1
|
Dihydromyricetin Ameliorates 3NP-induced Behavioral Deficits and Striatal Injury in Rats. J Mol Neurosci 2016; 60:267-75. [PMID: 27501707 DOI: 10.1007/s12031-016-0801-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023]
Abstract
Oxidative stress is closely involved in neurodegenerative diseases. The present study aimed to examine the effect of anti-oxidant DHM (dihydromyricetin) on 3NP (3-nitropropionic acid) -induced behavioral deficits of experimental rats and striatal histopathological injury by using behavioral, imaging, biochemistry, histochemistry and molecular biology technologies. The experimental results showed that both motor dysfunctions and learning and memory impairments induced by 3NP were significantly reduced after DHM treatment. 3NP-induced striatal metabolic abnormality was also remarkably improved by DHM treatment, showed as the increased glucose metabolism in PET/CT scan, decreased MDA (malondialdehyde) and increased SOD (superoxide dismutase) activity in enzyme histochemical staining. In addition, the cell apoptosis was evidently detected in the striatum of the 3NP group, while in the 3NP + DHM group, the number of apoptotic cells was remarkably reduced. 3NP treatment obviously induced down-regulation of Bcl-2, and up-regulations of Bax and Cleaved Caspase-3, while these changes were significantly reversed by DHM treatment. The present results suggested that DHM showed its protective effect by anti-oxidant and anti-apoptosis mechanisms.
Collapse
|
2
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
3
|
Drury PP, Davidson JO, Mathai S, van den Heuij LG, Ji H, Bennet L, Tan S, Silverman RB, Gunn AJ. nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep. Neuropharmacology 2014; 83:62-70. [PMID: 24726307 DOI: 10.1016/j.neuropharm.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 12/01/2022]
Abstract
Basal ganglia injury after hypoxia-ischemia remains common in preterm infants, and is closely associated with later cerebral palsy. In the present study we tested the hypothesis that a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10, would improve survival of striatal phenotypic neurons after profound asphyxia, and that the subsequent seizure burden and recovery of EEG are associated with neural outcome. 24 chronically instrumented preterm fetal sheep were randomized to either JI-10 (3 ml of 0.022 mg/ml, n = 8) or saline (n = 8) infusion 15 min before 25 min complete umbilical cord occlusion, or saline plus sham-occlusion (n = 8). Umbilical cord occlusion was associated with reduced numbers of calbindin-28k-, GAD-, NPY-, PV-, Calretinin- and nNOS-positive striatal neurons (p < 0.05 vs. sham occlusion) but not ChAT-positive neurons. JI-10 was associated with increased numbers of calbindin-28k-, GAD-, nNOS-, NPY-, PV-, Calretinin- and ChAT-positive striatal neurons (p < 0.05 vs. saline + occlusion). Seizure burden was strongly associated with loss of calbindin-positive cells (p < 0.05), greater seizure amplitude was associated with loss of GAD-positive cells (p < 0.05), and with more activated microglia in the white matter tracts (p < 0.05). There was no relationship between EEG power after 7 days recovery and total striatal cell loss, but better survival of NPY-positive neurons was associated with lower EEG power. In summary, these findings suggest that selective nNOS inhibition during asphyxia is associated with protection of phenotypic striatal projection neurons and has potential to help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- Paul P Drury
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Haitao Ji
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA; Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208-3113, USA
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Feng Q, Ma Y, Mu S, Wu J, Chen S, OuYang L, Lei W. Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats. PLoS One 2014; 9:e91512. [PMID: 24632560 PMCID: PMC3954627 DOI: 10.1371/journal.pone.0091512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/10/2014] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is a neurological degenerative disease and quinolinic acid (QA) has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD) rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv)+ and neuropeptide Y (NPY)+ interneurons were both significantly reduced while those of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD.
Collapse
Affiliation(s)
- Qiqi Feng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Ma
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuhua Mu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
5
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
6
|
Giampà C, Montagna E, Dato C, Melone MAB, Bernardi G, Fusco FR. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington's disease. PLoS One 2013; 8:e64037. [PMID: 23700454 PMCID: PMC3659095 DOI: 10.1371/journal.pone.0064037] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
Loss of huntingtin-mediated BDNF gene transcription has been shown to occur in HD and thus contribute to the degeneration of the striatum. Several studies have indicated that an increase in BDNF levels is associated with neuroprotection and amelioration of neurological signs in animal models of HD. In a recent study, an increase in BDNF mRNA and protein levels was recorded in mice administered recombinant BDNF peripherally. Chronic, indwelling osmotic mini-pumps containing either recombinant BDNF or saline were surgically placed in R6/2 or wild-type mice from 4 weeks of age until euthanasia. Neurological evaluation (paw clasping, rotarod performance, locomotor activity in an open field) was performed. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that BDNF- treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as brain volume, striatal atrophy, size and morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. BDNF was effective in increasing significantly the levels of activated CREB and of BDNF the striatal spiny neurons. Moreover, systemically administered BDNF increased the synthesis of BDNF as demonstrated by RT-PCR, and this might account for the beneficial effects observed in this model.
Collapse
Affiliation(s)
- Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Elena Montagna
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Clemente Dato
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Giorgio Bernardi
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Romana Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
- * E-mail:
| |
Collapse
|
7
|
Leuti A, Laurenti D, Giampà C, Montagna E, Dato C, Anzilotti S, Melone MAB, Bernardi G, Fusco FR. Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2012; 52:104-16. [PMID: 23220622 DOI: 10.1016/j.nbd.2012.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 11/12/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022] Open
Abstract
In Huntington's disease (HD) mutant huntingtin protein impairs the function of several transcription factors, in particular the cAMP response element-binding protein (CREB). CREB activation can be increased by targeting phosphodiesterases such as phospohodiesterase 4 (PDE4) and phosphodiesterase 10A (PDE10A). Indeed, both PDE4 inhibition (DeMarch et al., 2008) and PDE10A inhibition (Giampà et al., 2010) proved beneficial in the R6/2 mouse model of HD. However, Hebb et al. (2004) reported PDE10A decline in R6/2 mice. These findings raise the issue of how PDE10A inhibition is beneficial in HD if such enzyme is lost. R6/2 mice and their wild type littermates were treated with the PDE10A inhibitor TP10 (a gift from Pfizer) or saline, sacrificed at 5, 9, and 13 weeks of age, and single and double label immunohistochemistry and western blotting were performed. PDE10A increased dramatically in the spiny neurons of R6/2 compared to the wild type mice. Conversely, in the striatal cholinergic interneurons, PDE10A was lower and it did not change significantly with disease progression. In the other subsets of striatal interneurons (namely, parvalbuminergic, somatostatinergic, and calretininergic interneurons) PDE10A immunoreactivity was higher in the R6/2 compared to the wild-type mice. In the TP10 treated R6/2, PDE10A levels were lower than in the saline treated mice in the medium spiny neurons, whereas they were higher in all subsets of striatal interneurons except for the cholinergic ones. However, in the whole striatum densitometry studies, PDE10A immunoreactivity was lower in the R6/2 compared to the wild-type mice. Our study demonstrates that PDE10A is increased in the spiny neurons of R6/2 mice striatum. Thus, the accumulation of PDE10A in the striatal projection neurons, by hydrolyzing greater amounts of cyclic nucleotides, is likely to contribute to cell damage in HD. Consequently, the beneficial effect of TP10 in HD models (Giampà et al., 2009, 2010) is explained by the efficiency of such compound in counteracting this phenomenon and therefore increasing the availability of cyclic nucleotides.
