1
|
Aluko EO, David UE, Ojetola AA, Fasanmade AA. Aqueous extract of Peristrophe bivalvis (L.) Merr. leaf reversed the detrimental effects of nitric oxide synthase inhibitor on blood lipid profile and glucose level. PLoS One 2024; 19:e0308338. [PMID: 39240961 PMCID: PMC11379291 DOI: 10.1371/journal.pone.0308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 09/08/2024] Open
Abstract
There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME). Male Wistar rats (150-170 g, n=30) were randomly divided into two groups: control (CT, n=5) and L-NAME pretreated (n=25). CT received 5 mL/kg of distilled water [DW]) while L-NAME pretreated group received 60 mg/kg of L-NAME (L-NAME60) for eight weeks. After eight weeks, the L-NAME pretreated group was randomly subdivided into L-NAME group (LN), L-NAME recovery group (LRE), L-NAME ramipril group (LRA), and L-NAME APB group (LAPB). The groups received L-NAME60+DW, DW, L-NAME60+10 mg/kg ramipril, and L-NAME60+APB (200 mg/kg), respectively, for five weeks. Serum NO, lipid profile, cyclic guanosine monophosphate (cGMP), and insulin were measured by spectrophotometry, assay kits, and ELISA, respectively. Data were analysed using ANOVA at p < 0.05. At the eighth week, a fall in FBG and an increase in triglyceride, total cholesterol, and low-density lipoprotein cholesterol were recorded in L8 compared to CT. The same effects were also noticed in the thirteenth week in LN. However, FBG was significantly increased and lipid levels were decreased in LAPB compared to LN. A significant increase was observed in cGMP level in LAPB compared to LN. The study showed that APB corrected the hyperlipidemia and hypoglycemia caused by L-NAME, and this effect might be via the activation of cGMP.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Physiology Department, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa-Ibom State, Nigeria
| | - Ubong Edem David
- Physiology Unit, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Abodunrin Adebayo Ojetola
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Adesoji Adedipe Fasanmade
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
Kuneš J, Zicha J. Research on Experimental Hypertension in Prague (1966-2009). Physiol Res 2024; 73:S49-S66. [PMID: 39016152 PMCID: PMC11412355 DOI: 10.33549/physiolres.935425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
Collapse
Affiliation(s)
- J Kuneš
- Laboratory of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Stanko P, Repova K, Baka T, Krajcirovicova K, Aziriova S, Barta A, Zorad S, Adamcova M, Simko F. Sacubitril/Valsartan Alleviates Cardiac Remodeling and Dysfunction in L-NAME-Induced Hypertension and Hypertensive Heart Disease. Biomedicines 2024; 12:733. [PMID: 38672089 PMCID: PMC11047969 DOI: 10.3390/biomedicines12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is ample evidence on the benefit of angiotensin receptor-neprilysin inhibitors (ARNIs) in heart failure, yet data regarding the potential protective action of ARNIs in hypertensive heart disease are sparse. The aim of this study was to show whether an ARNI exerts a protective effect in a model of Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension with a hypertensive heart and to compare this potential benefit with an angiotensin-converting enzyme inhibitor, captopril. Five groups of adult male Wistar rats were studied (14 per group) for four weeks: untreated controls; ARNI (68 mg/kg/day); L-NAME (40 mg/kg/day); L-NAME treated with ARNI; and L-NAME treated with captopril (100 mg/kg/day). L-NAME administration induced hypertension, accompanied by increased left ventricular (LV) weight and fibrotic rebuilding of the LV in terms of increased concentration and content of hydroxyproline in insoluble collagen and in total collagen and with a histological finding of fibrosis. These alterations were associated with a compromised systolic and diastolic LV function. Treatment with either an ARNI or captopril reduced systolic blood pressure (SBP), alleviated LV hypertrophy and fibrosis, and prevented the development of both systolic and diastolic LV dysfunction. Moreover, the serum levels of prolactin and prolactin receptor were reduced significantly by ARNI and slightly by captopril. In conclusion, in L-NAME-induced hypertension, the dual inhibition of neprilysin and AT1 receptors by ARNI reduced SBP and prevented the development of LV hypertrophy, fibrosis, and systolic and diastolic dysfunction. These data suggest that ARNI could provide protection against LV structural remodeling and functional disorders in hypertensive heart disease.
Collapse
Affiliation(s)
- Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Department of Pneumology, Phthisiology and Functional Diagnostics, Slovak Medical University and Bratislava University Hospital, 82606 Bratislava, Slovakia
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
| | - Andrej Barta
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia;
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (P.S.); (K.R.); (T.B.); (K.K.); (S.A.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
| |
Collapse
|
4
|
Maneesai P, Potue P, Khamseekaew J, Sangartit W, Rattanakanokchai S, Poasakate A, Pakdeechote P. Kaempferol protects against cardiovascular abnormalities induced by nitric oxide deficiency in rats by suppressing the TNF-α pathway. Eur J Pharmacol 2023; 960:176112. [PMID: 37879426 DOI: 10.1016/j.ejphar.2023.176112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Kaempferol is a natural flavonoid compound that exhibits various pharmacological actions. However, there are few reports regarding the role of kaempferol in cardiovascular abnormalities. This study aimed to assess whether kaempferol could prevent cardiovascular malfunction and hypertrophy provoked by chronic inhibition of nitric oxide (NO) formation in rats. Rats (180-200 g) were treated daily with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (40 mg/kg, in drinking water) for five weeks concomitant with kaempferol (oral administration) at a dose of 20 mg/kg or 40 mg/kg or lisinopril (5 mg/kg). Kaempferol partially prevented the progression of hypertension provoked by NO inhibition (p < 0.05). Left ventricular malfunction and hypertrophy present in hypertensive rats were alleviated by concurrent administration of kaempferol (p < 0.05). Furthermore, L-NAME rats had increased sympathetic nerve-mediated vasoconstriction and decreased acetylcholine-induced vasorelaxation and aortic wall thickening, which were resolved by kaempferol treatment (p < 0.05). Kaempferol restored tissue superoxide formation, malondialdehyde, catalase activity, plasma nitric oxide metabolites, tumor necrosis factor-alpha (TNF-α) and interleukin-6 in L-NAME rats (p < 0.05). Overexpression of tumor necrosis factor receptor 2 (TNFR2), phosphatidylinositol 3-kinases (PI3K), AKT serine/threonine kinase 1 (Akt1) and smad2/3 in heart tissue and upregulation of tumor necrosis factor receptor 1 (TNFR1), phosphorylated nuclear factor-kappaB (p-NF-κB) and transforming growth factor beta 1 (TGF-β1) in vascular tissue were suppressed by kaempferol (p < 0.05). In conclusion, kaempferol exerts antihypertensive, cardioprotective, antioxidant, and anti-inflammatory effects in NO-dependent hypertensive rats. The underlying mechanisms of kaempferol in preventing cardiovascular changes induced by L-NAME were due to the suppression of the TNF-α pathway.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Anuson Poasakate
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
5
|
Hypotensive effects of melatonin in rats: Focus on the model, measurement, application, and main mechanisms. Hypertens Res 2022; 45:1929-1944. [PMID: 36123396 DOI: 10.1038/s41440-022-01031-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin's lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect.
