1
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
3
|
Chen J, Wang L, Huang J, Li X, Guan L, Wang Q, Yang M, Qin Q. Functional analysis of a novel MHC-Iα genotype in orange-spotted grouper: Effects on Singapore grouper iridovirus (SGIV) replication and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:487-497. [PMID: 35077868 DOI: 10.1016/j.fsi.2022.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The classical major histocompatibility complex class I (MHC-Ⅰ) molecule plays a key role in vertebrate immune response for its important functions in antigen presentation and immune regulation. MHC pathway is closely related to many diseases involving autoimmunity, antigen intrusion and inflammation. However, rare literatures about the effect of MHC-I on fish cells apoptosis were reported. In this study, a novel type of MHC-Ⅰα genotype from orange-spotted grouper (named EcMHC-ⅠA*01) were cloned and characterized. It shared a 77% identity to its Epinephelus coioides MHC-Iα homology that has been uploaded to NCBI (ACZ97571.1). Molecular characterization analysis showed that EcMHC-ⅠA*01 encodes a 357-amino-acid protein, containing a signal peptide,α1,α2,α3, Cytoplasmic (Cyt) and Transmembrane (TM) domains. Tissue expression pattern showed that EcMHC-ⅠA*01 was extensively distributed in twelve selected tissues, with higher expression in the gill, intestine and skin. The expression of EcMHC-ⅠA*01 in grouper liver and spleen tissues were significantly induced by different stimuli (Zymosan A, LPS, Ploy I:C, RGNNV and SGIV). Comparing with the EcMHC-ⅠA*01 expression levels induced by Zymosan A, Ploy I:C and RGNNV, the effects induced by SGIV and LPS were more significant. Subcellular localization analysis showed that EcMHC-ⅠA*01 localizes throughout the cytoplasm appeared both diffuse and focal intracellular expression pattern. Overexpression of EcMHC-ⅠA*01 inhibited the CPE progression, the mRNA expression of the SGIV related genes (MCP, LITAF, ICP-18 and VP19) and the protein expression of MCP. Meanwhile, qRT-PCR result showed that EcMHC-ⅠA*01 overexpression upregulated the expression of interferon signaling molecules (IFN-γ, ISG56, MDA5 and MXI) and inflammatory cytokines (IL-1β, IL-6, TNF-α and TRAF6). In addition, our results showed that overexpression of EcMHC-ⅠA*01 promoted the apoptosis of normal fathead minnow (FHM) cells as well as the apoptosis of FHM cells induced by SGIV. However, there was no significant change in the activity of caspase 3 between control group and EcMHC-ⅠA*01 overexpression group, suggesting that EcMHC-ⅠA*01-induced apoptosis may not depend on the caspase 3 pathway. Taken together, these data in our study provide new insights into the role of MHC-I in antiviral immune response and apoptosis in fish.
Collapse
Affiliation(s)
- Jinpeng Chen
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liqun Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianling Huang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinshuai Li
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lingfeng Guan
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min Yang
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| | - Qiwei Qin
- University of JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
4
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
5
|
Krishnan R, Kim JO, Qadiri SSN, Kim JO, Oh MJ. Early viral uptake and host-associated immune response in the tissues of seven-band grouper following a bath challenge with nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:454-463. [PMID: 32439512 DOI: 10.1016/j.fsi.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, early uptake of nervous necrosis virus (NNV) in the tissues (gill, brain, skin, eye, heart) and immune response associated with the uptake in the gill and brain of seven-band grouper was investigated. The gill was found to act as a primary portal of entry for NNV during the initial phase of the water-borne infection. The presence of viral genome and infectious particles was demonstrated using quantitative (qPCR, viral titer) and qualitative (ISH) approach. Initially, an increased viral uptake was noticed, but the virus got cleared from the gills at the later phase of infection. Localization in the brain was evident at the blood-brain barrier followed by the brain parenchyma in the latter stage of infection. Nectin-4, an established NNV receptor, and GHSC70 showed an up-regulated expression throughout the challenge period initially in the gill and at latter phase in brain; however, it seems that the virus does not use gill as a primary replication site but brain as a permissive tissue. Combined activity as reflected by the up-regulation of cytokine, interferon, antigen-presenting cell, and immunoglobulin genes restricts early NNV replication in gill. Observations from the present study provide a better understanding of early NNV entry and also opens a window for further elucidating the modes of NNV neuro-invasion through systemic circulation.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jong-Oh Kim
