1
|
Mackness BC, Morgan BR, Deveau LM, Kathuria SV, Zitzewitz JA, Massi F. A Hydrophobic Core Stabilizes the Residual Structure in the RRM2 Intermediate State of the ALS-linked Protein TDP-43. J Mol Biol 2024; 436:168823. [PMID: 39426615 DOI: 10.1016/j.jmb.2024.168823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Folding intermediates mediate both protein folding and the misfolding and aggregation observed in human diseases, including amyotrophic lateral sclerosis (ALS), and are prime targets for therapeutic interventions. In this study, we identified the core nucleus of structure for a folding intermediate in the second RNA recognition motif (RRM2) of the ALS-linked RNA-binding protein, TDP-43 (TAR DNA-binding protein-43), using a combination of experimental and computational approaches. Urea equilibrium unfolding studies revealed that the RRM2 intermediate state consists of collapsed residual secondary structure localized to the N-terminal half of RRM2, while the C-terminus is largely disordered. Steered molecular dynamics simulations and mutagenesis studies yielded key stabilizing hydrophobic contacts that, when mutated to alanine, severely disrupt the overall fold of RRM2. In combination, these findings suggest a role for this RRM intermediate in normal TDP-43 function as well as serving as a template for misfolding and aggregation through the low stability and non-native secondary structure.
Collapse
Affiliation(s)
- Brian C Mackness
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Laura M Deveau
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sagar V Kathuria
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Cheng K, Zhang C, Lu Y, Li J, Tang H, Ma L, Zhu H. The Glycine-Rich RNA-Binding Protein Is a Vital Post-Transcriptional Regulator in Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3504. [PMID: 37836244 PMCID: PMC10575402 DOI: 10.3390/plants12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current understanding of GR-RBPs has predominantly been centered on Arabidopsis thaliana, a model plant for investigating plant growth and development. Nonetheless, an increasing body of literature has emerged in recent years, shedding light on the presence and functions of GRPs in diverse crop species. In this review, we not only delineate the distinctive structural domains of plant GR-RBPs but also elucidate several contemporary mechanisms of GR-RBPs in the post-transcriptional regulation of RNA. These mechanisms encompass intricate processes, including RNA alternative splicing, polyadenylation, miRNA biogenesis, phase separation, and RNA translation. Furthermore, we offer an exhaustive synthesis of the diverse roles that GR-RBPs fulfill within crop plants. Our overarching objective is to provide researchers and practitioners in the field of agricultural genetics with valuable insights that may inform and guide the application of plant genetic engineering for enhanced crop development and sustainable agriculture.
Collapse
Affiliation(s)
- Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| |
Collapse
|
3
|
San A, Palmieri D, Saxena A, Singh S. In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin-miRNA interactions. Proteins 2022; 90:1837-1850. [PMID: 35514080 DOI: 10.1002/prot.26355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2023]
Abstract
RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for posttranscriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL-miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.
Collapse
Affiliation(s)
- Avdar San
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Bellone ML, Fiengo L, Cerchia C, Cotugno R, Bader A, Lavecchia A, De Tommasi N, Piaz FD. Impairment of Nucleolin Activity and Phosphorylation by a Trachylobane Diterpene from Psiadia punctulata in Cancer Cells. Int J Mol Sci 2022; 23:ijms231911390. [PMID: 36232690 PMCID: PMC9570042 DOI: 10.3390/ijms231911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human nucleolin (hNcl) is a multifunctional protein involved in the progression of various cancers and plays a key role in other pathologies. Therefore, there is still unsatisfied demand for hNcl modulators. Recently, we demonstrated that the plant ent-kaurane diterpene oridonin inhibits hNcl but, unfortunately, this compound is quite toxic for healthy cells. Trachylobane diterpene 6,19-dihydroxy-ent-trachiloban-17-oic acid (compound 12) extracted from Psiadia punctulata (DC.) Vatke (Asteraceae) emerged as a ligand of hNcl from a cellular thermal shift assay (CETSA)-based screening of a small library of diterpenes. Effective interaction between this compound and the protein was demonstrated to occur both in vitro and inside two different types of cancer cells. Based on the experimental and computational data, a model of the hNcl/compound 12 complex was built. Because of this binding, hNcl mRNA chaperone activity was significantly reduced, and the level of phosphorylation of the protein was affected. At the biological level, cancer cell incubation with compound 12 produced a cell cycle block in the subG0/G1 phase and induced early apoptosis, whereas no cytotoxicity towards healthy cells was observed. Overall, these results suggested that 6,19-dihydroxy-ent-trachiloban-17-oic could represent a selective antitumoral agent and a promising lead for designing innovative hNcl inhibitors also usable for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Lorenzo Fiengo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmen Cerchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Roberta Cotugno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21995, Saudi Arabia
| | - Antonio Lavecchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Correspondence:
| |
Collapse
|
5
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
6
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
7
|
Galla G, Basso A, Grisan S, Bellucci M, Pupilli F, Barcaccia G. Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions. FRONTIERS IN PLANT SCIENCE 2019; 10:654. [PMID: 31178879 PMCID: PMC6543059 DOI: 10.3389/fpls.2019.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/01/2019] [Indexed: 05/09/2023]
Abstract
Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
- *Correspondence: Giulio Galla,
| | - Andrea Basso
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| |
Collapse
|
8
|
Zhang Q, Chen ZS, An Y, Liu H, Hou Y, Li W, Lau KF, Koon AC, Ngo JCK, Chan HYE. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA (NEW YORK, N.Y.) 2018; 24:486-498. [PMID: 29295891 PMCID: PMC5855950 DOI: 10.1261/rna.062703.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Yonghui Hou
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
9
|
Zhu G, Liu W, Bao C, Tong D, Ji H, Shen Z, Yang D, Lu L. Investigating energy-based pool structure selection in the structure ensemble modeling with experimental distance constraints: The example from a multidomain protein Pub1. Proteins 2018; 86:501-514. [PMID: 29383828 DOI: 10.1002/prot.25468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.
