1
|
Carneiro VCL, Delicio HC, Barreto RE. Effects of stress-associated odor on ventilation rate and feeding performance in Nile tilapia. J APPL ANIM WELF SCI 2024; 27:796-806. [PMID: 36412980 DOI: 10.1080/10888705.2022.2149268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we described immediate/acute reactions to stress-related chemical cues (SC - Stress Cue) in fish. Specifically, we evaluated the effects of SC on ventilation rate (VR) and feeding behavior in Nile tilapia (Oreochromis niloticus), a highly relevant species for world aquaculture, therefore, to understand the diversity of stressful contexts and stress responses in this species have important practical applications (stress reduction). Stress cue was obtained from conspecifics exposed to a handling stressor. Stress was confirmed by measuring plasma cortisol levels. The responses to SC were contrasted to chemical control cues: a cue originated from non-stressed conspecifics and pure water (vehicle control). We observed that Nile tilapia exposed to SC had an increase in VR, but without effects on feeding behavior (feeding latency and ingestion). Thus, the SC is a stressor that induces readily stress response (VR increase), suggesting sympathetic activation, but did not change feeding performance. In practical terms, it is positive because although social propagation of stress via SC elicits a stress response, it did not harm appetite.
Collapse
Affiliation(s)
| | - Helton Carlos Delicio
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences of Botucatu, UNESP, Botucatu, Brazil
| | - Rodrigo Egydio Barreto
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences of Botucatu, UNESP, Botucatu, Brazil
- Aquaculture Center of São Paulo State University - CAUNESP, Jaboticabal, Brazil
| |
Collapse
|
2
|
Schumann S, Negrato E, Piva E, Pietropoli E, Bonato M, Irato P, Marion A, Santovito G, Bertotto D. Cortisol levels reveal species-specific stress condition in fish from PFAS polluted rivers. CHEMOSPHERE 2024; 363:142925. [PMID: 39053782 DOI: 10.1016/j.chemosphere.2024.142925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In the context of increasing environmental contamination, our study employed fish as bioindicators, focusing on non-invasive cortisol measurements in scales and fins in response to severe PFAS pollution in the Veneto area of Italy. Our preliminary findings showed species-specific stress responses, as observed in Squalius cephalus and Padogobius bonelli, suggesting the need for broader biomonitoring to capture the complex impact of environmental stressors on aquatic organisms. Moreover, due to the unusual characteristics of the rivers selected for the biomonitoring activity, a possible link between PFAS exposure and cortisol levels in S. cephalus demonstrates the method's potential.
Collapse
Affiliation(s)
- Sophia Schumann
- Department of Biology, University of Padova, 35122, Padova, PD, Italy
| | - Elena Negrato
- Department of Comparative Biomedicine and Food Science, University of Padova, 35122, Padova, PD, Italy
| | - Elisabetta Piva
- Department of Biology, University of Padova, 35122, Padova, PD, Italy
| | - Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35122, Padova, PD, Italy
| | - Marco Bonato
- Department of Biology, University of Padova, 35122, Padova, PD, Italy
| | - Paola Irato
- Department of Biology, University of Padova, 35122, Padova, PD, Italy
| | - Andrea Marion
- Department of Industrial Engineering, University of Padova, 35122, Padova, PD, Italy
| | | | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35122, Padova, PD, Italy
| |
Collapse
|
3
|
Samaras A. A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals (Basel) 2023; 13:ani13081340. [PMID: 37106903 PMCID: PMC10135258 DOI: 10.3390/ani13081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND European sea bass is a species characterized by high and dispersed cortisol levels. The aim of the present study was to analyze all published data on basal and post-acute stress cortisol levels in this species. METHODS For this systematic review and meta-analysis the Web of Science and Scopus databases were searched for papers reporting plasma or serum cortisol levels in E. sea bass, without language or date restrictions. Data were extracted directly for the reported results and were analyzed separately for basal and post-acute stress levels, as well their standardized mean differences (SMD) using random-effects meta-analyses. RESULTS Of 407 unique records identified, 69 were eligible. Basal cortisol levels had a pooled effect of 88.7 ng mL-1 (n = 57), while post-acute stress levels were 385.9 ng mL-1 (n = 34). The average SMD between basal and post-stress was calculated to be 3.02 (n = 22). All analyses had a high between-study heterogeneity. Results for basal and post-stress levels were affected by the assay type and anesthesia prior to blood sampling. CONCLUSIONS Cortisol levels in E. sea bass are higher than most studied fish species and display large heterogeneity. Application of stress led to elevated cortisol levels in all studies examined. In all cases, sources of between-studies heterogeneity were identified.
Collapse
|
4
|
Al-Emran M, Hasan NA, Khan MP, Islam SMM, Bashar A, Zulfahmi I, Shahjahan M, Sumon KA. Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29049-29061. [PMID: 34993795 DOI: 10.1007/s11356-021-17972-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The burden of pesticide use from agricultural intensification lies in the fact that pesticides may end up in aquatic ecosystems and have pernicious effects on non-target organisms, including fish. Different blood biomarkers, including hemato-biochemical indices, erythrocytic nuclear abnormalities (ENA), and erythrocytic cellular abnormalities (ECA), were observed in Nile tilapia (Oreochromis niloticus) after exposure to varying sub-lethal concentrations (0%, 5%, 10%, 20%, and 40% of 96-h LC50) of profenofos at different time intervals (7, 14, 21, and 28 days). The results revealed that glucose and white blood cell (WBC) levels significantly increased, while hemoglobin, red blood cell (RBC), and packed cell volume (PCV) significantly decreased in a time- and concentration-dependent manner. Aberrant erythrocytic morphology-derived ENA, such as nuclear degeneration, micronuclear formation, binuclear development, nuclear budding, and karyopyknosis, significantly increased with time in profenofos-exposed groups compared to controls. Between the treatment and control groups, a significant execution was discerned for teardrop and fusion type ECA. For other cellular aberrations of erythrocytes, including elongated, twin, and spindle, a significant difference appeared only at the beginning of the experiment (day 7). This study concludes that the presence of widely used profenofos in aquatic systems has a pernicious effect on Nile tilapia.