- Institute of Marine Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Syed Shariq Nazir Qadiri
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; KVK-Ganderbal, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama, Alusteng, Srinagar, 190006, J&K, India
| | - Jae-Ok Kim
- National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
6
|
Transcriptome Analysis of Paralichthys olivaceus Erythrocytes Reveals Profound Immune Responses Induced by Edwardsiella tarda Infection. Int J Mol Sci 2020; 21:ijms21093094. [PMID: 32353932 PMCID: PMC7247156 DOI: 10.3390/ijms21093094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike mammalian red blood cells (RBCs), fish RBCs are nucleated and thus capable of gene expression. Japanese flounder (Paralichthys olivaceus) is a species of marine fish with important economic values. Flounder are susceptible to Edwardsiella tarda, a severe bacterial pathogen that is able to infect and survive in flounder phagocytes. However, the infectivity of and the immune response induced by E. tarda in flounder RBCs are unclear. In the present research, we found that E. tarda was able to invade and replicate inside flounder RBCs in both in vitro and in vivo infections. To investigate the immune response induced by E. tarda in RBCs, transcriptome analysis of the spleen RBCs of flounder challenged with E. tarda was performed. Six sequencing libraries were constructed, and an average of 43 million clean reads per library were obtained, with 85% of the reads being successfully mapped to the genome of flounder. A total of 1720 differentially expressed genes (DEGs) were identified in E. tarda-infected fish. The DEGs were significantly enriched in diverse Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially those associated with immunity, disease, and infection. Ninety-one key DEGs involved in 12 immune-related pathways were found to form extensive interaction networks. Twenty-one genes that constituted the hub of the networks were further identified, which were highly regulated by E. tarda and involved in a number of immune processes, notably pathogen recognition and signal transduction, antigen processing and presentation, inflammation, and splicing. These results provide new insights into the immune role of flounder RBCs during bacterial infection.
Collapse
|
7
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Nombela I, Requena-Platek R, Morales-Lange B, Chico V, Puente-Marin S, Ciordia S, Mena MC, Coll J, Perez L, Mercado L, Ortega-Villaizan MDM. Rainbow Trout Red Blood Cells Exposed to Viral Hemorrhagic Septicemia Virus Up-Regulate Antigen-Processing Mechanisms and MHC I&II, CD86, and CD83 Antigen-presenting Cell Markers. Cells 2019; 8:E386. [PMID: 31035565 PMCID: PMC6562805 DOI: 10.3390/cells8050386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleated teleost red blood cells (RBCs) are known to express molecules from the major histocompatibility complex and peptide-generating processes such as autophagy and proteasomes, but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study, RBCs exposed ex vivo to viral hemorrhagic septicemia virus (VHSV) were evaluated by means of transcriptomic and proteomic approaches. Genes and proteins related to antigen presentation molecules, proteasome degradation, and autophagy were up-regulated. VHSV induced accumulation of ubiquitinated proteins in ex vivo VHSV-exposed RBCs and showed at the same time a decrease of proteasome activity. Furthermore, induction of autophagy was detected by evaluating LC3 protein levels. Sequestosome-1/p62 underwent degradation early after VHSV exposure, and it may be a link between ubiquitination and autophagy activation. Inhibition of autophagosome degradation with niclosamide resulted in intracellular detection of N protein of VHSV (NVHSV) and p62 accumulation. In addition, antigen presentation cell markers, such as major histocompatibility complex (MHC) class I & II, CD83, and CD86, increased at the transcriptional and translational level in rainbow trout RBCs exposed to VHSV. In summary, we show that nucleated rainbow trout RBCs can degrade VHSV while displaying an antigen-presenting cell (APC)-like profile.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Ricardo Requena-Platek
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Byron Morales-Lange
- Instituto de Biología, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile.