Collapse
|
6
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Pei J, Liu Z, Wang C, Chu N, Liu L, Tang Y, Liu H, Xiang Q, Cheng H, Li M, Gu W. Progesterone Attenuates SIRT1-Deficiency-Mediated Pre-Eclampsia. Biomolecules 2022; 12:biom12030422. [PMID: 35327614 PMCID: PMC8946184 DOI: 10.3390/biom12030422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-eclampsia is a severe hypertensive disorder of pregnancy (HDP), mainly characterized by new-onset hypertension with proteinuria after 20-week gestation. Sirtuin1 (SIRT1), a class III histone deacetylase, is associated with the regulation of various pathophysiological processes, including inflammation, immune response, metabolism, and autophagy. However, the effect of SIRT1 in the pathogenesis of pre-eclampsia remains to be elucidated. In this study, we found that the expression of SIRT1 was relatively lower in the placentas and serum samples of pre-eclampsia patients. Typical pre-eclampsia-like symptoms, such as hypertension, proteinuria, fetal growth restriction, kidney injury, and a narrow placental labyrinth layer, were observed in SIRT1 knockdown (SIRT1+/−) mice. Of note, these performances could be improved after the intraperitoneal injection of SIRT1 agonist SRT2104. More importantly, we found that the efficacy of progesterone on attenuating symptoms of PE was profoundly better than that of metformin in SIRT1+/− mice. In addition, our results suggested that progesterone can promote the invasion and inhibit the apoptosis of trophoblasts. These data suggest that SIRT1 plays an important role in pre-eclampsia and that progesterone alleviates pre-eclampsia-like symptoms mediated by SIRT1 deficiency.
Collapse
Affiliation(s)
- Jiangnan Pei
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Zhenzhen Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Chengjie Wang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Nan Chu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Lei Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Yao Tang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Haiyan Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Qianqian Xiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
| | - Haidong Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| | - Mingqing Li
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| | - Weirong Gu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| |
Collapse
|
8
|
Metchi Donfack MF, Atsamo AD, Temdié Guemmogne RJ, Ngouateu Kenfack OB, Dongmo AB, Dimo T. Antihypertensive Effects of the Vitex cienkowskii (Verbenaceae) Stem-Bark Extract on L-NAME-Induced Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6668919. [PMID: 33747111 PMCID: PMC7954626 DOI: 10.1155/2021/6668919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Vitex cienkowskii stem-bark is used in Cameroonian traditional medicine to treat cardiovascular diseases including hypertension. In previous studies, the methanol/methylene chloride stem-bark extract of Vitex cienkowskii (MMVC) showed a preventive activity in L-NAME-induced hypertension and improved blood pressure of spontaneously hypertensive rats. The present study investigated the curative effects in L-NAME-induced hypertensive rats (LNHR). Hypertension was induced in rats by oral administration of L-NAME (40 mg/kg/day) for 28 days. The animals were divided into 2 groups: one group of 5 rats receiving distilled water (10 ml/kg) and another 20 rats receiving L-NAME. At the end of 4 weeks of administration of L-NAME, the animals were divided into 4 groups of 5 rats each: one group of hypertensive rats receiving distilled water, another one receiving captopril (25 mg/kg), and two groups of hypertensive rats receiving MMVC at doses of 200 and 400 mg/kg, respectively. Body weight, food, and water intake were measured weekly. At the end of the treatment, blood pressure and heart rate were recorded by invasive method. Whole heart, left ventricle, kidneys, and liver were weighed. The effects of plant extract on lipid profile and oxidative stress markers, as well as markers of hepatic and renal functions were assessed spectrophotometrically according to well described protocols. Results show that L-NAME significantly increases the mean arterial blood pressure (MABP), atherogenic index, lipid profile, and creatinine and transaminase activities of normotensive rats. MMVC significantly reduced the blood pressure in LNHR. Body weight, food and water intake, left ventricular hypertrophy, antioxidant level, renal and hepatic markers, and lipid profile were improved by the treatment with MMVC. The curative effect of MMVC on L-NAME-induced hypertension is probably related to its antihypertensive, hypolipidemic, and antioxidant properties. These results confirmed the use of Vitex cienkowskii for the treatment of hypertension in traditional medicine.
Collapse
Affiliation(s)
- Mireille Flaure Metchi Donfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Roméo Joël Temdié Guemmogne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Omer Bébé Ngouateu Kenfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Bertrand Dongmo
- Department of Animal Biology, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Théophile Dimo
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
9
|
Poasakate A, Maneesai P, Rattanakanokchai S, Bunbupha S, Tong-Un T, Pakdeechote P. Genistein Prevents Nitric Oxide Deficiency-Induced Cardiac Dysfunction and Remodeling in Rats. Antioxidants (Basel) 2021; 10:antiox10020237. [PMID: 33557258 PMCID: PMC7914683 DOI: 10.3390/antiox10020237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Genistein is an isoflavone found in soybeans. This study evaluates the protective effects of genistein on Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension, cardiac remodeling, and dysfunction in rats. Male Wistar rats were treated with L-NAME 40 mg/kg/day together for 5 weeks, with or without genistein at a dose of 40 or 80 mg/kg/day or lisinopril 5 mg/kg/day (n = 8 per group). Genistein prevented L-NAME-induced hypertension in rats. Increases in the left ventricular weight, metalloproteinase-2, metalloproteinase-9, and collagen type I intensity were observed in L-NAME rats, and these changes were attenuated in the genistein-treated group. Genistein reduced circulating angiotensin-converting enzyme activity and angiotensin II concentrations in L-NAME rats. L-NAME increased plasma and cardiac malondialdehyde and vascular superoxide generations, as well as reductions of serum and cardiac catalase activities in rats. Plasma nitrate/nitrite were protected in the genistein-treated group. Genistein prevented the L-NAME-induced overexpression of angiotensin II receptor type I (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 2 (gp91phox), and transforming growth factor beta I (TGF-β1) in hypertensive rats. In conclusion, genistein exhibited a cardioprotective effect in hypertensive rats in this study. The molecular mechanisms might be mediated by suppression of oxidative stress through the Ang II/AT1R/NADPH oxidase/TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Terdthai Tong-Un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (A.P.); (P.M.); (T.T.-U.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-86-852-6060; Fax: +66-4334-8394
| |
Collapse
|
10
|
Sha H, Ma Y, Tong Y, Zhao J, Qin F. Apocynin inhibits placental TLR4/NF-κB signaling pathway and ameliorates preeclampsia-like symptoms in rats. Pregnancy Hypertens 2020; 22:210-215. [PMID: 33099123 DOI: 10.1016/j.preghy.2020.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We aimed to investigate the potency of apocynin in ameliorating preeclampsia and explore the underlying mechanisms. METHODS Preeclampsia model was constructed in rats by administering 200 mg/kg/day L-NAME. Apocynin was given orally in drinking water. Systolic blood pressure and proteinuria were monitored during treatment. Survival rate rate of the pups and placental weight were assessed. Serum sFlt-1, PIGF, IL-6 and placental TLR4 levels were measured using ELISA or qRT-PCR. RESULTS Apocynin dose-dependently decreased systolic blood pressure and proteinuria during gestation. Survival rate of the pups and placental weight were improved by apocynin treatment. Apocynin ameliorated the imbalance of sFlt-1 and PIGF in serum and placenta of rats with preeclampsia. Apocynin attenuated serum inflammatory cytokine expression and placental inflammation most likely due to downregulation of the placental TLR4/NF-kB pathway in L-NAME treated rats. CONCLUSIONS Apocynin potently ameliorates the L-NAME-induced preeclampsia, which is achieved by re-balancing the sFlt-1 and PIGF levels, attenuating inflammation, and inhibiting TLR4/NF-κB p65 signaling.
