1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Bettencourt‐Amarante S, Furet R, Abensur R, Herrel A. Does habitat modification impact morphology, performance, and inflammatory responses in an amphibian with limited dispersal capacity ( Lisssotriton helveticus)? Ecol Evol 2024; 14:e70114. [PMID: 39114165 PMCID: PMC11303843 DOI: 10.1002/ece3.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The environment of an organism exerts selective pressures that affect mobility, feeding, reproduction as well as predator-prey and conspecific interactions. Land use changes induced by human activities modify these selective pressures and may result in the adaptation of organisms. Amphibians are ectotherms that typically show a biphasic life cycle with an aquatic and terrestrial phase, which makes them particularly sensitive to environmental change. We studied the impact of habitat modifications on palmate newt populations in the Ile de France region across four types of habitats: urban, mixed, agricultural, and natural with at least two replicates for each habitat type. We measured the morphology of newts using callipers, quantified maximal running and swimming speed and acceleration using high-speed video recordings, and quantified the swelling of the hind limb linked to an inflammatory reaction. Our results show that in urban habitats, newts are larger and heavier and have a better body condition. Females, moreover, have a larger head in natural habitats, possibly due to diet specialisation of females during the breeding season. In mixed and agricultural habitats, newts have longer limbs and show a tendency to run faster, possibly associated with the selective pressures on movement in mixed habitats. Differences in inflammatory responses were observed between sexes but not habitat types. Overall, our results show differences in morphology and trends for differences in performance in newts living in different habitats suggesting that animals are adapting to human-induced changes in their environment.
Collapse
Affiliation(s)
| | | | | | - Anthony Herrel
- UMR 7179 MECADEV CNRS/MNHNParisFrance
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
- Department of BiologyUniversity of AntwerpWilrijkBelgium
- Naturhistorisches Museum BernBernSwitzerland
| |
Collapse
|
3
|
Satam K, Setia O, Moore MS, Schneider E, Chaar CIO, Dardik A. Arterial Diameter and Percentage of Monocytes are Sex-Dependent Predictors of Early Arteriovenous Fistula Maturation. Ann Vasc Surg 2023; 93:128-136. [PMID: 36812979 PMCID: PMC10277224 DOI: 10.1016/j.avsg.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Arteriovenous fistulae mature less frequently in women than in men, leading to inferior patency and decreased fistula utilization in women. We hypothesized that both anatomic and physiologic sex differences explain reduced maturation. METHODS The electronic medical records of patients who had a primary arteriovenous fistula created from 2016 to 2021 at a single center were reviewed; sample size was determined using a power calculation. Postoperative ultrasound and laboratory tests were obtained at least 4 weeks after fistula creation. Primary unassisted fistula maturation was determined up to 4 years postprocedure. RESULTS A total of 28 women and 28 men with a brachial-cephalic fistula were analyzed. The inflow brachial artery diameter was smaller in women than in men, both preoperatively (4.2 ± 0.9 vs. 4.9 ± 1.0 mm, P = 0.008) and postoperatively (4.8 ± 0.8 vs. 5.3 ± 0.9 mm, P = 0.039). Despite similar preoperative brachial artery peak systolic velocity, women had significantly lower postoperative arterial velocity (P = 0.027). Fistula flow was reduced in women, particularly in the midhumerus (747.0 ± 570.4 vs. 1,117.1 ± 471.3 cc/min, P = 0.003). Percentages of neutrophils and lymphocytes were similar among women and men 6 weeks after fistula creation. However, women had reduced monocytes (8.5 ± 2.0 vs. 10.0 ± 2.6%, P = 0.0168). Among 28 men, 24 of 28 (85.7%) achieved unassisted maturation, whereas only 15 of 28 (53.6%) women had fistulae that matured without intervention. Secondary analysis using logistic regression suggested that postoperative arterial diameter was associated with maturation in men, while postoperative monocyte percentage was associated with maturation in women. CONCLUSIONS Sex differences during arteriovenous fistula maturation are present in arterial diameter and velocity, suggesting that both anatomic and physiologic differences in arterial inflow contribute to sex differences in fistula maturation. In men, postoperative arterial diameter is correlated with maturation, whereas in women, the significantly lower proportion of circulating monocytes suggests a role for the immune response in fistula maturation.
Collapse
Affiliation(s)
- Keyuree Satam
- Yale School of Medicine, New Haven, CT; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Ocean Setia
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT; Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Miranda S Moore
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Eric Schneider
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Cassius Iyad Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT; Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT; Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT.
| |
Collapse
|
4
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
5
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
6
|
Effect of Norelgestromin and Ethinylestradiol in Transdermal Patches on the Clinical Outcomes and Biochemical Parameters of COVID-19 Patients: A Clinical Trial Pilot Study. Pharmaceuticals (Basel) 2022; 15:ph15060757. [PMID: 35745676 PMCID: PMC9228088 DOI: 10.3390/ph15060757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
The disease caused by SARS-CoV-2 is still considered a global pandemic. Transdermal patches (TP) with immunoregulators such as estrogen and progesterone compounds could be a feasible option to treat COVID-19 because of their accessibility and relative safety. The objective of the current study was to evaluate the additional treatment with norelgestromin and ethinylestradiol in TP on the clinical and biochemical evolution of COVID-19 patients. The present is a clinical-trial pilot study that included subjects diagnosed with COVID-19, randomized into two groups; the experimental Evra® TP (norelgestromin 6 mg and ethinylestradiol 0.60 mg) was administered such that it was applied on arrival and replaced at day 8 and day 15. The control continued with the conventional COVID-19 treatment protocol. A blood sample was taken each week in order to evaluate relevant biochemical parameters, clinical signs, and evolution. In total, 44 subjects participated in this study, 30 in the experimental group and 14 in the control group. Both groups were homogeneous in terms of age and comorbidities. The experimental group had a significantly lower hospital stay (p = 0.01), high flow supplemental oxygen (p = 0.001), mechanical ventilation (p = 0.003), and intubation (p = 0.01), and the oxygen saturation significantly increased (p = 0.01) in comparison with control group when patients were exposed to room air. A decrease in ferritin (p < 0.05) was observed, with no significant increase in ESR (p > 0.05), D dimer (p > 0.05) and platelets (p > 0.05) in an auto-controlled analysis in the experimental group. Norelgestromin and ethinylestradiol TP could be a safe and effective treatment for moderate and severe COVID-19 patients.
Collapse
|
7
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
8
|
Singh A, Singh R, Tripathi MK. Evaluation of the sex steroids mediated modulation of leucocyte immune responses in an ophidian Natrix piscator. Curr Res Physiol 2022; 5:355-360. [PMID: 36185818 PMCID: PMC9519393 DOI: 10.1016/j.crphys.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
The immune-suppressive role of sex steroids in mammals is well documented, but information on other vertebrates is limited. The present study was planned to analyze the effect of testosterone and progesterone in the modulation of immune functions of leucocytes in a reptile, Natrix piscator. Reptiles are unique organisms and this study is novel in that it provides an insight into immune-reproductive cross-talk in a reptile. Leucocytes were isolated from peripheral blood, cultured with different concentrations of testosterone and progesterone and different immune parameters like phagocytosis, superoxide production, and nitrite release were assessed. Lymphocytes were isolated and cell-mediated immunity was assessed through proliferation responses utilizing tetrazolium salt. Concentration-dependent suppressive effects of both the steroids on immune responses were observed. A differential suppressive effect of testosterone was also observed when a lymphocyte proliferation assay was studied. Using receptor antagonists such as cyproterone acetate and mifepristone restored the immune responses of cultured cells. It was summarized that gonadal steroids mediate a direct suppressive effect on innate and cell-mediated immune responses of blood immune cells. It was concluded that when gonadal steroids are high in reproductive seasons, the immune functions are suppressed to gain optimum reproductive success. Reptilian immune responses are differentially affected by sex steroids. Testosterone interacts with nuclear receptors and suppress proliferative responses of lymphocytes. Superoxide anion production by blood immune cells are inhibited by gonadal steroids. Use of receptor antagonists resulted in amelioration of immune responses indicating the direct action of steroids.