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB- CSIC), 28049 Madrid, Spain.
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB- CSIC), 28049 Madrid, Spain.
| | - Julio Coll
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile.
| | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
9
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
10
|
In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling. Genes (Basel) 2018; 9:genes9040202. [PMID: 29642539 PMCID: PMC5924544 DOI: 10.3390/genes9040202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.
Collapse
|
11
|
Chupani L, Niksirat H, Lünsmann V, Haange SB, von Bergen M, Jehmlich N, Zuskova E. Insight into the modulation of intestinal proteome of juvenile common carp (Cyprinus carpio L.) after dietary exposure to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:62-71. [PMID: 28898813 DOI: 10.1016/j.scitotenv.2017.08.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 05/20/2023]
Abstract
ZnO nanoparticles (NPs) are widely used in industrial and consumer products. Therefore understanding their interaction with biological systems is key to their safe application. Proteomics was applied to assess the sub-lethal effects of dietary ZnO NPs on two parts of carp intestine, the intestinal folds and the muscular parts. A commercial carp feed containing 500mgkg-1 of ZnO NPs was fed to fish for six weeks. The abundances of 32 proteins in the treated intestinal folds were significantly changed and in addition, 28 proteins were significantly changed in the muscular parts. Pathways analysis revealed downregulation of pathways attributed to protein synthesis in both parts of the treated intestine. Remodelling of actin cytoskeleton pathways were regulated positively and negatively in intestinal folds and muscular parts, respectively, albeit via different mechanisms. Apoptosis response was indicated in exposed intestinal folds, whereas elevated levels of protein associated with cancerous cell survival were observed in the muscular parts. Results showed that ZnO NPs affected the protein abundances associated with cell motility, immune system response, oxidative stress response, as well as cell metabolism. Data are available via ProteomeXchange with identifier PXD006867.
Collapse
Affiliation(s)
- Latifeh Chupani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic.
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Vanessa Lünsmann
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Leipzig, Germany
| | - Eliska Zuskova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| |
Collapse
|
12
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
13
|
Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, Mena MC, Mercado L, Perez L, Coll J, Estepa A, Ortega-Villaizan MDM. Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus. F1000Res 2017; 6:1958. [PMID: 29527292 PMCID: PMC5820608 DOI: 10.12688/f1000research.12985.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Sara Puente-Marin
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Veronica Chico
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Alberto J. Villena
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Begoña Carracedo
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | | - Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | |
Collapse
|
14
|
Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, Mena MC, Mercado L, Perez L, Coll J, Estepa A, Ortega-Villaizan MDM. Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000Res 2017; 6:1958. [PMID: 29527292 PMCID: PMC5820608 DOI: 10.12688/f1000research.12985.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of the type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs with TSS (stromal cell line from spleen) revealed the IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs Isobaric tag for relative and absolute quantification (iTRAQ) revealed that VHSV exposure can induce a global protein downregulation in trout RBCs, mainly related to RNA stability and proteasome pathways. The antioxidant/antiviral response is also suggested to be involved in the response of trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. To our knowledge, this is the first report that implicates fish RBCs in the antiviral response against viruses not targeting RBCs.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Sara Puente-Marin
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Veronica Chico
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Alberto J. Villena
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Begoña Carracedo
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | | - Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | |
Collapse
|
15
|
Powell MD, Yousaf MN, Rasmussen KJ, Köllner B, Zou J, Secombes C, Speare DJ. Immunohistochemical localization of inflammatory cells and cell cycle proteins in the gills of Loma salmonae infected rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 40:91-98. [PMID: 24979224 DOI: 10.1016/j.fsi.2014.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Microsporidial gill diseases particularly those caused by Loma salmonae incur significant economic losses to the salmonid aquaculture industry. The gill responses to infection include the formation of xenomas and the acute hyperplastic inflammatory responses once the xenomas rupture releasing infective spores. The aim of this work was to characterize the inflammatory responses of the gill to both the presence of the xenomas as well as the hyperplasia associated with L. salmonae infection in the rainbow trout gill following an experimental infection using immunohistochemistry. Hyperplastic lesions demonstrated numerous cells expressing PCNA as well as an apparent increased expression of caspase-3 and number of apoptotic cells (TUNEL positive cells). There was an expression of TNFα in individual cells within the gill and increased expression of a myeloid cell line antigen indicating the presence of granulocyte infiltration of both the hyperplastic lesions as well as the xenomas. Similar immune-reactivity was seen in gill EGCs. Hyperplastic gill lesions showed a marked infiltration of CD8+ cells and expression of MHC class I antigens. These findings suggest that L. salmonae xenomas may be subject to infiltration by the host immune cells as well as the mounting or a marked cellular cytotoxic immunoreaction in the resultant hyperplasia following xenoma rupture and spore release.