Collapse
Affiliation(s)
- Han Sha
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Yanchao Ma
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Yuli Tong
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Jie Zhao
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China
| | - Fengzhi Qin
- Department of Obstetrics and Gynecology, Heze Municipal Hospital, No. 2888 Caozhou Road, Mudan District, Heze 274000, Shandong, China.
| |
Collapse
|
11
|
Mizar SMM, Kozman MR, Abo-Saif AA, Messiha BAS. Combination of Captopril with Gliclazide Decreases Vascular and Renal Complications and Improves Glycemic Control in Rats with Streptozotocin- Induced Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2020; 21:1096-1106. [PMID: 32955003 DOI: 10.2174/1871530320666200821160436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/07/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The common antihypertensive angiotensin-converting enzyme (ACE) inhibitor captopril was reported to possess anti-oxidant and anti-inflammatory effects in different experimental models. Diabetic vascular complications arise from increased vascular endothelial inflammation and oxidative stress as well as decreased nitric oxide bioavailability in the vessel walls due to poor glycemic control. OBJECTIVE This study aimed to evaluate the role of captopril and gliclazide in decreasing diabetes mellitus (DM) vascular complications caused by decreased cellular glucose uptake and impaired endothelial nitric oxide metabolism, as well as examine the effects of the combination on diabetic renal complication and plasma lipid profile. METHODS Adult male Wister rats received captopril (25 mg/kg/day) and/or gliclazide (10 mg/kg/- day) by oral gavage daily for one month after induction of DM using streptozotocin (50 mg/kg, i.p., once). Serum glucose and insulin levels, inflammatory mediators like TNF-α, oxidative stress biomarkers like glutathione and nitric oxide, and plasma lipid profile were measured. Besides, histopathological examination of the thoracic aorta and kidney tissues, Western blot assessed the expression of nitric oxide synthase (NOS) subtypes in the thoracic aorta. RESULTS Captopril significantly improved vascular architecture and oxidative stress and modulated nitric oxide synthesis via regulation of nitric oxide synthases, as well as decreased inflammation via down-regulating TNF-α, decreased systolic and diastolic blood pressure, and improved serum lipid profile in diabetic rats. Gliclazide increased serum insulin and decreased serum glucose, as well as its anti-oxidant and anti-inflammatory effects. CONCLUSION Captopril showed a promising protective effect against DM vascular complications, at least via nitric oxide modulating effect, anti-oxidant effect, and anti-inflammatory activity that appeared in biochemical and histopathological findings, lipid profile, renal function, and architecture improvements. Combining gliclazide with captopril gives an additive effect through enhanced glycemic control and increased anti-oxidant and anti-inflammatory properties above captopril alone.
Collapse
Affiliation(s)
- Sayed M M Mizar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Magy R Kozman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Zuo J, Jiang Z. Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vasc Med 2020; 25:295-301. [PMID: 32469270 DOI: 10.1177/1358863x20919798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Preeclampsia is a life-threatening multiorgan systemic disease with manifestations including gestational hypertension, oxidative stress, and vascular dysfunction. We aimed to evaluate the therapeutic effects of melatonin on an L-NAME (NLG-nitro-l-arginine methyl ester)-induced rat preeclampsia model. During gestation, L-NAME was added to drinking water at 50 mg/kg/day from gestation day (GD) 8. Rats received the combination of L-NAME with melatonin (10 mg/kg/day), or aspirin (1.5 mg/kg/day), and rats that received only L-NAME or no treatments were used as controls. Aspirin was mixed with rodent chow and melatonin was administered intraperitoneally. Blood pressure and urine protein content were monitored every 3 days. On GD19, blood samples were collected for biochemical analysis. Compared to untreated L-NAME rats, melatonin led to markedly lowered blood pressure and urine protein content, and recovery in the fetus alive ratio, fetal weight, and the fetal weight/placental weight ratio. Compared to untreated L-NAME rats, plasma antioxidant capacity and plasma malondialdehyde were increased and decreased by melatonin, respectively, in L-NAME rats. Melatonin treatment also reduced sFlt-1, increased PlGF, and decreased the sFlt-1/PlGF ratio. In the placenta, melatonin also reduced sFlt-1 levels and increased Nrf2, PlGF, and HO-1 levels. We have demonstrated in a rat model of preeclampsia that melatonin exerts significant protective effects through lowering blood pressure and reducing oxidative stress.
Collapse
Affiliation(s)
- Junfang Zuo
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ziyun Jiang
- Shanghai Zhuole Biotech Center, Shanghai, China
| |
Collapse
|
13
|
Baka T, Simko F. Ivabradine reversed nondipping heart rate in rats with l-NAME-induced hypertension. Clin Exp Pharmacol Physiol 2019; 46:607-610. [PMID: 30790319 DOI: 10.1111/1440-1681.13075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022]
Abstract
We hypothesized that decreasing elevated night-time heart rate (HR) in hypertension by administering a bradycardic agent (ivabradine) at bedtime could bring cardiovascular benefit. Since rats are nocturnal animals, they exhibit circadian rhythms phase-shifted relative to humans. Sixty-six Wistar rats were divided into non-diseased controls and rats with l-NAME-induced hypertension to compare the haemodynamic effects of daytime-dosed and night-time-dosed ivabradine. l-NAME-induced hypertension inverted the physiological 5.6% night-to-day HR dip to an undesirable HR rise by 11.1%. Ivabradine dosed at daytime (the rat's resting phase) reverted a night-to-day HR rise to HR dip by 14.2%. These results suggest a cardiovascular benefit of ivabradine dosed at the human's resting phase (night-time) for hypertensive patients with nondipping HR.
Collapse
Affiliation(s)
- Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
14
|
Krajcirovicova K, Aziriova S, Baka T, Repova K, Adamcova M, Paulis L, Simko F. Ivabradine does not impair anxiety-like behavior and memory in both healthy and L-NAME-induced hypertensive rats. Physiol Res 2019; 67:S655-S664. [PMID: 30607972 DOI: 10.33549/physiolres.934048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular pathologies are frequently associated with anxiety and other behavioral disturbances. Ivabradine, an inhibitor of the hyperpolarization-activated cyclic nucleotide-gated channels in the sinoatrial node, decreases heart rate and provides cardiovascular protection. Although ivabradine is increasingly used in cardiovascular medicine, the data on its behavioral effects are lacking. The aim of this work was to show ivabradine's potential effect on behavior in healthy and hypertensive rats. After a four-week treatment period, systolic blood pressure was increased in the N(G)-nitro-L-arginine methyl ester (L-NAME)-group and ivabradine significantly reduced it. Furthermore, it reduced the heart rate in both the control and L-NAME-group. In the control group, ivabradine enhanced the time spent in and transition to the open arms of the elevated plus maze test (EPM). In the L-NAME-group, ivabradine does not show a significant effect on the time spent in the EPM open arms and the number of transitions into them. Furthermore, ivabradine has no impact on cognitive function in both control and L-NAME groups. We conclude that ivabradine showed no undesirable effects on anxiety, locomotion or learning; in fact, some of these parameters were even improved. For the first time it has been shown that ivabradine is a safe cardiovascular drug regarding its effect on psycho-behavioral manifestations.
Collapse
Affiliation(s)
- K Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
15
|
Simko F, Baka T, Poglitsch M, Repova K, Aziriova S, Krajcirovicova K, Zorad S, Adamcova M, Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int J Mol Sci 2018; 19:E3017. [PMID: 30282928 PMCID: PMC6212851 DOI: 10.3390/ijms19103017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Ivabradine, the selective inhibitor of the If current in the sinoatrial node, exerts cardiovascular protection by its bradycardic effect and potentially pleiotropic actions. However, there is a shortage of data regarding ivabradine's interaction with the renin-angiotensin-aldosterone system (RAAS). This study investigated whether ivabradine is able to protect a hypertensive heart in the model of L-NAME-induced hypertension and to interfere with the RAAS. Four groups (n = 10/group) of adult male Wistar rats were treated as follows for four weeks: control, ivabradine (10 mg/kg/day), L-NAME (40 mg/kg/day), and L-NAME plus ivabradine. L-NAME administration increased systolic blood pressure (SBP) and left ventricular (LV) weight, enhanced hydroxyproline concentration in the LV, and deteriorated the systolic and diastolic LV function. Ivabradine reduced heart rate (HR) and SBP, and improved the LV function. The serum concentrations of angiotensin Ang 1⁻8 (Ang II), Ang 1⁻5, Ang 1⁻7, Ang 1⁻10, Ang 2⁻8, and Ang 3⁻8 were decreased in the L-NAME group and ivabradine did not modify them. The serum concentration of aldosterone and the aldosterone/Ang II ratio were enhanced by L-NAME and ivabradine reduced these changes. We conclude that ivabradine improved the LV function of the hypertensive heart in L-NAME-induced hypertension. The protective effect of ivabradine might have been associated with the reduction of the aldosterone level.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | | | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Michaela Adamcova
- Department of Physiology, School of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic.