Collapse
|
9
|
Lv M, Chen X, Huang X, Liu N, Wang W, Liu H. Transcriptome Analysis Reveals Sexual Disparities between Olfactory and Immune Gene Expression in the Olfactory Epithelium of Megalobrama amblycephala. Int J Mol Sci 2021; 22:13017. [PMID: 34884822 PMCID: PMC8658043 DOI: 10.3390/ijms222313017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The olfactory organ is an important chemoreceptor in vertebrates. However, the sexual disparities in gene expression patterns in the olfactory organ in fish remain unstudied. Here, we conducted a transcriptome analysis of the olfactory epithelium (OE) of male and female blunt snout bream (Megalobrama amblycephala) to identify the differences. The histological analysis showed that there were 22 leaf-like olfactory lamellaes on one side of the OE of the adult blunt snout bream. The sensory area of OE is enriched with ciliated receptor cells and microvilli receptor cells. The transcriptome analysis showed that only 10 out of 336 olfactory receptor genes (224 ORs, 5 V1Rs, 55 V2Rs, and 52 TAARs) exhibited significant expression differences between males and females, and most of the differentially expressed genes were related to the immune system. We also validated these results using qPCR: 10 OR genes and 6 immunity-related genes significantly differed between males and females. The FISH analysis results indicated that the ORs were mainly expressed at the edge of the olfactory lamellae. Collectively, our study reveals that gender is not an important factor influencing the expression of olfactory receptors, but the expression of immune genes varies greatly between the genders in blunt snout bream.
Collapse
Affiliation(s)
- Maolin Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Xin Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
| | - Ning Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Weimin Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
| | - Han Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (M.L.); (X.H.); (N.L.); (W.W.)
- Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
10
|
Lipoldová M, Demant P. Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Front Immunol 2021; 12:712688. [PMID: 34721380 PMCID: PMC8553003 DOI: 10.3389/fimmu.2021.712688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host’s hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
Collapse
Affiliation(s)
- Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
11
|
Chandra RK, Bhardwaj AK, Tripathi MK. Evaluation of triazophos induced immunotoxicity of spleen and head kidney in fresh water teleost, Channa punctata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109029. [PMID: 33722765 DOI: 10.1016/j.cbpc.2021.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
The utilization of pesticides has increased for destroying pests and protecting crops in the agriculture field. Triazophos is a commonly used organophosphorous insecticide that causes alterations in haematological and histological parameters in fish. The present study was designed to evaluate the effect of triazophos induced innate and cell mediated immunotoxicity in freshwater teleost, Channa punctata. Fishes were exposed to triazophos at concentrations 5 and 10% of LC50 value for 10 and 20 days. Splenic and head kidney macrophage phagocytosis, nitric oxide production and superoxide production were assayed to evaluate the innate immunity. Cell-mediated immunity was measured through splenic and head kidney lymphocyte proliferation in presence of T and B cell mitogens. Results of the present study revealed that macrophage phagocytosis was significantly reduced after in vivo triazophos treatment. Differential suppressive effect of triazophos was also observed where mitogen induced splenic and head kidney lymphocyte proliferations were reduced after 10 and 20 days treatment. Concentration dependent effect of triazophos was observed in in vivo studies where the production of reactive oxygen and nitrogen intermediates were suppressed. This study describes the first investigation of the effect of triazophos on immune functions and will help to determine appropriate ecotoxicity and immunotoxicity in freshwater teleosts.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India.
| |
Collapse
|
12
|
Aastrup C, Hegemann A. Jackdaw nestlings rapidly increase innate immune function during the nestling phase but no evidence for a trade-off with growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103967. [PMID: 33316356 DOI: 10.1016/j.dci.2020.103967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Although animals are born with a protective immune system, even the innate immune system is under development from birth to adulthood and this development may be affected by sex and growth. However, most knowledge comes from captive animals or long-lived slow growing species. Moreover, little is known about how innate immune function, the important first line of defence, develops during early life in fast-growing animals such as free-living passerines. We studied development of innate baseline immune function in nestlings of free-living jackdaws Corvus monedula. We measured four immune parameters (hemolysis, hemagglutination, bacterial-killing capacity, haptoglobin concentration) and structural body size (body mass, wing length, tarsus length) at day 12 and day 29 post-hatching. We found that three out of four immune parameters (hemolysis, hemagglutination, bacterial-killing capacity) substantially increased with nestling age and had roughly reached adult levels shortly prior to fledging. We found little differences in immune development between males and females despite them differing in structural development. We also found no evidence that the nestlings traded off immune development with growth. That nestlings rapidly increase innate baseline immune function during early life and similarly in males and females indicates the importance of a well-functioning immune system already during the nestling phase.
Collapse
Affiliation(s)
- Christian Aastrup
- Department of Biology, Lund University, Ecology Building (Sölvegatan 37), 223 62, Lund, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building (Sölvegatan 37), 223 62, Lund, Sweden.
| |
Collapse
|
13
|
Bhardwaj AK, Chandra RK, Tripathi MK. Analysis of suppressive effects of pesticide triazophos on leucocyte immune responses in a teleost, Channa Punctatus. Drug Chem Toxicol 2021; 45:1833-1839. [PMID: 33602036 DOI: 10.1080/01480545.2021.1886306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Triazophos is a commonly used organophosphate insecticide, which inhibits the acetylcholinesterase enzyme and causes paralysis and death of insects. Impact of the pesticides on immunity has scarcely been investigated, especially in fishes. The present study was designed to analyze the immunotoxic role of in vitro triazophos exposure to the leucocytes in freshwater teleost, Channa punctatus. Triazophos, at in vitro concentrations of 0.1, 0.5, and 1 µg ml-1, was used to study leucocyte phagocytosis, superoxide production, nitrite release, and lymphocyte proliferation. Dose-dependent suppression of various immune responses was observed. Nitrite release and superoxide production by leucocytes were reduced in cultures incubated with triazophos. Mitogen-induced lymphocyte proliferation was significantly reduced at 0.5 and 1 µg ml-1 but not at 0.1 µg ml-1 concentration of pesticide. The biphasic suppressive effect was also discovered while evaluating phagocytic response. These investigations describe the effects of pesticide on immune responses in C. punctatus, which are helpful in understanding the immunotoxicity in fish. Substantially more researches are required to help design the measures to combat ecotoxicity in freshwater bodies.