Collapse
Affiliation(s)
- Mark D Powell
- Norwegian Institute for Water Research (NIVA), Thormøhlensgate 53 D, 5006 Bergen, Norway; Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway.
| | - M Naveed Yousaf
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway; Norwegian Veterinary Institute, 9480 Harstad, Norway
| | - Karina Juhl Rasmussen
- Department of Immunology and Microbiology, University of Southern Denmark, Odense C, Denmark
| | - Berndt Köllner
- Freidrich Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Germany
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Chris Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - David J Speare
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown PE C1A 4P3, Canada
| |
Collapse
|
16
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Shen T, Lei M, Wang J, He X, Li X, Li J. Molecular cloning, organization, expression and 3D structural analysis of the MHC class Ia gene in the whitespotted bamboo shark (Chiloscyllium plagiosum). Vet Immunol Immunopathol 2014; 157:111-8. [DOI: 10.1016/j.vetimm.2013.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
18
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
19
|
Yousaf MN, Koppang EO, Skjødt K, Hordvik I, Zou J, Secombes C, Powell MD. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD). Vet Immunol Immunopathol 2012. [PMID: 23200434 DOI: 10.1016/j.vetimm.2012.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal muscle, liver and pancreas. The main findings of these diseases are necrosis and inflammatory cells infiltrates affecting different regions of the heart. In order to better characterize the cardiac pathology, study of the inflammatory cell characteristics and cell cycle protein expression was undertaken by immunohistochemistry. Immunohistochemistry was performed on paraffin embedded hearts from confirmed diseased cases applying specific antibodies. The inflammatory cells were predominantly CD3(+) T lymphocytes. The PD diseased hearts exhibited moderate hypoxia inducible factor-1α (HIF1α) immuno-reaction that suggested tissue hypoxia while recombinant tumor necrosis factor-α (rTNFα) antibody identified putative macrophages and eosinophilic granulocytes (EGCs) in addition to endocardial cells around lesions. There were strong to low levels of major histocompatibility complex (MHC) class II immunostaining in the diseased hearts associated with macrophage-like and lymphocyte-like cells. The diseased hearts expressed strong to low levels of apoptotic cells identified by caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. The strong signals for proliferative cell nuclear antigen (PCNA) and TUNEL, and moderate levels of caspase 3 immuno-reactivity suggested a high cell turnover where DNA damage/repair might be occurring in the diseased hearts. Interestingly, the apparently similar cardiac diseases exhibited differences in the immunopathological responses in Atlantic salmon.
Collapse
|
20
|
Yousaf MN, Koppang EO, Skjødt K, Köllner B, Hordvik I, Zou J, Secombes C, Powell MD. Cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI). FISH & SHELLFISH IMMUNOLOGY 2012; 33:305-315. [PMID: 22609767 DOI: 10.1016/j.fsi.2012.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/27/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work was to characterize cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the disease were identified using different markers. The spectrum of inflammatory cells associated with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong immunostaining was observed for major histocompatibility complex (MHC) class II in HSMI hearts. Although low in number, a few positive cells in diseased hearts were detected using the mature myeloid cell line granulocytes/monocytes antibody indicating more positive cells in diseased than non-diseased hearts. The recombinant tumor necrosis factor-α (TNFα) antibody identified stained macrophage-like cells and endothelial cells around lesions in addition to eosinophilic granular cells (EGCs). These findings suggested that the inflammatory response in diseased hearts comprised of mostly CD3(+) T lymphocytes and eosinophilic granular cells and hearts exhibited high cell turnover where DNA damage/repair might be the case (as identified by PCNA, caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) reactivity).