Collapse
Affiliation(s)
- Alessandro Leuti
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fusco FR, Anzilotti S, Giampà C, Dato C, Laurenti D, Leuti A, Colucci D'Amato L, Perrone L, Bernardi G, Melone MA. Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition. Neurobiol Dis 2012; 46:225-33. [DOI: 10.1016/j.nbd.2012.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/09/2012] [Accepted: 01/21/2012] [Indexed: 11/29/2022] Open
|
9
|
Mu S, OuYang L, Liu B, Zhu Y, Li K, Zhan M, Liu Z, Jia Y, Lei W. Protective effect of melatonin on 3-NP induced striatal interneuron injury in rats. Neurochem Int 2011; 59:224-34. [PMID: 21693149 DOI: 10.1016/j.neuint.2011.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
To confirm the effect of melatonin on 3-nitropropionic acid (3-NP)-induced striatal interneuron injury in rats, behavioral test, histology, immunohistochemistry and Western blotting were respectively used to characterize the behavioral changes of experimental animals in motor and cognition, the morphological changes of striatal interneurons and the expression level of protein markers induced by 3-NP. The results showed that (1) 3-NP induced dysfunction of experimental animals in movement, motor coordination and cognition could be relieved by melatonin treatment; (2) The 3-NP-induced lesion area was unvaryingly in dorsolateral striatum, with almost all neuronal loss in the lesion core, however, lots of neurons survived after melatonin treatment; (3) Immunohistochemical staining of the four interneuron types (parvalbuminergic, cholinergic, calretinergic, and neuropeptide Y-neuronal nitric oxide synthase co-containing) showed that, in the lesion core of 3-NP group, loss of the four interneuron types was obvious, but in transition zone, the processes and varicosities of calretinergic, and neuropeptide Y-neuronal nitric oxide synthase co-containing interneurons increased significantly. Melatonin treatment reduced the loss of the four interneuron types in the lesion core, and inhibited the increase of processes and varicosities in the transition zone; (4) Consistent with above results, the expression level of five interneuron protein markers were significantly increased in the striatum after melatonin treatment. Notably, in both the transition zone and the lesion core induced by 3-NP, TUNEL-positive cells were detected, but decreased significantly after melatonin treatment. The present results indicate that melatonin effectively protects the striatal neurons against the injury induced by 3-NP in rats.
Collapse
Affiliation(s)
- Shuhua Mu
- Department of Anatomy, Zhongshan School of Medicine, SUN Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mu S, OuYang L, Liu B, Zhu Y, Li K, Zhan M, Liu Z, Jia Y, Lei W, Reiner A. Preferential interneuron survival in the transition zone of 3-NP-induced striatal injury in rats. J Neurosci Res 2011; 89:744-54. [DOI: 10.1002/jnr.22591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/08/2022]
|
11
|
Immunohistochemical localization of AMPA-type glutamate receptor subunits in the striatum of rhesus monkey. Brain Res 2010; 1344:104-23. [PMID: 20460117 DOI: 10.1016/j.brainres.2010.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/10/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as their neurotransmitter. Their influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. While the cellular localization of AMPA-type subunits in the basal ganglia has been well characterized in rodents, the cellular localization of AMPA subunits in primate basal ganglia is not. We thus carried out immunohistochemical studies of GluR1-4 distribution in rhesus monkey basal ganglia in conjunction with characterization of each major neuron type. In striatum, about 65% of striatal neurons immunolabeled for GluR1, 75%-79% immunolabeled for GluR2 or GluR2/3, and only 2.5% possessed GluR4. All neurons the large size of cholinergic interneurons (mean diameter 26.1 microm) were moderately labeled for GluR1, while all neurons in the size range of parvalbuminergic interneurons (mean diameter 13.8 microm) were intensely rich in GluR1. Additionally, somewhat more than half of the neurons in the size range of projection neurons (mean diameter 11.6 microm) immunolabeled for GluR1, and about one third of these were very rich in GluR1. About half of the neurons the size of cholinergic interneurons were immunolabeled for GluR2, and the remainder of the neurons that were immunolabeled for GluR2 coincided with projection neurons in size and shape (GluR2 diameter=10.7 microm), indicating that the vast majority of striatal projection neurons possess immunodectible GluR2. Similar results were observed with GluR2/3 immunolabeling. Half of the neurons the size of cholinergic interneurons immunolabeled for GluR4 and seemingly all neurons in the size range of parvalbuminergic interneurons possessed GluR4. These results indicate that AMPA receptor subunit combinations for striatal projection neurons in rhesus monkey are similar to those for the corresponding neuron types in rodents, and thus their AMPA responses to glutamate are likely to be similar to those demonstrated in rodents.
Collapse
|
12
|
Jiang W, Büchele F, Papazoglou A, Döbrössy M, Nikkhah G. Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington's disease. J Neurosci Methods 2009; 179:219-23. [PMID: 19428530 DOI: 10.1016/j.jneumeth.2009.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, is a commonly used injectable anaesthetic agent. In the present study, ketamine- and isoflurane-induced anaesthesias were tested to identify the influence of different anaesthesia methods in conjunction with the unilateral quinolinic acid-induced excitotoxic lesion rat model of Huntington's disease (HD). Quinolinic acid, a glutamate analogue, exerts its excitotoxic effect via the NMDA receptor, the principle target of ketamine as well, rendering the choice of anaesthesia an important pharmacokinetic issue. Twenty Sprague-Dawley females were lesioned using quinolinic acid: one group was anaesthetised with ketamine and the other with isoflurane. The injection coordinates and the dosage of quinolinic acid were identical. Two weeks post-lesion, the animals were tested on apomorphine-induced rotation test, followed by perfusion, immunohistochemical and volumetric analysis. The isoflurane, compared with the ketamine, anaesthetised animals showed greater ipsilateral rotation behaviour, larger striatal lesions and significant differences in other measurements reflecting the extent of the lesion. The data demonstrates that the use of ketamine anaesthesia in the excitotoxic model of HD can severely compromise the development of the lesion.