Collapse
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Wei Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Chenglong Bao
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore.,Yau Mathematical Sciences Center, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Dudu Tong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Hui Ji
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Zuowei Shen
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
10
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
11
|
AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins. J Biosci 2017; 42:57-68. [PMID: 28229965 DOI: 10.1007/s12038-016-9658-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.
Collapse
|
12
|
Abstract
RRM-containing proteins are involved in most of the RNA metabolism steps. Their functions are closely related to their mode of RNA recognition, which has been studied by structural biologists for more than 20 years. In this chapter, we report on high-resolution structures of single and multi RRM-RNA complexes to explain the numerous strategies used by these domains to interact specifically with a large repertoire of RNA sequences. We show that multiple variations of their canonical fold can be used to adapt to different single-stranded sequences with a large range of affinities. Furthermore, we describe the consequences on RNA binding of the different structural arrangements found in tandem RRMs and higher order RNPs. Importantly, these structures also reveal with very high accuracy the RNA motifs bound specifically by RRM-containing proteins, which correspond very often to consensus sequences identified with genome-wide approaches. Finally, we show how structural and cellular biology can benefit from each other and pave a way for understanding, defining, and predicting a code of RNA recognition by the RRMs.
Collapse
|
13
|
Afroz T, Skrisovska L, Belloc E, Guillén-Boixet J, Méndez R, Allain FHT. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev 2014; 28:1498-514. [PMID: 24990967 PMCID: PMC4083092 DOI: 10.1101/gad.241133.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
How CPEB RNA-binding proteins regulate cytoplasmic polyadenylation and translation is poorly understood. Allain and colleagues report the structures of the tandem RNA recognition motifs (RRMs) of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. Structural and functional studies reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and zinc-binding domains at the 3′ UTR, which favors the nucleation of ribonucleoprotein complexes for translation regulation. This study provides the molecular basis for the translational regulatory circuit established by CPEB proteins. Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3′ untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein–protein and protein–RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3′ UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
Collapse
Affiliation(s)
- Tariq Afroz
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| | - Lenka Skrisovska
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| | - Eulàlia Belloc
- Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | | | - Raúl Méndez
- Institute for Research in Biomedicine, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Barraud P, Allain FHT. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. JOURNAL OF BIOMOLECULAR NMR 2013; 55:119-38. [PMID: 23247503 DOI: 10.1007/s10858-012-9696-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/11/2012] [Indexed: 05/21/2023]
Abstract
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | |
Collapse
|
15
|
Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol 2011; 4:267-75. [PMID: 21980556 DOI: 10.4161/cib.4.3.14884] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 01/08/2023] Open
Abstract
Nucleolin is a multifunctional phosphoprotein ubiquitously distributed in the nucleolus, nucleus and cytoplasm of the cell. Nucleolin has a bipartite nuclear localization signal sequence and is conserved in animals, plants and yeast. Its levels are correlated with the rate of functional activity of the nucleolus in exponentially growing cells. Nucleolin contains intrinsic DNA and RNA helicase, nucleic-acid-dependent ATPase and self-cleaving activities. It binds RNA through its RNA recognition motifs. It regulates various aspects of DNA and RNA metabolism, chromatin structure, rDNA transcription, rRNA maturation, cytokinesis, nucleogenesis, cell proliferation and growth, the folding, maturation and ribosome assembly and nucleocytoplasmic transport of newly synthesized pre-RNAs. In this review we present an overview on nucleolin, its localization, structure and various functions. We also describe the discovery and important studies of nucleolin in plants.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, Delhi India
| | | | | |
Collapse
|
16
|
Losfeld ME, Leroy A, Coddeville B, Carpentier M, Mazurier J, Legrand D. N-Glycosylation influences the structure and self-association abilities of recombinant nucleolin. FEBS J 2011; 278:2552-64. [PMID: 21575138 DOI: 10.1111/j.1742-4658.2011.08180.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleolin is a major nucleolar protein involved in fundamental processes of ribosome biogenesis, regulation of cell proliferation and growth. Nucleolin is known to shuttle between nucleus, cytoplasm and cell surface. We have previously found that nucleolin undergoes complex N- and O-glycosylations in extra-nuclear isoforms. We found that surface nucleolin is exclusively glycosylated and that N-glycosylation is required for its expression on the cells. Interestingly, the two N-glycans are located in the RNA-binding domains (RBDs) which participate in the self-association properties of nucleolin. We hypothesized that the occupancy of RBDs by N-glycans plays a role in these self-association properties. Here, owing to the inability to quantitatively produce full-size nucleolin, we expressed four N-glycosylation nucleolin variants lacking the N-terminal acidic domain in a baculovirus/insect cell system. As assessed by heptafluorobutyrate derivatization and mass spectrometry, this strategy allowed the production of proteins bearing or not paucimannosidic-type glycans on either one or two of the potential N-glycosylation sites. Their structure was investigated by circular dichroism and fluorimetry, and their ability to self-interact was analyzed by electrophoresis and surface plasmon resonance. Our results demonstrate that all nucleolin-derived variants are able to self-interact and that N-glycosylation on both RBD1 and RBD3, or RBD3 alone, but not RBD1 alone, modifies the structure of the N-terminally truncated nucleolin and enhances its self-association properties. In contrast, N-glycosylation does not modify interaction with lactoferrin, a ligand of cell surface nucleolin. Our results suggest that the occupancy of the N-glycosylation sites may contribute to expression and functions of surface nucleolin.
Collapse
|
17
|
Desjardins G, Bonneau E, Girard N, Boisbouvier J, Legault P. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Res 2011; 39:4427-37. [PMID: 21266483 PMCID: PMC3105416 DOI: 10.1093/nar/gkq1244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem–loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson–Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.