Collapse
|
21
|
Abstract
Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.
Collapse
|
22
|
Edholm ES, Hudgens ED, Tompkins D, Sahoo M, Burkhalter B, Miller NW, Bengtén E, Wilson M. Characterization of anti-channel catfish IgL sigma monoclonal antibodies. Vet Immunol Immunopathol 2010; 135:325-8. [PMID: 20149930 DOI: 10.1016/j.vetimm.2010.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/12/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
This study characterizes three monoclonal antibodies (mAbs) developed against the constant (C) region of the immunoglobulin light (IgL) sigma chain isotype of the channel catfish, Ictalurus punctatus. Microsphere bead assays and Western blot analyses utilizing different recombinant (r) proteins show that these anti-catfish IgL sigma chain mAbs each specifically recognize the denatured form of IgL sigma. Importantly, Western blotting of catfish sera using the anti-IgL sigma mAbs also identified an IgL chain-sized immunoreactive band(s) of approximately 27kDa. It is anticipated that these mAbs in combination with the already existing anti-catfish Ig heavy (H) and IgL chain mAbs will be useful in future studies examining the functional roles of the different catfish IgL isotypes.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Characterization of anti-channel catfish MHC class IIβ monoclonal antibodies. Vet Immunol Immunopathol 2008; 126:120-30. [DOI: 10.1016/j.vetimm.2008.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 11/22/2022]
|
24
|
Coordinated down-regulation of the antigen processing machinery in the gills of amoebic gill disease-affected Atlantic salmon (Salmo salar L.). Mol Immunol 2008; 45:2581-97. [DOI: 10.1016/j.molimm.2007.12.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/25/2007] [Accepted: 12/28/2007] [Indexed: 11/23/2022]
|
25
|
Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K, Köllner B, Dalmo RA, Vesely T, Ototake M, Fischer U. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:239-52. [PMID: 17629943 DOI: 10.1016/j.dci.2007.05.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 05/16/2023]
Abstract
To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells, respectively. In contrast, PBL from trout that were immunized against the N protein only killed VHSV-infected RTG-2 cells, indicating that this protein only elicits a CTL response. Further, a significant killing capacity of these PBL was only observed during summer months. PBL from fish that were immunized against the VHSV G protein significantly killed VHSV-infected but not infectious hematopoietic necrosis virus (IHNV)-infected targets indicating antigen specificity. Thus, this is the first report on cytotoxic immune responses after DNA vaccination in fish. Furthermore, cells isolated from the inflamed site of DNA injection were stained and transferred to isogeneic DNA-vaccinated recipients. Most of the stained donor leukocytes accumulated at the recipients' DNA injection site showing, for the first time, leukocyte homing in fish. Transferred donor leukocytes mainly migrated to the homologous vaccine injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibody Formation/immunology
- CD8 Antigens/genetics
- Cell Line
- Gene Expression
- Hemorrhagic Septicemia, Viral/immunology
- Hemorrhagic Septicemia, Viral/prevention & control
- Immunity, Cellular/immunology
- Immunologic Factors/genetics
- Injections, Intramuscular
- Leukocytes/cytology
- Leukocytes/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Novirhabdovirus/immunology
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Nucleoproteins/metabolism
- Oncorhynchus mykiss/immunology
- Plasmids/genetics
- Seasons
- Spleen/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Katrin Utke
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cuesta A, Meseguer J, Esteban MA. Cloning and regulation of the major histocompatibility class I alpha gene in the teleost fish gilthead seabream. FISH & SHELLFISH IMMUNOLOGY 2007; 22:718-26. [PMID: 17052917 DOI: 10.1016/j.fsi.2006.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/28/2006] [Accepted: 08/03/2006] [Indexed: 05/12/2023]
Affiliation(s)
- Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
27
|
Bromage ES, Kaattari SL. Simultaneous quantitative analysis of multiple protein species within a single sample using standard scanning densitometry. J Immunol Methods 2007; 323:109-13. [PMID: 17482639 DOI: 10.1016/j.jim.2007.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 03/08/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
It is often desirable, when conducting Western blot analyses, to accurately quantify the relative expression of multiple target proteins in a single sample. A common problem occurs: however, when the target proteins vary beyond the linear range of the detection system; thus precluding accurate densitometric analysis for all samples. For example, analysis of teleost immunoglobulin structure under non-reducing but denaturing conditions, yields multiple, differentially polymerized forms (redox forms) within a single sample, which can exceed single log differences in concentration, as visualized by chemiluminescent and X-ray film development. To resolve this difficulty an efficient technique has been developed that uses dilutions of a single sample, allowing accurate quantification of target proteins within their potentially unique and varied linear range of detection. Upon consideration of the respective dilution factor that yields an appropriate estimate, the multiple targets can be quantified. When the results from this technique are compared to other systems possessing more expansive linear ranges, the results obtained are comparable to within 1%. Thus, laboratories without access to more sensitive and costly densitometric instrumentation can still employ standard densitometric analysis to accurately quantify multiple targets in a single sample.