Collapse
Affiliation(s)
- Md Al-Emran
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Neaz A Hasan
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Polash Khan
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - S M Majharul Islam
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abul Bashar
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Indonesia
| | - Md Shahjahan
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
5
|
Impact of captive conditions on female germinal epithelium of the butterflyfish Chaetodon striatus (Perciformes: Chaetodontidae). ZYGOTE 2021; 29:204-215. [PMID: 33446293 DOI: 10.1017/s0967199420000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chaetodon striatus is a cosmopolitan seawater species present in aquaria all over the world and its extractivism is quite high. The lack of studies on the reproductive biology of C. striatus contributes to the difficulty in managing the species outside its natural habitat. Without knowledge of the mechanisms that control or affect gonadal changes, reproduction of C. striatus in captivity has become almost impossible, considering that the species is quite sensitive and the effect of captive conditions on its reproductive biology is unknown. Therefore, this study aimed to evaluate the effect on its reproductive biology of the animal's confinement and possible alteration in structure of the ovaries. In C. striatus, after oocyte development, for animals confined in small spaces, maturing oocytes undergo atresia. During atresia, ovarian follicles were at different stages of degeneration, characterized by the progressive loss of the basement membrane and disorganization of the follicle complex. In the advanced stage of follicular atresia, there was total loss of the basement membrane, culminating in degradation of the follicle complex. In unconfined animals, oocyte development and maturation were not affected. Confinement also affected the cell structure of the germinal epithelium, which showed large numbers of apoptotic bodies. The difference in cortisol and glucose levels between the unconfined and confined groups was significant, which may have to do with the change found in the ovaries, such as extensive follicular atresia and loss of the basement membrane.
Collapse
|
6
|
Jjunju FPM, Damon DE, Romero-Perez D, Young IS, Ward RJ, Marshall A, Maher S, Badu-Tawiah AK. Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Sci Rep 2020; 10:10698. [PMID: 32612114 PMCID: PMC7329809 DOI: 10.1038/s41598-020-67484-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
A novel strategy for the direct analysis of non-conjugated steroids in water using paper spray mass spectrometry (PS-MS) has been developed. PS-MS was used in the identification and quantification of non-conjugated (free) steroids in fish tank water samples. Data shown herein indicates that individual amounts of free steroids can be detected in aqua as low as; 0.17 ng/µL, 0.039 ng/µL, 0.43 ng/µL, 0.0076 ng/µL for aldosterone, corticosterone, cortisol, and β-estrone, respectively, and with an average relative standard deviation of ca. < 10% in the positive ion mode using PS-MS/MS. Direct detection of free steroids in a raw water mixture, from aquaculture, without prior sample preparation is demonstrated. The presence of free steroids released in fish water samples was confirmed via tandem mass spectrometry using collision-induced dissociation. This approach shows promise for rapid and direct water quality monitoring to provide a holistic assessment of non-conjugated steroids in aqua.
Collapse
Affiliation(s)
- Fred P M Jjunju
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Iain S Young
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Ryan J Ward
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Mattioli CC, Takata R, de Oliveira Paes Leme F, Costa DC, Luz RK. Physiological and metabolic responses of juvenile Lophiosilurus alexandri catfish to air exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:455-467. [PMID: 30368686 DOI: 10.1007/s10695-018-0576-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to evaluate the physiological and metabolic stress responses of juvenile Lophiosilurus alexandri submitted to an air exposure test. The subjects consisted of 72 juveniles. Blood samples were taken at: 0 h-fish not exposed to air; 0.5 h-fish shortly after exposure to air for 30 min (prior to returning to the tank); 1.5 h (90 min), 24, 48, and 96 h after the initiation of exposure to air for 30 min. After 96 h, survivorship was 100%. Cortisol and glucose levels were higher at 0.5 h, returning to baseline at 48 and 24 h, respectively. Lactate dehydrogenase levels were highest at 1.5 h after exposure to air, returning to normal values in 24 h. Several changes were recorded in gasometric blood values and electrolytes. With regard to hematology and blood chemistry, exposure to air did not affect globular volume and AST throughout the 96 h of the experiment. The values for alkaline phosphatase were highest at 0, 1.5, and 24 h. Total protein was similar between 0 and 1.5 h and lowest at 96 h, while ALT was highest at 0.5 h. Leukocytes were highest at 0.5, 1.5, 48, and 96 h, while erythrocytes were highest at 96 h. After 96 h, juvenile L. alexandri were able to reestablish the main indicators of stress (cortisol, glucose and lactate dehydrogenase), while other indicators (hematological, biochemical, and gasometric) exhibited compensatory variation for normal physiological re-establishment.
Collapse
Affiliation(s)
- Cristiano Campos Mattioli
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Rodrigo Takata
- Unidade de Pesquisa e Reprodução de Peixes, Fundação Instituto de Pesca do Estado do Rio de Janeiro, Av. Presidente Vargas, 197, Parque de Exposições, Niterói, CEP 28540-000, Brazil
| | - Fabiola de Oliveira Paes Leme
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Deliane Cristina Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil
| | - Ronald Kennedy Luz
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, n° 6627, Belo Horizonte, CEP 30161-970, Brazil.
