1
|
Bersin TV, Mapes HM, Journey ML, Beckman BR, Lema SC. Insulin-like growth factor-1 (Igf1) signaling responses to food consumption after fasting in the Pacific rockfish Sebastes carnatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111444. [PMID: 37201654 DOI: 10.1016/j.cbpa.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver after eating. Transcripts encoding igf1 also increased in the liver of refed fish 2-4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Hayley M Mapes
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
2
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
3
|
Palma M, Trenkner LH, Rito J, Tavares LC, Silva E, Glencross BD, Jones JG, Wade NM, Viegas I. Limitations to Starch Utilization in Barramundi ( Lates calcarifer) as Revealed by NMR-Based Metabolomics. Front Physiol 2020; 11:205. [PMID: 32265728 PMCID: PMC7098972 DOI: 10.3389/fphys.2020.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy: Protein (P) – with high protein content (no digestible starch); and Starch (S) – with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization.
Collapse
Affiliation(s)
- Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lauren H Trenkner
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia.,School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - João Rito
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ludgero C Tavares
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Brett D Glencross
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia
| | - John G Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, Brisbane, QLD, Australia
| | - Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
5
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
6
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
7
|
Shimizu M, Dickhoff WW. Circulating insulin-like growth factor binding proteins in fish: Their identities and physiological regulation. Gen Comp Endocrinol 2017; 252:150-161. [PMID: 28782538 DOI: 10.1016/j.ygcen.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play crucial roles in regulating the availability of IGFs to receptors and prolong the half-lives of IGFs. There are six IGFBPs present in the mammalian circulation with IGFBP-3 being most abundant. In mammals IGFBP-3 is the major carrier of circulating IGFs, facilitated by forming a ternary complex with IGF and an acid-labile subunit (ALS). IGFBP-1 is generally inhibitory to IGF action by preventing it from interacting with its receptors. In teleosts, the third-round of vertebrate whole genome duplication created paralogs of each IGFBP, except IGFBP-4. In the fish circulation, three major IGFBPs are typically detected at molecular ranges of 20-25, 28-32 and 40-50kDa. However, their identities are not well established. Three major circulating IGFBPs in Chinook salmon have been identified through protein purification and cDNA cloning. Salmon 28- and 22-kDa IGFBPs are co-orthologs of IGFBP-1, termed IGFBP-1a and -1b, respectively. They are induced under catabolic conditions such as stress and fasting but their responses are somewhat different, with IGFBP-1b being the most sensitive of the two. Cortisol stimulates production and secretion of these IGFBP-1 subtypes while, unlike in mammals, insulin may not be a primary suppressor. Salmon 41-kDa IGFBP, a major carrier of IGF-I, is not IGFBP-3, as might be expected extrapolating from mammals, but is in fact IGFBP-2b. Salmon IGFBP-2b levels in plasma are high when fish are fed, and GH treatment increases its circulating levels similar to mammalian IGFBP-3. These findings suggest that salmon IGFBP-2b acquired the role and regulation similar to mammalian IGFBP-3. Multiple replications of fish IGFBPs offer a unique opportunity to investigate molecular evolution of IGFBPs.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Walton W Dickhoff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
8
|
Comparison of the transcriptional responses of skeletal muscle and bone to a flooding dose of leucine in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:50-57. [DOI: 10.1016/j.cbpb.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
|
9
|
Vélez EJ, Lutfi E, Azizi S, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:67-73. [PMID: 26688542 DOI: 10.1016/j.cbpb.2015.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Fuentes EN, Einarsdottir IE, Paredes R, Hidalgo C, Valdes JA, Björnsson BT, Molina A. The TORC1/P70S6K and TORC1/4EBP1 signaling pathways have a stronger contribution on skeletal muscle growth than MAPK/ERK in an early vertebrate: Differential involvement of the IGF system and atrogenes. Gen Comp Endocrinol 2015; 210:96-106. [PMID: 25449137 DOI: 10.1016/j.ygcen.2014.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022]
Abstract
Knowledge about the underlying mechanisms, particularly the signaling pathways that account for muscle growth in vivo in early vertebrates is still scarce. Fish (Paralichthys adspersus) were fasted for 3weeks to induce a catabolic period of strong muscle atrophy. Subsequently, fish were refed for 2weeks to induce compensatory muscle hypertrophy. During refeeding, the fish were treated daily with either rapamycin (TORC blocker), PD98059 (MEK blocker), or PBS (V; vehicle), or were untreated (C; control). Rapamycin and PD98059 differentially impaired muscle cellularity in vivo, growth performance, and the expression of growth-related genes, and the inhibition of TORC1 had a greater impact on fish muscle growth than the inhibition of MAPK. Blocking TORC1 inhibited the phosphorylation of P70S6K and 4EBP1, two downstream components activated by TORC1, thus affecting protein contents in muscle. Concomitantly, the gene expression in muscle of igf-1, 2 and igfbp-4, 5 was down-regulated while the expression of atrogin-1, murf-1, and igfbp-2, 3 was up-regulated. Muscle hypertrophy was abolished and muscle atrophy was promoted, which finally affected body weight. TORC2 complex was not affected by rapamycin. On the other hand, the PD98059 treatment triggered ERK inactivation, a downstream component activated by MEK. mRNA contents of igf-1 in muscle were down-regulated, and muscle hypertrophy was partially impaired. The present study provides the first direct data on the in vivo contribution of TORC1/P70S6K, TORC1/4EBP1, and MAPK/ERK signaling pathways in the skeletal muscle of an earlier vertebrate, and highlights the transcendental role of TORC1 in growth from the cellular to organism level.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile.
