALDH2 genotypes. Only patients with the ALDH2*1*1 genotype showed significant correlations between improvement of cognitive function and increased transforming growth factor -β1. CONCLUSION The ALDH2 gene might influence changes in cytokine levels and cognitive performance in patients with bipolar disorder. Additionally, changes in cytokine levels and cognitive function were correlated only in patients with specific ALDH2 genotypes.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,3 Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,4 Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan.,5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tzu-Yun Wang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shiou-Lan Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,6 Lipid Science and Aging Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Hsuan Chang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,7 Department of Psychology, Asia University, Taichung, Taiwan
| | - Po-See Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,8 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - San-Yuan Huang
- 9 Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- 9 Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,10 Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Liang-Jen Wang
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,11 Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Hui Lee
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kao-Chin Chen
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yen Kuang Yang
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,12 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yi-Hsin Yang
- 13 School of Pharmacy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Sheng Chen
- 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Psychiatry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,14 Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ru-Band Lu
- 5 Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan.,8 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,15 Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,16 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
49
|
Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions. Nat Catal 2018. [DOI: 10.1038/s41929-018-0082-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
You H, Mariani LL, Mangone G, Le Febvre de Nailly D, Charbonnier-Beaupel F, Corvol JC. Molecular basis of dopamine replacement therapy and its side effects in Parkinson's disease. Cell Tissue Res 2018. [PMID: 29516217 DOI: 10.1007/s00441-018-2813-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is currently no cure for Parkinson's disease. The symptomatic therapeutic strategy essentially relies on dopamine replacement whose efficacy was demonstrated more than 50 years ago following the introduction of the dopamine precursor, levodopa. The spectacular antiparkinsonian effect of levodopa is, however, balanced by major limitations including the occurrence of motor complications related to its particular pharmacokinetic and pharmacodynamic properties. Other therapeutic strategies have thus been developed to overcome these problems such as the use of dopamine receptor agonists, dopamine metabolism inhibitors and non-dopaminergic drugs. Here we review the pharmacology and molecular mechanisms of dopamine replacement therapy in Parkinson's disease, both at the presynaptic and postsynaptic levels. The perspectives in terms of novel drug development and prediction of drug response for a more personalised medicine will be discussed.
Collapse
Affiliation(s)
- Hana You
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, University Hospital (Inselspital) and University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Louise-Laure Mariani
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Le Febvre de Nailly
- INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fanny Charbonnier-Beaupel
- Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France. .,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France. .,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France. .,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France. .,CIC Neurosciences, ICM building, Hôpital Pitié-Salpêtrière, 47/83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|