- Laboratório de Aquacultura da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, Cep 31270-901, Brazil.
| |
Collapse
|
8
|
Cockrem JF, Bahry MA, Chowdhury VS. Cortisol responses of goldfish (Carassius auratus) to air exposure, chasing, and increased water temperature. Gen Comp Endocrinol 2019; 270:18-25. [PMID: 30287190 DOI: 10.1016/j.ygcen.2018.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/19/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Fish can respond to stimuli from the internal or external environment with activation of the hypothalamo-pituitary-interrenal (HPI) axis and the secretion of cortisol. Stimuli that activate the HPI axis of fish include short term air exposure and increases in water temperature. The present study was conducted to determine how quickly cortisol concentrations increase in goldfish subjected to an increase in water temperature, and to compare the response to an increase in water temperature with responses to other stimuli. Plasma cortisol concentrations varied widely between individual goldfish, with concentrations ranging from 9.1 to 516.0 ng/mL in goldfish on the day of arrival from the supplier. Mean cortisol concentrations in undisturbed goldfish were low (4.5 ± 1.0 ng/mL). Mean cortisol concentrations in fish exposed to air for 3 min and in fish that experienced chasing for 10 min were markedly elevated 15 min after the beginning of the stimuli (132.6 ± 31.0 and 121.1 ± 23.9 ng/mL respectively). Mean cortisol concentrations in fish that experienced an increase in water temperature rose to 22.2 ± 7.6 ng/mL after 15 min, declined to <10 ng/mL at 30 and 60 min then increased and were elevated (79.0 ± 10.8 ng/mL) at 240 min. Cortisol measurements can be used to indicate the responsiveness of fish to changes in water temperature and goldfish will be a convenient study species for the development of studies of plasticity in responses of fish to increases in water temperature that are happening due to climate change.
Collapse
Affiliation(s)
- John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand.
| | - Mohammad A Bahry
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan; Department of Animal Science, Faculty of Agriculture, Balkh University, Mazar-e-Sharif, Afghanistan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: evidence and implications. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1319-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Samaras A, Dimitroglou A, Sarropoulou E, Papaharisis L, Kottaras L, Pavlidis M. Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses. Sci Rep 2016; 6:34858. [PMID: 27703277 PMCID: PMC5050510 DOI: 10.1038/srep34858] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/05/2016] [Indexed: 11/09/2022] Open
Abstract
Understanding the stress responses of organisms is of importance in the performance and welfare of farmed animals, including fish. Especially fish in aquaculture commonly face stressors, and better knowledge of their responses may assist in proper husbandry and selection of breeding stocks. European sea bass (Dicentrarchus labrax), a species with high cortisol concentrations, is of major importance in this respect. The main objectives of the present study were to assess the repeatability and consistency of cortisol stress response and to identify differences in liver transcription profiles of European sea bass individuals, showing a consistent low (LR) or high (HR) cortisol response. The progeny of six full sib families was used, and sampled for plasma cortisol after an acute stress challenge once per month, for four consecutive months. Results suggest that cortisol responsiveness was a repeatable trait with LR and HR fish showing low or high resting, free and post-stress cortisol concentrations respectively. Finally, the liver transcription profiles of LR and HR fish showed some important differences, indicating differential hepatic regulation between these divergent phenotypes. These transcription differences were related to various metabolic and immunological processes, with 169 transcripts being transcribed exclusively in LR fish and 161 exclusively in HR fish.
Collapse
Affiliation(s)
- A Samaras
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - A Dimitroglou
- Research and Development Department, Nireus Aquaculture S.A., Greece
| | - E Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - L Papaharisis
- Research and Development Department, Nireus Aquaculture S.A., Greece
| | - L Kottaras
- Research and Development Department, Nireus Aquaculture S.A., Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
11
|
Cortisol directly impacts Flavobacterium columnare in vitro growth characteristics. Vet Res 2016; 47:84. [PMID: 27530746 PMCID: PMC4987970 DOI: 10.1186/s13567-016-0370-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
Teleost fish faced with stressful stimuli launch an endocrine stress response through activation of the hypothalamic-pituitary-interrenal axis to release glucocorticoids, in particular cortisol, into the blood. For the majority of bacterial fish pathogens, stress is considered a key factor in disease outbreaks. Based upon studies in mammals, there is considerable evidence to suggest that, besides impairing the immune system, cortisol can have a direct effect on bacterial cells. Hitherto, this intriguing field of microbial endocrinology has remained largely unexplored in aquatic diseases. The present study investigated in vitro the impact of cortisol on phenotypic traits of the fresh water fish pathogen Flavobacterium columnare. Colonies obtained from the highly virulent (HV) isolates resulted in significantly larger and more spreading colonies compared to those from the low virulent (LV) isolates. High cortisol doses added displayed a direct effect on the bacterial cells and induced a significant decrease in colony size. An additional intriguing finding was the inverse relationship between cortisol concentrations added to the broth and the spreading character of colonies retrieved, with higher cortisol doses resulting in less rhizoid to rough and even smooth colony formation (the latter only in the LV trout isolate), suggesting a dose–response effect. The loss of the rhizoid appearance of the F. columnare colonies upon administration of cortisol, and hence the loss of motility, might indicate a phenotypic change to the biofilm state. These findings form the basis for further research on the impact of glucocorticoids on other virulence factors and biofilm formation of F. columnare.