Collapse
Affiliation(s)
- Geneviève Desjardins
- Département de Biochimie, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
18
|
Li H, Shi H, Wang H, Zhu Z, Li X, Gao Y, Cui Y, Niu L, Teng M. Crystal structure of the two N-terminal RRM domains of Pub1 and the poly(U)-binding properties of Pub1. J Struct Biol 2010; 171:291-7. [PMID: 20438847 DOI: 10.1016/j.jsb.2010.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022]
Abstract
Yeast poly(U)-binding protein (Pub1) is a major nuclear and cytoplasmic protein that contains three RNA recognition motif (RRM) domains (termed Pub1RRM1, Pub1RRM2 and Pub1RRM3). Pub1 has been implicated as a regulator of cellular mRNA decay. Nearly 10% of all yeast mRNA decay occurs in a Pub1-dependent manner. Pub1 binds to and stabilizes AU-rich element (ARE) and ARE-like sequence-containing transcripts by protecting them from degradation through the deadenylation-dependent pathway, and also binds to and stabilizes stabilizer element (STE)-containing transcripts by preventing their degradation via the nonsense-mediated decay (NMD) pathway. RNA-binding analyses showed that Pub1 binds to poly(U) in vitro. Here we show the crystal structures of Pub1RRM2 and the first two tandem RRM domains (Pub1RRM12). Crystallography showed that the structure of Pub1RRM12 is a domain-swapped dimer. Size exclusion chromatography assay and analytical ultracentrifugation (AUC) showed that Pub1RRM12 is a monomer in solution. Kinetic analysis showed that all three individual RRM domains can bind to poly(U) with similar affinities and Pub1RRM12 binds to a long poly(U) segment with higher affinity. Mutagenesis analysis revealed that residues on the beta-sheets of Pub1RRM1 and Pub1RRM2 are critical for poly(U) binding.
Collapse
Affiliation(s)
- Heng Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arumugam S, Miller MC, Maliekal J, Bates PJ, Trent JO, Lane AN. Solution structure of the RBD1,2 domains from human nucleolin. JOURNAL OF BIOMOLECULAR NMR 2010; 47:79-83. [PMID: 20376532 DOI: 10.1007/s10858-010-9412-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Affiliation(s)
- Sengodagounder Arumugam
- JG Brown Cancer Center, University of Louisville, 505 South Hancock St., Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
20
|
González V, Guo K, Hurley L, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 2009; 284:23622-35. [PMID: 19581307 PMCID: PMC2749137 DOI: 10.1074/jbc.m109.018028] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/02/2009] [Indexed: 11/06/2022] Open
Abstract
myc is a proto-oncogene that plays an important role in the promotion of cellular growth and proliferation. Understanding the regulation of c-myc is important in cancer biology, as it is overexpressed in a wide variety of human cancers, including most gynecological, breast, and colon cancers. We previously demonstrated that a guanine-rich region upstream of the P1 promoter of c-myc that controls 85-90% of the transcriptional activation of this gene can form an intramolecular G-quadruplex (G4) that functions as a transcriptional repressor element. In this study, we used an affinity column to purify proteins that selectively bind to the human c-myc G-quadruplex. We found that nucleolin, a multifunctional phosphoprotein, binds in vitro to the c-myc G-quadruplex structure with high affinity and selectivity when compared with other known quadruplex structures. In addition, we demonstrate that upon binding, nucleolin facilitates the formation and increases the stability of the c-myc G-quadruplex structure. Furthermore, we provide evidence that nucleolin overexpression reduces the activity of a c-myc promoter in plasmid presumably by inducing and stabilizing the formation of the c-myc G-quadruplex. Finally, we show that nucleolin binds to the c-myc promoter in HeLa cells, which indicates that this interaction occurs in vivo. In summary, nucleolin may induce c-myc G4 formation in vivo.
Collapse
Affiliation(s)
| | - Kexiao Guo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721
| | - Laurence Hurley
- From the College of Pharmacy and
- BIO5 Institute, Tucson, Arizona 85721, and
- Arizona Cancer Center, Tucson, Arizona 85724
| | | |
Collapse
|
21
|
Mrd1p is required for release of base-paired U3 snoRNA within the preribosomal complex. Mol Cell Biol 2009; 29:5763-74. [PMID: 19704003 DOI: 10.1128/mcb.00428-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, ribosomes are made from precursor rRNA (pre-rRNA) and ribosomal proteins in a maturation process that requires a large number of snoRNPs and processing factors. A fundamental problem is how the coordinated and productive folding of the pre-rRNA and assembly of successive pre-rRNA-protein complexes is achieved cotranscriptionally. The conserved protein Mrd1p, which contains five RNA binding domains (RBDs), is essential for processing events leading to small ribosomal subunit synthesis. We show that full function of Mrd1p requires all five RBDs and that the RBDs are functionally distinct and needed during different steps in processing. Mrd1p mutations trap U3 snoRNA in pre-rRNP complexes both in base-paired and non-base-paired interactions. A single essential RBD, RBD5, is involved in both types of interactions, but its conserved RNP1 motif is not needed for releasing the base-paired interactions. RBD5 is also required for the late pre-rRNP compaction preceding A(2) cleavage. Our results suggest that Mrd1p modulates successive conformational rearrangements within the pre-rRNP that influence snoRNA-pre-rRNA contacts and couple U3 snoRNA-pre-rRNA remodeling and late steps in pre-rRNP compaction that are essential for cleavage at A(0) to A(2). Mrd1p therefore coordinates key events in biosynthesis of small ribosome subunits.