| | - Ingibjörg Eir Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, S-40530 Gothenburg, Sweden
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Juan Antonio Valdes
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, S-40530 Gothenburg, Sweden
| | - Alfredo Molina
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Av. Republica 217, Santiago, Chile.
| |
Collapse
|
11
|
Fuentes-Santamaría V, Alvarado JC, Gabaldón-Ull MC, Manuel Juiz J. Upregulation of insulin-like growth factor and interleukin 1β occurs in neurons but not in glial cells in the cochlear nucleus following cochlear ablation. J Comp Neurol 2014; 521:3478-99. [PMID: 23681983 DOI: 10.1002/cne.23362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
One of the main mechanisms used by neurons and glial cells to promote repair following brain injury is to upregulate activity-dependent molecules such as insulin-like growth factor 1 (IGF-1) and interleukin-1β (IL-1β). In the auditory system, IGF-1 is crucial for restoring synaptic transmission following hearing loss; however, whether IL-1β is also involved in this process is unknown. In this study, we evaluated the expression of IGF-1 and IL-1β within neurons and glial cells of the ventral cochlear nucleus in adult rats at 1, 7, 15, and 30 days following bilateral cochlear ablation. After the lesion, significant increases in both the overall mean gray levels of IGF-1 immunostaining and the mean gray levels within cells of the cochlear nucleus were observed at 1, 7, and 15 days compared with control animals. The expression and distribution of IL-1β in the ventral cochlear nucleus of ablated animals was temporally and spatially correlated with IGF-1. We also observed a lack of colocalization between IGF-1 and IL-1β with either astrocytes or microglia at any of the time points following ablation. These results suggest that the upregulation of IGF-1 and IL-1β levels within neurons-but not within glial cells-may reflect a plastic mechanism involved in repairing synaptic homeostasis of the overall cellular environment of the cochlear nucleus following bilateral cochlear ablation.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Institute for Research on Neurological Disorders (IDINE), Faculty of Medicine, University of Castilla-La Mancha, 02006, Albacete, Spain
| | | | | | | |
Collapse
|
12
|
Fuentes EN, Valdés JA, Molina A, Björnsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol 2013; 192:136-48. [PMID: 23791761 DOI: 10.1016/j.ygcen.2013.06.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/17/2022]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
13
|
Macqueen DJ, Garcia de la Serrana D, Johnston IA. Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. Mol Biol Evol 2013; 30:1060-76. [PMID: 23360665 PMCID: PMC3670735 DOI: 10.1093/molbev/mst017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Whole-genome duplication (WGD) was experienced twice by the vertebrate ancestor (2 rounds; 2R), again by the teleost fish ancestor (3R) and most recently in certain teleost lineages (4R). Consequently, vertebrate gene families are often expanded in 3R and 4R genomes. Arguably, many types of “functional divergence” present across 2R gene families will exceed that between 3R/4R paralogs of genes comprising 2R families. Accordingly, 4R offers a form of replication of 2R. Examining whether this concept has implications for molecular evolutionary research, we studied insulin-like growth factor (IGF) binding proteins (IGFBPs), whose six 2R family members carry IGF hormones and regulate interactions between IGFs and IGF1-receptors (IGF1Rs). Using phylogenomic approaches, we resolved the complete IGFBP repertoire of 4R-derived salmonid fishes (19 genes; 13 more than human) and established evolutionary relationships/nomenclature with respect to WGDs. Traits central to IGFBP action were determined for all genes, including atomic interactions in IGFBP–IGF1/IGF2 complexes regulating IGF–IGF1R binding. Using statistical methods, we demonstrate that attributes of these protein interfaces are overwhelming a product of 2R IGFBP family membership, explain 49–68% of variation in IGFBP mRNA concentration in several different tissues, and strongly predict the strength and direction of IGFBP transcriptional regulation under differing nutritional states. The results support a model where vertebrate IGFBP family members evolved divergent structural attributes to provide distinct competition for IGFs with IGF1Rs, predisposing different functions in the regulation of IGF signaling. Evolution of gene expression then acted to ensure the appropriate physiological production of IGFBPs according to their structural specializations, leading to optimal IGF-signaling according to nutritional-status and the endocrine/local mode of action. This study demonstrates that relatively recent gene family expansion can facilitate inference of functional evolution within ancient genetic systems.
Collapse
Affiliation(s)
- Daniel J Macqueen
- Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom.