Collapse
Affiliation(s)
- E S Bromage
- Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, VA 23062, USA.
| | | |
Collapse
|
28
|
Kales SC, Bols NC, Dixon B. Calreticulin in rainbow trout: a limited response to endoplasmic reticulum (ER) stress. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:607-15. [PMID: 17490907 DOI: 10.1016/j.cbpb.2007.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 03/23/2007] [Accepted: 04/01/2007] [Indexed: 12/01/2022]
Abstract
Calreticulin (CRT) is a resident protein of the endoplasmic reticulum where it serves as a calcium modulator and chaperone to newly synthesized glycoproteins. In mammals, CRT is a structurally conserved 46 kDa protein that demonstrates anomalous migration at 60 kDa on SDS polyacrylamide gels and can be up-regulated by A23187 and thapsigargin due to the endoplasmic reticulum stress elements (ERSE) in the promoter region of its gene. CRT has numerous proposed functions and has been localized to the surface of PHA-stimulated T lymphocytes. CRT has been identified in mammals, plants and more recently from rainbow trout. Here, we report the cloning of the CRT proximal promoter from rainbow trout which includes elements typical of genes transcribed by RNA polymerase II including a TATA box, an Sp1 binding site, CCAAT boxes and the conservation of promoter stress elements (ERSE) demonstrated to be responsible for calcium modulation in mammals. This report demonstrates that the anomalous 60 kDa gel migration of mammalian CRT is conserved in rainbow trout and that CRT exists primarily as a dimer or oligomer in all tissues tested, excluding muscle and sperm in which it exists as a single polypeptide. Although it contains a potential N-glycosylation site, rainbow trout CRT is not subject to N-type glycosylation. Through the use of reverse transcriptase (RT) PCR along with western blotting, in both primary cultured leukocytes and the macrophage cell line RTS11, this report demonstrates that, unlike mammals, rainbow trout CRT is not strongly up-regulated by the calcium homeostasis antagonists, A23187 and thapsigargin, but is present on the cell surface of PHA-stimulated leukocytes. Taken together, this data suggests that CRT may have an alternative mode of regulation or function in fish.
Collapse
Affiliation(s)
- Stephen C Kales
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
29
|
Dijkstra JM, Katagiri T, Hosomichi K, Yanagiya K, Inoko H, Ototake M, Aoki T, Hashimoto K, Shiina T. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 2007; 59:305-21. [PMID: 17318646 DOI: 10.1007/s00251-007-0198-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: "U" and "Z/ZE." However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage "L" because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the alpha1 domain, (2) a low GC content of the alpha1 and alpha2 exons, and (3) an HINLTL motif including a possible glycosylation site in the alpha3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as "Onmy-LBA-like." Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.
