1
|
da Silva BPM, Fanalli SL, Gomes JD, de Almeida VV, Fukumasu H, Freitas FAO, Moreira GCM, Silva-Vignato B, Reecy JM, Koltes JE, Koltes D, de Carvalho Balieiro JC, de Alencar SM, da Silva JPM, Coutinho LL, Afonso J, Regitano LCDA, Mourão GB, Luchiari Filho A, Cesar ASM. Brain fatty acid and transcriptome profiles of pig fed diets with different levels of soybean oil. BMC Genomics 2023; 24:91. [PMID: 36855067 PMCID: PMC9976441 DOI: 10.1186/s12864-023-09188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.
Collapse
Affiliation(s)
- Bruna Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Simara Larissa Fanalli
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Julia Dezen Gomes
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Vivian Vezzoni de Almeida
- grid.411195.90000 0001 2192 5801College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, Goiás Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe André Oliveira Freitas
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Bárbara Silva-Vignato
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - James Mark Reecy
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - James Eugene Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Dawn Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Júlio Cesar de Carvalho Balieiro
- grid.11899.380000 0004 1937 0722School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Severino Matias de Alencar
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Julia Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Protective Effect of Neferine in Permanent Cerebral Ischemic Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Neurotox Res 2022; 40:1348-1359. [PMID: 36018507 DOI: 10.1007/s12640-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.
Collapse
|
3
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
4
|
Maystrenko V, Ivleva I, Krytskaya D, Zubov A, Ivlev A, Karpenko M. Changes in activity of µ- and m-calpains and signs of neuroinflammation in the hippocampus and striatum of rats after single intraperitoneal injection of subseptic dose of endotoxin. Metab Brain Dis 2021; 36:1917-1928. [PMID: 34014442 DOI: 10.1007/s11011-021-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Some mechanisms of neuronal degeneration in endotoxinemia are already well described, but need to be detailed. In this study, we tested the effect of a single intraperitoneal injection of a LPS sub-septic dose (1 mg/kg of animal weight) on calpain activity in the striatum and hippocampus. We showed, that in the hippocampus the day after LPS administration an increase in production of IL-1β and TNF-α mRNA, followed by elevated mRNA expression and activity of µ- and m-calpains without signs of microglia activation is observed. In striatal cells, the day after LPS injection an increase in expression of IL-1β, TNF-α, IBA-1, m-calpain and calpastatin mRNA is revealed, which only intensifies over time. The elicited changes are accompanied by a decrease in motor behavior, which can be considered as a sign of sickness behavior. In the hippocampus, 180 days after LPS administration expression of TNF-α, content and activity of µ-calpain are increased. In the striatum, elevation in expression of TNF-α, IBA-1, µ- and m-calpain mRNA, with hyperactivation of only m-calpain, is observed. Significantly reduced motor activity can be a consequence of LPS-induced neuronal death. A long-lasting endotoxin activates microglia that damage neurons via proinflammation cytokines and calpain hyperactivation. The endotoxin hypothesis of neurodegeneration is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin-induced neuroinflammation and m-calpain hyperactivation. Therefore, the drugs, that decrease endotoxin-induced neuroinflammation and differently inhibit µ- or m-calpain, can be used to prevent or reduce the severity of neurodegeneration.
Collapse
Affiliation(s)
- Viktoriya Maystrenko
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia.
| | - Irina Ivleva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Darya Krytskaya
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Zubov
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Andrey Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina Karpenko
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
5
|
Electroacupuncture Pretreatment Elicits Tolerance to Cerebral Ischemia/Reperfusion through Inhibition of the GluN2B/m-Calpain/p38 MAPK Proapoptotic Pathway. Neural Plast 2020; 2020:8840675. [PMID: 33061951 PMCID: PMC7542475 DOI: 10.1155/2020/8840675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background As one of the first steps in the pathology of cerebral ischemia, glutamate-induced excitotoxicity progresses too fast to be the target of postischemic intervention. However, ischemic preconditioning including electroacupuncture (EA) might elicit cerebral ischemic tolerance through ameliorating excitotoxicity. Objective To investigate whether EA pretreatment based on TCM theory could elicit cerebral tolerance against ischemia/reperfusion (I/R) injury, and explore its potential excitotoxicity inhibition mechanism from regulating proapoptotic pathway of the NMDA subtype of glutamate receptor (GluN2B). Methods The experimental procedure included 5 consecutive days of pretreatment stage and the subsequent modeling stage for one day. All rats were evenly randomized into three groups: sham MCAO/R, MCAO/R, and EA+MCAO/R. During pretreatment procedure, only rats in the EA+MCAO/R group received EA intervention on GV20, SP6, and PC6 once a day for 5 days. Model preparation for MCAO/R or sham MCAO/R started 2 hours after the last pretreatment. 24 hours after model preparation, the Garcia neurobehavioral scoring criteria was used for the evaluation of neurological deficits, TTC for the measurement of infarct volume, TUNEL staining for determination of neural cell apoptosis at hippocampal CA1 area, and WB and double immunofluorescence staining for expression and the cellular localization of GluN2B and m-calpain and p38 MAPK. Results This EA pretreatment regime could improve neurofunction, decrease cerebral infarction volume, and reduce neuronal apoptosis 24 hours after cerebral I/R injury. And EA pretreatment might inhibit the excessive activation of GluN2B receptor, the GluN2B downstream proapoptotic mediator m-calpain, and the phosphorylation of its transcription factor p38 MAPK in the hippocampal neurons after cerebral I/R injury. Conclusion The EA regime might induce tolerance against I/R injury partially through the regulation of the proapoptotic GluN2B/m-calpain/p38 MAPK pathway of glutamate.
Collapse
|
6
|
Jastaniah A, Gaisina IN, Knopp RC, Thatcher GRJ. Synthesis of α-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents. ChemMedChem 2020; 15:2280-2285. [PMID: 32840034 DOI: 10.1002/cmdc.202000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Indexed: 01/05/2023]
Abstract
Calpain inhibitors have been proposed as drug candidates for neurodegenerative disorders, with ABT-957 entering clinical trials for Alzheimer's disease and mild cognitive impairment. The structure of ABT-957 was very recently disclosed, and trials were terminated owing to inadequate CNS concentrations to obtain a pharmacodynamic effect. The multistep synthesis of an α-ketoamide peptidomimetic inhibitor series potentially including ABT-957 was optimized to yield diastereomerically pure compounds that are potent and selective for calpain-1 over papain and cathepsins B and K. As the final oxidation step, with its optimized synthesis protocol, does not alter the configuration of the substrate, the synthesis of the diastereomeric pair (R)-1-benzyl-N-((S)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 c) and (R)-1-benzyl-N-((R)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 g) was feasible. This allowed the exploration of stereoselective inhibition of calpain-1, with 1 c (IC50 =78 nM) being significantly more potent than 1 g. Moreover, inhibitor 1 c restored cognitive function in amnestic mice.