| | | | | |
Collapse
|
14
|
Expression of insulin-like growth factor-1 of orange-spotted grouper (Epinephelus coioides) in yeast Pichia pastoris. Protein Expr Purif 2012; 84:80-5. [DOI: 10.1016/j.pep.2012.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 03/27/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022]
|
15
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
16
|
Shimizu M, Suzuki S, Horikoshi M, Hara A, Dickhoff WW. Circulating salmon 41-kDa insulin-like growth factor binding protein (IGFBP) is not IGFBP-3 but an IGFBP-2 subtype. Gen Comp Endocrinol 2011; 171:326-31. [PMID: 21354155 DOI: 10.1016/j.ygcen.2011.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 01/23/2011] [Accepted: 02/20/2011] [Indexed: 11/17/2022]
Abstract
In vertebrates, most circulating insulin-like growth factor (IGF) is bound to multiple forms of IGF-binding proteins (IGFBPs) that differ both structurally and functionally. In mammals, the largest reservoir of IGF in the circulation comes from a large (150kDa) ternary complex comprised of IGF bound to IGFBP-3, which is bound to an acid label subunit (ALS), and this variant of IGFBP is regulated by growth hormone (GH) and feed intake. Although multiple variants of IGFBPs ranging from 20 to 50kDa have been found in fishes, no ternary complex is present and it has been assumed that the majority of circulating IGF is bound to fish IGFBP-3. Consistent with this assumption is previous work in salmon showing the presence of a 41-kDa IGFBP that is stimulated by GH, decreases with fasting and increases with feeding. However, the hypothesis that the salmon 41-kDa IGFBP is structurally homologous to mammalian IGFBP-3 has not been directly tested. To address this issue, we cloned cDNAs for several Chinook salmon IGFBPs, and found that the cDNA sequence of the 41-kDa IGFBP is most similar to that of mammalian IGFBP-2 and dissimilar to IGFBP-3. We found an additional IGFBP (termed IGFBP-2a) with high homology to mammalian IGFBP-2. These results demonstrate that salmon 41-kDa IGFBP is not IGFBP-3, but a paralog of IGFBP-2 (termed IGFBP-2b). Salmon IGFBP-2s are also unique in terms of having potential N-glycosylation sites and splice variants. Additional research on non-mammalian IGFBPs is needed to fully understand the molecular/functional evolution of the IGFBP family and the significance of the ternary complex in vertebrates.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | | | | | | | | |
Collapse
|
17
|
Fuentes EN, Björnsson BT, Valdés JA, Einarsdottir IE, Lorca B, Alvarez M, Molina A. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1532-42. [PMID: 21389330 DOI: 10.1152/ajpregu.00535.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The insulin-like growth factor-I (IGF-I) is a key regulator of skeletal muscle growth in vertebrates, promoting mitogenic and anabolic effects through the activation of the MAPK/ERK and the PI3K/Akt signaling pathways. Nutrition also affects skeletal muscle growth, activating intracellular pathways and inducing protein synthesis and accretion. Thus, both hormonal and nutritional signaling regulate muscle mass. In this context, plasma IGF-I levels and the activation of both pathways in response to food were evaluated in the fine flounder using fasting and refeeding trials. The present study describes for the first time in a nonmammalian species that the MAPK/ERK and PI3K/Akt are activated by exogenous circulating IGF-I, as well as showing that the MAPK/ERK pathway activation is modulated by the nutritional status. Also, these results show that there is a time-dependent regulation of IGF-I plasma levels and its signaling pathways in muscle. Together, these results suggest that the nutritionally managed IGF-I could be regulating the activation of the MAPK/ERK and the PI3K/Akt signaling pathways differentially according to the nutritional status, triggering different effects in growth parameters and therefore contributing to somatic growth in fish. This study contributes to the understanding of the nutrient regulation of IGF-I and its signaling pathways in skeletal muscle growth in nonmammalian species, therefore providing insight concerning the events controlling somatic growth in vertebrates.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
18
|
Beckman BR. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocrinol 2011; 170:233-52. [PMID: 20800595 DOI: 10.1016/j.ygcen.2010.08.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/11/2022]
Abstract
Many physiological processes are modulated by the endocrine system, including growth. Insulin-like growth factor 1 is one of the primary hormones involved in growth regulation in vertebrates, including fishes. Current work on IGF1 in fishes is driven both by a desire to better understand mechanisms of growth as well as to develop a reliable index of growth rate. A review of studies relating IGF1 to growth broadly reveals positive and significant relations between IGF1 and growth; however, relations found in individual studies range from no correlation to highly significant correlations. Potential sources for this variation include both biological and methodological issues and range from differences in how growth is defined (changes in length or weight), the duration of growth assessed (weeks to months) and how growth is calculated (total change, rate, percent change); yet, these methodological concerns cannot account for all the variation found. A further review of the literature reveals a number of physiological conditions and environmental factors that might influence IGF1 level and the subsequent relation of that IGF1 level to growth rate. The term concordance is introduced to categorize factors that influence IGF1 and growth in a similar fashion, such that positive and significant relations between IGF1 and growth are maintained even though the factor stimulates changes in IGF1 level. Conversely, the term discordance is introduced to categorize factors that stimulate changes in the relations between IGF1 and growth, such that IGF1 is not an efficacious index of growth for both pre and post-stimulus fish combined. IGF1 and growth relations generally remain concordant after changes in nutrition (consumption rate or diet). Differences in IGF1 level of juvenile, maturing male and maturing female fish are common and IGF1-growth relations appear discordant between these groups. Acute changes in temperature and salinity induce discordant relations between IGF1 and growth but acclimation to persistent differences in environmental condition generally result in concordant relations. Overall, by discriminating between fish of differing physiological status and discerning and categorizing differences among environments one may effectively use IGF1 as a growth index for fishes.