Collapse
|
22
|
Dailey MM, Hait C, Holt PA, Maguire JM, Meier JB, Miller MC, Petraccone L, Trent JO. Structure-based drug design: from nucleic acid to membrane protein targets. Exp Mol Pathol 2009; 86:141-50. [PMID: 19454265 PMCID: PMC3143464 DOI: 10.1016/j.yexmp.2009.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 01/08/2023]
Abstract
The in silico methods for drug discovery are becoming increasingly powerful and useful. That, in combination with increasing computer processor power, in our case using a novel distributed computing grid, has enabled us to greatly enhance our virtual screening efforts. Herein we review some of these efforts using both receptor and ligand-based virtual screening, with the goal of finding new anti-cancer agents. In particular, nucleic acids are a neglected set of targets, especially the different morphologies of duplex, triplex, and quadruplex DNA, many of which have increasing biological relevance. We also review examples of molecular modeling to understand receptors and using virtual screening against G-protein coupled receptor membrane proteins.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5' splice site-like sequences. Proc Natl Acad Sci U S A 2009; 106:5581-6. [PMID: 19304800 DOI: 10.1073/pnas.0802466106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The alternative splicing of mRNA is a critical process in higher eukaryotes that generates substantial proteomic diversity. Many of the proteins that are essential to this process contain arginine/serine-rich (RS) domains. ZRANB2 is a widely-expressed and highly-conserved RS-domain protein that can regulate alternative splicing but lacks canonical RNA-binding domains. Instead, it contains 2 RanBP2-type zinc finger (ZnF) domains. We demonstrate that these ZnFs recognize ssRNA with high affinity and specificity. Each ZnF binds to a single AGGUAA motif and the 2 domains combine to recognize AGGUAA(N(x))AGGUAA double sites, suggesting that ZRANB2 regulates alternative splicing via a direct interaction with pre-mRNA at sites that resemble the consensus 5' splice site. We show using X-ray crystallography that recognition of an AGGUAA motif by a single ZnF is dominated by side-chain hydrogen bonds to the bases and formation of a guanine-tryptophan-guanine "ladder." A number of other human proteins that function in RNA processing also contain RanBP2 ZnFs in which the RNA-binding residues of ZRANB2 are conserved. The ZnFs of ZRANB2 therefore define another class of RNA-binding domain, advancing our understanding of RNA recognition and emphasizing the versatility of ZnF domains in molecular recognition.
Collapse
|
24
|
Losfeld ME, Khoury DE, Mariot P, Carpentier M, Krust B, Briand JP, Mazurier J, Hovanessian AG, Legrand D. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp Cell Res 2009; 315:357-69. [PMID: 19026635 DOI: 10.1016/j.yexcr.2008.10.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/16/2008] [Accepted: 10/23/2008] [Indexed: 11/24/2022]
Abstract
Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [(3)H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca(2+) entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca(2+) fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca(2+) Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca(2+) entry into cells.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche no 8576 du Centre National de la Recherche Scientifique, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ohnishi S, Pääkkönen K, Koshiba S, Tochio N, Sato M, Kobayashi N, Harada T, Watanabe S, Muto Y, Güntert P, Tanaka A, Kigawa T, Yokoyama S. Solution structure of the GUCT domain from human RNA helicase II/Guβ reveals the RRM fold, but implausible RNA interactions. Proteins 2009; 74:133-44. [DOI: 10.1002/prot.22138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Crichlow GV, Zhou H, Hsiao HH, Frederick KB, Debrosse M, Yang Y, Folta-Stogniew EJ, Chung HJ, Fan C, De La Cruz EM, Levens D, Lolis E, Braddock D. Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO J 2008; 27:277-89. [PMID: 18059478 PMCID: PMC2206118 DOI: 10.1038/sj.emboj.7601936] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/06/2007] [Indexed: 01/06/2023] Open
Abstract
c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH--the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control.
Collapse
Affiliation(s)
- Gregg V Crichlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Hongwen Zhou
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Hsin-hao Hsiao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kendra B Frederick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Maxime Debrosse
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuande Yang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Ewa J Folta-Stogniew
- WM Keck Biotechnology Research Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Hye-Jung Chung
- Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Chengpeng Fan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Demetrios Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Reiter NJ, Maher LJ, Butcher SE. DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer. Nucleic Acids Res 2007; 36:1227-36. [PMID: 18160411 PMCID: PMC2275087 DOI: 10.1093/nar/gkm1141] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Biochemistry, University of Wisconsin-Madison, Rochester, MN, USA
| | | | | |
Collapse
|
28
|
Tintaru AM, Hautbergue GM, Hounslow AM, Hung ML, Lian LY, Craven CJ, Wilson SA. Structural and functional analysis of RNA and TAP binding to SF2/ASF. EMBO Rep 2007; 8:756-62. [PMID: 17668007 PMCID: PMC1978082 DOI: 10.1038/sj.embor.7401031] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/06/2007] [Accepted: 06/08/2007] [Indexed: 01/25/2023] Open
Abstract
The serine/arginine-rich (SR) protein splicing factor 2/alternative splicing factor (SF2/ASF) has a role in splicing, stability, export and translation of messenger RNA. Here, we present the structure of the RNA recognition motif (RRM) 2 from SF2/ASF, which has an RRM fold with a considerably extended loop 5 region, containing a two-stranded beta-sheet. The loop 5 extension places the previously identified SR protein kinase 1 docking sequence largely within the RRM fold. We show that RRM2 binds to RNA in a new way, by using a tryptophan within a conserved SWQLKD motif that resides on helix alpha1, together with amino acids from strand beta2 and a histidine on loop 5. The linker connecting RRM1 and RRM2 contains arginine residues, which provide a binding site for the mRNA export factor TAP, and when TAP binds to this region it displaces RNA bound to RRM2.