Collapse
Affiliation(s)
- Ammar Jastaniah
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Rachel C Knopp
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| |
Collapse
|
7
|
LRRC8A-dependent volume-regulated anion channels contribute to ischemia-induced brain injury and glutamatergic input to hippocampal neurons. Exp Neurol 2020; 332:113391. [PMID: 32598930 DOI: 10.1016/j.expneurol.2020.113391] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
Volume-regulated anion channels (VRACs) are critically involved in regulating cell volume, and leucine-rich repeat-containing protein 8A (LRRC8A, SWELL1) is an obligatory subunit of VRACs. Cell swelling occurs early after brain ischemia, but it is unclear whether neuronal LRRC8a contributes to ischemia-induced glutamate release and brain injury. We found that Lrrc8a conditional knockout (Lrrc8a-cKO) mice produced by crossing NestinCre+/- with Lrrc8aflox+/+ mice died 7-8 weeks of age, indicating an essential role of neuronal LRRC8A for survival. Middle cerebral artery occlusion (MCAO) caused an early increase in LRRC8A protein levels in the hippocampus in wild-type (WT) mice. Whole-cell patch-clamp recording in brain slices revealed that oxygen-glucose deprivation significantly increased the amplitude of VRAC currents in hippocampal CA1 neurons in WT but not in Lrrc8a-cKO mice. Hypotonicity increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in hippocampal CA1 neurons in WT mice, and this was abolished by DCPIB, a VRAC blocker. But in Lrrc8a-cKO mice, hypotonic solution had no effect on the frequency of sEPSCs in these neurons. Furthermore, the brain infarct volume and neurological severity score induced by MCAO were significantly lower in Lrrc8a-cKO mice than in WT mice. In addition, MCAO-induced increases in cleaved caspase-3 and calpain activity, two biochemical markers of neuronal apoptosis and death, in brain tissues were significantly attenuated in Lrrc8a-cKO mice compared with WT mice. These new findings indicate that cerebral ischemia increases neuronal LRRC8A-dependent VRAC activity and that VRACs contribute to increased glutamatergic input to hippocampal neurons and brain injury caused by ischemic stroke.
Collapse
|
8
|
Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, Chen L, Pan HL. Focal Cerebral Ischemia and Reperfusion Induce Brain Injury Through α2δ-1-Bound NMDA Receptors. Stroke 2019; 49:2464-2472. [PMID: 30355118 DOI: 10.1161/strokeaha.118.022330] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Glutamate NMDARs (N-methyl-D-aspartate receptors) play a major role in the initiation of ischemic brain damage. However, NMDAR antagonists have no protective effects in stroke patients, possibly because they impair physiological functions of NMDARs. α2δ-1 (encoded by Cacna2d1) is strongly expressed in many brain regions. We determined the contribution of α2δ-1 to NMDAR hyperactivity and brain injury induced by ischemia and reperfusion. Methods- Mice were subjected to 90 minutes of middle cerebral artery occlusion followed by 24 hours of reperfusion. Neurological deficits, brain infarct volumes, and calpain/caspase-3 activity in brain tissues were measured. NMDAR activity of hippocampal CA1 neurons was measured in an in vitro ischemic model. Results- Middle cerebral artery occlusion increased α2δ-1 protein glycosylation in the cerebral cortex, hippocampus, and striatum. Coimmunoprecipitation showed that ischemia rapidly enhanced the α2δ-1-NMDAR physical interaction in the mouse brain tissue. Inhibiting α2δ-1 with gabapentin, uncoupling the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide, or genetically ablating Cacna2d1 had no effect on basal NMDAR currents but strikingly abolished oxygen-glucose deprivation-induced NMDAR hyperactivity in hippocampal CA1 neurons. Systemic treatment with gabapentin or α2δ-1 C-terminus-interfering peptide or Cacna2d1 genetic knock-out reduced middle cerebral artery occlusion-induced infarct volumes, neurological deficit scores, and calpain/caspase-3 activation in brain tissues. Conclusions- α2δ-1 is essential for brain ischemia-induced neuronal NMDAR hyperactivity, and α2δ-1-bound NMDARs mediate brain damage caused by cerebral ischemia. Targeting α2δ-1-bound NMDARs, without impairing physiological α2δ-1-free NMDARs, may be a promising strategy for treating ischemic stroke.
Collapse
Affiliation(s)
- Yi Luo
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.).,Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (Y.L.)
| | - Huijie Ma
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.).,Department of Physiology, Hebei Medical University, Shijiazhuang, China (H.M.)
| | - Jing-Jing Zhou
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| | - Lingyong Li
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| | - Shao-Rui Chen
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| | - Jixiang Zhang
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| | - Lin Chen
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| | - Hui-Lin Pan
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, University of Texas MD Anderson Cancer Center, Houston (Y.L., H.M., J.-J.Z., L.L., S.-R.C., J.Z., L.C., H.-L.P.)
| |
Collapse
|
9
|
Zhang T, Wu C, Yang X, Liu Y, Yang H, Yuan L, Liu Y, Sun S, Yang J. Pseudoginsenoside-F11 Protects against Transient Cerebral Ischemia Injury in Rats Involving Repressing Calcium Overload. Neuroscience 2019; 411:86-104. [DOI: 10.1016/j.neuroscience.2019.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
|
10
|
Lespay-Rebolledo C, Tapia-Bustos A, Bustamante D, Morales P, Herrera-Marschitz M. The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox Res 2019; 36:472-490. [PMID: 31187430 DOI: 10.1007/s12640-019-00064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
We have recently reported that global perinatal asphyxia (PA) induces a regionally sustained increase in oxidized glutathione (GSSG) levels and GSSG/GSH ratio, a decrease in tissue-reducing capacity, a decrease in catalase activity, and an increase in apoptotic caspase-3-dependent cell death in rat neonatal brain up to 14 postnatal days, indicating a long-term impairment in redox homeostasis. In the present study, we evaluated whether the increase in GSSG/GSH ratio observed in hippocampus involves changes in glutathione reductase (GR) and glutathione peroxidase (GPx) activity, the enzymes reducing glutathione disulfide (GSSG) and hydroperoxides, respectively, as well as catalase, the enzyme protecting against peroxidation. The study also evaluated whether there is a shift in the metabolism towards the penthose phosphate pathway (PPP), by measuring TIGAR, the TP53-inducible glycolysis and apoptosis regulator, associated with delayed cell death, further monitoring calpain activity, involved in bax-dependent cell death, and XRCC1, a scaffolding protein interacting with genome sentinel proteins. Global PA was induced by immersing fetus-containing uterine horns removed by a cesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling cesarean-delivered fetuses were manually resuscitated and nurtured by surrogate dams. Animals were euthanized at postnatal (P) days 1 or 14, dissecting samples from hippocampus to be assayed for glutathione, GR, GPx (all by spectrophotometry), catalase (Western blots and ELISA), TIGAR (Western blots), calpain (fluorescence), and XRCC1 (Western blots). One hour after delivery, asphyxia-exposed and control neonates were injected with either 100 μl saline or 0.8 mmol/kg nicotinamide, i.p., shown to protect from the short- and long-term consequences of PA. It was found that global PA produced (i) a sustained increase of GSSG levels and GSSG/GSH ratio at P1 and P14; (ii) a decrease of GR, GPx, and catalase activity at P1 and P14; (iii) a decrease at P1, followed by an increase at P14 of TIGAR levels; (iv) an increase of calpain activity at P14; and (v) an increase of XRCC1 levels, but only at P1. (vi) Nicotinamide prevented the effect of PA on GSSG levels and GSSG/GSH ratio, and on GR, GPx, and catalase activity, also on increased TIGAR levels and calpain activity observed at P14. The present study demonstrates that the long-term impaired redox homeostasis observed in the hippocampus of rats subjected to global PA implies changes in GR, GPx, and catalase, and a shift towards PPP, as indicated by an increase of TIGAR levels at P14.