Collapse
Affiliation(s)
- Brian R Beckman
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA.
| |
Collapse
|
19
|
Jurczyk A, Roy N, Bajwa R, Gut P, Lipson K, Yang C, Covassin L, Racki WJ, Rossini AA, Phillips N, Stainier DYR, Greiner DL, Brehm MA, Bortell R, diIorio P. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 2011; 170:334-45. [PMID: 20965191 PMCID: PMC3014420 DOI: 10.1016/j.ygcen.2010.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
Abstract
Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nicole Roy
- Sacred Heart University, Department of Biology, 5151 Park Ave, Fairfield, CT 06825 USA
| | - Rabia Bajwa
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philipp Gut
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Kathryn Lipson
- Western New England College, Department of Physical and Biological Sciences, Springfield, MA 01119
| | - Chaoxing Yang
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Laurence Covassin
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Waldemar J. Racki
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Aldo A. Rossini
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nancy Phillips
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Didier Y. R. Stainier
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Dale L. Greiner
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Michael A. Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Rita Bortell
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philip diIorio
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
- Corresponding author. Address: University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, Worcester, MA 01605, United States. Fax: 508-856-4093. Phone: 508-856-3679
| |
Collapse
|
20
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|
21
|
Shimizu M, Cooper KA, Dickhoff WW, Beckman BR. Postprandial changes in plasma growth hormone, insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins in coho salmon fasted for varying periods. Am J Physiol Regul Integr Comp Physiol 2009; 297:R352-61. [DOI: 10.1152/ajpregu.90939.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined postprandial changes in circulating growth hormone (GH), insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins (IGFBPs) in yearling coho salmon under different feeding regimes. Fish were initially fasted for 1 day, 1 wk, or 3 wk. Fasted fish were then fed, and blood was collected at 4-h intervals over 26 h. After the various periods of fasting, basal levels of insulin were relatively constant, whereas those of IGF-I, IGFBPs and GH changed in proportion to the duration of the fast. A single meal caused a rapid, large increase in the circulating insulin levels, but the degree of the increase was influenced by the fasting period. IGF-I showed a moderate increase 2 h after the meal but only in the regularly fed fish. Plasma levels of 41-kDa IGFBP were increased in all groups within 6 h after the single meal. The fasting period did not influence the response of 41-kDa IGFBP to the meal. IGFBP-1 and GH decreased after the meal to the same extent among groups regardless of the fasting period. The present study shows that insulin and IGF-I respond differently to long (weeks)- and short (hours)-term nutritional changes in salmon; insulin maintains its basal level but changes acutely in response to food intake, whereas IGF-I adjusts its basal levels to the long-term nutritional status and is less responsive to acute nutritional input. IGFBPs maintain their sensitivity to food intake, even after prolonged fasting, suggesting their critical role in the nutritional regulation of salmon growth.
Collapse
|
22
|
Cao YB, Chen XQ, Wang S, Chen XC, Wang YX, Chang JP, Du JZ. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: expression in different water environments. Gen Comp Endocrinol 2009; 161:400-6. [PMID: 19233187 DOI: 10.1016/j.ygcen.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/10/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Here, we report the cloning and characterization of growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-II from naked carp (Gymnocypris przewalskii), a native teleost fish of Lake Qinghai in the Qinghai-Tibet Plateau of China. The GH of naked carp encodes for a predicted amino acid sequence showing identities of 63%, 63%, 91% and 94% with cherry salmon, rainbow trout, zebrafish and grass carp, respectively. Compared to common carp and goldfish, evolutionary analysis showed that genome duplication has had less influence on the relaxation of purifying selection in the evolution of naked carp GH. Sequence analysis of naked carp IGF-I (ncIGF-I) and ncIGF-II showed a high degree of homology with known fish IGF-I and IGF-II. To investigate effects of salinity and ionic composition of the aquatic environment on the GH-IGF axis in naked carp, male fish held in river water were assigned randomly to 4 groups: RW (river-water), RW+Na (NaCl in RW), RW+Mg (MgCl(2) in RW) and LW (lake-water) groups. The concentrations of Na(+) in RW+Na and Mg(2+) in RW+Mg were equal to the concentrations of these ions in lake-water. After 2 days of exposure, the plasma IGF-I levels in the RW+Na and LW groups were significantly higher than the control group (RW), and the plasma GH levels of the LW group were also significantly higher than the RW group. The somatostatin (SS) levels in the hypothalamus significantly increased in the RW+Na group. After 5 days of exposure, these hormone levels did not differ significantly among groups. These results indicate that while the plasma GH and IGF-I levels are osmosensitive, the absence of a change in GH secretion in RW+Na might be partly due to a transiently increased release of hypothalamic SS induced by the stress of neutral-saline water. This is the first report of a salinity-induced increase of GH-IGF-I circulating levels in Cypriniformes.