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- Institute of Normal and Pathological Physiology, Center for Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| |
Collapse
|
16
|
Simko F, Baka T, Krajcirovicova K, Repova K, Aziriova S, Zorad S, Poglitsch M, Adamcova M, Reiter RJ, Paulis L. Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension. Molecules 2018; 23:molecules23020265. [PMID: 29382124 PMCID: PMC6017142 DOI: 10.3390/molecules23020265] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a dominant player in several cardiovascular pathologies. This study investigated whether alterations induced by l-NAME, (NLG)-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, and the protective effect of melatonin are associated with changes in the RAAS. Four groups of 3-month-old male Wistar rats (n = 10) were treated as follows for four weeks: untreated controls, rats treated with melatonin (10 mg/kg/day), rats treated with l-NAME (40 mg/kg/day), and rats treated with l-NAME + melatonin. l-NAME administration led to hypertension and left ventricular (LV) fibrosis in terms of enhancement of soluble, insoluble and total collagen concentration and content. Melatonin reduced systolic blood pressure enhancement and lowered the concentration and content of insoluble and total collagen in the LV. The serum concentration of angiotensin (Ang) 1–8 (Ang II) and its downstream metabolites were reduced in the l-NAME group and remained unaltered by melatonin. The serum aldosterone level and its ratio to Ang II (AA2-ratio) were increased in the l-NAME group without being modified by melatonin. We conclude that l-NAME-hypertension is associated with reduced level of Ang II and its downstream metabolites and increased aldosterone concentration and AA2-ratio. Melatonin exerts its protective effect in l-NAME-induced hypertension without affecting RAAS.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia.
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| | | | - Michaela Adamcova
- Department of Physiology, School of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia.
- Institute of Normal and Pathological Physiology, Center for Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia.
| |
Collapse
|
17
|
Brown L, Fenning A, Shek A, Burstow D. Reversal of cardiovascular remodelling with candesartan. J Renin Angiotensin Aldosterone Syst 2016; 2:S141-S147. [DOI: 10.1177/14703203010020012501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can be reversed by administration of the selective angiotensin II AT1-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110±4 mmHg (control) to 170±10 mmHg. Rats developed left ventricular hypertrophy (control 1.70±0.06; L-NAME 2.10±0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echocardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56±0.14); maximal increase in force before ectopic beats was reduced from 5.0±0.4 mN to 2.0±0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2±2.0 mN to 3.0±0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT1-receptors in L-NAME-induced cardiovascular changes.
Collapse
Affiliation(s)
- Lindsay Brown
- Department of Physiology and Pharmacology, The University
of Queensland,
| | - Andrew Fenning
- Department of Physiology and Pharmacology, The University
of Queensland
| | - Annie Shek
- Department of Physiology and Pharmacology, The University
of Queensland
| | | |
Collapse
|
18
|
Intermittent Hypoxia-Induced Cardiovascular Remodeling Is Reversed by Normoxia in a Mouse Model of Sleep Apnea. Chest 2016; 149:1400-8. [DOI: 10.1016/j.chest.2015.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
|
19
|
Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation. Toxicol Lett 2015; 237:121-32. [DOI: 10.1016/j.toxlet.2015.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
|
20
|
Hypertension and cardiovascular remodelling in rats exposed to continuous light: protection by ACE-inhibition and melatonin. Mediators Inflamm 2014; 2014:703175. [PMID: 25110398 PMCID: PMC4106091 DOI: 10.1155/2014/703175] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 01/20/2023] Open
Abstract
Exposure of rats to continuous light attenuates melatonin production and results in hypertension development. This study investigated whether hypertension induced by continuous light (24 hours/day) exposure induces heart and aorta remodelling and if these alterations are prevented by melatonin or angiotensin converting enzyme inhibitor captopril. Four groups of 3-month-old male Wistar rats (10 per group) were treated as follows for six weeks: untreated controls, exposed to continuous light, light-exposed, and treated with either captopril (100 mg/kg/day) or melatonin (10 mg/kg/day). Exposure to continuous light led to hypertension, left ventricular (LV) hypertrophy and fibrosis, and enhancement of the oxidative load in the LV and aorta. Increase in systolic blood pressure by continuous light exposure was prevented completely by captopril and partially by melatonin. Both captopril and melatonin reduced the wall thickness and cross-sectional area of the aorta and reduced the level of oxidative stress. However, only captopril reduced LV hypertrophy development and only melatonin reduced LV hydroxyproline concentration in insoluble and total collagen in rats exposed to continuous light. In conclusion, captopril prevented LV hypertrophy development in the continuous light-induced hypertension model, while only melatonin significantly reduced fibrosis. This antifibrotic action of melatonin may be protective in hypertensive heart disease.
Collapse
|
21
|
Bertera FM, Del Mauro JS, Lovera V, Chiappetta D, Polizio AH, Taira CA, Höcht C. Enantioselective pharmacokinetics and cardiovascular effects of nebivolol in L-NAME hypertensive rats. Hypertens Res 2013; 37:194-201. [DOI: 10.1038/hr.2013.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
|
22
|
Effect of Clonidine (an antihypertensive drug) treatment on oxidative stress markers in the heart of spontaneously hypertensive rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:927214. [PMID: 23766863 PMCID: PMC3671561 DOI: 10.1155/2013/927214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/04/2013] [Indexed: 02/05/2023]
Abstract
Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg−1 day−1) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg−1 day−1) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
Collapse
|
23
|
Hlavačková L, Vranková S, Janega P, Pecháňová O, Babál P. The effect of indapamide on development of myocardial hypertrophy and fibrosis in L-NAME-induced hypertension in rat. Physiol Res 2011; 60:845-52. [PMID: 21995907 DOI: 10.33549/physiolres.932201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to analyze the effect of indapamide and its combination with ACE inhibitor (captopril) and antioxidant (Provinols™) on both myocardial hypertrophy and fibrosis. Wistar rats were treated with L-NAME (40 mg/kg/day, L); L-NAME plus indapamide (1 mg/kg/day), or captopril (10 mg/kg/day), or Provinols™ (40 mg/kg/day), or combination of indapamide with captopril, and indapamide with Provinols™ for 7 weeks. Blood pressure (BP), LV hypertrophy and fibrosis were determined. The content of collagens type I and III was evaluated morphometrically after picrosirius red staining. L-NAME treatment led to increased BP, LV hypertrophy, total fibrosis and relative content of collagens without the change in collagen type I/III ratio. Indapamide and captopril decreased BP, LV hypertrophy and the collagen ratio without affecting total fibrosis, while Provinols™ reduced BP, the collagen ratio and fibrosis without affecting LV hypertrophy. The combinations decreased all the parameters. Decrease of LV hypertrophy was achieved by drugs with the best reducing effect on BP, fibrosis reduction was reached by the antioxidant treatment with only partial effect on BP. Thus, the combination of antihypertensive and antioxidant treatment may represent a powerful tool in preventing myocardial remodeling induced by hypertension.