Collapse
Affiliation(s)
- Ajay Kumar Bhardwaj
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rakesh Kumar Chandra
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Studies in Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
14
|
Xu C, Dolby GA, Drake KK, Esque TC, Kusumi K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS One 2020; 15:e0238202. [PMID: 32846428 PMCID: PMC7449761 DOI: 10.1371/journal.pone.0238202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - K. Kristina Drake
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Todd C. Esque
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
15
|
Castro A, Pyke RM, Zhang X, Thompson WK, Day CP, Alexandrov LB, Zanetti M, Carter H. Strength of immune selection in tumors varies with sex and age. Nat Commun 2020; 11:4128. [PMID: 32807809 PMCID: PMC7431859 DOI: 10.1038/s41467-020-17981-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in female and younger patients. Although immune responses differ with sex and age, the role of MHC-based immune selection in this context is unknown. We find that tumors in younger and female individuals accumulate more poorly presented driver mutations than those in older and male patients, despite no differences in MHC genotype. Younger patients show the strongest effects of MHC-based driver mutation selection, with younger females showing compounded effects and nearly twice as much MHC-II based selection. This study presents evidence that strength of immune selection during tumor development varies with sex and age, and may influence the availability of mutant peptides capable of driving effective response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rachel Marty Pyke
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xinlian Zhang
- Department of Family Medicine and Public Health, Division of Biostatistics & Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley Kurt Thompson
- Department of Family Medicine and Public Health, Division of Biostatistics & Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Cancer Cell Map Initiative (CCMI), University of California San Diego, La Jolla, CA, 92093, USA.
- CIFAR, MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON, Canada.
| |
Collapse
|
16
|
Patel S, Choudhary M, Chandra RK, Bhardwaj AK, Tripathi MK. Sex steroids exert a suppressive effect on innate and cell mediated immune responses in fresh water teleost, Channa punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103415. [PMID: 31202893 DOI: 10.1016/j.dci.2019.103415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The main objective of this study was to evaluate the potential role of two important sex steroids, crucial for reproductive success, on innate and cell mediated immune responses in a seasonally breeding, economically important fish, Channa punctatus. Intraperitoneal injections of testosterone and progesterone were given to different groups of fishes. Spleen and head kidney macrophages were isolated and studied for phagocytosis. Superoxide production and nitrite release by phagocytes were also investigated. Cell mediated immunity was measured by lymphocyte proliferation in presence of T and B cell mitogens. In vitro effect of steroids on mitogen induced lymphocyte proliferation was also analyzed. Results of the present investigation revealed the suppressive effects of testosterone and progesterone on immune responses of cells from spleen and head kidney. Concentration dependent effect of sex steroids were observed in vitro studies where phagocytosis and lymphocyte proliferation were suppressed. Immunosupression by these hormones may be the cost of reproduction and it is postulated that by suppressing immune responses, these steroids may, therefore, act as a physiological check regulating the relative amount of energy invested into either reproductive effort or immunocompetence.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G, India
| | - Meghmala Choudhary
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G, India
| | - Rakesh Kumar Chandra
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G, India
| | - Manish Kumar Tripathi
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G, India.
| |
Collapse
|
17
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
18
|
Álvarez-Ruiz L, Megía-Palma R, Reguera S, Ruiz S, Zamora-Camacho FJ, Figuerola J, Moreno-Rueda G. Opposed elevational variation in prevalence and intensity of endoparasites and their vectors in a lizard. Curr Zool 2018; 64:197-204. [PMID: 30402060 PMCID: PMC5905508 DOI: 10.1093/cz/zoy002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Studying the causes of parasite geographic distribution is relevant to understand ecological and evolutionary processes that affect host populations as well as for species conservation. Temperature is one of the most important environmental variables affecting parasite distribution, as raising temperatures positively affect development, reproduction, and rate of transmission of both endo- and ectoparasites. In this context, it is generally accepted that, in mountains, parasite abundance decreases with elevation. However, empirical evidence on this topic is limited. In the present study, we analyzed the elevational variation of hemoparasites and ectoparasites of a lizard, Psammodromus algirus, along a 2,200-m elevational gradient in Sierra Nevada (SE Spain). As predicted, ectoparasite (mites, ticks, mosquitoes, and sandflies) abundance decreased with elevation. However, hemoparasite prevalence and intensity in the lizard augmented with altitude, showing a pattern contrary to their vectors (mites). We suggest that tolerance to hemoparasites may increase with elevation as a consequence of lizards at high altitudes taking advantage of increased body condition and food availability, and reduced oxidative stress. Moreover, lizards could have been selected for higher resistance against hemoparasites at lowlands (where higher rates of replication are expected), thus reducing hemoparasite prevalence and load. Our findings imply that, in a scenario of climate warming, populations of lizards at high elevation may face increased abundance of ectoparasites, accompanied with strong negative effects.
Collapse
Affiliation(s)
- Lola Álvarez-Ruiz
- Centro de Investigaciones sobre Desertificación-CSIC, Ctra. Náquera Km. 4.5, Moncada, Valencia, E-46113, Spain
| | - Rodrigo Megía-Palma
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, c/José Gutiérrez Abascal 2, Madrid, E-28006, Spain
| | - Senda Reguera
- Unit of Ethology and Animal Welfare, Faculty of Veterinary, University CEU Cardenal Herrera, Alfara del Patriarca, (Valencia), E-46113, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos, Diputación Provincial de Huelva, Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Huelva, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Francisco J Zamora-Camacho
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal 2, Madrid, E-28006, Spain
| | - Jordi Figuerola
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
- Departamento de Ecología de Humedales, Estación Biológica de Doñana-CSIC, c/Américo Vespucio s/n, Sevilla, E-41092, Spain
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain
| | | |
Collapse
|
19
|
Megía-Palma R, Paranjpe D, Reguera S, Martínez J, Cooper RD, Blaimont P, Merino S, Sinervo B. Multiple color patches and parasites in Sceloporus occidentalis: differential relationships by sex and infection. Curr Zool 2018; 64:703-711. [PMID: 30538729 PMCID: PMC6280098 DOI: 10.1093/cz/zoy007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/16/2018] [Indexed: 11/23/2022] Open
Abstract
Parasites generally have a negative influence on the color expression of their hosts. Sexual selection theory predicts resistant high-quality individuals should show intense coloration, whereas susceptible low-quality individuals would show poor coloration. However, intensely colored males of different species of Old and New World lizards were more often infected by hemoparasites. These results suggest that high-quality males, with intense coloration, would suffer higher susceptibility to hemoparasites. This hypothesis remains poorly understood and contradicts general theories on sexual selection. We surveyed a population of Sceloporus occidentalis for parasites and found infections by the parasite genera Lankesterella and Acroeimeria. In this population, both males and females express ventral blue and yellow color patches. Lankesterella was almost exclusively infecting males. The body size of the males significantly predicted the coloration of both blue and yellow patches. Larger males showed darker (lower lightness) blue ventral patches and more saturated yellow patches that were also orange-skewed. Moreover, these males were more often infected by Lankesterella than smaller males. The intestinal parasite Acroeimeria infected both males and females. The infection by intestinal parasites of the genus Acroeimeria was the best predictor for the chroma in the blue patch of the males and for hue in the yellow patch of the females. Those males infected by Acroeimeria expressed blue patches with significantly lower chroma than the uninfected males. However, the hue of the yellow patch was not significantly different between infected and uninfected females. These results suggest a different effect of Lankesterella and Acroeimeria on the lizards. On the one hand, the intense coloration of male lizards infected by Lankesterella suggested high-quality male lizards may tolerate it. On the other hand, the low chroma of the blue coloration of the infected males suggested that this coloration could honestly express the infection by Acroeimeria.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Department of Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2., Madrid, Spain
| | - Dhanashree Paranjpe
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Senda Reguera
- Department of Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Martínez
- Area Parasitología, Department of Biomedicina y Biotecnología, Área de Parasitología, Facultad de Farmacia, Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Pauline Blaimont
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Santiago Merino
- Department of Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2., Madrid, Spain
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Neuman-Lee LA, French SS. Endocrine-reproductive-immune interactions in female and male Galápagos marine iguanas. Horm Behav 2017; 88:60-69. [PMID: 27818221 DOI: 10.1016/j.yhbeh.2016.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Endocrine-immune interactions are variable across species and contexts making it difficult to discern consistent patterns. There is a paucity of data in non-model systems making these relationships even more nebulous, particularly in reptiles. In the present study, we have completed a more comprehensive test of the relationship among steroid hormones and ecologically relevant immune measures. We tested the relationship between baseline and stress-induced levels of sex and adrenal steroid hormones and standard ecoimmunological metrics in both female and male Galápagos marine iguanas (Amblyrhynchus cristatus). We found significant associations between adrenal activity and immunity, whereby females that mounted greater corticosterone responses to stress had lower basal and stress-induced immunity (i.e., bactericidal ability). Males showed the opposite relationship, suggesting sex-specific immunomodulatory actions of corticosterone. In both sexes, we observed a stress-induced increase in corticosterone, and in females a stress-induced increase in bactericidal ability. Consistent with other taxa, we also found that baseline corticosterone and testosterone in males was inversely related to baseline bactericidal ability. However, in females, we found a positive relationship between both testosterone and progesterone and bactericidal ability. Multivariate analysis did not discern any further endocrine-immune relationships, suggesting that interactions between adrenal, sex steroid hormones, and the immune system may not be direct and instead may be responding to other common stimuli, (i.e., reproductive status, energy). Taken together, these data illustrate significant endocrine-immune interactions that are highly dependent on sex and the stress state of the animal.