Collapse
Affiliation(s)
- C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile. .,Department of Neuroscience, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| |
Collapse
|
11
|
Storr SJ, Zhang S, Perren T, Lansdown M, Fatayer H, Sharma N, Gahlaut R, Shaaban A, Martin SG. The calpain system is associated with survival of breast cancer patients with large but operable inflammatory and non-inflammatory tumours treated with neoadjuvant chemotherapy. Oncotarget 2018; 7:47927-47937. [PMID: 27323818 PMCID: PMC5216989 DOI: 10.18632/oncotarget.10066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/29/2016] [Indexed: 01/16/2023] Open
Abstract
The calpains are a family of intracellular cysteine proteases that function in a variety of important cellular functions, including cell signalling, motility, apoptosis and survival. In early invasive breast cancer expression of calpain-1, calpain-2 and their inhibitor, calpastatin, have been associated with clinical outcome and clinicopathological factors.The expression of calpain-1, calpain-2 and calpastatin was determined using immunohistochemistry on core biopsy samples, in a cohort of large but operable inflammatory and non-inflammatory primary breast cancer patients treated with neoadjuvant chemotherapy. Information on treatment and prognostic variables together with long-term clinical follow-up was available for these patients. Diagnostic pre-chemotherapy core biopsy samples and surgically excised specimens were available for analysis.Expression of calpastatin, calpain-1 or calpain-2 in the core biopsies was not associated with breast cancer specific survival in the total patient cohort; however, in patients with non-inflammatory breast cancer, high calpastatin expression was significantly associated with adverse breast cancer-specific survival (P=0.035), as was low calpain-2 expression (P=0.031). Low calpastatin expression was significantly associated with adverse breast cancer-specific survival of the inflammatory breast cancer patients (P=0.020), as was low calpain-1 expression (P=0.003).In conclusion, high calpain-2 and low calpastatin expression is associated with improved breast cancer-specific survival in non-inflammatory large but operable primary breast cancer treated with neoadjuvant chemotherapy. In inflammatory cases, high calpain-1 and high calpastatin expression is associated with improved breast cancer-specific survival. Determining the expression of these proteins may be of clinical relevance. Further validation, in multi-centre cohorts of breast cancer patients treated with neoadjuvant chemotherapy, is warranted.
Collapse
Affiliation(s)
- Sarah J Storr
- Department of Clinical Oncology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Siwei Zhang
- Department of Clinical Oncology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Tim Perren
- Leeds Institute of Cancer Medicine and Pathology, St James's Institute of Oncology, St James's University Hospital, Leeds, LS9 7TF, UK.,Department of Breast Surgery, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Mark Lansdown
- Leeds Institute of Cancer Medicine and Pathology, St James's Institute of Oncology, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Hiba Fatayer
- Department of Breast Surgery, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Nisha Sharma
- Breast Screening Unit Leeds/Wakefield, Seacroft Hospital, Leeds, LS14 6UH, UK
| | - Renu Gahlaut
- Leeds Institute of Cancer Medicine and Pathology, St James's Institute of Oncology, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Abeer Shaaban
- Leeds Institute of Cancer Medicine and Pathology, St James's Institute of Oncology, St James's University Hospital, Leeds, LS9 7TF, UK.,Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre and The University of Birmingham, Birmingham, B15 2TH, UK
| | - Stewart G Martin
- Department of Clinical Oncology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| |
Collapse
|
12
|
Etehadi Moghadam S, Azami Tameh A, Vahidinia Z, Atlasi MA, Hassani Bafrani H, Naderian H. Neuroprotective Effects of Oxytocin Hormone after an Experimental Stroke Model and the Possible Role of Calpain-1. J Stroke Cerebrovasc Dis 2018; 27:724-732. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/13/2017] [Accepted: 10/10/2017] [Indexed: 01/20/2023] Open
|
13
|
Guo C, Ma Y, Ma S, Mu F, Deng J, Duan J, Xiong L, Yin Y, Wang Y, Xi M, Wen A. The Role of TRPC6 in the Neuroprotection of Calycosin Against Cerebral Ischemic Injury. Sci Rep 2017; 7:3039. [PMID: 28596571 PMCID: PMC5465205 DOI: 10.1038/s41598-017-03404-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/27/2017] [Indexed: 12/03/2022] Open
Abstract
Our previous studies have provided evidences that calycosin can protect the brain from ischemia/reperfusion injury, but its mechanisms is not fully understand. Transient receptor potential canonical 6 (TRPC6) has a critical role in promoting neuronal survival against cerebral ischemic injury. The aim of the present study is to test whether calycosin protects against cerebral ischemic injury through TRPC6-CREB pathway. In vivo, rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h and then treated with different doses of calycosin at the onset of reperfusion. In vitro, primary cultured neurons were treated by calycosin, then exposed to 2 h oxygen glucose deprivation (OGD) followed by 24 h reoxygenation. Our results showed that treatment with calycosin protected against ischemia-induced damages by increasing TRPC6 and P-CREB expression and inhibiting calpain activation. The neuroprotection effect of calycosin was diminished by inhibition or knockdown of TRPC6 and CREB. These findings indicated that the potential neuroprotection mechanism of calycosin was involved with TRPC6-CREB pathway.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yongyuan Ma
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Jiao Deng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
14
|
Machado VM, Lourenço AS, Florindo C, Fernandes R, Carvalho CM, Araújo IM. Calpastatin Overexpression Preserves Cognitive Function Following Seizures, While Maintaining Post-Injury Neurogenesis. Front Mol Neurosci 2017; 10:60. [PMID: 28386216 PMCID: PMC5362605 DOI: 10.3389/fnmol.2017.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
In the adult mammalian brain, new neurons continue to be produced throughout life in two main regions in the brain, the subgranular zone (SGZ) in the hippocampus and the subventricular zone in the walls of the lateral ventricles. Neural stem cells (NSCs) proliferate in these niches, and migrate as neuroblasts, to further differentiate in locations where new neurons are needed, either in normal or pathological conditions. However, the endogenous attempt of brain repair is not very efficient. Calpains are proteases known to be involved in neuronal damage and in cell proliferation, migration and differentiation of several cell types, though their effects on neurogenesis are not well known. Previous work by our group has shown that the absence of calpastatin (CAST), the endogenous inhibitor of calpains, impairs early stages of neurogenesis. Since the hippocampus is highly associated with learning and memory, we aimed to evaluate whether calpain inhibition would help improve cognitive recovery after lesion and efficiency of post-injury neurogenesis in this region. For that purpose, we used the kainic acid (KA) model of seizure-induced hippocampal lesion and mice overexpressing CAST. Selected cognitive tests were performed on the 3rd and 8th week after KA-induced lesion, and cell proliferation, migration and differentiation in the dentate gyrus (DG) of the hippocampus of adult mice were analyzed using specific markers. Cognitive recovery was evaluated by testing the animals for recognition, spatial and associative learning and memory. Cognitive function was preserved by CAST overexpression following seizures, while modulation of post-injury neurogenesis was similar to wild type (WT) mice. Calpain inhibition could still be potentially able to prevent the impairment in the formation of new neurons, given that the levels of calpain activity could be reduced under a certain threshold and other harmful effects from the pathological environment could also be controlled.