Collapse
|
12
|
Yada T, Tort L. Stress and Disease Resistance: Immune System and Immunoendocrine Interactions. FISH PHYSIOLOGY 2016. [DOI: 10.1016/b978-0-12-802728-8.00010-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Alzaid A, Hori TS, Hall JR, Rise ML, Gamperl AK. Cold-induced changes in stress hormone and steroidogenic transcript levels in cunner (Tautogolabrus adspersus), a fish capable of metabolic depression. Gen Comp Endocrinol 2015; 224:126-35. [PMID: 26188716 DOI: 10.1016/j.ygcen.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The cunner (Tautogolabrus adspersus) is a fish with a wide latitudinal distribution that is capable of going into metabolic depression during the winter months, and thus, represents a unique model to investigate the impacts of cold temperatures on the stress response. In this study, we measured resting (pre-stress) plasma cortisol levels in 10 °C and 0 °C acclimated cunner from Newfoundland, and both catecholamine and cortisol levels after they were given a standardized handling stress (i.e. 1 min air exposure). In addition, we cloned and characterized cDNAs for several key genes of the cortisol-axis [cytochrome P450scc, steroidogenic acute regulatory protein (StAR) and a glucocorticoid receptor (GR) most likely to be an ortholog of the teleost GR2], determined the tissue distribution of their transcripts, and measured their constitutive (i.e. pre-stress) transcript levels in individuals acclimated to both temperatures. In cunner acclimated to 0 °C, post-stress epinephrine and norepinephrine levels were much lower (by approximately 9- and 5-fold, respectively) compared to 10 °C acclimated fish, and these fish had relatively low resting cortisol levels (~15 ngml(-1)) and showed a typical post-stress response. In contrast, those acclimated to 10 °C had quite high resting cortisol levels (~75 ngml(-1)) that actually decreased (to ~20 ngml(-1)) post-stress before returning to pre-stress levels. Finally, fish acclimated to 10 °C had higher P450scc transcript levels in the head kidney and lower levels of GR transcript in both the head kidney and liver. Taken together, these results suggest that: (1) temperature has a profound effect on the stress response of this species; and (2) although the ancestors of this species inhabited warm waters (i.e. they are members of the family Labridae), populations of cunner from colder regions may show signs of stress at temperatures as low as 10 °C.
Collapse
Affiliation(s)
- Abdullah Alzaid
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Tiago S Hori
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
14
|
Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2015. [DOI: 10.1016/j.cbpa.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Fatira E, Papandroulakis N, Pavlidis M. Diel changes in plasma cortisol and effects of size and stress duration on the cortisol response in European sea bass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:911-919. [PMID: 24343759 DOI: 10.1007/s10695-013-9896-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
European sea bass (Dicentrarchus labrax), one of the most economically important fish in Mediterranean mariculture, shows high basal cortisol concentrations compared with other teleosts. The present study aims (a) to identify cortisol diel variation in fish held under a 12L:12D cycle and minimum handling stress, and (b) to establish the effect of fish size and stressor duration on the cortisol response. The results indicate high intrapopulation variability in plasma cortisol and a significant diel fluctuation with a peak value at dusk (18 h). Stressors of different intensity and/or duration affected the cortisol stress response in a differential manner according to fish size (and/or age). Maximum cortisol values in small-size fish were found at 1 and 2 h post-stress, depending on the duration of the stressor, while at 0.5 h post-stress in large fish regardless stress duration.
Collapse
Affiliation(s)
- E Fatira
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece
| | | | | |
Collapse
|
16
|
Liew HJ, Chiarella D, Pelle A, Faggio C, Blust R, De Boeck G. Cortisol emphasizes the metabolic strategies employed by common carp, Cyprinus carpio at different feeding and swimming regimes. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:449-64. [DOI: 10.1016/j.cbpa.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/18/2013] [Accepted: 07/28/2013] [Indexed: 01/19/2023]
|
17
|
Nagrodski A, Murchie KJ, Stamplecoskie KM, Suski CD, Cooke SJ. Effects of an experimental short-term cortisol challenge on the behaviour of wild creek chub Semotilus atromaculatus in mesocosm and stream environments. JOURNAL OF FISH BIOLOGY 2013; 82:1138-1158. [PMID: 23557296 DOI: 10.1111/jfb.12049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/16/2012] [Indexed: 06/02/2023]
Abstract
The consequences of stress on the behaviour of wild creek chub Semotilus atromaculatus outside the reproductive period were studied using a single intra-coelomic injection of cortisol, suspended in coconut butter, to experimentally raise plasma cortisol levels. Behaviour between cortisol-treated, sham-treated (injected with coconut butter) and control S. atromaculatus was compared in a mesocosm system, using a passive integrated transponder array, and in a natural stream system (excluding shams), using surgically implanted radio transmitters. While laboratory time-course studies revealed that the cortisol injection provided a physiologically relevant challenge, causing prolonged (c. 3 days) elevations of plasma cortisol similar to that achieved with a standardized chasing protocol, no differences in fine-scale movements were observed between cortisol-treated, sham-treated and control S. atromaculatus nor in the large-scale movements of cortisol-treated and control S. atromaculatus. Moreover, no differences were observed in diel activity patterns among treatments. Differential mortality, however, occurred starting 10 days after treatment where cortisol-treated S. atromaculatus exhibited nearly twice as many mortalities as shams and controls. These results suggest that, although the experimental manipulation of cortisol titres was sufficient to cause mortality in some individuals, there were compensatory mechanisms that maintained behaviours (i.e. including activity and movement) prior to death. This study is one of the first to use experimental cortisol implants outside a laboratory environment and during the non-reproductive period and yields insight into how wild animals respond to additional challenges (in this case elevated cortisol) using ecologically meaningful endpoints.
Collapse
Affiliation(s)
- A Nagrodski
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | | | | | | | | |
Collapse
|
18
|
Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol 2013; 181:45-58. [PMID: 23298571 DOI: 10.1016/j.ygcen.2012.11.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 12/30/2022]
Abstract
When stimuli from the environment are perceived to be a threat or potential threat then animals initiate stress responses, with activation of the hypothalamo-pituitary-adrenal axis and secretion of glucocorticoid hormones (cortisol and corticosterone). Whilst standard deviation or standard error values are always reported, it is only when graphs of individual responses are shown that the extensive variation between animals is apparent. Some animals have little or no response to a stressor that evokes a relatively large response in others. Glucocorticoid responses of fish, amphibian, reptiles, birds, and mammals are considered in this review. Comparisons of responses between animals and groups of animals focused on responses to restraint or confinement as relatively standard stressors. Individual graphs could not be found in the literature for glucocorticoid responses to capture or restraint in fish or reptiles, with just one graph in mammals with the first sample was collected when animals were initially restrained. Coefficients of variation (CVs) calculated for parameters of glucocorticoid stress responses showed that the relative magnitudes of variation were similar in different vertebrate groups. The overall mean CV for glucocorticoid concentrations in initial (0 min) samples was 74.5%, and CVs for samples collected over various times up to 4 h were consistently between 50% and 60%. The factors that lead to the observed individual variation and the extent to which this variation is adaptive or non-adaptive are little known in most animals, and future studies of glucocorticoid responses in animals can focus on individual responses and their origins and significance.