Collapse
Affiliation(s)
- Lorin A Neuman-Lee
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA; The Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA; The Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322-5205, USA.
| |
Collapse
|
21
|
McAnulty SJ, Nyholm SV. The Role of Hemocytes in the Hawaiian Bobtail Squid, Euprymna scolopes: A Model Organism for Studying Beneficial Host-Microbe Interactions. Front Microbiol 2017; 7:2013. [PMID: 28111565 PMCID: PMC5216023 DOI: 10.3389/fmicb.2016.02013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Most, if not all, animals engage in associations with bacterial symbionts. Understanding the mechanisms by which host immune systems and beneficial bacteria communicate is a fundamental question in the fields of immunology and symbiosis. The Hawaiian bobtail squid (Euprymna scolopes) engages in two known symbioses; a binary relationship with the light organ symbiont Vibrio fischeri, and a bacterial consortium within a specialized organ of the female reproductive system, the accessory nidamental gland (ANG). E. scolopes has a well-developed circulatory system that allows immune cells (hemocytes) to migrate into tissues, including the light organ and ANG. In the association with V. fischeri, hemocytes are thought to have a number of roles in the management of symbiosis, including the recognition of non-symbiotic bacteria and the contribution of chitin as a nutrient source for V. fischeri. Hemocytes are hypothesized to recognize bacteria through interactions between pattern recognition receptors and microbe-associated molecular patterns. Colonization by V. fischeri has been shown to affect the bacteria-binding behavior, gene expression, and proteome of hemocytes, indicating that the symbiont can modulate host immune function. In the ANG, hemocytes have also been observed interacting with the residing bacterial community. As a model host, E. scolopes offers a unique opportunity to study how the innate immune system interacts with both a binary and consortial symbiosis. This mini review will recapitulate what is known about the role of hemocytes in the light organ association and offer future directions for understanding how these immune cells interact with multiple types of symbioses.
Collapse
Affiliation(s)
- Sarah J McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| |
Collapse
|
22
|
Segner H, Verburg-van Kemenade BML, Chadzinska M. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:43-60. [PMID: 27404794 DOI: 10.1016/j.dci.2016.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Dept of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P.O. Box, CH-3001, Bern, Switzerland.
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
23
|
Fink AL, Klein SL. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiology (Bethesda) 2016; 30:408-16. [PMID: 26525340 DOI: 10.1152/physiol.00035.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly.
Collapse
Affiliation(s)
- Ashley L Fink
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
24
|
Abstract
Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.
Collapse
|
25
|
Priyam M, Tripathy M, Rai U, Ghorai SM. Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet Immunol Immunopathol 2016; 172:26-37. [DOI: 10.1016/j.vetimm.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
26
|
Melatonin Modulates Leukocytes Immune Responses in Freshwater Snakes,Natrix piscator. J HERPETOL 2016. [DOI: 10.1670/14-006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Foo YZ, Nakagawa S, Rhodes G, Simmons LW. The effects of sex hormones on immune function: a meta-analysis. Biol Rev Camb Philos Soc 2016; 92:551-571. [DOI: 10.1111/brv.12243] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Zhi Foo
- ARC Centre of Excellence in Cognition and its Disorders, School of Psychology, University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| | - Shinichi Nakagawa
- Department of Zoology; University of Otago; 340 Great King Street Dunedin 9016 New Zealand
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales; UNSW Sydney NSW 2052 Australia
| | - Gillian Rhodes
- ARC Centre of Excellence in Cognition and its Disorders, School of Psychology, University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| | - Leigh W. Simmons
- ARC Centre of Excellence in Cognition and its Disorders, School of Psychology, University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| |
Collapse
|
28
|
Daily and seasonal rhythms in immune responses of splenocytes in the freshwater snake, Natrix piscator. PLoS One 2015; 10:e0116588. [PMID: 25723391 PMCID: PMC4344239 DOI: 10.1371/journal.pone.0116588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Present study was designed to examine daily and seasonal variability in the innate immune responses of splenocytes in the fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleen was aseptically isolated and processed for macrophage phagocytosis, NBT reduction, nitrite production, splenocyte proliferation and serum lysozyme activity. Samples were collected at seven time points, viz., 0000, 0400, 0800, 1200, 1600, 2000 and 0000 h during three different seasons, namely summer, winter and spring. Cosinor analysis revealed that percent phagocytosis had a significant 24-h rhythm during summer and spring seasons. The peaks of rhythms in NBT reduction and nitrite release occurred in the morning hours at 10.88 h and 8.31 h, respectively, in winter. A significant 24-h rhythm was also observed in lysozyme concentration and splenocyte proliferation (both Basal and Concanavalin A stimulated) in all three seasons. A significant phase shift in splenocyte proliferation was obtained with a trend of delayed phase shift from winter to spring and from spring to summer. Of the nine variables, significant annual (seasonal) rhythms were detected in almost all variables, excluding phagocytic and splenosomatic indices. All rhythmic variables, except spleen cellularity, exhibited tightly synchronized peaks coinciding with the progressive and recrudescence phases of annual reproductive cycle. It is concluded that the snake synchronizes its daily and seasonal immune activity with the corresponding external time cues. The enhancement of immune function coinciding with one of its crucial reproductive phases might be helping it to cope with the seasonal stressors, including abundance of pathogens, which would otherwise jeopardize the successful reproduction and eventual survival of the species.