Collapse
Affiliation(s)
- Yi-Bin Cao
- Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ponce M, Infante C, Funes V, Manchado M. Molecular characterization and gene expression analysis of insulin-like growth factors I and II in the redbanded seabream, Pagrus auriga: transcriptional regulation by growth hormone. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:418-26. [PMID: 18539063 DOI: 10.1016/j.cbpb.2008.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Insulin-like growth factors (IGFs) I and II (IGF-I and IGF-II) play important roles in fish growth and development. The present study was aimed at isolating cDNAs encoding both IGF-I and IGF-II in the redbanded seabream (Pagrus auriga), and at measuring relative gene expression levels in different organs and during larval development. A fragment of 1321 nucleotides coding for IGF-I was cloned from liver using 3' and 5' RACE techniques. It included an open reading frame of 558 nucleotides, encoding a 185-amino acid preproIGF-I. With respect to IGF-II, a fragment of 1544 nucleotides was cloned as well. The open reading frame spanned 648 nucleotides, rendering a 215-amino acid preproIGF-II. The deduced mature 67-amino acid IGF-I and 70-amino acid IGF-II exhibited high sequence identities with their corresponding fish counterparts, ranging between 88.6-100% and 79.1-98.5%, respectively. Real-time PCR showed the highest IGF-I transcripts in liver ( approximately 200-fold higher than head-kidney). In contrast, the highest IGF-II mRNAs were detected in gills and heart ( approximately 16-fold higher than head-kidney). In addition, both IGFs exhibited different gene expression patterns during larval development suggesting that their expression is developmentally regulated. IGF-I reached the highest expression levels at 18 days after hatching (11.6-fold higher than 1 day after hatching), whereas IGF-II expression did not change significantly. Both hepatic IGF-I and IGF-II mRNA levels increased sharply (3.1- and 19-fold higher than control, respectively) 3 h after injection of porcine growth hormone, but remained unchanged from 6 to 24 h after treatment. Our results are discussed in relation to those previously reported for other bony fish.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño, Camino Tiro de Pichón s/n, 11500 El Puerto de Santa María (Cádiz), Spain
| | | | | | | |
Collapse
|
24
|
Fuentes-Santamaría V, Alvarado JC, Henkel CK, Brunso-Bechtold JK. Cochlear ablation in adult ferrets results in changes in insulin-like growth factor-1 and synaptophysin immunostaining in the cochlear nucleus. Neuroscience 2007; 148:1033-47. [PMID: 17764853 DOI: 10.1016/j.neuroscience.2007.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/04/2007] [Accepted: 07/20/2007] [Indexed: 02/07/2023]
Abstract
Afferent activity modulates synaptic plasticity as well as the levels of activity-dependent molecules such as growth factors. Disruption of this activity due to deafferentation has been shown to result in an altered trophic support and consequently in changes in neuronal excitability and synaptic transmission. In the present study, to test whether lack of cochlear integrity results in changes in insulin-growth factor-1 (IGF-1) and synaptophysin immunostaining in the cochlear nucleus, the first relay structure in the auditory pathway, unilateral cochlear ablations were performed in adult ferrets. Changes in IGF-1 and synaptophysin immunostaining were assessed in the anteroventral (AVCN), posteroventral (PVCN) and dorsal cochlear nucleus (DCN) at 1, 20 and 90 days after deafferentation. An increase in IGF-1 immunostaining within AVCN, PVCN and DCN was observed ipsilaterally at all survival times after cochlear ablation when compared with the contralateral side and unoperated animals. This increase was accompanied by a significant ipsilateral increase in the mean gray level of synaptophysin immunostaining as well as a decrease in the area of synaptophysin immunostaining at 1 and 20 days after the ablation in AVCN, PVCN and DCN compared with the contralateral side and control animals. These changes in synaptophysin immunostaining were no longer present 90 days after cochlear ablation. The present results provide evidence of a persistent upregulation in IGF-1 and a transitory upregulation in synaptophysin levels in the cochlear nucleus that may reflect neuroprotective mechanisms following the loss of trophic support from spiral ganglion neurons.
Collapse
Affiliation(s)
- V Fuentes-Santamaría
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | |
Collapse
|
25
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61:288-302. [PMID: 17318882 DOI: 10.1002/syn.20373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets to evaluate possible time-dependent modifications of synaptophysin and insulin-like growth factor-1 (IGF-1) in the central nucleus of the inferior colliculus (CNIC). Using densitometric analysis, synaptophysin and IGF-1 immunostaining were assessed at 1 (PA1) and 90 (PA90) days after cochlear ablation. The results demonstrated that 1 day after the lesion there was an increase in the levels of synaptophysin immunostaining bilaterally in the CNIC compared to control animals. That increase was no longer present at 90 days after the ablation. Overall levels of IGF-1 immunostaining at PA1 were increased significantly within neurons and neuropil. However, at PA90, only IGF-1 immunostaining contralateral to the lesion was elevated compared to control animals, although elevation was less than that observed at PA1. These results suggest that cochlear ablation appears to affect synaptophysin and IGF-1 protein levels bilaterally in the CNIC.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|
26
|
Zhang DC, Huang YQ, Shao YQ, Jiang SG. Molecular cloning, recombinant expression, and growth-promoting effect of mud carp (Cirrhinus molitorella) insulin-like growth factor-I. Gen Comp Endocrinol 2006; 148:203-12. [PMID: 16707129 DOI: 10.1016/j.ygcen.2006.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/05/2006] [Indexed: 11/23/2022]
Abstract
A full-length cDNA encoding insulin-like growth factor-I (IGF-I) was cloned from mud carp (Cirrhinus molitorella) liver tissue using reverse transcription polymerase-chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The IGF-I precursor cDNA consists of 822 bp in size with a 218 bp 5'-untranslated region and 118 bp 3'-untranslated region. The 486 bp open reading frame encodes a 161 amino acid peptide with a molecular weight of 17.9 kDa. The deduced IGF-I amino acid sequence shared 82.5-97% and 82.5-84% sequence identity with fish and mammalian counterparts, respectively. The mature IGF-I was overexpressed in Escherichia coli, and the expression level of recombinant mcIGF-I reached to 34.1% of the cell total protein. After purification and refolding of recombinant mcIGF-I, growth-promoting effect of recombinant mcIGF-I was investigated, the results showed that the recombinant mcIGF-I significantly enhanced the growth rate of juvenile tilapia. After 6-week treatment, the growth rates of group 1 and 2 were 53 and 67.3% higher than the saline-treated control group. The recombinant mcIGF-I was more effective than recombinant mcGH to enhance the growth rate of juvenile tilapia. The recombinant mcIGF-I-treated fish revealed no significant changes of content of protein, lipid, ash and moisture in muscle.