Collapse
Affiliation(s)
- Vanessa M Machado
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Ana Sofia Lourenço
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Cláudia Florindo
- Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Raquel Fernandes
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal
| | - Caetana M Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal; Algarve Biomedical Center, University of AlgarveFaro, Portugal
| |
Collapse
|
15
|
Yang X, Wu Q, Zhang L, Feng L. Inhibition of Histone Deacetylase 3 (HDAC3) Mediates Ischemic Preconditioning and Protects Cortical Neurons against Ischemia in Rats. Front Mol Neurosci 2016; 9:131. [PMID: 27965534 PMCID: PMC5124709 DOI: 10.3389/fnmol.2016.00131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
Brain ischemic preconditioning (PC) provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC) inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO) were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 days after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke.
Collapse
Affiliation(s)
- Xiaoyu Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Qimei Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
16
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
17
|
de Lima S, Mietto BS, Paula C, Muniz T, Martinez AMB, Gardino PF. Rescuing axons from degeneration does not affect retinal ganglion cell death. Braz J Med Biol Res 2016; 49:e5106. [PMID: 27007653 PMCID: PMC4819409 DOI: 10.1590/1414-431x20155106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022] Open
Abstract
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.
Collapse
Affiliation(s)
- S de Lima
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - B S Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - C Paula
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - T Muniz
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - A M B Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - P F Gardino
- Laboratório de Neurobiologia da Retina, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
18
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: In vitro and in vivo studies. Neuropharmacology 2016; 102:276-94. [DOI: 10.1016/j.neuropharm.2015.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
|
19
|
Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, Mondello S, Anagli J, Hayes RL, Wang KK. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol Neurobiol 2015; 52:696-709. [PMID: 25270371 PMCID: PMC4383741 DOI: 10.1007/s12035-014-8898-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022]
Abstract
A major consequence of traumatic brain injury (TBI) is the rapid proteolytic degradation of structural cytoskeletal proteins. This process is largely reflected by the interruption of axonal transport as a result of extensive axonal injury leading to neuronal cell injury. Previous work from our group has described the extensive degradation of the axonally enriched cytoskeletal αII-spectrin protein which results in molecular signature breakdown products (BDPs) indicative of injury mechanisms and to specific protease activation both in vitro and in vivo. In the current study, we investigated the integrity of βII-spectrin protein and its proteolytic profile both in primary rat cerebrocortical cell culture under apoptotic, necrotic, and excitotoxic challenge and extended to in vivo rat model of experimental TBI (controlled cortical impact model). Interestingly, our results revealed that the intact 260-kDa βII-spectrin is degraded into major fragments (βII-spectrin breakdown products (βsBDPs)) of 110, 108, 85, and 80 kDa in rat brain (hippocampus and cortex) 48 h post-injury. These βsBDP profiles were further characterized and compared to an in vitro βII-spectrin fragmentation pattern of naive rat cortex lysate digested by calpain-2 and caspase-3. Results revealed that βII-spectrin was degraded into major fragments of 110/85 kDa by calpain-2 activation and 108/80 kDa by caspase-3 activation. These data strongly support the hypothesis that in vivo activation of multiple protease system induces structural protein proteolysis involving βII-spectrin proteolysis via a specific calpain and/or caspase-mediated pathway resulting in a signature, protease-specific βsBDPs that are dependent upon the type of neural injury mechanism. This work extends on previous published work that discusses the interplay spectrin family (αII-spectrin and βII-spectrin) and their susceptibility to protease proteolysis and their implication to neuronal cell death mechanisms.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Ming Cheng Liu
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Zhihui Yang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Zhiqun Zhang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Wenrong Zheng
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Olena Glushakova
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, 98125
Messina, Italy
| | - John Anagli
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Ronald L. Hayes
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Kevin K.W. Wang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Descloux C, Ginet V, Clarke PGH, Puyal J, Truttmann AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci 2015. [PMID: 26225751 DOI: 10.1016/j.ijdevneu.2015.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- C Descloux
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - V Ginet
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - P G H Clarke
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - J Puyal
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - A C Truttmann
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland.
| |
Collapse
|
21
|
Lu YM, Gao YP, Tao RR, Liao MH, Huang JY, Wu G, Han F, Li XM. Calpain-Dependent ErbB4 Cleavage Is Involved in Brain Ischemia-Induced Neuronal Death. Mol Neurobiol 2015; 53:2600-9. [DOI: 10.1007/s12035-015-9275-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
22
|
Machado VM, Morte MI, Carreira BP, Azevedo MM, Takano J, Iwata N, Saido TC, Asmussen H, Horwitz AR, Carvalho CM, Araújo IM. Involvement of calpains in adult neurogenesis: implications for stroke. Front Cell Neurosci 2015; 9:22. [PMID: 25698931 PMCID: PMC4316774 DOI: 10.3389/fncel.2015.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022] Open
Abstract
Calpains are ubiquitous proteases involved in cell proliferation, adhesion and motility. In the brain, calpains have been associated with neuronal damage in both acute and neurodegenerative disorders, but their physiological function in the nervous system remains elusive. During brain ischemia, there is a large increase in the levels of intracellular calcium, leading to the activation of calpains. Inhibition of these proteases has been shown to reduce neuronal death in a variety of stroke models. On the other hand, after stroke, neural stem cells (NSC) increase their proliferation and newly formed neuroblasts migrate towards the site of injury. However, the process of forming new neurons after injury is not efficient and finding ways to improve it may help with recovery after lesion. Understanding the role of calpains in the process of neurogenesis may therefore open a new window for the treatment of stroke. We investigated the involvement of calpains in NSC proliferation and neuroblast migration in two highly neurogenic regions in the mouse brain, the dentate gyrus (DG) and the subventricular zone (SVZ). We used mice that lack calpastatin, the endogenous calpain inhibitor, and calpains were also modulated directly, using calpeptin, a pharmacological calpain inhibitor. Calpastatin deletion impaired both NSC proliferation and neuroblast migration. Calpain inhibition increased NSC proliferation, migration speed and migration distance in cells from the SVZ. Overall, our work suggests that calpains are important for neurogenesis and encourages further research on their neurogenic role. Prospective therapies targeting calpain activity may improve the formation of new neurons following stroke, in addition to affording neuroprotection.