Collapse
|
29
|
Tripathi MK, Singh R. Differential suppressive effects of testosterone on immune function in fresh water snake, Natrix piscator: an in vitro study. PLoS One 2014; 9:e104431. [PMID: 25101765 PMCID: PMC4125189 DOI: 10.1371/journal.pone.0104431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022] Open
Abstract
Reptiles represent the crucial phylogenetic group as they were the ancestors of both birds and mammals hence very important to study. The objectives of the present study were to investigate the potential roles of testosterone in the innate immune responses and splenic lymphocyte proliferation in fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleens were taken out to study the splenic macrophage phagocytosis, super oxide production and nitrite release using in vitro testosterone. Splenic lymphocytes were isolated by density gradient centrifugation and were studied for mitogen induced proliferation in presence of in vitro testosterone. Testosterone suppressed the phagocytosis and nitrite release in a concentration dependent manner. Biphasic suppressive effect of testosterone was observed in superoxide production as judged by reduction of nitroblue tetrazolium salt where salt reduction was suppressed at lower and higher concentrations of testosterone. Mitogen induced splenic lymphocyte proliferation was also suppressed by testosterone. By suppressing immune responses, testosterone may, therefore, act as a physiological mechanism regulating the relative amount of energy invested into either reproductive effort or immunocompetence.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, India
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
30
|
Pittman W, Pollock NB, Taylor EN. Effect of host lizard anemia on host choice and feeding rate of larval western black-legged ticks (Ixodes pacificus). EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:471-479. [PMID: 23760685 DOI: 10.1007/s10493-013-9709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/01/2013] [Indexed: 06/02/2023]
Abstract
Although ticks are known to exhibit preferences among host species, there is little evidence that ticks select hosts within a species based on physiological condition. It may be beneficial for ticks to choose hosts that are easier to feed upon if the ticks can perceive indicative chemical or other signals from the host. For example, if ticks can detect host hematocrit they may choose hosts with high hematocrit, facilitating a faster blood meal. It may similarly be adaptive for ticks to avoid anemic hosts because it may be difficult for them to obtain an adequate meal and feeding duration may be extended. We tested the hypothesis that larval western black-legged ticks (Ixodes pacificus) detect host hematocrit using external cues and choose healthy over anemic hosts, allowing them to feed more quickly. We presented groups of larval ticks with pairs of healthy and anemic male western fence lizards (Sceloporus occidentalis), allowed them to select a host, and measured the feeding duration of the ticks. We found that the ticks did not exhibit a statistically significant preference for healthy over anemic lizards, but that the ticks fed to repletion significantly faster on healthy hosts than on anemic hosts. Larval ticks may not be able to detect external cues indicating the health of the host, at least not in terms of their hematocrit. The extended feeding duration likely reflects the extra time needed for the ticks to concentrate the blood meal of their anemic hosts.
Collapse
Affiliation(s)
- William Pittman
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407-0401, USA
| | | | | |
Collapse
|
31
|
Pollock NB, Vredevoe LK, Taylor EN. How do host sex and reproductive state affect host preference and feeding duration of ticks? Parasitol Res 2012; 111:897-907. [DOI: 10.1007/s00436-012-2916-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/23/2012] [Indexed: 12/18/2022]
|
32
|
Kumar S, Rai U. Dynorphin regulates the phagocytic activity of splenic phagocytes in wall lizards: involvement of a κ-opioid receptor-coupled adenylate-cyclase-cAMP-PKA pathway. ACTA ACUST UNITED AC 2012; 214:4217-22. [PMID: 22116765 DOI: 10.1242/jeb.062935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This in vitro study of the wall lizard Hemidactylus flaviviridis demonstrates the role of the opioid peptide dynorphin A((1-17)) [dyn A((1-17))] in the regulation of the phagocytic activity of splenic phagocytes. Dyn A((1-17)) in a concentration-dependent manner inhibited the phagocytic activity, and the maximum inhibition was recorded at a concentration of 10(-9) mol l(-1). To explore the receptor-mediated effect of dyn A((1-17)), cells were treated simultaneously with the non-selective opioid receptor blocker naltrexone and dyn A((1-17)). Naltrexone completely blocked the inhibitory effect of dyn A((1-17)) on phagocytosis. Moreover, the involvement of selective opioid receptors was investigated using selective opioid receptor antagonists. CTAP and naltrindole, selective μ- and δ-opioid receptor blockers, respectively, failed to block the inhibitory effect of dyn A((1-17)) on phagocytosis. However, the selective κ-opioid receptor blocker NorBNI completely antagonized the inhibitory effect of dyn A((1-17)). Regarding the κ-opioid receptor-coupled downstream signaling cascade, the adenylate cyclase (AC) inhibitor SQ 22536 and protein kinase A (PKA) inhibitor H-89 decreased the inhibitory effect of dyn A((1-17)) on phagocytosis. Furthermore, treatment with dyn A((1-17)) caused an increase in intracellular cAMP content in splenic phagocytes. Thus, it can be concluded that, in H. flaviviridis, dyn A((1-17)) negatively regulates the phagocytic activity of splenic phagocytes by acting through κ-opioid receptors that are coupled with the AC-cAMP-PKA signal transduction mechanism.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
33
|
Kumar S, Rai U. Immunomodulatory role of substance P in the wall lizard Hemidactylus flaviviridis: an in vitro study. Neuropeptides 2011; 45:323-8. [PMID: 21788073 DOI: 10.1016/j.npep.2011.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 10/17/2022]
Abstract
Present in vitro investigation for the first time in ectotherms demonstrated the immunomodulatory role of substance P in the wall lizard Hemidactylus flaviviridis. Substance P inhibited the percentage phagocytosis and phagocytic index of lizard splenic phagocytes. Inhibitory effect of substance P was completely blocked by NK-1 receptor antagonist spantide I, indicating the NK-1 receptor mediated action. Further, NK-1 receptor-coupled downstream signaling cascade involved in controlling phagocytosis was explored using inhibitors of adenylate cyclase (SQ 22536) and protein kinase A (H-89). Both the inhibitors, in a concentration-related manner decreased the suppressive effect of substance P on phagocytosis. In addition, substance P treatment caused an increase in intracellular cAMP level in splenic phagocytes. Taken together, it can be suggested that substance P via NK-1 receptor-coupled AC-cAMP-PKA pathway modulated the phagocytic activity of splenic phagocytes in wall lizards.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
34
|
Kumar S, Rai U. Neuropeptide Y, an orexigenic hormone, regulates phagocytic activity of lizard splenic phagocytes. Peptides 2011; 32:1324-9. [PMID: 21527297 DOI: 10.1016/j.peptides.2011.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Present in vitro study in the wall lizard Hemidactylus flaviviridis, for the first time in ectothermic vertebrates, demonstrated the immunoregulatory role of neuropeptide Y (NPY) and its receptor-coupled downstream signaling cascade. NPY inhibited the percentage phagocytosis and phagocytic index of splenic phagocytes. The inhibitory effect of NPY on phagocytosis was completely antagonized by Y(2) and Y(5) receptor antagonists. This suggests that NPY mediated its effect on phagocytosis through Y(2) and Y(5) receptors. Further, NPY receptor-coupled downstream signaling cascade for NPY effect on phagocytosis was explored using the inhibitors of adenylate cyclase (SQ 22536) and protein kinase A (H-89). The SQ 22536/H-89 in a concentration-related manner decreased the inhibitory effect of NPY on phagocytosis. Further, an increase in intracellular cAMP level was observed in response to NPY. Taken together, it can be concluded that NPY via Y(2) and Y(5) receptor-coupled AC-cAMP-PKA pathway downregulated the phagocytic activity of lizard splenic phagocytes.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