Collapse
Affiliation(s)
- Wei Jiang
- Laboratory of Molecular Neurosurgery, Dept. of Stereotactic and Functional Neurosurgery, Neurocenter, Albert-Ludwigs-University, Breisacher Str. 64, D-79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Kumar U. Somatostatin in medium-sized aspiny interneurons of striatum is responsible for their preservation in quinolinic acid and N-methyl-D-asparate-induced neurotoxicity. J Mol Neurosci 2008; 35:345-54. [PMID: 18483877 DOI: 10.1007/s12031-008-9093-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/18/2008] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) is a multifunctional peptide and involves in several neurodegenerative diseases. N-Methyl-D-asparate (NMDA) receptor agonist quinolinic acid (QUIN)-induced neurotoxicity mimics an experimental model of Huntington's disease that is characterized by the selective preservation of medium-sized aspiny interneurons and degeneration of medium-sized spiny projection neurons in striatum. In QUIN- and NMDA-induced neurotoxicity, increased expression of SST and messenger RNA levels along with SST release in culture medium is generally observed. However, the molecular mechanisms and the functional consequences of increased SST are still obscure. In the present study, the role of SST was determined using immunoneutralization and immunoblockade of SST in cultured striatal neurons upon QUIN- and NMDA-induced neurotoxicity. The immunoblockade of SST with antisense oligonucleotides and immunoabsorption of released SST with specific antibodies potentiate QUIN- and NMDA-induced neuronal cell death. NADPH-diaphorase positive neurons that are selectively spared in several processes of neurodegeneration result in severe damage upon immunoblockade or immunoabsorption of SST. In addition, exogenous SST along with QUIN and NMDA provides selective preservation of projection neurons, which are selectively susceptible in excitotoxicity. Neuroprotective effect of SST is completely blocked by pertussis toxins, suggesting the role of somatostatin receptors. Taken together, these results provide first evidence that the presence of SST is a unique feature for the selective sparing of medium sized aspiny interneurons in excitotoxicity.
Collapse
Affiliation(s)
- Ujendra Kumar
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 2007; 33:167-92. [PMID: 17446041 PMCID: PMC1993922 DOI: 10.1016/j.jchemneu.2007.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/05/2023]
Abstract
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe>striatonigral>striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons>calretinergic interneurons>cholinergic interneurons>projection neurons>somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca(2+) permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
15
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
George S, Scotter J, Dean JM, Bennet L, Waldvogel HJ, Guan J, Faull RLM, Gunn AJ. Induced cerebral hypothermia reduces post-hypoxic loss of phenotypic striatal neurons in preterm fetal sheep. Exp Neurol 2007; 203:137-47. [PMID: 16962098 DOI: 10.1016/j.expneurol.2006.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 12/20/2022]
Abstract
Perinatal hypoxic-ischemic injury of the basal ganglia is a significant cause of disability in premature infants. Prolonged, moderate cerebral hypothermia has been shown to be neuroprotective after experimental hypoxia-ischemia; however, it has not been tested in the preterm brain. We therefore examined the effects of severe hypoxia and the potential neuroprotective effects of delayed hypothermia on phenotypic striatal neurons. Preterm (0.7 gestation) fetal sheep received complete umbilical cord occlusion for 25 min followed by cerebral hypothermia (fetal extradural temperature reduced from 39.4+/-0.3 degrees C to 29.5+/-2.6 degrees C) from 90 min to 70 h after the end of occlusion. Hypothermia was associated with a significant overall reduction in striatal neuronal loss compared with normothermia-occlusion fetuses (mean+/-SEM, 5.5+/-1.2% vs. 38.1+/-6.5%, P<0.01). Immunohistochemical studies showed that occlusion resulted in a significant loss of calbindin-28 kd, glutamic acid decarboxylase isoform 67 and neuronal nitric oxide synthase-immunopositive neurons (n=7, P<0.05), but not choline acetyltransferase-positive neurons, compared with sham controls (n=7). Hypothermia (n=7) significantly reduced the loss of calbindin-28 kd and neuronal nitric oxide synthase, but not glutamic acid decarboxylase-immunopositive neurons. In conclusion, delayed, prolonged moderate head cooling was associated with selective protection of particular phenotypic striatal projection neurons after severe hypoxia in the preterm fetus. These findings suggest that head cooling may help reduce basal ganglia injury in some premature babies.
Collapse
Affiliation(s)
- S George
- Department of Physiology, Faculty of Medicine and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Torres-Peraza J, Pezzi S, Canals JM, Gavaldà N, García-Martínez JM, Pérez-Navarro E, Alberch J. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-D-aspartate receptors. Neuroscience 2006; 144:462-71. [PMID: 17081696 DOI: 10.1016/j.neuroscience.2006.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 11/30/2022]
Abstract
The striatum is one of the brain areas most vulnerable to excitotoxicity, a lesion that can be prevented by neurotrophins. In the present study, intrastriatal injection of the N-methyl-d-aspartate receptor (NMDAR) agonist quinolinate (QUIN) was performed in mice heterozygous for neurotrophin-3 (NT3 +/-) or brain-derived neurotrophic factor (BDNF +/-) to analyze the role of endogenous neurotrophins on the regulation of striatal neurons susceptibility to excitotoxic injury. QUIN injection induced a decrease in dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa (DARPP-32) protein levels that was higher in NT-3 +/- than in BDNF+/- or wild type animals. This enhanced susceptibility was specific for enkephalin- and tachykinin-positive projection neurons, and also for parvalbumin-positive interneurons. However the excitotoxic damage in large interneurons was not modified in NT-3 +/- mice compared with wild type animals. This effect can be related to the regulation of NMDARs by endogenous NT-3. Thus, our results show that there is an age-dependent regulation of NMDAR subunits NR1 and NR2A, but not NR2B, in NT-3 +/- mice. The deficit of endogenous NT-3 induced a decrease in NR1 and NR2A subunits at postnatal day (P) 0 and P3 mice respectively, whereas an upregulation was observed in 12 week old NT-3 +/- mice. This differential effect was also observed after administration of exogenous NT-3. In primary striatal cultures, NT-3 treatment induced an enhancement in NR2A, but not NR2B, protein levels. However, intrastriatal grafting of NT-3 secreting-cells in adult wild type mice produced a down-regulation of NR2A subunit. In conclusion, NT-3 regulates the expression of NMDAR subunits modifying striatal neuronal properties that confers the differential vulnerability to excitotoxicity in projection neurons and interneurons in the striatum.