Collapse
Affiliation(s)
- Vanessa M Machado
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; IBB-Institute for Biotechnology and Bioengineering, Center for Molecular and Structural Biomedicine, University of Algarve Faro, Portugal ; Center for Biomedical Research, CBMR, University of Algarve Faro, Portugal ; Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria I Morte
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Bruno P Carreira
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria M Azevedo
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | - Nobuhisa Iwata
- Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Caetana M Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; IBB-Institute for Biotechnology and Bioengineering, Center for Molecular and Structural Biomedicine, University of Algarve Faro, Portugal ; Center for Biomedical Research, CBMR, University of Algarve Faro, Portugal ; Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| |
Collapse
|
23
|
Domin H, Jantas D, Śmiałowska M. Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death. Neurochem Int 2015; 88:110-23. [PMID: 25576184 DOI: 10.1016/j.neuint.2014.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/07/2014] [Accepted: 12/17/2014] [Indexed: 12/24/2022]
Abstract
Although numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1 h after KA). In both models of neurotoxicity, namely OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM), suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7 receptor antagonist. The obtained results indicated that the activation of mGlu7 receptors may be a promising target for neuroprotection against ischemic and excitotoxic insults.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
24
|
Bikis C, Moris D, Vasileiou I, Patsouris E, Theocharis S. FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Targets 2014; 19:539-49. [DOI: 10.1517/14728222.2014.990374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem 2014; 289:27432-43. [PMID: 25074941 PMCID: PMC4183783 DOI: 10.1074/jbc.m114.560334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Zhu
- From the Departments of Restorative Neurosurgery, Molecular Pharmacology, and
| | | | - Tetsumori Yamashima
- From the Departments of Restorative Neurosurgery, Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Japan
| |
Collapse
|
26
|
Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 2014; 6:638-652. [PMID: 25068024 PMCID: PMC4110612 DOI: 10.4330/wjc.v6.i7.638] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.
Collapse
|
27
|
Storr SJ, Pu X, Davis J, Lobo D, Reece-Smith AM, Parsons SL, Madhusudan S, Martin SG. Expression of the calpain system is associated with poor clinical outcome in gastro-oesophageal adenocarcinomas. J Gastroenterol 2013; 48:1213-21. [PMID: 23329366 DOI: 10.1007/s00535-012-0743-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/19/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Surgery is critical in the management of gastro-oesophageal cancer, and the addition of neo-adjuvant chemotherapy has proved to be of benefit. The calpain system has been implicated in tumour progression and response to various anti-cancer therapies, and therefore expression of the system was determined in this tumour type. METHODS Two cohorts of gastro-oesophageal adenocarcinomas were investigated for calpain-1, calpain-2, calpain-9 and calpastatin expression using conventional immunohistochemistry. 88 patients who received neo-adjuvant chemotherapy and 140 patients who received surgery alone were investigated using a tissue microarray approach. RESULTS Calpain-1, calpain-2 and calpastatin expression was associated with adverse cancer-specific survival in the neo-adjuvant cohort (P = 0.004, P = 0.001 and P = 0.012 respectively); which remained significant in multivariate analysis (Hazard ratio (HR) = 0.337; 95% confidence interval (CI) = 0.140-0.81; P = 0.015, HR = 0.375; 95% CI = 0.165-0.858; P = 0.020 and HR = 0.481; 95% CI = 0.257-0.900; P = 0.022 respectively). Calpain-1 and calpastatin expression was also associated with adverse cancer specific survival in the primary surgery cohort (P = 0.001 and P = 0.013 respectively); which remained significant in multivariate analysis (HR = 0.309; 95% CI = 0.159-0.601; P = 0.001 and HR = 0.418; 95% CI = 0.205-0.850; P = 0.016 respectively). Calpain-9 expression was not associated with cancer-specific survival in the neo-adjuvant and primary surgery cohorts. CONCLUSION Determining the expression levels of calpain-1, calpain-2 and calpastatin may provide clinically relevant prognostic information for gastro-oesophageal adenocarcinomas; these findings warrant further studies in larger cohorts of patients.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Caldeira MV, Salazar IL, Curcio M, Canzoniero LMT, Duarte CB. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol 2013; 112:50-69. [PMID: 24157661 DOI: 10.1016/j.pneurobio.2013.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 11/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review.
Collapse
Affiliation(s)
- Margarida V Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
29
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
30
|
Han Z, Yang JL, Jiang SX, Hou ST, Zheng RY. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection. PLoS One 2013; 8:e64894. [PMID: 23741413 PMCID: PMC3669129 DOI: 10.1371/journal.pone.0064894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/18/2013] [Indexed: 11/18/2022] Open
Abstract
Excessive activation of the N-methyl-D-aspartic acid (NMDA) type glutamate receptors (NMDARs) causes excitotoxicity, a process important in stroke-induced neuronal death. Drugs that inhibit NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat excitotoxicity-induced brain damage. Our previous studies showed that 2-(2-benzofu-ranyl)-2-imidazoline (2-BFI), an immidazoline receptor ligand, dose-dependently protects rodent brains from cerebral ischemia injury. However, the molecular mechanisms remain unclear. In this study, we found that 2-BFI transiently and reversibly inhibits NMDA, but not AMPA currents, in a dose-dependent manner in cultured rat cortical neurons. The mechanism of 2-BFI inhibition of NMDAR is through a noncompetitive fashion with a faster on (Kon = 2.19±0.33×10(-9) M(-1) sec(-1)) and off rate (Koff = 0.67±0.02 sec(-1)) than those of memantine, a gold standard for therapeutic inhibition NMDAR-induced excitotoxicity. 2-BFI also transiently and reversibly blocked NMDA receptor-mediated calcium entry to cultured neurons and provided long-term neuroprotection against NMDA toxicity in vitro. Collectively, these studies demonstrated a potential mechanism of 2-BFI-mediated neuroprotection and indicated that 2-BFI is an excellent candidate for repositioning as a drug for stroke treatment.