Collapse
Affiliation(s)
- L Hlavačková
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
24
|
Abstract
Left ventricular hypertrophy (LVH), despite its adaptive nature, increases cardiovascular morbidity and mortality. Novel approaches for protection against pathological heart remodelling are presented in this supplement. Melatonin diminishes myocardial fibrosis in rats exposed to continuous light and N-nitro-L-arginine-methyl ester (L-NAME) treatment and reduces production of endothelium-derived constricting factors in L-NAME-induced hypertension. Melatonin, because of its extraordinary antioxidant and scavenging properties, benefits for endothelium and sympatholytic action, may prove to be a useful protective drug against heart remodelling. In hypertension induced by relative aldosteronism, the correction of macro and micronutrient dyshomeostasis appears to act beneficially within pathological myocardial remodelling. Alterations in the signal cascade of pathological myocardial growth, including humoral stimuli, receptors, intracellular messengers or transcriptional factors, may be favourably modified at different levels. Inhibition of nuclear factor kappa B (NF-kappaB) potentiates hypertension development, enhances oxidative load, increases the cross-sectional area of the aorta and reduces nitric oxide (NO) synthase activity in L-NAME hypertension. It is suggested that NF-kappaB may play a protective rather than a deleterious role in the haemodynamically overloaded circulation. Compound 21, a recently developed peptide angiotensin II type 2 (AT2) receptor agonist, offers a novel approach in investigating the role of AT2 receptors in the protection of the hypertensive heart. A novel NO donor, L-419, with its intrinsic protection of NO, improves the entire NO signalling cascade and thus favourably influencing the response of the left ventricle to haemodynamic overload. LVH prevention or regression should be considered a therapeutic success only when, along with hypertrophied mass reduction, an improvement of the heart structure, function, metabolism and electrical stability is achieved.
Collapse
|
25
|
Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril. J Hypertens 2010; 28 Suppl 1:S13-8. [DOI: 10.1097/01.hjh.0000388489.28213.08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Miguel-Carrasco JL, Zambrano S, Blanca AJ, Mate A, Vázquez CM. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. JOURNAL OF INFLAMMATION-LONDON 2010; 7:21. [PMID: 20462420 PMCID: PMC2879251 DOI: 10.1186/1476-9255-7-21] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 05/12/2010] [Indexed: 01/07/2023]
Abstract
Background Captopril is an angiotensin-converting enzyme (ACE) inhibitor widely used in the treatment of arterial hypertension and cardiovascular diseases. Our objective was to study whether captopril is able to attenuate the cardiac inflammatory process associated with arterial hypertension. Methods Left ventricle mRNA expression and plasma levels of pro-inflammatory (interleukin-1β (IL-1β) and IL-6) and anti-inflammatory (IL-10) cytokines, were measured in spontaneously hypertensive rats (SHR) and their control normotensive, Wistar-Kyoto (WKY) rats, with or without a 12-week treatment with captopril (80 mg/Kg/day; n = six animals per group). To understand the mechanisms involved in the effect of captopril, mRNA expression of ACE, angiotensin II type I receptor (AT1R) and p22phox (a subunit of NADPH oxidase), as well as NF-κB activation and expression, were measured in the left ventricle of these animals. Results In SHR, the observed increases in blood pressures, heart rate, left ventricle relative weight, plasma levels and cardiac mRNA expression of IL-1β and IL-6, as well as the reductions in the plasma levels and in the cardiac mRNA expression of IL-10, were reversed after the treatment with captopril. Moreover, the mRNA expressions of ACE, AT1R and p22phox, which were enhanced in the left ventricle of SHR, were reduced to normal values after captopril treatment. Finally, SHR presented an elevated cardiac mRNA expression and activation of the transcription nuclear factor, NF-κB, accompanied by a reduced expression of its inhibitor, IκB; captopril administration corrected the observed changes in all these parameters. Conclusion These findings show that captopril decreases the inflammation process in the left ventricle of hypertensive rats and suggest that NF-κB-driven inflammatory reactivity might be responsible for this effect through an inactivation of NF-κB-dependent pro-inflammatory factors.
Collapse
Affiliation(s)
- José L Miguel-Carrasco
- Departamento de Fisiología y Zoología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
27
|
Miguel-Carrasco JL, Monserrat MT, Mate A, Vázquez CM. Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats. Eur J Pharmacol 2010; 632:65-72. [PMID: 20123095 DOI: 10.1016/j.ejphar.2010.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022]
Abstract
It has been shown that oxidative stress is involved in the pathogenesis of arterial hypertension. The aim of this work was to study and compare the molecular mechanisms of the antioxidant properties of l-carnitine and captopril in spontaneously hypertensive rats (SHR). Antioxidant enzyme activity/regulation (glutathione peroxidase, glutathione reductase and superoxide dismutase) was measured in the erythrocytes and hearts of SHR. The molecular expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase, angiotensin converting enzyme (ACE), angiotensin II type I receptor (AT(1) receptor) and NF-kappaB/IkappaB system was also measured in the hearts of these animals. Both l-carnitine and captopril augmented the antioxidant defense capacity in SHRs. This effect was mediated by an upregulation of antioxidant enzymes, an increase in the plasma total antioxidant capacity and a reduction of lipid peroxidation and superoxide anion production in the heart. The administration of both compounds to hypertensive animals also produced an upregulation of eNOS and a normalization of ACE, angiotensin AT(1) receptor, and the NF-kappaB/IkappaB system expression. In addition, captopril reduced the arterial blood pressure and the relative heart weights back to control values, whereas l-carnitine caused only a partial reduction of blood pressure values and did not alter the cardiac hypertrophy found in SHRs. In conclusion, we have found that l-carnitine and captopril have a similar antioxidant effect in the hearts of hypertensive rats. The molecular regulation of antioxidant enzymes through an inhibition of the renin-angiotensin system and a modulation of the NF-kappaB/IkappaB system seems to be responsible for this antioxidant effect.
Collapse
|
28
|
Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J Hypertens 2009; 27:S5-10. [PMID: 19633453 DOI: 10.1097/01.hjh.0000358830.95439.e8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Melatonin was shown to reduce blood pressure, oxidative load and to increase nitric oxide bioavailability predisposing melatonin to have antiremodelling potential. DESIGN The aim of this study was to show whether melatonin can reverse left ventricular remodelling in spontaneously hypertensive rats (SHR) and to compare this potential protective effect with captopril, spironolactone, or simvastatin. METHODS Six groups of 3-month old rats (eight per group) were treated for 5 weeks: control untreated Wistar rats, control SHR, SHR plus melatonin (10 mg/kg per 24 h), SHR plus captopril (100 mg/kg per 24 h), SHR plus spironolactone (200 mg/kg per 24 h) and SHR plus simvastatin (10 mg/kg per 24 h). Their systolic blood pressure (SBP) was measured by the tail-cuff method. The relative weights of the left ventricle, nitric oxide synthase (NOS) activity, endothelial NOS and nuclear factor kappa B (NF-kappaB) protein expression, conjugated dienes concentration, level of collagenous proteins and hydroxyproline were measured. RESULTS SBP was reduced by all drugs investigated but most prominently by captopril in SHR. The activity of NOS and endothelial NOS expression increased in the left ventricles of SHR compared with controls. Melatonin and spironolactone further increased NOS expression. Left ventricular oxidative load, estimated by NF-kappaB expression and conjugated dienes concentration, increased in SHR. Only melatonin reduced NF-kappaB expression and decreased conjugated diens concentration. Only captopril reduced left ventricular hypertrophy in SHR, whereas melatonin reduced collagenous protein concentration and hydroxyproline content in the left ventricle. CONCLUSION It is concluded that although melatonin, in comparison with captopril, did not reverse left ventricle hypertrophy, it reversed left ventricular fibrosis. This protection by melatonin may be caused by its prominent antioxidative effect.