Collapse
Affiliation(s)
- J Torres-Peraza
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Ba M, Kong M, Yang H, Ma G, Lu G, Chen S, Liu Z. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem Res 2006; 31:1337-47. [PMID: 17053970 DOI: 10.1007/s11064-006-9177-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence has linked striatal amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor function to the adverse effects of long-term dopaminergic treatment in Parkinson's disease. The phosphorylation of AMPA subunit, GluR1, reflects AMPA receptor activity. To determine whether serine phosphorylation of GluR1 subunit by activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) contributes to the process, we examined the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent L: -dopa treatment on motor responses and phosphorylation states. Three weeks of L: -dopa administration to rats shortened the duration of the rotational response. We found a significant reduction in the abundance of both phosphorylated GluR1 at serine-831 site (pGluR1S831) and GluR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with L: -dopa markedly upregulated the phosphorylation of GluR1 in lesioned striatum with a concomitant normalization of the plasma membrane GluR1 abundance, which lasted at least 1 day after withdrawal of chronic L: -dopa treatment. Our immunostaining data showed that these changes were confined to parvalbumin-positive neurons where GluR1 subunits are exclusively expressed. Both the altered motor response duration and the degree of pGluR1S831 were attenuated by the intrastriatal administration of CaMKII inhibitor KN-93. These findings suggest that activation of CaMKII contributes to both development and maintenance of motor response duration alterations, through a mechanism that involves an increase in pGluR1S831 within parvalbumin-positive neurons.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Box 2900, Bryan Research Bldg, Durham, NC 27710, USA.
| | | |
Collapse
|
20
|
Giampà C, DeMarch Z, D'Angelo V, Morello M, Martorana A, Sancesario G, Bernardi G, Fusco FR. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington's disease. Eur J Neurosci 2006; 23:11-20. [PMID: 16420411 DOI: 10.1111/j.1460-9568.2005.04545.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence has shown that the activity of cAMP responsive element-binding protein (CREB) and of CREB-binding protein (CBP) is decreased in Huntington's disease (HD) [Steffan et al. (2000)Proc. Natl Acad. Sci. USA, 97, 6763-6768; Gines et al. (2003)Hum. Mol. Genet., 12, 497-508; Rouaux et al. (2004) Biochem. Pharmacol., 68, 1157-1164; Sugars et al. (2004)J. Biol. Chem., 279, 4988-4999]. Such decrease is thought to reflect the impaired energy metabolism observed in a HD mouse model, where a decline in striatum cAMP levels has been observed [Gines et al. (2003)Hum. Mol. Genet., 12, 497-508]. Increased levels of CREB have also been demonstrated to exert neuroprotective functions [Lonze & Ginty (2002)Neuron, 35, 605-623; Lonze et al. (2002)Neuron, 34, 371-385]. Our study aimed to investigate the distribution of CREB in the neuronal subpopulations of the striatum in normal rats compared to the HD model of quinolinic acid lesion. Twenty-five Wistar rats were administered quinolinic acid 100 mm into the right striatum, and killed after 24 h, 48 h, 1 week, 2 weeks, and six weeks, respectively. The contralateral striata were used as controls. Dual-label immunofluorescence was employed using antibodies against phosphorylated CREB and each of the different neuronal subpopulations markers. Our results show that activated CREB levels decrease progressively in projection neurons and parvalbumin (PARV) and calretinin (CALR) interneurons, whereas such levels remain stable in cholinergic and somatostatin interneurons. Thus, we speculate that the ability of cholinergic interneurons to maintain their levels of CREB after excitotoxic lesions is one of the factors determining their protection in Huntington's disease.
Collapse
Affiliation(s)
- Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS at the European Center for Brain Research, via del Fosso Fiorano 64, 00143 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schauwecker PE. Susceptibility to excitotoxic and metabolic striatal neurodegeneration in the mouse is genotype dependent. Brain Res 2005; 1040:112-20. [PMID: 15804432 DOI: 10.1016/j.brainres.2005.01.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 11/21/2022]
Abstract
Previously, we had reported that hippocampal susceptibility to the neurotoxic effects of excitotoxin administration is strain dependent [Schauwecker and Steward, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 4103]. However, it has been unclear whether strain-related gene products may play a similar role in providing protection against drugs that produce striatal lesions. The present series of experiments sought to elucidate whether genetic background alters neuronal viability within the striatum following metabolic or excitotoxic injury. Thus, we have examined the effect of mouse strain on susceptibility to striatal injury using well-characterized animal models of Huntington's disease by examining whether C57BL/6 mice, previously identified as resistant to excitotoxin-induced hippocampal cell death, are resistant to quinolinate, malonate, and 3-nitropropionic acid (3-NP). Intrastriatal injection of either malonate or quinolinate and systemic administration of 3-NP resulted in significantly smaller striatal lesions in C57BL/6 mice as compared to FVB/N mice, previously identified as susceptible to hippocampal excitotoxic injury. The existence of an animal strain with decreased resistance to striatal lesions suggests that there are mediating factors involved in the preferential vulnerability of the striatum to neurotoxic lesioning. The identification of these factors could provide strategies for therapeutic intervention in Huntington's disease.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
22
|
Clark CJ, Phillips RS, McMillan RB, Montgomery IO, Stone TW. Differences in the neurochemical characteristics of the cortex and striatum of mice with cerebral malaria. Parasitology 2004; 130:23-9. [PMID: 15700754 DOI: 10.1017/s0031182004006237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fatal murine cerebral malaria is an encephalitis and not simply a local manifestation in the brain of a systemic process. Histopathologically, murine cerebral malaria has been characterized by monocyte adherence to the endothelium of the microvasculature, activation of microglial cells, swelling of endothelial cell nuclei, microvasculature damage, and breakdown of the blood-brain barrier with cerebral oedema. Brain parenchymal cells have been proposed to be actively involved in the pathogenesis of murine cerebral malaria. We, therefore, compared the neurochemical characteristics ofPlasmodium bergheiANKA-infected mice with controls to determine whether cerebral malarial infection significantly impairs specific neuronal populations. Between 6 and 7 days after infection, we found a significant loss of neurones containing substance P, with preservation of cells containing somatostatin, neuropeptide Y and calbindin in the striatum of infected mice compared with controls. In the cortex of infected mice, we found a significant reduction in the number of cells containing substance P, somatostatin and neuropeptide Y. The number of calbindin-containing neurones was unchanged. This study found significant changes in the neurochemical characteristics of the cortex and striatum of mice infected withP. bergheiANKA, which may contribute to their cerebral symptoms.
Collapse
Affiliation(s)
- C J Clark
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
23
|
Fusco FR, Martorana A, Giampà C, De March Z, Farini D, D'Angelo V, Sancesario G, Bernardi G. Immunolocalization of CB1 receptor in rat striatal neurons: a confocal microscopy study. Synapse 2004; 53:159-67. [PMID: 15236348 DOI: 10.1002/syn.20047] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several lines of evidence indicate that cannabinoids, among other functions, are involved in motor control. Although cannabinoid receptors (CB(1)) mRNA has been observed in medium-sized spiny neurons of the striatum, a description of the precise localization of CB(1) at a protein level among striatal cells is still lacking. Therefore, we performed immunohistochemical studies with light and confocal microscopy to identify neuronal subpopulations that express CB(1) and to assess the distribution of the receptor within these neurons. In our single label light microscopy study, CB(1) was observed in most medium-sized neurons of the caudate-putamen. However, CB(1) was also present in large-sized neurons scattered throughout the striatum. Our dual-label study showed that 89.3% of projection neurons in matrix contain CB(1), and that 56.4% of projection neurons in patch are labeled for CB(1). To investigate the presence of CB(1) among the different subclasses of striatal interneurons we performed a double-labeling study matching CB(1) and each of the striatal interneuron markers, namely, choline acetyl-transferase, parvalbumin, calretinin, and nitric oxide synthase. Our double-label study showed that most parvalbumin immunoreactive interneurons (86.5%), more than one-third (39.2%) of cholinergic interneurons, and about one-third (30.4%) of the NOS-positive neurons are labeled for CB(1). Calretinin-immunolabeled neurons were devoid of CB(1).