Collapse
Affiliation(s)
- John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
19
|
Poursaeid S, Falahatkar B, Mojazi Amiri B, Van Der Kraak G. Effects of long-term cortisol treatments on gonadal development, sex steroids levels and ovarian cortisol content in cultured great sturgeon Huso huso. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:111-9. [DOI: 10.1016/j.cbpa.2012.05.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/29/2022]
|
20
|
Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L. Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:85-105. [PMID: 21681416 DOI: 10.1007/s10695-011-9517-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/20/2011] [Indexed: 05/04/2023]
Abstract
This brief review focuses on health and biological function as cornerstones of fish welfare. From the function-based point of view, good welfare is reflected in the ability of the animal to cope with infectious and non-infectious stressors, thereby maintaining homeostasis and good health, whereas stressful husbandry conditions and protracted suffering will lead to the loss of the coping ability and, thus, to impaired health. In the first part of the review, the physiological processes through which stressful husbandry conditions modulate health of farmed fish are examined. If fish are subjected to unfavourable husbandry conditions, the resulting disruption of internal homeostasis necessitates energy-demanding physiological adjustments (allostasis/acclimation). The ensuing energy drain leads to trade-offs with other energy-demanding processes such as the functioning of the primary epithelial barriers (gut, skin, gills) and the immune system. Understanding of the relation between husbandry conditions, allostatic responses and fish health provides the basis for the second theme developed in this review, the potential use of biological function and health parameters as operational welfare indicators (OWIs). Advantages of function- and health-related parameters are that they are relatively straightforward to recognize and to measure and are routinely monitored in most aquaculture units, thereby providing feasible tools to assess fish welfare under practical farming conditions. As the efforts to improve fish welfare and environmental sustainability lead to increasingly diverse solutions, in particular integrated production, it is imperative that we have objective OWIs to compare with other production forms, such as high-density aquaculture. However, to receive the necessary acceptance for legislation, more robust scientific backing of the health- and function-related OWIs is urgently needed.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Djordjevic B, Kristensen T, Øverli Ø, Rosseland BO, Kiessling A. Effect of nutritional status and sampling intensity on recovery after dorsal aorta cannulation in free-swimming Atlantic salmon (Salmo salar L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:259-272. [PMID: 19856209 DOI: 10.1007/s10695-009-9362-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/30/2009] [Indexed: 05/28/2023]
Abstract
Recovery from implantation of a cannula in the dorsal aorta (DA) of Atlantic salmon (Salmo salar) was studied in relation to nutritional status and sampling intensity. The incentive for the study was the inconsistency between published reports and our own experience of recovery and longevity of fish exposed to this protocol. In two studies using starved fish, blood (0.3 ml) was sampled 0, 1 and 24 h after DA-cannulation, and thereafter at 48 and 72 h and thereafter once weekly for four weeks. In a third study using fed fish, four consecutive samples (0, 3, 6 and 12 h after a meal) were obtained twice a week over a four-week period. All fish displayed a sharp increase in pCO(2) and haematocrit (Hct) during surgery, followed by a marked raise in cortisol, glucose, sodium and potassium (1 h). pCO(2), pH and Hct approached baseline levels as early as the 1 h post-surgery sample, while this was not the case for cortisol and electrolytes before the 24 h post-surgery sample. Glucose did not display any significant changes post surgery. From then on, all variables displayed minor but non-significant (P > 0.05) changes indicating a steady state close to baseline values for unstressed fish. This pattern was independent of sampling procedure, i.e. repeated single or multiple samples and thus volume of blood removed. Nutritional status (fed vs. starved) did not affect post-surgical recovery pattern. Only K(+) and Hct displayed consistent and significant post-prandial patterns. We found marked differences between baseline level of cannulated fish and uncannulated control fish, in pH, K(+) and Hct indicating that cannulation may be the preferred method to obtain representative resting values in fish.
Collapse
Affiliation(s)
- B Djordjevic
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | | | | | | |
Collapse
|
22
|
Fanouraki E, Mylonas CC, Papandroulakis N, Pavlidis M. Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen Comp Endocrinol 2011; 173:313-22. [PMID: 21712040 DOI: 10.1016/j.ygcen.2011.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/24/2011] [Accepted: 06/05/2011] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to examine the species-specific stress response for seven Mediterranean fishes in culture. Also, to evaluate the method of measuring free cortisol concentration in the rearing water as a non-invasive and reliable indicator of stress in marine species, of aquaculture importance. Gilthead sea bream, Sparus aurata (Sparidae); common dentex, Dentex dentex (Sparidae); common Pandora, Pagellus erythrinus (Sparidae); sharpsnout sea bream, Diplodus puntazzo (Sparidae); dusky grouper, Epinephelus marginatus (Serranidae); meagre, Argyrosomus regius (Sciaenidae) and European sea bass, Dicentrarchus labrax (Moronidae) were subjected to identical acute stress (5-6 min chasing and 1-1.5 min air exposure) under the same environmental conditions and samples were analyzed by the same procedures. Results indicated that there was a clear species-specificity in the magnitude, timing and duration of the stress response in terms of cortisol, glucose and lactate. European sea bass showed a very high response and dusky grouper and meagre a very low response, except plasma glucose concentrations of dusky grouper which was constantly high, while sharpsnout sea bream presented a protracted stress response, up to 8h. The present study confirmed that free cortisol release rate into the water can be used as a reliable stress indicator.
Collapse
Affiliation(s)
- E Fanouraki
- Department of Biology, University of Crete, PO Box 2208, GR-71409 Heraklion, Crete, Greece.
| | | | | | | |
Collapse
|
23
|
Huang TS, Ruoff P, Fjelldal PG. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol Int 2011; 27:1697-714. [PMID: 20969518 DOI: 10.3109/07420528.2010.514630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.