Collapse
Affiliation(s)
- Aura M Tintaru
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Guillaume M Hautbergue
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Ming-Lung Hung
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Lu-Yun Lian
- School of Biological Sciences, Biosciences Building, University of Liverpool, PO Box 147, Liverpool L69 7ZB, UK
| | - C Jeremy Craven
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Tel: +44 114 222 4323; Fax: +44 114 272 2800; E-mail:
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Tel: +44 114 222 2849; Fax: +44 114 272 2800; E-mail:
| |
Collapse
|
29
|
Storck S, Shukla M, Dimitrov S, Bouvet P. Functions of the histone chaperone nucleolin in diseases. Subcell Biochem 2007; 41:125-44. [PMID: 17484127 DOI: 10.1007/1-4020-5466-1_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alteration of nuclear morphology is often used by pathologist as diagnostic marker for malignancies like cancer. In particular, the staining of cells by the silver staining methods (AgNOR) has been proved to be an important tool for predicting the clinical outcome of some cancer diseases. Two major argyrophilic proteins responsible for the strong staining of cells in interphase are the nucleophosmin (B23) and the nucleolin (C23) nucleolar proteins. Interestingly these two proteins have been described as chromatin associated proteins with histone chaperone activities and also as proteins able to regulate chromatin transcription. Nucleolin seems to be over-expressed in highly proliferative cells and is involved in many aspect of gene expression: chromatin remodeling, DNA recombination and replication, RNA transcription by RNA polymerase I and II, rRNA processing, mRNA stabilisation, cytokinesis and apoptosis. Interestingly, nucleolin is also found on the cell surface in a wide range of cancer cells, a property which is being used as a marker for the diagnosis of cancer and for the development of anti-cancer drugs to inhibit proliferation of cancer cells. In addition to its implication in cancer, nucleolin has been described not only as a marker or as a protein being involved in many diseases like viral infections, autoimmune diseases, Alzheimer's disease pathology but also in drug resistance. In this review we will focus on the chromatin associated functions of nucleolin and discuss the functions of nucleolin or its use as diagnostic marker and as a target for therapy
Collapse
Affiliation(s)
- Sébastien Storck
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | | | | | |
Collapse
|
30
|
Wang S, Hu Y, Overgaard MT, Karginov FV, Uhlenbeck OC, McKay DB. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. RNA (NEW YORK, N.Y.) 2006; 12:959-67. [PMID: 16611943 PMCID: PMC1464845 DOI: 10.1261/rna.5906] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The YxiN protein of Bacillus subtilis is a member of the DbpA subfamily of prokaryotic DEAD-box RNA helicases. Like DbpA, it binds with high affinity and specificity to segments of 23S ribosomal RNA as short as 32 nucleotides (nt) that include hairpin 92. Several experiments have shown that the 76-residue carboxy-terminal domain of YxiN is responsible for the high-affinity RNA binding. The domain has been crystallized and its structure has been solved to 1.7 Angstroms resolution. The structure reveals an RNA recognition motif (RRM) fold that is found in many eukaryotic RNA binding proteins; the RRM fold was not apparent from the amino acid sequence. The domain has two solvent exposed aromatic residues at sites that correspond to the aromatic residues of the ribonucleoprotein (RNP) motifs RNP1 and RNP2 that are essential for RNA binding in many RRMs. However, mutagenesis of these residues (Tyr404 and Tyr447) to alanine has little effect on RNA affinity, suggesting that the YxiN domain binds target RNAs in a manner that differs from the binding mode commonly found in many eukaryotic RRMs.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Crystallization
- Crystallography, X-Ray
- DEAD-box RNA Helicases
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Shuying Wang
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | |
Collapse
|
31
|
Landsberg MJ, Moran-Jones K, Smith R. Molecular recognition of an RNA trafficking element by heterogeneous nuclear ribonucleoprotein A2. Biochemistry 2006; 45:3943-51. [PMID: 16548521 DOI: 10.1021/bi052440e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA, telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of mRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem betaalpha betabeta alphabeta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.
Collapse
Affiliation(s)
- Michael J Landsberg
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
32
|
Kim I, Liu CW, Puglisi JD. Specific recognition of HIV TAR RNA by the dsRNA binding domains (dsRBD1-dsRBD2) of PKR. J Mol Biol 2006; 358:430-42. [PMID: 16516925 DOI: 10.1016/j.jmb.2006.01.099] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 11/19/2022]
Abstract
PKR (double-stranded RNA-dependent protein kinase) is an important component of host defense to virus infection. Binding of dsRNA to two dsRBDs (double-stranded RNA binding domains) of PKR modulates its own kinase activation. How structural features of natural target RNAs, such as bulges and loops, have an effect on the binding to two dsRBDs of PKR still remains unclear. By using ITC and NMR, we show here that both the bulge and loop of TAR RNA are necessary for the high affinity binding to dsRBD1-dsRBD2 of PKR with 1:1 stoichiometry. The binding site for the dsRBD1-dsRBD2 spans from upper bulge to lower stem of the TAR RNA, based on chemical shift mapping. The backbone resonances in the 40 kDa TAR.dsRBD1-dsRBD2 were assigned. NMR chemical shift perturbation data suggest that the beta1-beta2 loop of the dsRBD1 interacts with the TAR RNA, whereas that of the dsRBD2 is less involved in the TAR RNA recognition. In addition, the residues of the interdomain linker between the dsRBD1 and the dsRBD2 also show large chemical perturbations indicating that the linker is involved in the recognition of TAR RNA. The results presented here provide the biophysical and spectroscopic basis for high-resolution structural studies, and show how local RNA structural features modulate recognition by dsRBDs.
Collapse
Affiliation(s)
- Insil Kim
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | |
Collapse
|
33
|
Ilin S, Hoskins A, Ohlenschläger O, Jonker HRA, Schwalbe H, Wöhnert J. Domain reorientation and induced fit upon RNA binding: solution structure and dynamics of ribosomal protein L11 from Thermotoga maritima. Chembiochem 2006; 6:1611-8. [PMID: 16094695 DOI: 10.1002/cbic.200500091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L11, a protein of the large ribosomal subunit, binds to a highly conserved domain of 23S rRNA and mediates ribosomal GTPase activity. Its C-terminal domain is the main determinant for rRNA binding, whereas its N-terminal domain plays only a limited role in RNA binding. The N-terminal domain is thought to be involved in interactions with elongation and release factors as well as with the antibiotics thiostrepton and micrococcin. This report presents the NMR solution structure of the full-length L11 protein from the thermophilic eubacterium Thermotoga maritima in its free form. The structure is based on a large number of orientational restraints derived from residual dipolar couplings in addition to conventional NOE-based restraints. The solution structure of L11 demonstrates that, in contrast to many other multidomain RNA-binding proteins, the relative orientation of the two domains is well defined. This is shown both by heteronuclear 15N-relaxation and residual dipolar-coupling data. Comparison of this NMR structure with the X-ray structure of RNA-bound L11, reveals that binding not only induces a rigidification of a flexible loop in the C-terminal domain, but also a sizeable reorientation of the N-terminal domain. The domain orientation in free L11 shows limited similarity to that of ribosome-bound L11 in complex with elongation factor, EF-G.