35
|
Kumar S, Ghorai SM, Rai U. β-Endorphin inhibits phagocytic activity of lizard splenic phagocytes through μ receptor-coupled adenylate cyclase-protein kinase A signaling pathway. Gen Comp Endocrinol 2011; 171:301-8. [PMID: 21352825 DOI: 10.1016/j.ygcen.2011.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/05/2011] [Accepted: 02/17/2011] [Indexed: 11/21/2022]
Abstract
The receptor-coupled intracellular signaling mechanism of endogenous opioid peptide β-endorphin (β-end) is explored for the first time in ectothermic vertebrates using wall lizard as a model. β-End inhibited the percentage phagocytosis and phagocytic index of lizard splenic phagocytes in a dose-dependent manner. The inhibitory effect of β-end on phagocytosis was completely antagonized by non-selective opioid receptor antagonist naltrexone and also by selective μ-receptor antagonist CTAP. However, selective antagonists for other opioid receptors like NTI for δ-receptor and NorBNI for κ-receptor did not alter the effect of β-end on phagocytosis. This suggests that β-end mediated its inhibitory effect on phagocytic activity of splenic phagocytes exclusively through μ opioid receptors. The μ opioid receptor-coupled downstream signaling cascade was subsequently explored using inhibitors of adenylate cyclase (SQ 22536) and protein kinase A (H-89). Both SQ 22536 and H-89 abolished the inhibitory effect of β-end on phagocytosis in a concentration-related manner. Implication of cAMP as second messenger was corroborated by cAMP assay where an increase in intracellular cAMP level was observed in response to β-end treatment. It can be concluded that β-end downregulated the phagocytic activity of lizard splenic phagocytes through μ opioid receptor-coupled adenylate cyclase-cAMP-protein kinase A pathway.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | |
Collapse
|
36
|
Demas GE, Adamo SA, French SS. Neuroendocrine‐immune crosstalk in vertebrates and invertebrates: implications for host defence. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2010.01738.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory E. Demas
- Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana 47405 USA
| | - Shelley A. Adamo
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | |
Collapse
|
37
|
Singh R, Rai U. Delta opioid receptor-mediated immunoregulatory role of methionine-enkephalin in freshwater teleost Channa punctatus (Bloch.). Peptides 2009; 30:1158-64. [PMID: 19463750 DOI: 10.1016/j.peptides.2009.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 11/23/2022]
Abstract
The immunoregulatory role of methionine-enkephalin (Met-enk) is well studied in mammals, but has not been explored in ectotherms despite the fact that this peptide is highly conserved in vertebrates. The present study demonstrates the diverse effects of Met-enk depending on its concentration and specific function of splenic phagocytes in the freshwater fish Channa punctatus. Although Met-enk increased both phagocytic as well as respiratory burst activity, the concentration-related response was opposite to each other. It had the maximum stimulatory effect on phagocytosis at 10(-9)M, while the same concentration was least effective in increasing superoxide production. Similarly, Met-enk at concentrations lower or higher than 10(-9)M was either ineffective or less effective in case of phagocytosis, while highly effective in stimulating superoxide production. On the other hand, concentration-independent inhibitory effect of Met-enk was observed in case of nitrite production. Nonetheless, Met-enk regulated all the functions of phagocyte through opioid receptors since non-specific opioid receptor antagonist naltrexone completely blocked the effect of Met-enk on phagocytosis, superoxide and nitrite production by splenic phagocytes of C. punctatus. Among selective opioid receptor antagonists, delta-opioid receptor antagonist naltrindole completely antagonized the effect of Met-enk on phagocytosis, superoxide and nitrite production, while mu- and kappa-opioid receptor antagonist, CTAP and norbinaltorphimine, respectively, were ineffective in influencing any of the functions. This suggests that Met-enk modulates splenic phagocyte functions in the fish C. punctatus via delta-opioid receptor. This is further substantiated by using highly selective delta-opioid receptor agonist, SNC80.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
38
|
Dubey N, Lal B. Paracrine role of macrophage produced-nitric oxide (NO) in Leydig cell steroidogenesis in a teleost, Clarias batrachus: Impact of gonadotropin, growth hormone and insulin on NO production by testicular macrophages. Gen Comp Endocrinol 2009; 160:12-8. [PMID: 18977357 DOI: 10.1016/j.ygcen.2008.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
Abstract
The present in vitro study for the first time demonstrates the role of extragonadal hormones in regulation of NO production by testicular macrophages in vertebrates and paracrine role of NO in Leydig cell steroidogenesis in fishes. N-nitro L-arginine methyl ester (L-NAME - a NOS inhibitor) treatment substantially reduced NO production by testicular macrophages suggesting that testicular macrophages are one of the sources of testicular NO in the catfish, Clarias batrachus. Significant decline in NO production was also recorded following treatment of macrophages with the gonadotropin (GtH), growth hormone (GH) and insulin indicating that macrophage-produced NO is under endocrine inhibitory control. Treatment of Leydig cells with sodium nitroprusside (SNP) decreased testosterone (T) production. SNP treatment also remarkably suppressed the GtH, GH and insulin-stimulated T production by Leydig cells indicating that Leydig cell steroidogenesis is sensitive to exogenous NO. Further, effect of conditioned medium of testicular macrophages incubated with medium alone (non-treated TMCM) or GtH (GtH-treated TMCM) or GH (GH-treated TMCM) or insulin (insulin-treated TMCM) were also observed on Leydig cell T production. Non-treated TMCM as well as hormone-treated TMCM stimulated T production by Leydig cells; hormone-treated TMCM were more effective in stimulating T production than non-treated TMCM and/or hormones alone. These experiments altogether suggest that testicular macrophage secrete some factors, which influence Leydig cell steroidogenic activity through paracrine mechanism, and these paracrine secretions are under the endocrine control. Decline in NO in hormone-treated TMCM might also be one of the reasons for more stimulation in T production than that of hormones alone.
Collapse
Affiliation(s)
- Neelima Dubey
- Department of Zoology, Fish Endocrinology Laboratory, Banaras Hindu University, Varanasi, U.P., India
| | | |
Collapse
|
39
|
Khan UW, Rai U. Role of gonadotropin and Leydig cell-secreted factors in the control of testicular macrophage activities in the wall lizard Hemidactylus flaviviridis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:348-55. [PMID: 17825411 DOI: 10.1016/j.dci.2007.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/11/2007] [Accepted: 07/02/2007] [Indexed: 05/17/2023]
Abstract
The present in vitro study for the first time demonstrates the endocrine and paracrine control of testicular macrophage activities in ectodermic vertebrates. Follicle-stimulating hormone (FSH) increased phagocytosis and superoxide production by macrophages. In regard to paracrine control, non-activated Leydig cell-conditioned medium (LCCM) decreased both the activities, whereas FSH-preactivated LCCM had differential effects: inhibitory on phagocytosis and stimulatory on superoxide production. However, FSH-activated LCCM, in addition to superoxide production, also enhanced phagocytosis. After heat inactivation, FSH-activated LCCM inhibited both the activities. Addition of FSH resulted in stimulation of phagocytosis, while partially restored the superoxide production. It can be speculated that androgen in heat-inactivated FSH-activated LCCM, in the presence of FSH, instead of inhibitory had stimulatory effect on phagocytosis, but remained inhibitory to superoxide production. Further, FSH-induced Leydig cell-secreted non-steroidal heat-labile factors appear to have stimulatory effect on superoxide production. This was corroborated by experiments with dihydrotestosterone in presence/absence of FSH.