Collapse
|
29
|
Paulis L, Matuskova J, Adamcova M, Pelouch V, Simko J, Krajcirovicova K, Potacova A, Hulin I, Janega P, Pechanova O, Simko F. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: effect of L-arginine and spironolactone. Acta Physiol (Oxf) 2008; 194:45-55. [PMID: 18419778 DOI: 10.1111/j.1748-1716.2008.01862.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM We investigated, whether the substrate for nitric oxide (NO) formation -L-arginine - and the aldosterone receptor antagonist - spironolactone - are able to reverse alterations of the left ventricle (LV) and aorta in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. METHODS Six groups of male adult Wistar rats were investigated: controls after 4 and 7 weeks of experiment, rats treated with L-NAME for 4 weeks and three recovery groups: spontaneous-reversion (4 weeks L-NAME + 3 weeks placebo), spironolactone-induced reversion (4 weeks L-NAME + 3 weeks spironolactone) and L-arginine-induced reversion (4 weeks L-NAME+ 3 weeks L-arginine). Blood pressure was measured by tail-cuff plethysmography. Relative weight of the LV, myocardial fibrosis (based upon histomorphometry and hydroxyproline determination) and conjugated dienes in the LV and aortic cross-sectional area, inner diameter and wall thickness were determined. NO-synthase activity was investigated in the LV and aorta. RESULTS L-NAME administration induced hypertension, left ventricular hypertrophy (LVH), LV fibrosis, aortic thickening and diminution of NO-synthase activity in the LV and aorta. Reduction in blood pressure and regression of LVH were observed in all recovery groups, yet reduction in LV fibrosis and aortic thickening were not. NO-synthase activity was restored only in the L-arginine and spironolactone group. CONCLUSION In our study, the reversion of hypertension and LVH was not dependent on the restoration of NO-synthase activity. Moreover, LV fibrosis and aortic remodelling seem to be more resistant to conditions resulting in regression of LVH. Preserved level of fibrosis in the initial period of LVH regression might result in loss of structural homogeneity and possible functional alterations of the LV.
Collapse
Affiliation(s)
- L Paulis
- Institute of Pathophysiology, School of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paulis L, Zicha J, Kunes J, Hojna S, Behuliak M, Celec P, Kojsova S, Pechanova O, Simko F. Regression of L-NAME-induced hypertension: the role of nitric oxide and endothelium-derived constricting factor. Hypertens Res 2008; 31:793-803. [PMID: 18633192 DOI: 10.1291/hypres.31.793] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N(G)-Nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is a well established model of experimental hypertension. Although regression experiments are effective at approximating a clinical setting the reversal of already established L-NAME hypertension has not been intensively researched. We investigated whether spontaneous regression of L-NAME hypertension after discontinuing the drug administration was associated with recovery of endothelial dysfunction. Special attention was devoted to NO signaling and endothelium-derived constricting factor (EDCF) formation in various parts of the vascular tree. Male adult Wistar rats were divided into 4 groups: an L-NAME (5 weeks), a spontaneous recovery (5 weeks L-NAME + 3 weeks of recovery) and two age-matched control groups (a 5- and 8-week control group). The NO-mediated and EDCF-mediated components of acetylcholine-induced responses were evaluated in preconstricted small mesenteric and femoral arteries. The activity, mRNA and protein expression of NO synthase together with the mRNA expression of cyclooxygenase were determined in the aorta. L-NAME administration caused hypertension, impaired NO signaling (as indicated by the reduced NO component of acetylcholine-induced relaxation and decreased NO synthase activity) in all arteries investigated and reduced the inner diameter of the femoral artery. Moreover, we observed enhanced cyclooxygenase-dependent EDCF formation in the femoral arteries and enhanced cyclooxygenase-2 expression in the aortas of L-NAME-treated rats. During spontaneous recovery a functional restoration of NO signaling took place in all parts of the vascular tree. However, the increases in systolic blood pressure, EDCF formation, and cyclooxygenase expression and the reduction in femoral artery diameter were not completely restored. We conclude that impaired NO signaling was improved after the cessation of L-NAME administration. However, persisting arterial structural alterations and enhanced EDCF formation may decelerate blood pressure reduction even after the restoration of NO synthase activity.
Collapse
Affiliation(s)
- Ludovit Paulis
- Institute of Pathophysiology, School of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Spániková A, Simoncíková P, Ravingerová T, Pechánová O, Barancík M. The effect of chronic nitric oxide synthases inhibition on regulatory proteins in rat hearts. Mol Cell Biochem 2008; 312:113-20. [PMID: 18327702 DOI: 10.1007/s11010-008-9726-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 02/25/2008] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to characterize the effects of chronic nitric oxide synthase (NOS) inhibition on the alterations of regulatory myocardial proteins of intracellular signaling pathways (mitogen-activated protein kinase (MAPK) and Akt kinase cascades) and matrix metalloproteinases (MMP). Chronic NO deficiency (NOD) was induced by NG-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg/day, 4 weeks). Protein levels and activation of protein kinases were determined using specific antibodies, activities of MMP were analyzed by zymography in gels containing gelatin as a substrate. The development of NOD was associated with decreased activation of endothelial NOS (eNOS) and down-regulation of protein level of inducible NOS (iNOS). Investigation of kinase pathways revealed that the activation of extracellular signal-regulated kinases (ERK) and the levels of upstream activators of ERK (aFGF, H-Ras) were decreased after L-NAME treatment. Western blot analysis revealed that chronic application of L-NAME also decreased the activation of Akt kinase as compared with control hearts. Study of MMPs showed that in L-NAME-treated rat hearts activities of tissue MMP-2 were decreased. It is concluded that development of NOD resulted in inhibition of ERK and Akt kinase pathways and these changes suggest the involvement of these cascades in responses of myocardium to NOD. The results also point to the possible relationship between ERK and Akt kinase pathways and activation of eNOS and/or MMP-2.
Collapse
Affiliation(s)
- Anna Spániková
- Institute for Heart Research, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. Box 104, 840 05 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
32
|
Afkir S, Nguelefack TB, Aziz M, Zoheir J, Cuisinaud G, Bnouham M, Mekhfi H, Legssyer A, Lahlou S, Ziyyat A. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats Part I: cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:288-295. [PMID: 18191352 DOI: 10.1016/j.jep.2007.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 05/25/2023]
Abstract
Hypertension induced by nitric oxide synthase inhibition is associated with functional abnormalities of the heart and kidney. The aim of the present study was to investigate whether chronic treatment with Arbutus unedo leaf (AuL) or root (AuR) aqueous extracts can prevent these alterations. Six groups of rats were used: control group received tap water; N(G)-nitro-l-arginine methyl-ester (L-NAME) group treated with L-NAME at 40 mg/kg/day; AuL and AuR groups received simultaneously L-NAME (40 mg/kg/day) and Au leaves or roots extract at the same concentration 250 mg/kg/day; l-arginine and enalapril groups received simultaneously L-NAME (40 mg/kg/day) and l-arginine at 50mg/kg/day or enalapril at 15 mg/kg/day. Treatment of rats during 4 weeks with L-NAME caused an increase of the systolic blood pressure (SBP) accompanied by a ventricular hypertrophy, an impairment of endothelium-dependent vasorelaxation, an increase of the cardiac baroreflex sensitivity and a decrease of water, sodium and potassium excretion. The co-administration of AuL or AuR extracts with L-NAME reduces the development of increased SBP, ameliorates the vascular reactivity as well as the baroreflex sensitivity and normalizes the renal function. AuR reduces the ventricular hypertrophy but AuL do not. Enalapril associated with L-NAME reverses the majority of alterations induced by L-NAME while l-arginine only lightly ameliorates the vascular reactivity. These results show that chronic treatment with Arbutus extract regress the development of hypertension and ameliorate cardiovascular and renal functions in NO deficient hypertension.