Collapse
Affiliation(s)
- Sergey Ilin
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe Universität, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FHT. Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 2006; 25:150-62. [PMID: 16362043 PMCID: PMC1356354 DOI: 10.1038/sj.emboj.7600911] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/21/2005] [Indexed: 11/08/2022] Open
Abstract
The polypyrimidine tract binding protein (PTB) is a 58 kDa protein involved in many aspects of RNA metabolism. In this study, we focused our attention on the structure of the two C-terminal RNA recognition motifs (RRM3 and RRM4) of PTB. In a previous study, it was found that the two RRMs are independent in the free state. We recently determined the structure of the same fragment in complex with RNA and found that the two RRMs interact extensively. This difference made us re-evaluate in detail the free protein structure and in particular the interdomain interface. We used a combination of NMR spectroscopy and segmental isotopic labeling to unambiguously study and characterize the interdomain interactions. An improved segmental isotopic labeling protocol was used, enabling us to unambiguously identify 130 interdomain NOEs between the two RRMs and to calculate a very precise structure. The structure reveals a large interdomain interface, resulting in a very unusual positioning of the two RRM domains relative to one another.
Collapse
Affiliation(s)
- Francesca Vitali
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Anke Henning
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Florian C Oberstrass
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Yann Hargous
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Sigrid D Auweter
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Michèle Erat
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| |
Collapse
|
35
|
Law MJ, Linde ME, Chambers EJ, Oubridge C, Katsamba PS, Nilsson L, Haworth IS, Laird-Offringa IA. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA. Nucleic Acids Res 2006; 34:275-85. [PMID: 16407334 PMCID: PMC1326249 DOI: 10.1093/nar/gkj436] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes.
Collapse
Affiliation(s)
- Michael J. Law
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Michael E. Linde
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Eric J. Chambers
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Chris Oubridge
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 2QH, UK
| | - Phinikoula S. Katsamba
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Lennart Nilsson
- Karolinska Institutet, Department of Biosciences at NovumSE-141 57 Huddinge, Sweden
| | - Ian S. Haworth
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Ite A. Laird-Offringa
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- To whom correspondence should be addressed. Tel: +1 323 865 0655; Fax: +1 323 865 0158;
| |
Collapse
|
36
|
Maris C, Dominguez C, Allain FHT. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272:2118-31. [PMID: 15853797 DOI: 10.1111/j.1742-4658.2005.04653.x] [Citation(s) in RCA: 808] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM-RNA or RRM-protein), we reviewed the structure-function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM-nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM beta-sheet, the two external beta-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein-RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.
Collapse
Affiliation(s)
- Christophe Maris
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
37
|
Law MJ, Chambers EJ, Katsamba PS, Haworth IS, Laird-Offringa IA. Kinetic analysis of the role of the tyrosine 13, phenylalanine 56 and glutamine 54 network in the U1A/U1 hairpin II interaction. Nucleic Acids Res 2005; 33:2917-28. [PMID: 15914668 PMCID: PMC1140079 DOI: 10.1093/nar/gki602] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The A protein of the U1 small nuclear ribonucleoprotein particle, interacting with its stem-loop RNA target (U1hpII), is frequently used as a paradigm for RNA binding by recognition motif domains (RRMs). U1A/U1hpII complex formation has been proposed to consist of at least two steps: electrostatically mediated alignment of both molecules followed by locking into place, based on the establishment of close-range interactions. The sequence of events between alignment and locking remains obscure. Here we examine the roles of three critical residues, Tyr13, Phe56 and Gln54, in complex formation and stability using Biacore. Our mutational and kinetic data suggest that Tyr13 plays a more important role than Phe56 in complex formation. Mutational analysis of Gln54, combined with molecular dynamics studies, points to Arg52 as another key residue in association. Based on our data and previous structural and modeling studies, we propose that electrostatic alignment of the molecules is followed by hydrogen bond formation between the RNA and Arg52, and the sequential establishment of interactions with loop bases (including Tyr13). A quadruple stack, sandwiching two bases between Phe56 and Asp92, would occur last and coincide with the rearrangement of a C-terminal helix that partially occludes the RRM surface in the free protein.
Collapse
Affiliation(s)
| | - Eric J. Chambers
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | | | - Ian S. Haworth
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Ite A. Laird-Offringa
- To whom correspondence should be addressed. Tel: +1 323 865 0655; Fax: +1 323 865 0158;
| |
Collapse
|
38
|
Deka P, Rajan PK, Perez-Canadillas JM, Varani G. Protein and RNA Dynamics Play Key Roles in Determining the Specific Recognition of GU-rich Polyadenylation Regulatory Elements by Human Cstf-64 Protein. J Mol Biol 2005; 347:719-33. [PMID: 15769465 DOI: 10.1016/j.jmb.2005.01.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/14/2004] [Accepted: 01/21/2005] [Indexed: 12/16/2022]
Abstract
The N-terminal domain of the 64 kDa subunit of the cleavage stimulation factor (CstF-64) recognizes GU-rich elements within the 3'-untranslated region of eukaryotic mRNAs. This interaction is essential for mRNA 3' end processing and transcription termination, and its strength affects the efficiency of utilization of different polyadenylation sites. The structure of the RNA-binding N-terminal domain of CstF-64 showed how the N-terminal RNA recognition motif of CstF-64 recognizes GU-rich RNAs. However, it is still perplexing how this protein can bind selectively to RNAs that are rich in G and U residues regardless of their detailed sequence composition, yet discriminate effectively against non-GU-RNAs. We investigated by NMR the dynamics of the CstF-64 RNA-binding domain, both free and bound to two GU-rich RNA sequences that represent polyadenylation regulatory elements. While the free protein displays the motional properties typical of a well-folded protein domain and is uniformly rigid, the protein-RNA interface acquires significant mobility on the micro- to millisecond time-scale once GU-rich RNAs binds to it. These motional features, we propose, are intrinsic to the functional requirement to bind all GU-rich sequences and yet to discriminate against non-GU-rich RNAs. This behavior may be a general mechanism by which some RNA-binding proteins are able to bind to classes of sequences, as opposed to a well-defined sequence or consensus.