Collapse
Affiliation(s)
- Tien-sheng Huang
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | | | |
Collapse
|
24
|
Pankhurst NW. The endocrinology of stress in fish: an environmental perspective. Gen Comp Endocrinol 2011; 170:265-75. [PMID: 20688064 DOI: 10.1016/j.ygcen.2010.07.017] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
Abstract
Much of the understanding of the endocrine basis of stress in fish comes from studies of cultured stocks of teleosts; there is comparatively little information on stress responses in wild stock, and less still on chondrosteans and elasmobranchs. This understanding is being refined through increasing understanding of molecular processes underlying endocrine events, with molecular tools offering ready examination of parts of the endocrine pathway that have been resistant to easy measurement of hormone products. An assessment of the timecourse of activation of the hypothalamic-pituitary-interrenal axis shows generally strong independence of temperature, with most teleosts showing measurable increase in plasma cortisol within 10 min of stress. Chondrostean and elasmobranch responses are less well described, but in chondrosteans at least, the response pattern appears to be similar to teleosts. The short latency for increases in corticosteroids following exposure to a stressor means that sampling of wild fish needs to occur rapidly after encounter. Several techniques including underwater sampling and rapid line capture are suitable for this, as is measurement of steroid release to the water by undisturbed fish, albeit possibly with a reduced range of applications. Basal cortisol values in wild teleosts are typically <10 ng mL(-1), but a number of species show values orders of magnitude higher in unstressed fish. Variability in corticosteroid levels arises from a range of factors in addition to stress including, sex and maturity, time of day or since feeding, and season. These factors need to be understood for the sensible assessment of stress responses in wild fish. Studies on free-living birds suggest that environmental stress resides mainly around unpredictable change, and the limited data available for fish support this view. The effect of unpredictable event such as floods or storms are difficult to assess in wild fish due to the difficulty in sampling at these times, and would be predicted to impose environmental stress as in terrestrial systems; however, this has yet to be demonstrated. There is scope for use of stress responses to be used as a measure of environmental quality but only if the basic response to environmental stress is well understood first. Development of this understanding remains a priority for this field of research.
Collapse
Affiliation(s)
- N W Pankhurst
- Australian Rivers Institute, Griffith University, Gold Coast, Qld 4222, Australia.
| |
Collapse
|
25
|
Pottinger TG. A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. JOURNAL OF FISH BIOLOGY 2010; 76:601-621. [PMID: 20666900 DOI: 10.1111/j.1095-8649.2009.02516.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The response of six species of freshwater fishes, from the families Cyprinidae (common carp Cyprinus carpio, roach Rutilus rutilus and chub Leuciscus cephalus) and Salmonidae (rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta and Arctic charr Salvelinus alpinus), to a standardized stressor was evaluated. A 6 h period of confinement resulted in changes to plasma cortisol, glucose, amino acid and lactate levels compared with unconfined controls. There were significant differences in the response profiles both within and between families. The cyprinid species exhibited higher and more sustained stress-induced increases in plasma cortisol and glucose than the salmonid species. In cyprinids, plasma lactate and plasma amino acid concentration showed less disturbance following stress than in salmonids. The results of the study, together with an evaluation of previously published data for eight salmonid species and six cyprinid species, support the hypothesis that differences in core elements of the stress response exist between species of fishes, and that this variation may have a systematic basis.
Collapse
Affiliation(s)
- T G Pottinger
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, U.K.
| |
Collapse
|
26
|
Mendonça PC, Gamperl AK. Nervous and humoral control of cardiac performance in the winter flounder(Pleuronectes americanus). J Exp Biol 2009; 212:934-44. [DOI: 10.1242/jeb.027680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SUMMARY
Previous studies have suggested that flatfish lack adrenergic cardiac innervation and have a limited humoral adrenergic stress response. However,data on neurohormonal control of flatfish cardiac function is scarce, and has never been directly studied in vivo. Hence, we (1) injected neural and humoral antagonists into flounder (Pleuronectes americanus) in vivo to determine the contribution of autonomic innervation and circulating catecholamines to the control of resting cardiac function; (2)measured pre- and post-stress (90 s chase) catecholamine levels in this species; and (3) constructed in vivo catecholamine dose–response curves for cardiovascular function based on the results of the second experiment. In addition, we quantified the density(Bmax) and ligand-binding affinity(Kd) of flounder ventricular cell-surfaceβ-adrenoreceptors, and established whether they were ofβ 1 or β2 subtype using pharmacological antagonists. The cholinergic contribution to resting flounder heart rate was comparable to other teleosts (cholinergic tonus 26%). Interestingly, however,bretylium increased heart rate, resulting in a negative resting adrenergic tonus (–11.9%), and we were unable to demonstrate that catecholamines supported cardiac function at rest or at circulating concentrations approximating those following an exhaustive chase (adrenaline, 21 nmol l–1; noradrenaline, 14 nmol l–1). Myocardial Bmax was very high in the flounder (252.8 fmol mg–1 protein), and it appears that flounder ventricularβ-adrenoreceptors are predominantly of the β2 subtype[based on the inability of atenolol to displace [3H]CGP from theβ-adrenoreceptors, and the IC50 value for ICI 118551(1.91×10–6 mol l–1)]. However, the extremely low affinity (Kd 1.02 nmol l–1)for these receptors raises the possibility that the flounder heart is also populated by β3-adrenoreceptors.