Collapse
Affiliation(s)
- Saida Afkir
- UFR Physiologie et Pharmacologie, Laboratoire de Physiologie et Ethnopharmacologie, Département de Biologie, Faculté des Sciences, Université Mohamed Premier, BP 717, Bd Mohamed VI, 60000 Oujda, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Left ventricular hypertrophy (LVH), despite its adaptive nature, is associated with an increased risk of cardiovascular morbidity and mortality. Achievement of LVH regression is thus considered a principal therapeutic aim. However, regression of LVH induced by various therapeutic means may exhibit differing patterns, with variable biological implications. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have been shown to induce prevention or regression of LVH in different models of pathological myocardial growth. In addition to reduction of LV mass, statins were shown to reduce myocardial fibrosis, increase capillary density network and attenuate electrical instability of the hypertrophied heart. Most importantly, statins improved systolic and diastolic LV function and even decreased mortality. The inhibition of hypertrophic growth was only partly achieved by reduction of haemodynamic overload. Direct mechanisms, such as inhibition of neurohumoral activation in the myocardial tissue, attenuated production of growth factors and markers of inflammation and reduction of oxidative stress also seem to participate. The protective effect of statins was associated with the inhibition of expression and activation of small guanosintriphosphate-binding proteins such as Ras and Rho, which control the intensity of oxidative stress, the production and availability of nitric oxide, and the expression of genes involved in myocardial growth. In addition to reduction of LV mass, statins may also improve the prognosis of LVH independently of their lipid-lowering effect.
Collapse
Affiliation(s)
- F Simko
- School of Medicine, Komensky University, Bratislava, Slovak Republic.
| |
Collapse
|
34
|
Zibadi S, Yu Q, Rohdewald PJ, Larson DF, Watson RR. Impact of Pycnogenol® on cardiac extracellular matrix remodeling induced by l-NAME administration to old mice. Cardiovasc Toxicol 2007; 7:10-8. [PMID: 17646678 DOI: 10.1007/s12012-007-0001-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Cardiac remodeling is a determinant of the clinical progression of heart failure and now slowing or reversing remodeling is considered as a potential therapeutic target in heart failure. Pycnogenol has been reported to mediate a number of beneficial effects in the cardiovascular system but its effects on hemodynamic and functional cardiovascular changes following cardiac remodeling have not been elucidated. Therefore, we investigated the influence of Pycnogenol supplementation (30 mg/kg) on left ventricular function and myocardial extracellular matrix composition in old C57BL/6N mice following induction of cardiac remodeling by chronic nitric oxide synthase blockade by NG-nitro-L-arginine methyl ester (L-NAME) administration. L-NAME-treated mice demonstrated dilated cardiomyopathy at compensated state, associated with a significant increase of pro-matrix metalloproteinase (MMP)-9 gene expression and activity, a marked decrease in pro-collagen IIIalpha1 gene expression, and a subsequent reduction in cardiac total and cross-linked collagen content. Upon supplementation with Pycnogenol in L-NAME-exposed mice, cardiac gene expression patterns for pro-MMP-2, -9, and -13, and MMP-9 activity were significantly decreased, associated with a significant increase in cardiac tissue inhibitor of metalloproteinase (TIMP)-4 expression. These findings were coincided with a marked increase in myocardial total and cross-linked collagen content, compared with L-NAME-only-treated mice. Moreover, Pycnogenol treatment was associated with reversal of L-NAME-induced alternations in hemodynamic parameters. These data indicate that Pycnogenol can prevent adverse myocardial remodeling induced by L-NAME, through modulating TIMP and MMPs gene expression, MMPs activity, and further reduction in myocardial collagen degradation rate.
Collapse
Affiliation(s)
- Sherma Zibadi
- Nutritional Sciences Department, The University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
35
|
Ramos L, Labat R, Carvalho FAS, Martin AB, Lopes-Martins RÁB. Efeito da administração oral de arginina sobre a pressão arterial e parâmetros cardíacos em ratos submetidos ao bloqueio crônico da síntese de óxido nítrico. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Já está claramente estabelecido, que a inibição crônica da síntese de óxido nítrico resulta em hipertensão sustentada, remodelamento cardíaco e fibrose. Além disso, resultados de nosso grupo demonstraram que a suplementação oral com L-arginina foi capaz de aumentar a resistência da musculatura esquelética a fadiga muscular localizada em humanos. O tratamento experimental de ratos com L-NAME é um dos modelos mais comumente utilizados para se induzir hipertensão. A resposta compensatória esperada contra o aumento da resistência vascular sistêmica seria a hipertrofia ventricular esquerda; entretanto, isso tem sido um ponto bastante controverso na literatura. O objetivo do presente estudo foi verificar os efeitos da inibição do óxido nítrico pela administração oral de L-NAME sobre o tecido cardíaco de ratos e a possível reversão pela L-arginina. Foram utilizados 30 ratos Wistar machos (250-350g), mantidos em condições de temperatura, luz e umidade controlada, e com água e comida ad libitum. Ao final de quatro semanas, os animais foram sacrificados por inalação de CO2 e os corações foram removidos e imediatamente dissecados, sendo separados átrios e ventrículos, obtendo-se os pesos total e parcial. Os valores foram corrigidos em função do peso corporal obtido na última semana de tratamento e expressos como índice cardíaco. O L-NAME foi capaz de induzir hipertensão e aumento significativo do duplo produto, porém sem resultados significativos sobre os pesos cardíacos, não sendo observada hipertrofia do órgão. Os aumentos de pressão arterial e duplo produto foram revertidos pela administração concomitante de arginina, de maneira dependente da dose. Dados preliminares não publicados demonstraram a reversão da fibrose cardíaca induzida pelo L-NAME, nos animais que receberam tratamento com arginina. Podemos concluir que a arginina pode vir a ser uma ferramenta valiosa na prevenção da hipertensão e do remodelamento cardíaco, principalmente nos casos relacionados a disfunções vasculares e, ainda, produzindo efeitos adicionais em atividades atléticas.
Collapse
|
36
|
Pechanova O, Matuskova J, Capikova D, Jendekova L, Paulis L, Simko F. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int 2006; 70:170-6. [PMID: 16710350 DOI: 10.1038/sj.ki.5001513] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although angiotensin-converting enzyme (ACE) inhibitors are well-established drugs in the treatment of hypertension, they are not supposed to be sufficient in the inhibition of aldosterone formation. The present study analyzes the effect of aldosterone receptor antagonist, spironolactone and ACE inhibitor, captopril on nitric oxide (NO) and S-nitrosothiol formation in the kidney of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats. Male Wistar rats were divided into six groups: (1) controls, (2) L-NAME (40 mg/kg/day), (3) spironolactone (200 mg/kg/day), (4) captopril (100 mg/kg/day), (5) L-NAME+spironolactone, and (6) L-NAME+captopril. After 4 weeks, NO synthase (NOS) activity, protein expression of endothelial NOS, inducible NOS and concentration of thiol and S-nitrosothiol groups were determined in the kidney. Besides the increase in systolic blood pressure (by 32%) and the decrease in NOS activity (by 37%), L-NAME treatment lowered the concentration of thiols (by 32%) and S-nitrosothiols (by 36%) in the renal tissue. Simultaneous treatment with spironolactone preserved NOS activity and S-nitrosothiols on the control level, whereas captopril did not affect these parameters modified by L-NAME treatment. Moreover, spironolactone increased expression of endothelial NOS protein without affecting inducible NOS protein expression. In conclusion, both captopril and spironolactone prevented L-NAME-induced hypertension and the decline of the antioxidant potential of the kidney tissue. However, only spironolactone improved NOS activity which led to the S-nitrosothiols formation. Both NO itself and S-nitrosothiols may contribute to the preventive effect of spironolactone against development of L-NAME-induced hypertension.