Collapse
Affiliation(s)
- Pritilekha Deka
- Department of Biochemistry and Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | |
Collapse
|
39
|
Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 2005; 118:981-92. [PMID: 15731006 DOI: 10.1242/jcs.01692] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cytoplasmic polyadenylation element-binding protein (CPEB) has been characterized in Xenopus laevis as a translational regulator. During the early development, it behaves first as an inhibitor and later as an activator of translation. In mammals, its closest homologue is CPEB1 for which two isoforms, short and long, have been described. Here we describe an additional isoform with a different RNA recognition motif, which is differentially expressed in the brain and ovary. We show that all CPEB1 isoforms are found associated with two previously described cytoplasmic structures, stress granules and dcp1 bodies. This association requires the RNA binding ability of the protein, whereas the Aurora A phosphorylation site is dispensable. Interestingly, the rck/p54 DEAD box protein, which is known as a CPEB partner in Xenopus and clam, and as a component of dcp1 bodies in mammals, is also present in stress granules. Both stress granules and dcp1 bodies are involved in mRNA storage and/or degradation, although so far no link has been made between the two, in terms of neither morphology nor protein content. Here we show that transient CPEB1 expression induces the assembly of stress granules, which in turn recruit dcp1 bodies. This dynamic connection between the two structures sheds new light on the compartmentalization of mRNA metabolism in the cytoplasm.
Collapse
Affiliation(s)
- A Wilczynska
- CNRS UPR1983, Institut André Lwoff, 7 rue Guy Moquet, 94801 Villejuif CEDEX, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
Structure determination of protein?RNA complexes in solution provides unique insights into factors that are involved in protein/RNA recognition. Here, we review the methodology used in our laboratory to overcome the challenges of protein?RNA structure determination by nuclear magnetic resonance (NMR). We use as two examples complexes recently solved in our laboratory, the nucleolin RBD12/b2NRE and Rnt1p dsRBD/snR47h complexes. Topics covered are protein and RNA preparation, complex formation, identification of the protein/RNA interface, protein and RNA resonance assignment, intermolecular NOE assignment, and structure calculation and analysis.
Collapse
Affiliation(s)
- Haihong Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA
| | | | | |
Collapse
|
41
|
Degot S, Le Hir H, Alpy F, Kedinger V, Stoll I, Wendling C, Seraphin B, Rio MC, Tomasetto C. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J Biol Chem 2004; 279:33702-15. [PMID: 15166247 DOI: 10.1074/jbc.m402754200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MLN51 is a nucleocytoplasmic shuttling protein that is overexpressed in breast cancer. The function of MLN51 in mammals remains elusive. Its fly homolog, named barentsz, as well as the proteins mago nashi and tsunagi have been shown to be required for proper oskar mRNA localization to the posterior pole of the oocyte. Magoh and Y14, the human homologs of mago nashi and tsunagi, are core components of the exon junction complex (EJC). The EJC is assembled on spliced mRNAs and plays important roles in post-splicing events including mRNA export, nonsense-mediated mRNA decay, and translation. In the present study, we show that human MLN51 is an RNA-binding protein present in ribonucleo-protein complexes. By co-immunoprecipitation assays, endogenous MLN51 protein is found to be associated with EJC components, including Magoh, Y14, and NFX1/TAP, and subcellular localization studies indicate that MLN51 transiently co-localizes with Magoh in nuclear speckles. Moreover, we demonstrate that MLN51 specifically associates with spliced mRNAs in co-precipitation experiments, both in the nucleus and in the cytoplasm, at the position where the EJC is deposited. Most interesting, we have identified a region within MLN51 sufficient to bind RNA, to interact with Magoh and spliced mRNA, and to address the protein to nuclear speckles. This conserved region of MLN51 was therefore named SELOR for speckle localizer and RNA binding module. Altogether our data demonstrate that MLN51 associates with EJC in the nucleus and remains stably associated with mRNA in the cytoplasm, suggesting that its overexpression might alter mRNA metabolism in cancer.
Collapse
Affiliation(s)
- Sébastien Degot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Pathologie Moléculaire, UPR 6520 CNRS/U596 INSERM/Université Louis Pasteur, BP 10142, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johansson C, Finger LD, Trantirek L, Mueller TD, Kim S, Laird-Offringa IA, Feigon J. Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J Mol Biol 2004; 337:799-816. [PMID: 15033352 DOI: 10.1016/j.jmb.2004.01.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 11/30/2022]
Abstract
Nucleolin is a 70 kDa multidomain protein involved in several steps of eukaryotic ribosome biogenesis. In vitro selection in combination with mutagenesis and structural analysis identified binding sites in pre-rRNA with the consensus (U/G)CCCG(A/G) in the context of a hairpin structure, the nucleolin recognition element (NRE). The central region of the protein contains four tandem RNA-binding domains (RBDs), of which the first two are responsible for the RNA-binding specificity and affinity for NREs. Here, we present the solution structure of the 28 kDa complex formed by the two N-terminal RNA-binding domains of nucleolin (RBD12) and a natural pre-rRNA target, b2NRE. The structure demonstrates that the sequence-specific recognition of the pre-rRNA NRE is achieved by intermolecular hydrogen bonds and stacking interactions involving mainly the beta-sheet surfaces of the two RBDs and the linker residues. A comparison with our previously determined NMR structure of RBD12 in complex with an in vitro selected RNA target, sNRE, shows that although the sequence-specific recognition of the loop consensus nucleotides is the same in the two complexes, they differ in several aspects. While the protein makes numerous specific contacts to the non-consensus nucleotides in the loop E motif (S-turn) in the upper part of the sNRE stem, nucleolin RBD12 contacts only consensus nucleotides in b2NRE. The absence of these upper stem contacts from the RBD12/b2NRE complex results in a much less stable complex, as demonstrated by kinetic analyses. The role of the loop E motif in high-affinity binding is supported by gel-shift analyses with a series of sNRE mutants. The less stable interaction of RBD12 with the natural RNA target is consistent with the proposed role of nucleolin as a chaperone that interacts transiently with pre-rRNA to prevent misfolding.