Collapse
Affiliation(s)
- Paula C. Mendonça
- Ocean Sciences Centre, Memorial University, St John's, Canada, NL A1C 5S7
| | - A. Kurt Gamperl
- Ocean Sciences Centre, Memorial University, St John's, Canada, NL A1C 5S7
| |
Collapse
|
27
|
Acerete L, Balasch JC, Castellana B, Redruello B, Roher N, Canario AV, Planas JV, MacKenzie S, Tort L. Cloning of the glucocorticoid receptor (GR) in gilthead seabream (Sparus aurata). Differential expression of GR and immune genes in gilthead seabream after an immune challenge. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:32-43. [PMID: 17544309 DOI: 10.1016/j.cbpb.2007.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 01/22/2023]
Abstract
In order to determine the cortisol response after an immune challenge in the gilthead seabream (Sparus aurata), a cortisol receptor (GR) was cloned, sequenced and its expression determined after lipopolysaccharide (LPS) treatment. To clone the gilthead seabream GR (sbGR), consecutive PCR amplifications and screening of a pituitary cDNA library were performed. We obtained a clone of 4586 bp encoding a 784aa protein. Northern blot analysis from head kidney, heart and intestine revealed that the full length sbGR mRNA was approximately 6.5 Kb. A LPS treatment, used as an acute stress model, was employed to characterise the expression of sbGR and some selected genes involved in the immune response (IL-1beta, TNF-alpha, Mx protein, cathepsin D and PPAR-gamma). All genes were expressed in all tissues examined and responses were tissue and time dependent revealing differential gene expression profiles after LPS administration. Furthermore, analysis of plasma cortisol levels after LPS injection, showed an acute response to inflammatory stress with a significant increase two and six h after injection, recovering to basal levels 12 h post-stress in all LPS concentrations tested.
Collapse
Affiliation(s)
- L Acerete
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Facultat de Ciències, 08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): Effect of seawater exposure and cortisol treatment. Life Sci 2006; 78:2329-35. [PMID: 16376384 DOI: 10.1016/j.lfs.2005.09.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022]
Abstract
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Teles M, Santos MA, Pacheco M. Responses of European eel (Anguilla anguilla L.) in two polluted environments: in situ experiments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 58:373-378. [PMID: 15223262 DOI: 10.1016/j.ecoenv.2004.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 10/02/2003] [Accepted: 01/28/2004] [Indexed: 05/24/2023]
Abstract
European eels (Anguilla anguilla L.) were caged for 8 and 48 h in two polluted areas to assess the contamination cleanup process in the Vouga River 2 years after the official closing of a bleached kraft pulp mill effluent (BKPME; experiment 1), and to monitor the effects induced by contaminated offward fishing harbor waters (experiment 2). Plasma cortisol, glucose, and lactate were evaluated as stress responses. In experiment 1, plasma cortisol, glucose, and lactate increased after 8 h of exposure in site 3, which is located farthest from the deactivated sewage outlet. However, A. anguilla seemed to adapt after 48 h of exposure in site 3, because all three parameters returned to control levels. Plasma glucose also significantly increased after 8 h of exposure at sites 1, 2, and 3, returning to control levels after 48 h. Plasma lactate levels increased after 8 h of exposure at site 3 and after 48 h of exposure at site 1. In experiment 2, A. anguilla exposed to contaminated harbor waters increased their plasma lactate after 8 and 48 h of exposure, whereas their cortisol and glucose plasma were elevated only after 48 h of exposure. The results demonstrate that even 2 years after the official closing of the BKPME sewage outlet, the river Vouga water remains contaminated by the sediment associated chemicals. Because the fishing harbor induced in A. anguilla the same type of stress responses, it is also an area of concern. The adopted stress parameters allied to a caging strategy are recommended for future environmental monitoring assessments.
Collapse
Affiliation(s)
- M Teles
- Animal Physiology/Ecotoxicology Sector, Biology Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | | |
Collapse
|
30
|
Lawrence DeKoning AB, Picard DJ, Bond SR, Schulte PM. Stress and interpopulation variation in glycolytic enzyme activity and expression in a teleost fish Fundulus heteroclitus. Physiol Biochem Zool 2004; 77:18-26. [PMID: 15057714 DOI: 10.1086/378914] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2003] [Indexed: 11/04/2022]
Abstract
Northern populations of Fundulus heteroclitus have twofold greater activity of lactate dehydrogenase-B (LDH-B) than southern populations, but exposure to stress increases LDH-B in southern populations, abolishing this difference. To test whether differences in the activity of other hepatic glycolytic enzymes between populations are sensitive to stress, we injected fish with a pharmacological dose of cortisol in coconut oil (400 microg g(-1)) or exposed them to handling stress and measured the activities of all the glycolytic enzymes. At rest, liver phosphofructokinase (PFK) and aldolase (ALD) activities were greater in southern fish, whereas LDH-B activity was greater in northern fish. No other glycolytic enzymes differed in activity between populations in control fish. Cortisol injection and handling stress decreased PFK and ALD and increased LDH activities in the southern but not the northern population, such that the populations no longer differed in the activity of any enzyme following treatment. Unlike Ldh-B mRNA, Pfk and Ald mRNA levels did not parallel enzyme activity, suggesting complex kinetics or regulation at multiple levels. Plasma cortisol did not differ between populations at rest but was significantly different between populations in treated fish. These data suggest that differences in liver enzyme activity may be related to differences in stress hormone physiology between populations.
Collapse
|
31
|
Rotllant J, Ruane NM, Caballero MJ, Montero D, Tort L. Response to confinement in sea bass (Dicentrarchus labrax) is characterised by an increased biosynthetic capacity of interrenal tissue with no effect on ACTH sensitivity. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:613-20. [PMID: 14613789 DOI: 10.1016/s1095-6433(03)00211-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two experiments were carried out to investigate the influence of confinement stress on plasma cortisol levels and on the sensitivity of the interrenal cells to adrenocorticotropic hormone (ACTH) stimulation in sea bass Dicentrarchus labrax. Confining sea bass at 70 kg m(-3) for 24 h resulted in elevated plasma cortisol levels at all times (0.1, 1, 4 and 24 h) and corresponded to a reduced cortisol content in head-kidney homogenates after 0.1 and 1 h of confinement. An increased activity of the interrenal cells was also indicated by the enlarged nuclear diameters measured after 1 and 4 h of confinement. In vitro superfusion experiments showed that 4 h of confinement resulted in an increased basal unstimulated release of cortisol from head-kidney tissues compared with that in unstressed control fish. Although the stimulation factor (cortisol release as percent increase above basal) of the stressed fish was significantly lower than in controls, no difference in the maximal stimulated release (in absolute amounts) was evident between stressed and control fish. Care must be taken when interpreting superfusion data, as to whether the stressor actually leads to a reduction in interrenal sensitivity, or is due to an alteration in the basal release of cortisol.