Collapse
Affiliation(s)
- Dian-Chang Zhang
- Aquaculture and Biotechnology Division, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | | | | | | |
Collapse
|
27
|
Smith A, Chan SJ, Gutiérrez J. Autoradiographic and immunohistochemical localization of insulin-like growth factor-I receptor binding sites in brain of the brown trout, Salmo trutta. Gen Comp Endocrinol 2005; 141:203-13. [PMID: 15804507 DOI: 10.1016/j.ygcen.2004.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 11/26/2004] [Accepted: 12/16/2004] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor-I (IGF-I), a peptide closely related to insulin, is known to play crucial roles in brain development. While the central sites of action of IGF-I in higher vertebrates are now well established, surprisingly little is known in the teleost model where the brain undergoes continual, indeterminate, growth. In this study, we have mapped the distribution of putative IGF-I receptor (IGF-IR) binding sites in the brain of the brown trout using both ligand binding in vitro autoradiography and immunohistochemistry. The presence of IGF binding proteins (IGFBPs) was further studied by competitive inhibition using unlabelled IGF-I and des-(1-3)-IGF-I. In both juvenile and adult trout brain, [125I]IGF-I binding was highest in cerebellum and optic tectum, both regions of the teleost brain known to grow the most actively throughout life. At the cellular level, IGF-IR immunoreactivity was confirmed on cell bodies and dendrites, particularly of larger presumptive neurons including purkinje cells and dendritic fibres throughout the molecular layer of the cerebellum. Abundant IGF-IR expression in hypothalamic regions may further be related to neuron growth while a possible hypophysiotropic role will require further investigation. Competitive inhibition studies employing des-(1-3)-IGF-I also suggest IGFBPs are present in all regions exhibiting high [125I]IGF-I ligand binding and confirms the presence of this important regulatory component of the IGF-I system in the teleost brain. The importance of the IGF-I system in brain development, particularly in regions such as the cerebellum, together with the continual lifetime growth of the fish central nervous system, suggest the teleost brain is an extremely useful site for studying the actions of IGF-I in relation to neuron proliferation, growth, and survival in an adult brain.
Collapse
Affiliation(s)
- Alastair Smith
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
28
|
Abstract
The insulin-like growth factor (IGF) system plays a central role in the neuroendocrine regulation of growth in all vertebrates. Evidence from studies in a variety of vertebrate species suggest that this growth factor complex, composed of ligands, receptors, and high-affinity binding proteins, evolved early during vertebrate evolution. Among nonmammalian vertebrates, IGF signaling has been studied most extensively in fish, particularly teleosts of commercial importance. The unique life history characteristics associated with their primarily aquatic existence has fortuitously led to the identification of novel functions of the IGF system that are not evident from studies in mammals and other tetrapod vertebrates. Furthermore, the emergence of the zebrafish as a preferred model for development genetics has spawned progress in determining the requirements for IGF signaling during vertebrate embryonic development. This review is intended as a summary of our understanding of IGF signaling, as revealed through research into the expression, function, and evolution of IGF ligands, receptors, and binding proteins in fish.
Collapse
Affiliation(s)
- Antony W Wood
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
29
|
Biga PR, Schelling GT, Hardy RW, Cain KD, Overturf K, Ott TL. The effects of recombinant bovine somatotropin (rbST) on tissue IGF-I, IGF-I receptor, and GH mRNA levels in rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 2004; 135:324-33. [PMID: 14723884 DOI: 10.1016/j.ygcen.2003.10.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Numerous studies demonstrated that rbST increased growth rates in several fish species, and several species exhibit GH production in tissues other than the pituitary. The role of tissue GH and IGF-I in regulating fish growth is poorly understood. Therefore an experiment was conducted to examine the effects of rbST treatment on tissue GH, IGF-I, and IGF-I receptor-A (rA) expression in rainbow trout. Rainbow trout (550 +/- 10 g) received either intra-peritoneal injections of rbST (120 microg/g body weight) or vehicle on days 0 and 21, and tissue samples were collected on days 0, 0.5, 1, 3, 7, and 28 (n = 6/day/trt). Total RNA was isolated and assayed for steady-state levels of IGF-I, IGF-IrA, and GH mRNA using quantitative RT-PCR. Insulin-like growth factor-I mRNA levels increased in liver, gill, gonad, muscle, brain, and intestine in response to rbST treatment (P < 0.10). Liver IGF-I mRNA increased (P < 0.01) 0.5 day after treatment and remained elevated throughout the trial. Intestine IGF-I mRNA increased (P < 0.05) in treated fish from day 1 to day 3, then decreased to day 7 and increased again at day 28, and remained elevated above control levels throughout the trial. Gill IGF-I mRNA levels increased (P < 0.05) 1 day after treatment and remained elevated throughout the trial. Heart IGF-IrA mRNA levels decreased (P < 0.05) while gonad GH mRNA levels increased (P < 0.10) following rbST treatment. These results demonstrate that rbST treatment increased IGF-I mRNA levels in extra-hepatic tissues, and decreased heart IGF-IrA and increased gonad GH mRNA levels. Because the primary source for endocrine IGF-I is liver, the increased IGF-I mRNA reported in extra-hepatic tissues may indicate local paracrine/autocrine actions for IGF-I for local physiological functions.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Animal and Veterinary Science, Center for Reproductive Biology, University of Idaho, Moscow, 83844, USA