Collapse
Affiliation(s)
- F R Fusco
- Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation I.R.C.C.S, 00179 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kumar U. Characterization of striatal cultures with the effect of QUIN and NMDA. Neurosci Res 2004; 49:29-38. [PMID: 15099701 DOI: 10.1016/j.neures.2004.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 01/16/2004] [Indexed: 11/15/2022]
Abstract
The degeneration of selective and specific types of neurons is a characteristic feature in several neurodegenerative disorders. N-methyl-D-aspartate receptor (NMDAR) agonist quinolinic acid (QUIN)-induced excitotoxicity has been implicated in neurodegeneration and mimics Huntington's disease (HD) by the loss of medium-sized spiny projection neurons while sparing medium-sized aspiny interneurons in the striatum. Previous work suggests that somatostatin/neuropeptide Y (SST/NPY)-containing neurons are selectively preserved in HD due to the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and the lack of NMDAR. In the present study, the distribution of somatostatin (SST), neuropeptide Y (NPY), nitric oxide synthase (nNOS), NMDA receptor type-1 (NR1), and the enzyme NADPH-d was determined in cultured striatal neurons with the effect of QUIN and N-methyl-D-aspartate (NMDA). SST/NPY-positive neurons, which constitute approximately 8-10% of striatal neurons, are selectively spared in QUIN/NMDA-treated cultures. nNOS and NADPH-d-positive neurons, comprising 3.8% of the neuronal population, also exhibit selective resistance to excitotoxicity. Most NR1-positive neurons, which constitute >80% of the total neuronal population, are lost in majority upon treatment with QUIN and NMDA. SST and NADPH-d-positive neurons also colocalize with Cu/Zn superoxide dismutase (Cu/Zn SOD). In conclusion, our results thus demonstrate that SST/NPY/nNOS-positive neurons are selectively spared in NMDA agonist-induced excitotoxicity, which could be attributed to the presence of Cu/Zn SOD and NADPH-d in addition to the low abundance of NMDAR on these neurons.
Collapse
Affiliation(s)
- Ujendra Kumar
- Fraser Laboratories, Department of Medicine, Room M3-15, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Que., Canada H3A 1A1.
| |
Collapse
|
25
|
Sun Z, Chen Q, Reiner A. Enkephalinergic striatal projection neurons become less affected by quinolinic acid than substance P-containing striatal projection neurons as rats age. Exp Neurol 2004; 184:1034-42. [PMID: 14769398 DOI: 10.1016/j.expneurol.2003.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 08/08/2003] [Accepted: 08/08/2003] [Indexed: 11/16/2022]
Abstract
While the excitotoxic vulnerability of striatal neurons is known to be greater in juvenile than adult animals, it is uncertain if striatal neuron types decline differentially in their vulnerability with age. To examine this issue, we unilaterally injected quinolinic acid (QA), an N-methyl-d-aspartate (NMDA) receptor agonist, into the striatum of juvenile and adult rats, and used in situ hybridization histochemistry with oligonucleotide probes for preproenkephalin and preprotachykinin mRNA to label surviving enkephalinergic (ENK) and substance P-containing (SP) neurons in adjacent sections through the injection center. The results confirmed that the region of severe damage is greater in young than adult animals, but revealed that at the very center of the QA injection, labeled neuron abundance was lower in adult than juvenile striatum. In juvenile rats, the vulnerability of the ENK neurons at all distances from the injection center was the same as that of the SP neurons. By contrast, in adult rats, the ENK neuron survival was greater than the SP neuron survival at all distances beyond the lesion center. The SP neuron survival outside the injection center in the adult rats was similar to that in juvenile rats, while the ENK neuron survival beyond the injection center was better in adult than juvenile rats. These data indicate that there is an age-dependent decrease in the vulnerability of ENK but not SP striatal projection neurons to QA-mediated injury in rats. The results also raise the possibility that, if an excitotoxic process is involved in HD pathogenesis, a differential age-related decline in the sensitivity of striatal projection neuron types to this process may contribute to the more uniform striatal neuron loss in juvenile-onset Huntington's disease (HD) and the more differential loss in adult-onset HD.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
26
|
Liu Z, Mao L, Parelkar NK, Tang Q, Samdani S, Wang JQ. Distinct expression of phosphorylatedN-methyl-D-aspartate receptor NR1 subunits by projection neurons and interneurons in the striatum of normal and amphetamine-treated rats. J Comp Neurol 2004; 474:393-406. [PMID: 15174082 DOI: 10.1002/cne.20136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of subunits (NR1 and NR2A-D), and are enriched in the striatum. Receptor phosphorylation has recently been demonstrated on the NR1 subunit at three serine residues, 897, 896, and 890, which appear to correspond to the level of receptor activity. In this study, expression of phospho-specific NR1 subunits at serine 897 (pNR1S897), serine 896 (pNR1S896), or serine 890 (pNR1S890) in neurochemically identified neurons of the adult rat striatum was detected by using double-immunofluorescent labeling or combined in situ hybridization and immunohistochemistry. In both the dorsal and ventral striatum, pNR1S897 was expressed at high levels in projection neurons containing >55% dynorphin (striatonigral) and >90% enkephalin (striatopallidal) and in interneurons that were 100% positive for choline, >90% positive for parvalbumin, and >45% positive for somatostatin (co-containing neuropeptide Y and neuronal nitric oxide synthase). Low levels of pNR1S896 were present in a small portion of projection neurons (<15% for both populations of projection neurons) and were almost lacking in the three types of interneurons. Interestingly, pNR1S890 was exclusively expressed in most parvalbumin-containing interneurons (70-80%). Acute administration of a psychostimulant, amphetamine, increased the number of dynorphin-containing projection neurons and parvalbumin interneurons showing detectable levels of pNR1S896 and pNR1S890, respectively. These results demonstrate the distinct expression of phospho-NR1 subunits in different populations of striatal projection neurons and interneurons at variable levels in normal rats; they also demonstrate that phosphorylation of NR1, at least on serine 896 and 890 sites, is sensitive to drug exposure.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | | | | | | | | | |
Collapse
|
27
|
Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 2003. [PMID: 14645494 DOI: 10.1523/jneurosci.23-34-10982.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction may contribute to dopaminergic (DAergic) cell death in Parkinson's disease and GABAergic cell death in Huntington's disease. In the present work, we tested whether blocking A1 receptors could enhance the damage to DAergic and GABAergic neurons caused by mitochondrial inhibition, and whether blocking A2a receptors could protect against damage in this model. Animals received an intraperitoneal injection of 8-cyclopentyl-1,3-dipropylxanthine (CPX) (A1 antagonist) or 3,7-dimethyl-1-propargylxanthine (DMPX) (A2a antagonist) 30 min before intrastriatal infusion of malonate (mitochondrial complex II inhibitor). Damage was assessed 1 week later by measuring striatal dopamine, tyrosine hydroxylase (TH), and GABA content. In mice and rats, malonate-induced depletion of striatal dopamine, TH, or GABA was potentiated by pretreatment with 1 mg/kg CPX and attenuated by pretreatment with 5 mg/kg DMPX. To determine the location of the A1 and A2a receptors mediating these effects, CPX or DMPX was infused directly into the striatum or substantia nigra of rats 30 min before intrastriatal infusion of malonate. When infused into the striatum, CPX (20 ng) potentiated, whereas DMPX (50 ng) prevented malonate-induced GABA loss, but up to 100 ng of CPX or 500 ng of DMPX did not alter malonate-induced striatal dopamine loss. Intranigral infusion of CPX (100 ng) or DMPX (500 ng), however, did exacerbate and protect, respectively, against malonate-induced striatal dopamine loss. Thus, A1 receptor blockade enhances and A2a receptor blockade protects against damage to DAergic and GABAergic neurons caused by mitochondrial inhibition. Interestingly, these effects are mediated by A1 and A2a receptors located in the substantia nigra for DAergic neurons and in the striatum for GABAergic neurons.