Collapse
Affiliation(s)
- Zhao Han
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang Province, P. R. China
| | - Jin-Long Yang
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang Province, P. R. China
| | - Susan X. Jiang
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Sheng-Tao Hou
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
- * E-mail: (STH); (RYZ)
| | - Rong-Yuan Zheng
- Department of Neurology, The First Affiliated Hospital and Research Institute of Experimental Neurobiology, Wenzhou Medical College, Wenzhou, Zhejiang Province, P. R. China
- * E-mail: (STH); (RYZ)
| |
Collapse
|
31
|
Storr SJ, Safuan S, Woolston CM, Abdel-Fatah T, Deen S, Chan SY, Martin SG. Calpain-2 expression is associated with response to platinum based chemotherapy, progression-free and overall survival in ovarian cancer. J Cell Mol Med 2013; 16:2422-8. [PMID: 22435971 PMCID: PMC3472029 DOI: 10.1111/j.1582-4934.2012.01559.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ovarian cancer is routinely treated with surgery and platinum-based chemotherapy. Resistance is a major obstacle in the efficacy of this chemotherapy regimen and the ability to identify those patients at risk of developing resistance is of considerable clinical importance. The expression of calpain-1, calpain-2 and calpastatin were determined using standard immunohistochemistry on a tissue microarray of 154 primary ovarian carcinomas from patients subsequently treated with platinum-based adjuvant chemotherapy. High levels of calpain-2 expression was significantly associated with platinum resistant tumours (P = 0.031). Furthermore, high expression of calpain-2 was significantly associated with progression-free (P = 0.049) and overall survival (P = 0.006) in this cohort. The association between calpain-2 expression and overall survival remained significant in multivariate analysis accounting for tumour grade, stage, optimal debulking and platinum sensitivity (hazard ratio = 2.174; 95% confidence interval = 1.144–4.130; P = 0.018). The results suggest that determining calpain-2 expression in ovarian carcinomas may allow prognostic stratification of patients treated with surgery and platinum-based chemotherapy. The findings of this study warrant validation in a larger clinical cohort.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Lin Y, Chen F, Zhang J, Wang T, Wei X, Wu J, Feng Y, Dai Z, Wu Q. Neuroprotective Effect of Resveratrol on Ischemia/Reperfusion Injury in Rats Through TRPC6/CREB Pathways. J Mol Neurosci 2013; 50:504-13. [DOI: 10.1007/s12031-013-9977-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
|
33
|
Clinkinbeard T, Ghoshal S, Craddock S, Creed Pettigrew L, Guttmann RP. Calpain cleaves methionine aminopeptidase-2 in a rat model of ischemia/reperfusion. Brain Res 2013; 1499:129-35. [PMID: 23295187 DOI: 10.1016/j.brainres.2012.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Ischemic stroke results in multiple injurious signals within a cell including dysregulation of calcium homeostasis. Consequently, there is an increase in the enzymatic activity of the calpains, calcium dependent proteases that are thought to contribute to neuronal injury. In addition, cellular stress due to ischemia/reperfusion also triggers a decrease in protein translation through activation of the unfolded protein response (UPR). In the present study we found that methionine aminopeptidase 2 (MetAP2), a critical component of the translation initiation complex, is a calpain substrate. In vitro calpain assays demonstrated that while MetAP2 has autoproteolytic activity, calpain also produces a stable proteolytic fragment at 50kDa using recombinant MetAP2. This 50kDa fragment, in addition to a 57kDa fragment was present in in vitro digestions of rat brain homogenates. Production of these fragments was inhibited by calpastatin, the endogenous and specific inhibitor of calpain. Using an in vivo middle cerebral artery occlusion (MCAO) model only the 57kDa fragment of MetAP2 was observed. These data suggest that calpain activation in stroke may regulate MetAP2-mediated protein translation giving calpains a larger role in the cellular stress response than previously determined.
Collapse
|
34
|
Storr SJ, Zaitoun AM, Arora A, Durrant LG, Lobo DN, Madhusudan S, Martin SG. Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla. BMC Cancer 2012; 12:511. [PMID: 23140395 PMCID: PMC3542103 DOI: 10.1186/1471-2407-12-511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022] Open
Abstract
Background Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a poor five year survival rate; improved methods of patient stratification are required. Methods We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas and the second cohort was composed of 120 cancers of the bile duct and ampulla. Results In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin expression and patient age (P = 0.036), and between nuclear calpastatin expression and increased tumour stage (P = 0.026) and the presence of vascular invasion (P = 0.043). In pancreatic cancer, high calpain-2 expression was significantly associated with improved overall survival (P = 0.036), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007). In cancers of the bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall survival (P = 0.012), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95% confidence interval = 0.365-0.968; P = 0.037). Conclusion The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers, influencing disease progression. The findings of this study warrant a larger follow-up study.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Storr SJ, Lee KW, Woolston CM, Safuan S, Green AR, Macmillan RD, Benhasouna A, Parr T, Ellis IO, Martin SG. Calpain system protein expression in basal-like and triple-negative invasive breast cancer. Ann Oncol 2012; 23:2289-2296. [PMID: 22745213 PMCID: PMC3425372 DOI: 10.1093/annonc/mds176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/28/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Basal-like and triple-negative breast tumours encompass an important clinical subgroup and biomarkers that can prognostically stratify these patients are required. MATERIALS AND METHODS We investigated two breast cancer tissue microarrays for the expression of calpain-1, calpain-2 and calpastatin using immunohistochemistry. The first microarray was comprised of invasive tumours from 1371 unselected patients, and the verification microarray was comprised of invasive tumours from 387 oestrogen receptor (ER)-negative patients. RESULTS The calpain system contains a number of proteases and an endogenous inhibitor, calpastatin. Calpain activity is implicated in important cellular processes including cytoskeletal remodelling, apoptosis and survival. Our results show that the expression of calpastatin and calpain-1 are significantly associated with various clinicopathological criteria including tumour grade and ER expression. High expression of calpain-2 in basal-like or triple-negative disease was associated with adverse breast cancer-specific survival (P = 0.003 and <0.001, respectively) and was verified in an independent cohort of patients. Interestingly, those patients with basal-like or triple-negative disease with a low level of calpain-2 expression had similar breast cancer-specific survival to non-basal- or receptor- (oestrogen, progesterone or human epidermal growth factor receptor 2 (HER2)) positive disease. CONCLUSIONS Expression of the large catalytic subunit of m-calpain (calpain-2) is significantly associated with clinical outcome of patients with triple-negative and basal-like disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Calcium-Binding Proteins/metabolism
- Calpain/metabolism
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Disease-Free Survival
- Female
- Humans
- Kaplan-Meier Estimate
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Neoplasms, Basal Cell/metabolism
- Proportional Hazards Models
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Retrospective Studies