Collapse
|
30
|
Fischer U, Utke K, Somamoto T, Köllner B, Ototake M, Nakanishi T. Cytotoxic activities of fish leucocytes. FISH & SHELLFISH IMMUNOLOGY 2006; 20:209-26. [PMID: 15939625 DOI: 10.1016/j.fsi.2005.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
Like mammalian leucocytes, white blood cells of fish are able to kill altered (e.g. virus-infected) and foreign (allogeneic or xenogeneic) cells. The existence of natural killer (NK)-like and specific cytotoxic cells in fish was first shown using allogeneic and xenogeneic effector/target cell systems. In addition to in vivo and ex vivo studies, very important contributions were made by in vitro analysis using a number of different long-term cytotoxic cell lines established from channel catfish. In mammals, specific cell-mediated cytotoxicity (CMC) as part of the adaptive immune response requires a number of key molecules expressed on effector leucocytes and target cells. CD8+ T lymphocytes kill infected cells only, if their antigen receptor (TCR) matches the MHC class I with bound peptide of the target cell. Expression patterns of the fish gene homologues for TCR, CD8 and MHC class I, as well as related genes, are in agreement with similar function. Convenient systems for the analysis of specific CMC have only recently become available for fish with the combination of clonal fish with syngeneic or allogeneic but MHC class I matching cell lines. It was demonstrated that both, NK- and cytotoxic T (Tc) cells are involved in the killing of virus infected MHC class I matching and mismatching target cells. Analysis of these lymphocyte subsets is only starting for fish. There is also evidence that the different viral proteins trigger different subsets of killer cells. This review further discusses findings on fish CMC with regard to temperature/seasons and ontogeny.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Azuma T, Dijkstra JM, Kiryu I, Sekiguchi T, Terada Y, Asahina K, Fischer U, Ototake M. Growth and behavioral traits in Donaldson rainbow trout (Oncorhynchus mykiss) cosegregate with classical major histocompatibility complex (MHC) class I genotype. Behav Genet 2005; 35:463-78. [PMID: 15971027 DOI: 10.1007/s10519-004-0863-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
Although polymorphism in major histocompatibility complex (MHC) genes has been thought to confer populations with protection against widespread decimation by pathogens, this hypothesis cannot explain the type of large allelic diversity in classical MHC class I (Ia) in rainbow trout. Based on expression of Onmy-UBA (MHC class Ia) in trout neurons, we hypothesized that polymorphism in trout class Ia may contribute to polymorphism in behavioral traits. The present study examined whether polymorphism in Onmy-UBA was associated with behavioral variation in Donaldson rainbow trout (Oncorhynchus mykiss) using experiments on food competition, lure-catch, fright recovery, diel locomotor activity and activity characterized as dominance or aggression. These behavioral traits were investigated in fish having Onmy-UBA*401/*401 or *4901/*4901 homozygous, or Onmy-UBA*401/*4901 heterozygous genotypes (referred to as BB, FF and BF, respectively). The BB fish exhibited boldness, aggression, faster growth and crepuscular activity, while the FF fish showed little boldness, smaller body size, and diurnal activity with no aggressive behavior. The BF fish displayed traits intermediary to those of the BB and FF fish. These results are consistent with polymorphism in a single MHC class Ia locus driving variation in neural circuits, thereby creating behavioral variation in the trout. This is the first study in any animal to show a potential correlation between polymorphism in MHC class Ia genes with polymorphism of behavioral traits such as aggression.