Collapse
|
28
|
Fusco FR, Zuccato C, Tartari M, Martorana A, De March Z, Giampà C, Cattaneo E, Bernardi G. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003; 18:1093-102. [PMID: 12956709 DOI: 10.1046/j.1460-9568.2003.02844.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss of huntingtin-mediated brain-derived neurotrophic factor (BDNF) gene transcription has been described in Huntington's disease (HD) [Zuccato et al. (2001) Science, 293, 493-498]. It has been shown that BDNF is synthesized in the pyramidal layer of cerebral cortex and released in the striatum [Altar et al. (1997) Nature, 389, 856-860; Conner et al. (1997) J. Neurosci., 17, 2295-2313]. Here we show the cellular localization of BDNF in huntingtin-containing neurons in normal rat brain; our double-label immunofluorescence study shows that huntingtin and BDNF are co-contained in approximately 99% of pyramidal neurons of motor cortex. In the striatum, huntingtin is expressed in 75% of neurons containing BDNF. In normal striatum we also show that BDNF is contained in cholinergic and in NOS-containing interneurons, which are relatively resistant to HD degeneration. Furthermore, we show a reduction in huntingtin and in BDNF immunoreactivity in cortical neurons after striatal excitotoxic lesion. Our data are confirmed by an ELISA study of BDNF and by a Western blot analysis of huntingtin in cortex of quinolic acid (QUIN)-lesioned hemispheres. In the lesioned striatum we describe that the striatal subpopulation of cholinergic neurons, surviving degeneration, contain BDNF. The finding that BDNF is contained in nearly all neurons that contain huntingtin in the normal cortex, along with the reduced expression of BDNF after QUIN injection of the striatum, shows that huntingtin may be required for BDNF production in cortex.
Collapse
Affiliation(s)
- Francesca R Fusco
- Basal Ganglia Unit, Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Via Ardeatina 306, Rome 00179, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Meade CA, Deng YP, Fusco FR, Del Mar N, Hersch S, Goldowitz D, Reiner A. Cellular localization and development of neuronal intranuclear inclusions in striatal and cortical neurons in R6/2 transgenic mice. J Comp Neurol 2002; 449:241-69. [PMID: 12115678 DOI: 10.1002/cne.10295] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cellular localization and development of neuronal intranuclear inclusions (NIIs) in cortex and striatum of R6/2 HD transgenic mice were studied to ascertain the relationship of NIIs to symptom formation in these mice and gain clues regarding the possible relationship of NII formation to neuropathology in Huntington's disease (HD). All NIIs observed in R6/2 mice were ubiquitinated, and no evidence was observed for a contribution to them from wild-type huntingtin; they were first observed in cortex and striatum at 3.5 weeks of age. In cortex, NIIs increased rapidly in size and prevalence after their appearance. Generally, cortical projection neurons developed NIIs more rapidly than cortical interneurons containing calbindin or parvalbumin. Few cortical somatostatinergic interneurons, however, formed NIIs. In striatum, calbindinergic projection neurons and parvalbuminergic interneurons rapidly formed NIIs, but they formed more gradually in cholinergic interneurons, and few somatostatinergic interneurons developed NIIs. Striatal NIIs tended to be smaller than those in cortex. The early accumulation of NIIs in cortex and striatum in R6/2 mice is consistent with the early appearance of motor and learning abnormalities in these mice, and the eventual pervasiveness of NIIs at ages at which severe abnormalities are evident is consistent with their contribution to a neuronal dysfunction underlying the abnormalities. That cortex develops larger NIIs than striatum, however, is inconsistent with the preferential loss of striatal neurons in HD but is consistent with recent evidence of early morphological abnormalities in cortical neurons in HD. That calbindinergic and parvalbuminergic striatal neurons develop large NIIs is consistent with a contribution of nuclear aggregate formation to their high degree of vulnerability in HD.