- Young Adult
Collapse
Affiliation(s)
| | | | | | | | - A R Green
- Histopathology, School of Molecular Medical Sciences, University of Nottingham
| | - R D Macmillan
- The Breast Institute, Nottingham University Hospitals NHS Trust, Nottingham
| | - A Benhasouna
- Histopathology, School of Molecular Medical Sciences, University of Nottingham
| | - T Parr
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - I O Ellis
- Histopathology, School of Molecular Medical Sciences, University of Nottingham
| | | |
Collapse
|
36
|
Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L, Zhang Q, Dong Q, Zhu W, Zhang X, Bu B, Wang W. Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol 2011; 70:121-32. [DOI: 10.1002/ana.22386] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Storr SJ, Mohammed RAA, Woolston CM, Green AR, Parr T, Spiteri I, Caldas C, Ball GR, Ellis IO, Martin SG. Calpastatin is associated with lymphovascular invasion in breast cancer. Breast 2011; 20:413-8. [PMID: 21531560 DOI: 10.1016/j.breast.2011.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 02/04/2023] Open
Abstract
Metastasis of breast cancer is a major contributor to mortality. Histological assessment of vascular invasion (VI) provides important prognostic information and demonstrates that VI occurs predominantly via lymphatics in breast cancer. We sought to examine genes and proteins involved in lymphovascular invasion (LVI) to understand the mechanisms of this key disease process. A gene expression array of 91 breast cancer patients was analysed by an Artificial Neural Network (ANN) approach using LVI to supervise the analysis. 89 transcripts were significantly associated (p<0.001) with the presence of LVI. Calpastatin, a specific calpain inhibitor, had the second lowest selection error and was investigated in breast cancer specimens using real-time PCR (n=56) and immunohistochemistry (n=53). Both calpastatin mRNA and protein levels were significantly associated with the presence of LVI (p=0.014 and p=0.025 respectively). The data supports the hypothesis that calpastatin may play a role in regulating the initial metastatic dissemination of breast cancer.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Storr SJ, Woolston CM, Barros FFT, Green AR, Shehata M, Chan SY, Ellis IO, Martin SG. Calpain-1 expression is associated with relapse-free survival in breast cancer patients treated with trastuzumab following adjuvant chemotherapy. Int J Cancer 2011; 129:1773-80. [PMID: 21140455 DOI: 10.1002/ijc.25832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/19/2010] [Indexed: 01/20/2023]
Abstract
The calpain family, and their endogenous inhibitor calpastatin, has been implicated in cancer progression, and recent in vitro data have indicated a role in trastuzumab resistance. The aims of our study were to examine expression levels of calpastatin, calpain-1 and calpain-2 in breast tumours from patients treated with trastuzumab following adjuvant chemotherapy to determine their potential as biomarkers to predict therapeutic response. The expression of calpastatin, calpain-1 and calpain-2 was determined, using immunohistochemistry (IHC), in tumours from a series of 93 patients with primary breast cancer treated with surgery and adjuvant chemotherapy with or without trastuzumab followed by trastuzumab to complete 1 year of therapy. IHC was performed using tissue microarrays constructed from cores taken from intratumour and peripheral tumour areas. Expression was correlated with clinicopathologic variables and patient outcome. Calpastatin expression was correlated with Nottingham prognostic index (p = 0.003) and lymph node status (p = 0.007). Trastuzumab resistance was defined as disease relapse during therapy. Calpain-1 expression is associated with relapse-free survival (p = 0.001) and remained significant in multivariate analysis accounting for confounding pathological and treatment variables (hazard ratio 4.60, 95% confidence interval 1.05-20.25; p = 0.043). Calpain-1 may be a useful biomarker to predict relapse-free survival in breast cancer patients treated with adjuvant trastuzumab and chemotherapy. A larger verification study is warranted.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
OBJECTIVE Delayed neurodegeneration after transient global brain ischemia offers a therapeutic window for inhibiting molecular injury mechanisms. One such mechanism is calpain-mediated proteolysis, which peaks 24 to 48 hrs after transient forebrain ischemia in rats. This study tests the hypothesis that delayed calpain inhibitor therapy can reduce brain calpain activity and neurodegeneration after transient forebrain ischemia. DESIGN Prospective randomized placebo-controlled animal trial. SETTING University research laboratory. SUBJECTS Adult male Long-Evans rats. INTERVENTIONS Rats subjected to 10-min transient forebrain ischemia were randomized to intravenous infusion of calpain inhibitor CEP-3453 or vehicle beginning 22 hrs after injury. MEASUREMENTS AND MAIN RESULTS In a dose-response study, a 60 mg/kg bolus followed by 30 mg/kg infusion was required to reduce postischemic brain calpain activity measured by Western blot of hippocampal homogenates at 48 hrs after injury. The same dosing protocol decreased degeneration of CA1 pyramidal neurons measured at 72 hrs after injury. CONCLUSIONS These results suggest a causal role for calpains in delayed postischemic neurodegeneration, and demonstrate a broad therapeutic window for calpain inhibition in this model.
Collapse
|
40
|
Bevers MB, Ingleton LP, Che D, Cole JT, Li L, Da T, Kopil CM, Cohen AS, Neumar RW. RNAi targeting micro-calpain increases neuron survival and preserves hippocampal function after global brain ischemia. Exp Neurol 2010; 224:170-7. [PMID: 20298691 DOI: 10.1016/j.expneurol.2010.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/24/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms has not been determined in in vivo models. Identification of the calpain isoform responsible for neuronal injury is particularly important given the differential role of calpain isoforms in normal physiology. This study evaluates the role of m-calpain and micro-calpain in an in vivo model of global brain ischemia. Adeno-associated viral vectors expressing short hairpin RNAs targeting the catalytic subunits of micro- or m-calpain were used to knockdown expression of the targeted isoforms in adult rat hippocampal CA1 pyramidal neurons. Knockdown of micro-calpain, but not m-calpain, prevented calpain activity 72 h after 6-min transient forebrain ischemia, increased long-term survival and protected hippocampal electrophysiological function. These findings represent the first in vivo evidence that reducing expression of an individual calpain isoform can decrease post-ischemic neuronal death and preserve hippocampal function.
Collapse
Affiliation(s)
- Matthew B Bevers
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Ravdin, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang SX, Zheng RY, Zeng JQ, Li XL, Han Z, Hou ST. Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I2 receptor antagonists. Eur J Pharmacol 2010; 629:12-9. [DOI: 10.1016/j.ejphar.2009.11.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
|
42
|
Abstract
Brain plasticity describes the potential of the organ for adaptive changes involved in various phenomena in health and disease. A substantial amount of experimental evidence, received in animal and cell models, shows that a cascade of plastic changes at the molecular, cellular, and tissue levels, is initiated in different regions of the postischemic brain. Underlying mechanisms include neurochemical alterations, functional changes in excitatory and inhibitory synapses, axonal and dendritic sprouting, and reorganization of sensory and motor central maps. Multiple lines of evidence indicate numerous points in which the process of postischemic recovery may be influenced with the aim to restore the full capacity of the brain tissue injured by an ischemic episode.