Collapse
Affiliation(s)
- Uniza W Khan
- Comparative Immuno-endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
40
|
Singh L, Tyagi S, Rizvi MA, Goel HC. Effect of Tinospora cordifolia on gamma ray-induced perturbations in macrophages and splenocytes. JOURNAL OF RADIATION RESEARCH 2007; 48:305-15. [PMID: 17548939 DOI: 10.1269/jrr.07001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tinospora cordifolia (RTc) has already been reported to protect whole-body lethally irradiated mice. This study has focussed on certain aspects of immuno-competence, which are adversely affected by irradiation. This study included estimation of spleen size, cell count, DNA fragmentation and apoptosis in splenocytes. The adherence, spreading and phagocytic activities of macrophages were also assessed. Cytokines in serum and anti-oxidants in plasma were also estimated. Administration of RTc (200 mg/kg.b.wt.) one hour before irradiation showed recovery of spleen weight from 49% of control in irradiated group to 93%; apoptosis from 19% to 2.8%; DNA fragmentation from 43% to 20.4%; macrophage adherence form 75% of control to 120% and macrophage spread size from 8 microm to 15 microm. RTc also stimulated proliferation in splenocytes in a dose-dependent manner. RTc administration before irradiation also increased levels of IL-1beta and GM-CSF levels, from 56 pg/ml and 53 pg/ml respectively in irradiated group to 59 pg/ml and 63 pg/ml. Similarly, radiation-induced decrease of anti-oxidant potential of plasma (32 Fe(2+) equiv.) as compared to control (132 Fe(2+) equiv.) was countered by administration of RTc before irradiation (74.2 Fe(2+) equiv.) RTc treatment thus reveals several radio-protective mechanisms.
Collapse
Affiliation(s)
- Lakshman Singh
- Department of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | |
Collapse
|
41
|
Cope RB, Fabacher DL, Lieske C, Miller CA. Resistance of a Lizard (the Green Anole, Anolis carolinensis; Polychridae) to Ultraviolet Radiation-induced Immunosuppression¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740046roaltg2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Klein SL. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol 2004; 26:247-64. [PMID: 15541029 DOI: 10.1111/j.0141-9838.2004.00710.x] [Citation(s) in RCA: 463] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The prevalence and intensity of infections caused by protozoa, nematodes, trematodes, cestodes, and arthropods is higher in males than females. The primary thesis of this review is that immunological differences exist between the sexes that may underlie increased parasitism in males compared to females. Several field and laboratory studies link sex differences in immune function with circulating steroid hormones; thus, the roles of sex steroids, including testosterone, oestradiol, and progesterone, as well as glucocorticoids will be discussed. Not only can host hormones affect responses to infection, but parasites can both produce and alter hormone concentrations in their hosts. The extent to which changes in endocrine-immune interactions following infection are mediated by the host or the parasite will be considered. Although males are more susceptible than females to many parasites, there are parasites for which males are more resistant than females and endocrine-immune interactions may underlie this sex reversal. Finally, although immunological differences exist between the sexes, genetic and behavioural differences may explain some variability in response to infection and will be explored as alternative hypotheses for how differences between the sexes contribute to dimorphic responses to parasites.
Collapse
Affiliation(s)
- S L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2179, USA.
| |
Collapse
|
43
|
Kovacic U, Zele T, Osredkar J, Sketelj J, Bajrović FF. Sex-related differences in the regeneration of sensory axons and recovery of nociception after peripheral nerve crush in the rat. Exp Neurol 2004; 189:94-104. [PMID: 15296839 DOI: 10.1016/j.expneurol.2004.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/14/2004] [Accepted: 05/13/2004] [Indexed: 11/29/2022]
Abstract
Sex-related differences regarding the regeneration of nociceptive axons and the recovery of nociception after sural nerve crush injury were examined in rats. The elongation rate of the fastest regenerating sensory axons in females started to increase after the first 6 days. This resulted in about 15% greater axon elongation distance at 8 days after crush in female than in male rats as determined by the nerve pinch test. The number of regenerating sensory axons in female and male rats, however, was not different. The recovery of nociception in the instep started earlier and was more extensive in females than in males during the entire 24-week recovery period, so that the pain sensitive area was finally about 20% larger in females than in males. Although ovariectomy significantly reduced plasma estradiol concentration in female rats, it did not change the elongation distance of regenerating nociceptive axons, which remained significantly greater than in male rats. Elimination of the cells in the distal nerve segment by freezing revealed that a more effective cell support in the distal nerve segment is probably responsible for faster regeneration of nociceptive axons in females than in males, rather than the circulating female sex hormones.
Collapse
Affiliation(s)
- Uros Kovacic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
44
|
Roy B, Rai U. Dual mode of catecholamine action on splenic macrophage phagocytosis in wall lizard, Hemidactylus flaviviridis. Gen Comp Endocrinol 2004; 136:180-91. [PMID: 15028521 DOI: 10.1016/j.ygcen.2003.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/29/2003] [Accepted: 12/30/2003] [Indexed: 11/19/2022]
Abstract
In the present study, in vitro concentration-related effect of catecholamines, dopamine (DA), norepinephrine (NE), and epinephrine (E) was observed on phagocytic activity of splenic macrophages to understand the impact of sympatho-adrenal-medullary (SAM) activation on innate immunity in wall lizard Hemidactylus flaviviridis under stress condition. Restraint stress for 1 h resulted in marked suppression of macrophage phagocytosis, suggesting that supra-physiological level of catecholamines in response to SAM activation under stress suppressed phagocytosis. This interpretation was reinforced since all the catecholamines considerably reduced phagocytosis at high concentrations ranging from 10(-7) to 10(-5)M. On the contrary, DA, NE, and E at low concentrations considerably stimulated phagocytosis, which increased with the decrease of concentrations ranging from 10(-11) to 10(-15)M. Further, effect of NE and E was blocked by beta-adrenergic blocker suggesting the beta-adrenoceptor-dependent regulating mechanism of NE and E. DA acts through both beta-adrenoceptor-dependent and D1/D2 class receptor-dependent mechanism, since beta-adrenergic blocker could partially block the DA effect. beta-Adrenoceptor-linked adenylate cyclase-mediated cAMP action in modulation of phagocytic activity was evident as 3-isobutyl-1-methyl-xanthine suppressed phagocytosis. Further, to delineate the mode of dual effect of catecholamines through beta-adrenergic receptors, in vitro concentration-related effect of cAMP was investigated on macrophage phagocytosis. cAMP depending on concentration had opposite effect on phagocytosis, and its stimulatory effect at low concentrations was reversed by actinomycin D and cycloheximide, whereas these transcription and translation inhibitors, respectively, failed to alter the inhibitory effect of cAMP at high concentrations. This suggests the concentration-related two different pathways of catecholamine action, classical non-genomic at high concentration while genomic pathway at low concentration.