Collapse
Affiliation(s)
- Christopher A Meade
- Department of Anatomy and Neurobiology, The Health Science Center, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sun Z, Xie J, Reiner A. The differential vulnerability of striatal projection neurons in 3-nitropropionic acid-treated rats does not match that typical of adult-onset Huntington's disease. Exp Neurol 2002; 176:55-65. [PMID: 12093082 DOI: 10.1006/exnr.2002.7947] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In adult-onset Huntington's disease (HD), striatal projection neurons are much more vulnerable than striatal interneurons, but even striatal projection neurons show differences in their vulnerability, with the striatal projection neurons projecting to the internal segment of the globus pallidus being the least vulnerable. Previous studies have shown that systemic chronic treatment with 3-nitropropionic acid (3NP), an inhibitor of succinate dehydrogenase, induces the preferential loss of striatal projection neurons over striatal interneurons that is characteristic of HD, which has been taken to support the hypothesis that the pathogenic defect in HD may involve impaired energy metabolism. We sought to determine whether the patterns of survival for striatal projection neurons in 4-month-old rats after chronic systemic 3NP treatment also resemble those in adult-onset HD. We assessed the projection neuron survival using neuropeptide immunolabeling of striatal efferent fibers in striatal target areas and quantified the degree of fiber loss in the striatal target areas using computer-assisted image analysis. We found that 3NP produced relatively equal loss of striatal fibers and terminals in the globus pallidus, substantia nigra, and entopeduncular nucleus, indicating a nondifferential vulnerability of striatal projection neurons to 3NP-induced impairment in energy metabolism. The results suggest that the 3NP rat model does not fully mimic adult-onset HD pathogenesis.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
31
|
Meade CA, Figueredo-Cardenas G, Fusco F, Nowak TS, Pulsinelli WA, Reiner A. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease. Exp Neurol 2000; 166:307-23. [PMID: 11085896 DOI: 10.1006/exnr.2000.7530] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The various types of striatal projection neurons and interneurons show a differential pattern of loss in Huntington's disease (HD). Since striatal injury has been suggested to involve similar mechanisms in transient global brain ischemia and HD, we examined the possibility that the patterns of survival for striatal neurons after transient global ischemic damage to the striatum in rats resemble that in HD. The perikarya of specific types of striatal interneurons were identified by histochemical or immunohistochemical labeling while projection neuron abundance was assessed by cresyl violet staining. Projectionneuron survival was assessed by neurotransmitter immunolabeling of their efferent fibers in striatal target areas. The relative survival of neuron types was determined quantitatively within the region of ischemic damage, and the degree of fiber loss in striatal target areas was quantified by computer-assisted image analysis. We found that NADPHd(+) and cholinergic interneurons were largely unaffected, even in the striatal area of maximal damage. Parvalbumin interneurons, however, were as vulnerable as projection neurons. Among immunolabeled striatal projection systems, striatoentopeduncular fibers survived global ischemia better than did striatopallidal or striatonigral fibers. The order of vulnerability observed in this study among the striatal projection systems, and the resistance to damage shown by NADPHd(+) and cholinergic interneurons, is similar to that reported in HD. The high vulnerability of projection neurons and parvalbumin interneurons to global ischemia also resembles that seen in HD. Our results thus indicate that global ischemic damage to striatum in rat closely mimics HD in its neuronal selectivity, which supports the notion that the mechanisms of injury may be similar in both.
Collapse
Affiliation(s)
- C A Meade
- Department of Anatomy and Neurobiology, Department of Neurology, University of Tennessee at Memphis, The Health Sciences Center, Memphis, Tennessee, 38163, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kachidian P, Vuillet J, Salin P, Kerkerian-Le Goff L. Ultrastructural and metabolic changes in the neuropeptide Y-containing striatal neuronal network after thermocoagulatory cortical lesion in adult rat. Synapse 1999; 34:208-21. [PMID: 10523758 DOI: 10.1002/(sici)1098-2396(19991201)34:3<208::aid-syn5>3.0.co;2-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study examined the effects of unilateral thermocoagulatory cortical lesion on the pattern of neuropeptide Y immunostaining in the rat ipsilateral striatum at 4 and 21 days post-lesion. Light microscopic analysis showed a significant increase in the number of neuropeptide Y-positive neurons vs. control at both time points; paradoxically, the intraneuronal level of labelling significantly decreased at 4 days post-lesion but increased at 21 days post-lesion. Ultrastructural analysis in control condition showed a higher proportion of dendritic versus axonal labelled processes (3.5 ratio); all the neuropeptide Y synaptic terminals formed symmetrical contacts, mostly onto unlabelled dendrites. At 4 days post-lesion, the neuropeptide Y-positive axon density dramatically increased (+576%) without significant change in the labelled dendrite density, vs. control values; the density of neuropeptide Y synaptic terminals increased in parallel by 233%. In addition, a significant proportion of large neuropeptide Y boutons forming asymmetrical synapses onto unlabelled spines were observed. At 21 days post-lesion, densities of neuropeptide Y dendrites, axons, and synaptic terminals increased by 68, 246 and 125%, respectively, vs. control. But, the morphological features of the neuropeptide Y axonal processes and synaptic specializations of the boutons were similar to those observed in control condition. These data (1) raise an important issue regarding the origin of the terminals forming asymmetrical synapses in the striatum, (2) suggest that adaptative changes in the neuropeptide Y neuronal network may be a main component of striatal remodelling resulting from the progressive loss of cortical inputs, and (3) reinforce the view that neuropeptide Y and excitatory amino acid functions may be tightly linked in the striatum.
Collapse
Affiliation(s)
- P Kachidian
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, 13402 Marseille CEDEX 20, France
| | | | | | | |
Collapse
|
33
|
Brickell KL, Nicholson LF, Waldvogel HJ, Faull RL. Chemical and anatomical changes in the striatum and substantia nigra following quinolinic acid lesions in the striatum of the rat: a detailed time course of the cellular and GABA(A) receptor changes. J Chem Neuroanat 1999; 17:75-97. [PMID: 10585160 DOI: 10.1016/s0891-0618(99)00029-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pattern and time-course of cellular, neurochemical and receptor changes in the striatum and substantia nigra were investigated following unilateral quinolinic acid lesions of the striatum in rats. The results showed that in the central region of the striatal lesion there was a major loss of Nissl staining of the small to medium sized cells within 2 h and a substantial loss of neuronal staining within 24 h after lesioning. Immunohistochemical studies showed a total loss of calbindin immunoreactivity, a known marker of GABAergic striatal projection neurons, throughout the full extent of the quinolinic acid lesion within 24 h. Similarly, within 24 h, there was a total loss of somatostatin/neuropeptide Y cells in the centre of the lesion but in the periphery of the lesion these cells remained unaltered at all survival times. Striatal GABA(A) receptors remained unchanged in the lesion for 7 days, and then declined in density over the remainder of the time course. Glial fibrillary acidic protein immunoreactive astrocytes were present in the periphery of the lesion at 7 days, occupied the full extent of the lesion by 4 weeks, and remained elevated for up to 2 months. In the substantia nigra, following placement of a striatal quinolinic acid lesion, there was: a loss of substance P immunoreactivity within 24 h; a marked astrocytosis evident from 1-4 weeks postlesion; and, a major increase in GABA(A) receptors in the substantia nigra which occurred within 2 h postlesion and was sustained for the remainder of the time course (15 months). This study shows that following quinolinic acid lesions of the striatum there is a major loss of calbindin and somatostatin/neuropeptide Y immunoreactive cells in the striatum within 24 h, and a marked increase in GABA(A) receptors in the substantia nigra within 2 h. These findings are similar to the changes in the basal ganglia in Huntington's disease and provide further evidence supporting the use of the quinolinic acid lesioned rat as an animal model of Huntington's disease.