Collapse
Affiliation(s)
- Carina Johansson
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
RNA-proteins interactions are involved in numerous cellular functions. These interactions are found in most cases within complex macromolecular assemblies. The recent development of tools and techniques to study RNA-protein complexes has significantly increased our knowledge in the nature of these specific interactions. The aim of this article is to present the different techniques used to study RNA-protein complexes, as well as recent data concerning the application of RNA as therapeutic molecules.
Collapse
Affiliation(s)
- Nicolas Hugo
- Ecole Normale Supérieure de Lyon, Cnrs UMR 5665, 46, allée d'Italie, 69364 Lyon 07, France
| | | |
Collapse
|
44
|
Abstract
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex.
Collapse
Affiliation(s)
- Scott A Showalter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
45
|
Ueno T, Tokunaga K, Sawa H, Maeda M, Chiba J, Kojima A, Hasegawa H, Shoya Y, Sata T, Kurata T, Takahashi H. Nucleolin and the packaging signal, psi, promote the budding of human immunodeficiency virus type-1 (HIV-1). Microbiol Immunol 2004; 48:111-8. [PMID: 14978336 DOI: 10.1111/j.1348-0421.2004.tb03496.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.
Collapse
Affiliation(s)
- Tomonori Ueno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pérez Cañadillas JM, Varani G. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 2003; 22:2821-30. [PMID: 12773396 PMCID: PMC156756 DOI: 10.1093/emboj/cdg259] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate polyadenylation sites are identified by the AAUAAA signal and by GU-rich sequences downstream of the cleavage site. These are recognized by a heterotrimeric protein complex (CstF) through its 64 kDa subunit (CstF-64); the strength of this interaction affects the efficiency of poly(A) site utilization. We present the structure of the RNA-binding domain of CstF-64 containing an RNA recognition motif (RRM) augmented by N- and C-terminal helices. The C-terminal helix unfolds upon RNA binding and extends into the hinge domain where interactions with factors responsible for assembly of the polyadenylation complex occur. We propose that this conformational change initiates assembly. Consecutive Us are required for a strong CstF-GU interaction and we show how UU dinucleotides are recognized. Contacts outside the UU pocket fine tune the protein-RNA interaction and provide different affinities for distinct GU-rich elements. The protein-RNA interface remains mobile, most likely a requirement to bind many GU-rich sequences and yet discriminate against other RNAs. The structural distinction between sequences that form stable and unstable complexes provides an operational distinction between weakly and strongly processed poly(A) sites.
Collapse
|
47
|
Abstract
Recent discoveries have revealed that there is a myriad of RNAs and associated RNA-binding proteins that spatially and temporally appear in the cells of all organisms. The structures of these RNA-protein complexes are providing valuable insights into the binding modes and functional implications of these interactions. Even the common RNA-binding domains (RBDs) and the double stranded RNA binding motifs (dsRBMs) have been shown to exhibit a plethora of binding modes.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
48
|
Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol 2002; 316:113-25. [PMID: 11829507 DOI: 10.1006/jmbi.2001.5329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium-binding epidermal growth factor-like (cbEGF) module and the transforming growth factor beta-binding protein-like (TB) module are the two major structural motifs found in fibrillin-1, the extracellular matrix (ECM) protein defective in the Marfan syndrome (MFS). An MFS-causing mutation, N2144S, which removes a calcium ligand in cbEGF32, does not detectably affect fibrillin-1 biosynthesis, rate of secretion, processing, or deposition of reducible fibrillin-1 into the ECM. Since the residue at position 2144 is normally engaged in calcium ligation, it is unable to mediate intermolecular interactions. We have shown previously that this mutation does not affect the folding properties of the TB or cbEGF domains in vitro, but does decrease calcium-binding in cbEGF and TB-cbEGF domain constructs. Here, we use NMR spectroscopy to probe the effects of the N2144S mutation on backbone dynamic properties of TB6-cbEGF32. Analysis of the backbone (15)N relaxation data of wild-type TB6-cbEGF32 has revealed a flexible inter-domain linkage. Parallel dynamics analysis of the N2144S mutant has shown increased flexibility in the region joining the two domains as well as in the calcium-binding site at the N terminus of cbEGF32. This research demonstrates that a small change in peptide backbone flexibility, which does not enhance proteolytic susceptibility of the domain pair, is associated with an MFS phenotype. Flexibility of the TB-cbEGF linkage is likely to contribute to the biomechanical properties of fibrillin-rich connective tissue microfibrils, and may play a role in the microfibril assembly process.
Collapse
Affiliation(s)
- Xuemei Yuan
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
50
|
Bouvet P, Allain FH, Finger LD, Dieckmann T, Feigon J. Recognition of pre-formed and flexible elements of an RNA stem-loop by nucleolin. J Mol Biol 2001; 309:763-75. [PMID: 11397095 DOI: 10.1006/jmbi.2001.4691] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleolin is an abundant nucleolar protein which is essential for ribosome biogenesis. The first two of its four tandem RNA-binding domains (RBD12) specifically recognize a stem-loop structure containing a conserved UCCCGA sequence in the loop called the nucleolin-recognition element (NRE). We have determined the structure of the consensus SELEX NRE (sNRE) by NMR spectroscopy. In both the free and bound RNA the top part of the stem forms a loop E (or S-turn) motif. In the absence of protein, the structure of the hairpin loop is not well defined due to conformational heterogeneity, and appears to be in equilibrium between two families of conformations. Titrations of RBD1, RBD2, and RBD12 with the sNRE show that specific binding requires RBD12. In complex with RBD12, the hairpin loop interacts specifically with the protein and adopts a well-defined structure which shares some of the features of the free form. The loop E motif also has specific interactions with the protein. Implications of these findings for the mechanism of recognition of RNA structures by modular proteins are discussed.
Collapse
Affiliation(s)
- P Bouvet
- Laboratoire de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse Cedex, 31077, France
| | | | | | | | | |
Collapse
|