Collapse
Affiliation(s)
- Teruo Azuma
- Nikko Branch, National Research Institute of Aquaculture, Chugushi, Nikko, Tochigi, 321-1661, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fischer U, Dijkstra JM, Köllner B, Kiryu I, Koppang EO, Hordvik I, Sawamoto Y, Ototake M. The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2005; 18:49-60. [PMID: 15450968 DOI: 10.1016/j.fsi.2004.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/30/2004] [Accepted: 05/19/2004] [Indexed: 05/24/2023]
Abstract
In the present study, clonal rainbow trout (Oncorhynchus mykiss) embryos and larvae were assayed for the expression of key molecules involved in specific cell-mediated cytotoxicity using an anti-MHC class I monoclonal Ab and by RT-PCR using specific primers derived from classical MHC class I (class Ia), TCR and CD8. Whereas RT-PCR revealed that MHC class Ia and CD8 were expressed from at least 1 week after fertilisation (p.f.) on, TCR expression was detectable from 2 weeks p.f. Immunohistochemistry indicated an early and distinct expression of MHC class I protein in the thymus. Positive lymphoid, epithelial and endothelial cells were found in the pronephros, in the spleen and in the inner and outer epithelia at later stages. Whereas in older rainbow trout the intestine is counted among the organs of the highest class I expression, during ontogeny it was the last site (39 days after hatching) where such expression was detectable. Knowledge on the appearance of the assayed key molecules during fish development is relevant for the pathogenesis of infections as well as for early vaccine delivery. Besides such information regarding the development of the adaptive immune system, immunohistochemistry revealed that in early larvae MHC class I was expressed in neurons whereas in older rainbow trout this was not observed.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Köllner B, Fischer U, Rombout JHWM, Taverne-Thiele JJ, Hansen JD. Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:1049-62. [PMID: 15236934 DOI: 10.1016/j.dci.2004.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/15/2004] [Accepted: 03/24/2004] [Indexed: 05/22/2023]
Abstract
The functional relationship between fish and mammalian thrombocytes is relatively unknown. In this study, a panel of monoclonal antibodies (mAbs) was used to investigate the functional properties of rainbow trout thrombocytes. The mAbs recognize cell-surface molecules on thrombocytes with molecular weights ranging from 17 to 160 kDa. Flow cytometric and immuno-electron microscopic analyses demonstrate that these molecules are expressed at different levels and that surface expression increased upon activation with bovine collagen. Two of these cell-surface molecules (17 and 21 kDa) were directly involved in collagen-induced aggregation of thrombocytes since aggregation was blocked upon pre-treatment with mAbs that recognize the two surface markers. Interestingly, the percentage of thrombocytes in blood increased after stimulation using different antigens. The transcriptional profile of trout thrombocytes was then examined after immuno-magnetic enrichment using the described mAbs to assess potential roles of trout thrombocytes in immune functions. Trout thrombocytes express components of the MHC class Ia pathway, IL1beta, TNFalpha, TGFbeta, the interleukin receptor common gamma chain as well as CXC and CC chemokines. MHC class IIB and TNFalpha were expressed at low levels in resting thrombocytes. No evidence was found for the expression of TCRalphabeta, Ig heavy chain, CD8alpha or CK1 mRNA. Taken together, these results suggest that rainbow trout thrombocytes express molecules involved in activation, aggregation and genes encoding proteins, that are involved in antigen presentation and immune regulation.
Collapse
Affiliation(s)
- B Köllner
- Institute of Diagnostic Virology, Federal Research Center for Virus Diseases of Animals, 17493 Greifswald Insel Riems, Germany.
| | | | | | | | | |
Collapse
|
34
|
Sarder MRI, Fischer U, Dijkstra JM, Kiryu I, Yoshiura Y, Azuma T, Köllner B, Ototake M. The MHC class I linkage group is a major determinant in the in vivo rejection of allogeneic erythrocytes in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2003; 55:315-24. [PMID: 12879308 DOI: 10.1007/s00251-003-0587-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 05/12/2003] [Indexed: 10/26/2022]
Abstract
Despite accumulating sequence data, information on the function of major histocompatibility complex (MHC) genes in fish is scarce. In contrast to the genome organization in higher vertebrates, the polymorphic MHC class I and II genes are not linked in the teleost genome. A previous study found an MHC class II linkage group to be a major determinant in the rejection of allogeneic scales by a teleost species (Cardwell et al. 2001). The present study investigated whether the teleost MHC class I linkage group can be involved in allograft rejection. Erythrocytes were chosen as grafts since they express MHC class I, but do not express class II. Rainbow trout erythrocytes expressing different MHC class I alleles were differentially stained, mixed and injected into recipients that were of the same sibling group as the donors. The MHC class I linkage group was the major determinant for in vivo graft rejection.
Collapse
Affiliation(s)
- Md Rafiqul Islam Sarder
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, 519-0423 Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|