Collapse
Affiliation(s)
- Galyna G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | |
Collapse
|
43
|
Nikonenko AG, Radenovic L, Andjus PR, Skibo GG. Structural Features of Ischemic Damage in the Hippocampus. Anat Rec (Hoboken) 2009; 292:1914-21. [DOI: 10.1002/ar.20969] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Rudinskiy N, Grishchuk Y, Vaslin A, Puyal J, Delacourte A, Hirling H, Clarke PGH, Luthi-Carter R. Calpain hydrolysis of alpha- and beta2-adaptins decreases clathrin-dependent endocytosis and may promote neurodegeneration. J Biol Chem 2009; 284:12447-58. [PMID: 19240038 DOI: 10.1074/jbc.m804740200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clathrin-dependent endocytosis is mediated by a tightly regulated network of molecular interactions that provides essential protein-protein and protein-lipid binding activities. Here we report the hydrolysis of the alpha- and beta2-subunits of the tetrameric adaptor protein complex 2 by calpain. Calcium-dependent alpha- and beta2-adaptin hydrolysis was observed in several rat tissues, including brain and primary neuronal cultures. Neuronal alpha- and beta2-adaptin cleavage was inducible by glutamate stimulation and was accompanied by the decreased endocytosis of transferrin. Heterologous expression of truncated forms of the beta2-adaptin subunit significantly decreased the membrane recruitment of clathrin and inhibited clathrin-mediated receptor endocytosis. Moreover, the presence of truncated beta2-adaptin sensitized neurons to glutamate receptor-mediated excitotoxicity. Proteolysis of alpha- and beta2-adaptins, as well as the accessory clathrin adaptors epsin 1, adaptor protein 180, and the clathrin assembly lymphoid myeloid leukemia protein, was detected in brain tissues after experimentally induced ischemia and in cases of human Alzheimer disease. The present study further clarifies the central role of calpain in regulating clathrin-dependent endocytosis and provides evidence for a novel mechanism through which calpain activation may promote neurodegeneration: the sensitization of cells to glutamate-mediated excitotoxicity via the decreased internalization of surface receptors.
Collapse
Affiliation(s)
- Nikita Rudinskiy
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH1015, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hajieva P, Kuhlmann C, Luhmann HJ, Behl C. Impaired calcium homeostasis in aged hippocampal neurons. Neurosci Lett 2009; 451:119-23. [DOI: 10.1016/j.neulet.2008.11.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/13/2008] [Accepted: 11/28/2008] [Indexed: 01/15/2023]
|
46
|
Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW. Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem 2009; 108:1237-50. [PMID: 19141074 DOI: 10.1111/j.1471-4159.2008.05860.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms to the various forms of injury has not been determined as available calpain inhibitors are not isoform-specific. In this study, we evaluated the relative role of m-calpain and mu-calpain in a primary hippocampal neuron model of NMDA-mediated excitotoxicity. Baseline mRNA expression for the catalytic subunit of m-calpain (capn2 ) was found to be 50-fold higher than for the mu-calpain catalytic subunit (capn1) based on quantitative real-time PCR. Adeno-associated viral vectors designed to deliver short hairpin RNAs targeting capn1 or capn2 resulted in 60% and 90% knockdown of message respectively. Knockdown of capn2 but not capn1 increased neuronal survival after NMDA exposure at 21 days in vitro. Nuclear translocation of calpain substrates apoptosis inducing factor, p35/p25 and collapsin response mediator protein (CRMP) 2-4 was not detected after NMDA exposure in this model. However, nuclear translocation of CRMP-1 was observed and was prevented by capn2 knockdown. These findings provide insight into potential mechanisms of calpain-mediated neurodegeneration and have important implications for the development of isoform-specific calpain inhibitor therapy.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
47
|
Koumura A, Nonaka Y, Hyakkoku K, Oka T, Shimazawa M, Hozumi I, Inuzuka T, Hara H. A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience 2008; 157:309-18. [PMID: 18835333 DOI: 10.1016/j.neuroscience.2008.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 01/09/2023]
Abstract
Cerebral ischemia induces Ca(2+) influx into neuronal cells, and activates several proteases including calpains. Since calpains play important roles in neuronal cell death, calpain inhibitors may have potential as drugs for cerebral infarction. ((1S)-1((((1S)-1-Benzyl-3- cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945) is a novel calpain inhibitor that has good membrane permeability and water solubility. We evaluated the effect of SNJ-1945 on the focal brain ischemia induced by middle cerebral artery occlusion (MCAO) in mice. Brain damage was evaluated by assessing neurological deficits at 24 h or 72 h after MCAO and also by examining 2,3,5-triphenyltetrazolium chloride (TTC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining of brain sections. When injected at 1 h after MCAO, SNJ-1945 at 30 and 100 mg/kg, i.p. decreased the infarction volume and improved the neurological deficits each assessed at 24 h. SNJ-1945 at 100 mg/kg, i.p. also showed neuroprotective effects at 72 h and reduced the number of TUNEL-positive cells at 24 h. SNJ-1945 was able to prevent neuronal cell death even when it was injected at up to 6 h, but not at 8 h, after MCAO. In addition, SNJ-1945 decreased cleaved alpha-spectrin at 6 h and 12 h, and active caspase-3 at 12 h and 24 h in ischemic brain hemisphere. These findings indicate that SNJ-1945 inhibits the activation of calpain, and offers neuroprotection against the effects of acute cerebral ischemia in mice even when given up to 6 h after MCAO. SNJ-1945 may therefore be a potential drug for stroke.
Collapse
Affiliation(s)
- A Koumura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-5858, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
TATA DESPINAA, YAMAMOTO BRYANK. Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse 2008; 62:325-36. [PMID: 18288648 PMCID: PMC4351443 DOI: 10.1002/syn.20497] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking parallels exist between the neurochemical and toxic effects of stress and methamphetamine. Despite these similarities, no studies have examined how stress may promote the toxic effects of methamphetamine (METH). The current study tested the hypothesis that chronic stress enhances METH toxicity by augmenting glutamate (GLU) release and excitotoxicity in response to METH administration. Adult male Sprague-Dawley rats were exposed to 10 days of unpredictable stress and then received either saline or METH (7.5 mg/kg, i.p., once every 2 h x four injections). Prior exposure to unpredictable stress acutely enhanced the striatal extracellular GLU concentrations in response to METH, and eventually caused proteolysis of the cytoskeleton protein spectrin. Administration of the corticosterone synthesis inhibitor, metyrapone (25 mg/kg, i.p., prior to each stressor), during unpredictable stress attenuated the enhanced striatal GLU release in response to METH, blocked spectrin proteolysis, and attenuated METH-associated toxicity measured by long-term depletions in the dopamine and serotonin tissue content as well as depletions in dopamine and serotonin transporter immunoreactivity of the striatum. In summary, prior exposure to unpredictable stress enhances METH-induced elevations of GLU in the striatum, resulting in long-term excitotoxic damage and an augmentation of damage to dopamine and serotonin terminals. These studies provide a neurochemical basis for how stress contributes to the deleterious effects of METH abuse.
Collapse
Affiliation(s)
- DESPINA A. TATA
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - BRYAN K. YAMAMOTO
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
49
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|
50
|
Zhou M, Dominguez R, Baudry M. Superoxide dismutase/catalase mimetics but not MAP kinase inhibitors are neuroprotective against oxygen/glucose deprivation-induced neuronal death in hippocampus. J Neurochem 2007; 103:2212-23. [PMID: 17868299 PMCID: PMC3182122 DOI: 10.1111/j.1471-4159.2007.04906.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through inhibition of calpain activation. Thus, both EUK-189 and EUK-207 provide neuroprotection in acute ischemic conditions, and this effect is related to elimination of free radical formation and partial reversal of ATP depletion, but not mediated by the activation or inhibition of the MEK/ERK or p38 pathways, or inhibition of calpain activation.
Collapse
Affiliation(s)
- Miou Zhou
- Neuroscience Program, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|