Collapse
Affiliation(s)
- K L Brickell
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
34
|
Chen Q, Surmeier DJ, Reiner A. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol 1999; 159:283-96. [PMID: 10486197 DOI: 10.1006/exnr.1999.7135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The excitatory input from cortex and/or thalamus to striatum appears to promote the maturation of glutamate receptors on striatal neurons, but the mechanisms by which it does so have been uncertain. To explore the possibility that the excitatory input to striatum might influence glutamate receptor maturation on striatal neurons, at least in part, by its depolarizing effect on striatal neurons, we examined the influence of chronic KCl depolarization on the development of glutamate receptor-mediated excitotoxic vulnerability and glutamate receptors in cultured striatal neurons. Dissociated striatal neurons from E17 rat embryos were cultured for 2 weeks in Barrett's medium containing either low (3 mM) or high (25 mM) KCl. The vulnerability of these neurons to NMDA receptor agonists (NMDA and quinolinic acid), non-NMDA receptor agonists (AMPA and KA), and a metabotropic glutamate receptor agonist (trans-ACPD) was examined by monitoring cell loss 24 h after a 1-h agonist exposure. We found that high-KCl rearing potentiated the cell loss observed with 500 microM NMDA or 250 microM KA and yielded cell loss with 250 microM AMPA that was not evident under low KCl rearing. In contrast, neither QA up to 5 mM nor trans-ACPD had a significant toxic effect in either KCl group. ELISA revealed that chronic high KCl doubled the abundance of NMDA NR2A/B, AMPA GluR2/3, and KA GluR5-7 receptor subunits on cultured striatal neurons and more than doubled AMPA GluR1 and GluR4 subunits, but had no effect on NMDA NR1 subunit levels. These receptor changes may contribute to the potentiation of NMDA and non-NMDA receptor-mediated excitotoxicity shown by these neurons following chronic high-KCl rearing. Our studies suggest that membrane depolarization produced by corticostriatal and/or thalamostriatal innervation may be required for maturation of glutamate receptors on striatal neurons, and such maturation may be important for expression of NMDA and non-NMDA receptor-mediated excitotoxicity by striatal neurons. Striatal cultures raised under chronically depolarized conditions may, thus, provide a more appropriate culture model to study the role of NMDA or non-NMDA receptor subtypes in excitotoxicity in striatum.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Benzodiazepines
- Calcium/metabolism
- Cells, Cultured
- Corpus Striatum/cytology
- Cycloleucine/analogs & derivatives
- Cycloleucine/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Female
- Fetus/cytology
- Kainic Acid/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- N-Methylaspartate/pharmacology
- Nerve Degeneration/physiopathology
- Neurons/chemistry
- Neurons/cytology
- Neurons/physiology
- Neuroprotective Agents/pharmacology
- Neurotoxins/pharmacology
- Potassium Chloride/pharmacology
- Pregnancy
- Quinolinic Acid/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/analysis
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/analysis
- Receptors, Kainic Acid/physiology
- Receptors, Metabotropic Glutamate/analysis
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/analysis
- Receptors, N-Methyl-D-Aspartate/physiology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
- GluK2 Kainate Receptor
- GluK3 Kainate Receptor
Collapse
Affiliation(s)
- Q Chen
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis, Memphis, Tennessee, 38163, USA
| | | | | |
Collapse
|
35
|
Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease. J Neurosci 1999. [PMID: 9952397 DOI: 10.1523/jneurosci.19-04-01189.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunohistochemistry and single-cell RT-PCR were used to characterize the localization of huntingtin and/or its mRNA in the major types of striatal neurons and in corticostriatal projection neurons in rats. Single-label immunohistochemical studies revealed that striatum contains scattered large neurons rich in huntingtin and more numerous medium-sized neurons moderate in huntingtin. Double-label immunohistochemical studies showed that the large huntingtin-rich striatal neurons include nearly all cholinergic interneurons and some parvalbuminergic interneurons. Somatostatinergic striatal interneurons, which are medium in size, rarely contained huntingtin. Calbindin immunolabeling showed that the vast majority of the medium-sized striatal neurons that contain huntingtin are projection neurons, but only approximately 65% of calbindin-labeled projection neurons (localized to the matrix compartment of striatum) were labeled for huntingtin. Calbindin-containing projection neurons of the matrix compartment and calbindin-negative projection neurons of the striatal patch compartment contained huntingtin with comparable frequency. Single-cell RT-PCR confirmed that striatal cholinergic interneurons contain huntingtin, but only approximately 65% of projection neurons contained detectable huntingtin message. The finding that huntingtin is not consistently found in striatal projection neurons [which die in Huntington's disease (HD)] but is abundant in striatal cholinergic interneurons (which survive in Huntington's disease) suggests that the mutation in huntingtin that causes HD may not directly kill neurons. In contrast to the heterogeneous expression of huntingtin in the different striatal neuron types, we found all corticostriatal neurons to be rich in huntingtin protein and mRNA. One possibility raised by our findings is that the HD mutation may render corticostriatal neurons destructive rather than render striatal neurons vulnerable.
Collapse
|
36
|
Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol 1998; 149:356-72. [PMID: 9500958 DOI: 10.1006/exnr.1997.6724] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the relative ability of those striatal neuron types containing calbindin or parvalbumin to withstand a Ca(2+)-mediated excitotoxic insult, we injected the NMDA receptor-specific excitotoxin quinolinic acid (QA) into the striatum in mature adult rats and 2 months later examined the relative survival of striatal interneurons rich in parvalbumin and striatal projection neurons rich in calbindin. To provide standardization to the survival of striatal neuron types thought to be poor in Ca2+ buffering proteins, the survival was compared to that of somatostatin-neuropeptide Y (SS/NPY)-containing interneurons and enkephalinergic projection neurons, which are devoid of or relatively poorer in such proteins. The various neuron types were identified by immunohistochemical labeling for these type-specific markers and their relative survival was compared at each of a series of increasing distances from the injection center. In brief, we found that parvalbuminergic, calbindinergic, and enkephalinergic neurons all showed a generally comparable gradient of neuronal loss, except just outside the lesion center, where calbindin-rich neurons showed significantly enhanced survival. In contrast, striatal SS/NPY interneurons were more vulnerable to QA than any of these three other types. These observed patterns of survival following intrastriatal QA injection suggest that calbindin and parvalbumin content does not by itself determine the vulnerability of striatal neurons to QA-mediated excitotoxicity in mature adult rats. For example, parvalbuminergic striatal interneurons were not impervious to QA, while cholinergic striatal interneurons are highly resistant and SS/NPY+ striatal interneurons are highly vulnerable. Both cholinergic and SS/NPY+ interneurons are devoid of any known calcium buffering protein. Similarly, calbindin does not prevent striatal projection neuron vulnerability to QA excitotoxicity. Nonetheless, our data do suggest that calbindin may offer striatal neurons some protection against moderate excitotoxic insults, and this may explain the reportedly slightly greater vulnerability of striatal neurons that are poor in calbindin to ischemia and Huntington's disease.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|