Collapse
Affiliation(s)
- Brototi Roy
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
45
|
Schneider CP, Schwacha MG, Samy TSA, Bland KI, Chaudry IH. Androgen-mediated modulation of macrophage function after trauma-hemorrhage: central role of 5alpha-dihydrotestosterone. J Appl Physiol (1985) 2003; 95:104-12. [PMID: 12665535 DOI: 10.1152/japplphysiol.00182.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Androgens have been implicated as the causative factor for the postinjury immune dysfunction in males; however, it remains unknown whether androgens directly affect macrophages. To study this, male mice were sham operated or subjected to trauma (i.e., midline laparotomy) and hemorrhagic shock (mean arterial pressure, 30 +/- 5 mmHg for 90 min and then resuscitated). The mice received the 5alpha-reductase inhibitor 4-hydroxyandrostenedione (4-OHA) before resuscitation. Plasma TNF-alpha, IL-6, and IL-10 levels were elevated after trauma-hemorrhage and normalized by 4-OHA. TNF-alpha and IL-6 production by splenic macrophages was decreased after injury, whereas Kupffer cell production of these mediators was enhanced. 4-OHA normalized cytokine production. Androgens suppressed cytokine production by splenic macrophages from hemorrhaged mice, whereas it enhanced TNF-alpha and IL-6 production by Kupffer cells. The addition of 4-OHA in vitro normalized cytokine production by cells treated with testosterone, but it had no effect on dihydrotestosterone-treated cells. These results indicate that androgens directly affect macrophage function in males after trauma and hemorrhagic shock and that the intracellular conversion of testosterone to dihydrotestosterone is of particular importance in mediating the androgen-induced effects.
Collapse
Affiliation(s)
- Christian P Schneider
- Department of Research, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | |
Collapse
|
46
|
Mondal S, Rai U. Dose and time-related in vitro effects of glucocorticoid on phagocytosis and nitrite release by splenic macrophages of wall lizard Hemidactylus flaviviridis. Comp Biochem Physiol C Toxicol Pharmacol 2002; 132:461-70. [PMID: 12223202 DOI: 10.1016/s1532-0456(02)00114-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GC) are usually considered to be immunosuppressive and anti-inflammatory. However, recent studies in mammals have demonstrated the diverse effects of GC on non-specific host-defense mechanism, depending on dose or duration of treatment. Hence, in the present study in vitro dose and time-related effects of glucocorticoid, i.e. hydrocortisone (HC) on phagocytosis and nitrite production by LPS-induced splenic macrophages in wall lizard Hemidactylus flaviviridis has been investigated. Hydrocortisone suppressed percentage phagocytosis, phagocytic index and nitrite production by splenic macrophages even at the lowest concentration (10(-13) M) for a short-term exposure (4 h). Hydrocortisone-induced suppression enhanced with the increase of concentration or duration of exposure time. The suppressive effect of hydrocortisone on phagocytic and cytotoxic activities of splenic macrophages was further corroborated since the pre-exposure of macrophages to glucocorticoid-receptor blocker (RU 486) considerably reduced the hydrocortisone-induced suppression of phagocytosis and nitrite production. The present study suggests that GC instead of diverse effects, has dose- and time-dependent immunosuppressive effect on non-specific host-defense immune responses in wall lizard H. flaviviridis.
Collapse
Affiliation(s)
- Soma Mondal
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
47
|
Mondal S, Rai U. In vitro effect of sex steroids on cytotoxic activity of splenic macrophages in wall lizard (Hemidactylus flaviviridis). Gen Comp Endocrinol 2002; 125:264-71. [PMID: 11884072 DOI: 10.1006/gcen.2001.7744] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sexual dimorphism was observed in nitrite release and IL-1-like molecule production by splenic macrophages of the wall lizard (Hemidactylus flaviviridis), with a higher level in females than in males. Gonadectomy in both males and females resulted in a considerable increase of nitrite and IL-1-like molecule secretion, suggesting that the sex hormones inhibit cytotoxic activity of macrophages. To verify this assumption, dose- and time-related in vitro experiments with male and female sex steroids, dihydrotestosterone (DHT) and 17beta-estradiol (E(2)), respectively, were carried out. E(2) and DHT both significantly reduced the nitrite release and IL-1-like molecule production with an increase of dose or duration of treatment.
Collapse
Affiliation(s)
- Soma Mondal
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
48
|
Gagné F, Blaise C, Aoyama I, Luo R, Gagnon C, Couillard Y, Campbell P, Salazar M. Biomarker study of a municipal effluent dispersion plume in two species of freshwater mussels. ENVIRONMENTAL TOXICOLOGY 2002; 17:149-159. [PMID: 12112623 DOI: 10.1002/tox.10046] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The toxicological effects of a primary-treated municipal effluent plume were investigated in two species of freshwater mussels, Elliptio complanata and Dreissena polymorpha, exposed for 62 days at sites upstream and downstream of an effluent outfall in the St. Lawrence River (Quebec, Canada). Levels of metallothioneins (MT), cytochrome P4501A1 activity, DNA damage, total lipids, relative levels of vitellins, and phagocytic activity (in E. complanata hemocytes) were determined after the exposure period. A parallel analysis measured heavy metals and coprostanol in mussel tissues. The results show that significant levels of coprostanol and some metals (specifically, Cu, Hg, Sb, Se, and Zn) had accumulated in mussels caged 5 km downstream of the effluent plume. Mixed-function oxidase activity, MT in gills, total lipids, DNA damage (in D. polymorpha only), and total hemolymph bacteria (in E. complanata only) had increased in these mussels, while levels of total cadmium (Cd), MT in digestive glands or whole soft tissues, phagocytic activity, and DNA damage in the digestive gland (in E. complanata only) were diminished. The exposure of mussels to surface waters contaminated by a municipal effluent led to many stress responses, depending on both the tissues and the species being examined.
Collapse
Affiliation(s)
- F Gagné
- St. Lawrence Centre, Environment Canada, 105 McGill Street, 7th floor, Montreal, Quebec, Canada H2Y 2E7.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cope RB, Fabacher DL, Lieske C, Miller CA. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression. Photochem Photobiol 2001; 74:46-54. [PMID: 11460536 DOI: 10.1562/0031-8655(2001)074<0046:roaltg>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 x 10(3) kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.
Collapse
Affiliation(s)
- R B Cope
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | | | | | | |
Collapse
|
50
|
Mondal S, Rai U. In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:391-8. [PMID: 11423311 DOI: 10.1016/s1095-6433(00)00356-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The in vitro effect of temperature on phagocytosis, nitric oxide production and interleukin-1 (IL-1) secretion by splenic phagocytes isolated from the wall lizard (Hemidactylus flaviviridis) demonstrated that changes in temperature altered non-specific defenses. The LPS-induced percentage phagocytosis and phagocytic index were recorded maximum at 25 degrees C. The phagocytic activity declined considerably when the phagocytes were incubated at low (7 and 15 degrees C) or high (37 degrees C) temperatures. The presence of bacterial lipopolysaccharide (LPS) in the incubation medium could considerably enhance the phagocytic activity of splenic phagocytes. A similar temperature-related effect was also observed on LPS-induced cytotoxic activity of phagocytes. LPS could stimulate the nitrite release indicating nitric oxide production only at 25 degrees C. Likewise, the proliferative responses of immature rat's thymocytes to LPS-induced phagocyte-conditioned medium suggest that IL-1 secretion was enhanced when phagocytes were cultured at 25 degrees C. This suggests that 25 degrees C is the optimal temperature for phagocyte functions in H. flaviviridis. The decrease or increase in temperature other than at 25 degrees C dramatically suppressed the phagocyte activities.
Collapse
Affiliation(s)
- S Mondal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | | |
Collapse
|