Collapse
Affiliation(s)
- J Rotllant
- Unit of Animal Physiology, Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, 08193, Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
32
|
Trenzado CE, Carrick TR, Pottinger TG. Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. Gen Comp Endocrinol 2003; 133:332-40. [PMID: 12957477 DOI: 10.1016/s0016-6480(03)00191-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) of two lines selected for low (LR) and high (HR) cortisol stress-responsiveness were subjected to confinement for a period of 336 h. Endocrine (plasma cortisol, hepatic cortisol binding) and metabolic (plasma glucose, lactate, amino acids; hepatic glycogen and alanine aminotransferase levels) indices of stress were measured at intervals in confined and unconfined fish of both lines. During confinement plasma cortisol concentration reached maximum values earlier in HR fish (2h) than in LR fish (6h) returning to control values within 336 h in both lines. Paradoxically, although both HR and LR lines displayed a characteristic metabolic stress response, these changes were more pronounced in LR fish. Plasma glucose and lactate levels increased during confinement in both lines but to a significantly greater extent in LR fish. Confinement significantly elevated plasma amino acids to a greater extent in LR fish than in HR fish. Liver glycogen concentration was depleted most rapidly in LR fish but was significantly higher in confined fish of both lines than controls at the end of the experiment. No significant changes were observed in hepatic alanine aminotransferase activity during confinement. Confined fish of both lines displayed a decrease in hepatic cortisol receptor abundance within 24h and this was more sustained in HR fish. The more pronounced disturbance of a broad range of indicators of stress in confined LR fish, compared to HR fish, throws doubt on the magnitude of the cortisol response being the primary driver of these differences.
Collapse
Affiliation(s)
- C E Trenzado
- Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | | | | |
Collapse
|
33
|
Laiz-Carrión R, Martín Del Río MP, Miguez JM, Mancera JM, Soengas JL. Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:105-18. [PMID: 12884272 DOI: 10.1002/jez.a.10256] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gilthead seabream Sparus aurata were injected intraperitoneally with slow-release implants of coconut oil alone or containing cortisol (50 and 100 microg x g(-1) body weight), and sampled after two, five, and seven days to assess the simultaneous effects of cortisol on both osmoregulation and energy metabolism. Plasma cortisol levels increased in treated fish to 50-70 ng x ml(-1). An enhanced hypoosmoregulatory capacity of cortisol-implanted fish is suggested by the increase observed in gill Na+, K+-ATPase activity, and the decrease observed in plasma ion concentration (Na+ and Cl-) and osmolality. Cortisol also elicited metabolic changes in liver (increased gluconeogenic potential suggested by elevated FBPase activity, and decreased potential of glycolysis and pentose-phosphate shunt, suggested by the decreased activities of both PK and G6PDH) supporting changes in levels of plasma metabolites suitable for use in other tissues. Thus in this study, we demonstrate for the first time in fish that cortisol treatments elicit changes in the use of exogenous glucose in gills (decreased HK activity) and an increased glycolytic and glycogenic potential in brain (increased GPase, PK and PFK activities).
Collapse
Affiliation(s)
- Raúl Laiz-Carrión
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
34
|
Yada T, Nakanishi T. Interaction between endocrine and immune systems in fish. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 220:35-92. [PMID: 12224552 DOI: 10.1016/s0074-7696(02)20003-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diseases in fish are serious problems for the development of aquaculture. The outbreak of fish disease is largely dependent on environmental and endogenous factors resulting in opportunistic infection. Recent studies, particularly on stress response, have revealed that bidirectional communication between the endocrine and immune systems via hormones and cytokines exists at the level of teleost fish. Recently information on such messengers and receptors has accumulated in fish research particularly at the molecular level. Furthermore, it has become apparent in fish that cells of the immune system produce or express hormones and their receptors and vice versa to exchange information between the two systems. This review summarizes and updates the knowledge on endocrine-immune interactions in fish with special emphasis on the roles of such mediators or receptors for their interactions.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Branch, National Research Institute of Aquaculture, Tochigi, Japan
| | | |
Collapse
|
35
|
Abstract
The adrenal homolog of teleosts is not a compact organ as the adrenal glands of most vertebrates but is composed by aminergic chromaffin and interrenal steroidogenic cells located mostly inside the head kidney that, in this taxon, generally has a hematopoietic function. The two tissues can be mixed, adjacent, or completely separated and line the endothelium of the venous vessels or are located in close proximity. The chromaffin cells in some species are also present in the posterior kidney. Histological and ultrastructural work revealed cytological peculiarities of both types of cells as compared to those of other vertebrate species. In particular, the interrenal ones can show some variations in ultrastructure depending on sex, time of the year, and relation to stress events. A periodic renewal of the whole gland tissue is also sustained by some studies. Research regarding development is scanty as compared to mammals and most studies go back to the early years of the past century. The adrenal homolog of teleosts is under hormonal and neuronal control. Moreover, local paracrine interactions may play an important role in modulating a system involved in stress response and osmoregulation. Most previous studies involved a few species with the object of intensive rearing for commercial purposes; in fact cortisol, the main hormone secreted by the interrenal cells, can also influence reproduction and growth. This review summarizes data from morphocytological work and refers to other excellent reviews regarding physiology. Some of the results are compared to data available from other fishes and vertebrate classes with the aim of including them in an evolutionary and environmental framework.
Collapse
|