| | | | | | | | | | | |
Collapse
|
30
|
Castillo J, Codina M, Martínez ML, Navarro I, Gutiérrez J. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 286:R935-41. [PMID: 14751844 DOI: 10.1152/ajpregu.00459.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative function of IGF-I and insulin on fish muscle metabolism and growth has been investigated by the isolation and culture at different stages (myoblasts at day 1, myocytes at day 4, and myotubes at day 10) of rainbow trout muscle cells. This in vitro model avoids interactions with endogenous peptides, which could interfere with the muscle response. In these cells, the effects of IGF-I and insulin on cell proliferation, 2-deoxyglucose (2-DG), and l-alanine uptake at different development stages, and the use of inhibitors were studied and quantified. Insulin (10-1,000 nM) and IGF-I (10-100 nM) stimulated 2-DG uptake in trout myocytes at day 4 in a similar manner (maximum of 124% for insulin and of 142% for IGF-I), and this stimulation increased when cells differentiated to myotubes (maximum for IGF-I of 193%). When incubating the cells with PD-98059 and especially cytochalasin B, a reduction in 2-DG uptake was observed, suggesting that glucose transport takes place through specific facilitative transporters. IGF-I (1-100 nM) stimulated the l-alanine uptake in myocytes at day 4 (maximum of 239%), reaching higher values of stimulation than insulin (100-1,000 nM) (maximum of 160%). This stimulation decreased when cells developed to myotubes at day 10 (118% for IGF-I and 114% for insulin). IGF-I (0.125-25 nM) had a significant effect on myoblast proliferation, measured by thymidine incorporation (maximum of 170%), and required the presence of 2-5% fetal serum (FBS) to promote thymidine uptake. On the other hand, insulin was totally ineffective in stimulating thymidine uptake. We conclude that IGF-I is more effective than insulin in stimulating glucose and alanine uptake in rainbow trout myosatellite cells and that the degree of stimulation changes when cells differentiate to myotubes. IGF-I stimulates cell proliferation in this model of muscle in vitro and insulin does not. These results indicate the important role of IGF-I on growth and metabolism of fish muscle.
Collapse
Affiliation(s)
- Juan Castillo
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Capilla E, Médale F, Navarro I, Panserat S, Vachot C, Kaushik S, Gutiérrez J. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. REGULATORY PEPTIDES 2003; 110:123-32. [PMID: 12527145 DOI: 10.1016/s0167-0115(02)00212-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rainbow trout were fed for 10 weeks with either a carbohydrate-free diet (C-free) or with four experimental diets containing various levels (20 or 40%) and sources of starch (extruded wheat or peas) in order to examine metabolic utilisation of dietary vegetable carbohydrates and its endocrine control. The study was focused on the parameters described as limiting in glucose metabolism in fish. Feeding trials were conducted at 8 and 18 degrees C to establish whether carbohydrate-rich diets can be used in trout farming irrespective of water temperature. At both temperatures, pea diets (especially the highest level) resulted in a feed efficiency as high as the C-free diet. Fish had similar growth rates except when fed the low wheat content diet. Glycaemia values 6 h after feeding were significantly higher in trout fed carbohydrate diets than those given the C-free diet, whereas plasma insulin levels were similar independently of the levels of dietary starch. This study provides the first evidence that glucokinase (GK) activity and mRNA level in trout liver increase in proportion to the content of dietary starch. Nevertheless, these changes were not correlated with plasma insulin levels. Insulin-like growth factor-I (IGF-I) binding and number of receptors in skeletal muscle were consistently higher than those for insulin but no diet-induced differences were found for any of these parameters. Temperature clearly affected the postprandial profile of glucose and insulin, which both showed lower levels 6 h after feeding at 8 degrees C than at 18 degrees C, which was consistent with a lower feed intake. Glucose and insulin levels decreased markedly 24 h after feeding at 18 degrees C, while they were still high at 8 degrees C, an observation concordant with delayed transit rate. These findings indicate satisfactory adaptation of rainbow trout to diets with a relatively high vegetable starch content, especially when provided as extruded peas, and indicate that diets with increased levels of carbohydrates can be used in this species even when it is reared at low temperature.
Collapse
Affiliation(s)
- Encarnación Capilla
- Départament de Fisiologia, Facultat de Biologia, D. III, Universitat de Barcelona, Avda. Diagonal 645, E-08028, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Hogstrand C, Balesaria S, Glover CN. Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:523-35. [PMID: 12470816 DOI: 10.1016/s1096-4959(02)00125-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advent of DNA array technology and proteomics has revolutionised biology by allowing global analysis of cellular events. So far, the benefits from these new techniques have primarily been realised for well-characterised species. These organisms are rarely the most relevant for environmental biology and ecotoxicology. Thus, there is a need to explore new ways to exploit transcriptomics and proteomics for non-model species. In the present study, rainbow trout (Oncorhynchus mykiss) were exposed to a sublethal concentration of waterborne zinc for up to 6 days. The response in gill tissue was investigated by differential screening of a heterologous cDNA array and by protein profiling using Surface Enhanced Laser Desorption/Ionisation (SELDI). The cDNA array, which was a high-density spotted library of cDNA from Fugu rubripes gill, revealed differentially expressed genes related to energy production, protein synthesis, paracellular integrity, and inflammatory response. SELDI analysis yielded seven proteins that were consistently present only in zinc-exposed gills, and four proteins unique to gills from control fish. A further 11 proteins were differentially regulated. Identification of these proteins by bioinformatics proved difficult in spite of detailed information on molecular mass, charge and zinc-binding affinity. It is concluded that these approaches are viable to non-model species although both have clear limitations.
Collapse
Affiliation(s)
- Christer Hogstrand
- King's College London, Cellular and Molecular Toxicology Research Group, School of Health and Life Sciences, 150 Stamford Street, SE1 9NN, London, UK.
| | | | | |
Collapse
|
33
|
Degger B, Richardson N, Collet C, Upton Z. Production, in vitro characterisation, in vivo clearance, and tissue localisation of recombinant barramundi (Lates calcarifer) insulin-like growth factor II. Gen Comp Endocrinol 2001; 123:38-50. [PMID: 11551116 DOI: 10.1006/gcen.2001.7639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant barramundi insulin-like growth-factor-II (bIGF-II) has been produced in Escherichia coli after modification of an expression plasmid that coded for a chicken IGF-II fusion protein. The bIGF-II fusion protein, deposited in bacterial inclusion bodies, was dissolved under reducing conditions, desalted, and refolded. The protein was then released from the fusion protein by cleavage with subtilisin BPN'. Finally the protein was purified to homogeneity with a number of HPLC steps. In vitro analysis of recombinant bIGF-II demonstrated decreased potency in stimulating protein synthesis when compared to human and barramundi IGF-I (bIGF-I). The in vivo distribution of radiolabeled bIGF-II and bIGF-I in the circulation and tissue uptake of radiolabeled bIGF-II was also compared in juvenile barramundi (Lates calcarifer). Analysis of trichloroacetic acid-precipitable radioactivity in sequential samples following bolus injection of radiolabeled IGFs revealed that bIGF-II was degraded faster than bIGF-I. Moreover, neutral gel chromatography of these samples suggested this difference may be due to reduced affinity of bIGF-II, compared to blGF-I, for the IGF-binding proteins (IGFBPs) present in the barramundi circulation. Based on these results, it would appear that elements important in the function of IGFs have been well conserved during vertebrate evolution. However, to clearly define the IGF system in fish it will be necessary to characterise the IGFBPs present and to determine how they influence the biological actions of native IGFs.
Collapse
Affiliation(s)
- B Degger
- Cooperative Research Centre for Tissue Growth and Repair, School of Biological Sciences, Flinders University of South Australia, Adelaide.
| | | | | | | |
Collapse
|
34
|
Méndez E, Smith A, Figueiredo-Garutti ML, Planas JV, Navarro I, Gutiérrez J. Receptors for insulin-like growth factor-I (IGF-I) predominate over insulin receptors in skeletal muscle throughout the life cycle of brown trout, Salmo trutta. Gen Comp Endocrinol 2001; 122:148-57. [PMID: 11316420 DOI: 10.1006/gcen.2001.7621] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin and IGF-I binding has been studied in brown trout (Salmo trutta) wheat germ agglutinin semipurified receptors from embryos (organogenesis), larvae (yolk sac), juveniles (2.98 +/- 0.21 g bw) and adults (111.6 +/- 6.92 and 522 +/- 53 g bw). Embryos and larvae were sampled at 5 and 12 weeks after fertilization (December 1999 and February 2000) and juvenile and adults were taken simultaneously (July 1999) and under the same feeding conditions to minimize potential nutritional and seasonal effects. Insulin receptor number was maximal at 12 weeks (144 fmol/mg glycoprotein) and progressively decreased in subsequent samplings. No alterations in affinity were detected (K(d) range, 0.21-0.32 nM) and changes in number of receptor paralleled changes in total specific binding. IGF-I receptor number was highest at 5 weeks (1044 fmol/mg) and was significantly higher than values for insulin in all samplings. The affinity of IGF-I receptor did not change (K(d) range, 0.11-0.18 nM) but was consistently higher than that for the insulin receptor. A more rapid decrease of IGF-I binding and receptor number was found with age. However, the ratio of insulin/IGF-I binding established in 12-week-old larvae (0.18 +/- 0.01) was thereafter maintained at very similar values in juveniles and adults (0.15-0.17). Tyrosine kinase activity (TKA) for insulin receptors ranged between 136 and 183% and there were no significant changes with age. For the IGF-I receptor, TKA ranged from 174 to 281% and was significantly higher in 5-week-old larvae coincident with the highest levels of receptor number and declined gradually in parallel with binding levels. In conclusion, the greater abundance of IGF-I receptors during embryonic and larval development is maintained throughout juvenile and adult stages. This would suggest a key role for IGF-I in the growth and metabolism of trout muscle.
Collapse
Affiliation(s)
- E Méndez
- Departament de Fisiologia, Facultat de Biologia, D. III, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona, 08028, Spain
| | | | | | | | | | | |
Collapse
|