Collapse
Affiliation(s)
- O Pechanova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Hink U, Münzel T. COX-2, another important player in the nitric oxide-endothelin cross-talk: good news for COX-2 inhibitors? Circ Res 2006; 98:1344-6. [PMID: 16763169 DOI: 10.1161/01.res.0000228471.38761.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Yu Q, Horak K, Larson DF. Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling. Hypertension 2006; 48:98-104. [PMID: 16735642 DOI: 10.1161/01.hyp.0000227247.27111.b2] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiac remodeling in response to pressure overload involves reorganization of the myocytes and extracellular matrix (ECM). Neurohormonal pathways have been described as effector pathways in left ventricular ECM reorganization in response to pressure overload; we now are assessing the role of the T lymphocyte in this process. Mice with defined differences in T-lymphocyte function (C57BL/6 SCID, C57BL/6 WT, and BALB/c) were treated with 50 mg/L of N(G)-nitro-l-arginine methyl ester in their drinking water for 30 days. The immune function of C57BL/6 WT mice was T-helper type 1 (TH1), BALB/c was TH2, and C57BL/6 SCID was null. The arterial blood pressure increased by 30% in all of the strains of mice. However, ventricular stiffness significantly decreased in the C57 SCID, significantly increased in the BALB/c, and did not change in the C57 WT. The characterization of matrix metalloproteinase induction and activation on day 30 was associated with T-lymphocyte function. The total cardiac fibrillar collagen, percentage of fibrillar collagen cross-linking, and the activity of the cross-linking enzyme lysyl oxidase-like-3 (LOXL-3) significantly decreased in the C57 SCID, significantly increased in the BALB/c, and did not change in the C57 WT. This study revealed that the LOXL-3 pathway, namely, gene expression, enzymatic activities, and LOXL-3-mediated collagen cross-linking, was associated with ventricular stiffness and incongruence with lymphocyte function. These data support the concept that the T lymphocytes may play a fundamental regulatory role in cardiac ECM composition through modulation of collagen synthesis, degradation, and cross-linking.
Collapse
Affiliation(s)
- Qianli Yu
- Sarver Heart Center and Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
39
|
Khattab MM, Mostafa A, Al-Shabanah O. Effects of Captopril on Cardiac and Renal Damage, and Metabolic Alterations in the Nitric Oxide-Deficient Hypertensive Rat. Kidney Blood Press Res 2005; 28:243-50. [PMID: 16220007 DOI: 10.1159/000088829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2005] [Indexed: 11/19/2022] Open
Abstract
Chronic inhibition of nitric oxide (NO) synthesis is characterized by increased blood pressure accompanied with both cardiac hypertrophy as well as renal damage. We investigated whether the angiotensin-converting enzyme (ACE) inhibitor captopril can inhibit the cardiac hypertrophy and reverse the renal failure. We tested the influence of captopril on the nitrate-nitrite (NO(x)) in plasma and heart and kidney tissues. Oxidative stress, in terms of glutathione and thiobarbituric acid-reactive substances measured as malondialdehyde, was monitored examining their involvement in the cardioprotective and renoproptective actions. Three groups of Wistar rats were used: untreated group, and rats treated with the NO synthase inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME) and L-NAME plus captopril (10 mg/kg/day). Systolic, diastolic and mean blood pressure (BPs, BPd and BPm respectively) was measured weekly in addition to the heart rate using rat-tail plethysmography. After 3 weeks, L-NAME significantly increased BPs, BPd and BPm. Captopril treatment reversed the increments in pressure back to normal values by the fourth week. ACE inhibition by captopril reverted the L-NAME-induced hypertrophy and inhibited the enzymatic indices of cardiac damage (glutamate oxaloacetate transaminase and lactate dehydrogenase) back to normal values. Furthermore, the NO synthesis inhibition produced renal damage as indicated by significant increase in creatinine. Captopril ameliorated the raised creatinine to normal. Chronic L-NAME treatment increased serum NO(x) levels but concomitant treatment with captopril was without effect.
Collapse
Affiliation(s)
- Mahmoud M Khattab
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
40
|
Simko F, Pelouch V, Torok J, Luptak I, Matuskova J, Pechanova O, Babal P. Protein remodeling of the heart ventricles in hereditary hypertriglyceridemic rat: effect of ACE-inhibition. J Biomed Sci 2005; 12:103-11. [PMID: 15864743 DOI: 10.1007/s11373-004-8173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/05/2004] [Indexed: 10/25/2022] Open
Abstract
The aim of this study was to determine whether protein remodeling of the heart ventricles and remodeling of the aorta were present in hereditary hypertriglyceridemic (hHTG) rats and whether treatment with the angiotensin-converting enzyme inhibitor, captopril could prevent these alterations. Three groups of rats were investigated in a four week experiment control Wistar /C/rats, hHTg rats, hHTg rats given captopril (100 mg/kg/day) (hHTg + CAP). In the hHTg group, the increased systolic blood pressure (SBP) was associated with hypertrophy of the LV and RV. Protein profile analysis revealed an enhancement of metabolic protein concentration in both ventricles. The concentration of total collagenous proteins was not changed in either ventricles. However, alterations in composition of cardiac collagen were detected, characterized by higher concentration of hydroxyproline in pepsin-insoluble fraction and lower concentration of hydroxyproline in pepsin soluble faction in the LV. Hypertrophy of aorta, associated with the reduction of nitric oxide dependent relaxation, was also present in hHTG rats. Captopril normalized SBP, reduced left ventricular hypertrophy (LVH), diminished metabolic protein concentration in both ventricles, and improved NO-dependent relaxation of the aorta. Furthermore, captopril partially reversed alterations in hydroxyproline concentration in soluble and insoluble collagenous fractions of the LV. We conclude that hypertrophy of both ventricles and the aorta are present in hHTG rats, along with protein remodeling of both ventricles. Captopril partially prevented left ventricular hypertrophy development and protein remodeling of the myocardium.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology and 3rd Clinic of Medicine, Comenius University, School of Medicine, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bell D, Zhao YY, Kelso EJ, McHenry EM, Rush LM, Lamont VM, Nicholls DP, McDermott BJ. Upregulation of adrenomedullin and its receptor components during cardiomyocyte hypertrophy induced by chronic inhibition of nitric oxide synthesis in rats. Am J Physiol Heart Circ Physiol 2005; 290:H904-14. [PMID: 16040721 DOI: 10.1152/ajpheart.00152.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P < 0.05), 3) cardiomyocyte protein mass increased (P = NS), 4) cardiomyocyte protein synthesis ([14C]phenylalanine incorporation) increased (P < 0.05), 5) expression of skeletal alpha-actin, atrial natriuretic peptide, brain natriuretic peptide, and ET-1 mRNAs was enhanced (P < 0.05) in LV but not RV cardiomyocytes at 20 and 50 mg x kg(-1) x day(-1), respectively, and 6) expression of adrenomedullin, receptor activity-modifying protein 3 (RAMP3), and RAMP2 (but not calcitonin receptor-like receptor and RAMP1) mRNAs was increased by L-NAME (20 mg x kg(-1) x day(-1)) in LV. In conclusion, L-NAME enhanced protein synthesis in both LV and RV cardiomyocytes but elicited a hypertrophic phenotype accompanied by altered expression of the counterregulatory peptide adrenomedullin and receptor components (RAMP2, RAMP3) in LV only, indicating that the former is due to impaired nitric oxide synthesis, whereas the phenotypic changes are due to pressure overload.
Collapse
Affiliation(s)
- David Bell
- Division of Medicine and Therapeutics, School of Medicine, The Queen's Univ. of Belfast, Whitla Medical Bldg., 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rauchová H, Pechánová O, Kunes J, Vokurková M, Dobesová Z, Zicha J. Chronic N-Acetylcysteine Administration Prevents Development of Hypertension in N.OMEGA.-Nitro-L-Arginine Methyl Ester-Treated Rats: The Role of Reactive Oxygen Species. Hypertens Res 2005; 28:475-82. [PMID: 16156512 DOI: 10.1291/hypres.28.475] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the production of superoxide anions as well as their role in the induction and/or maintenance of high blood pressure in rats with N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. In the preventive study, we compared adult Wistar rats treated with L-NAME for 4 weeks with L-NAME-treated rats that were simultaneously given N-acetylcysteine (NAC) in their drinking water. Basal blood pressure, superoxide production, conjugated dienes concentration and NO synthase (NOS) activity were measured at the end of the experiment. Chronic NOS inhibition by L-NAME treatment increased blood pressure, enhanced superoxide production in the aorta and elevated the concentration of conjugated dienes in the heart and kidney. All these changes were prevented by simultaneous NAC administration, which augmented NOS activity in L-NAME-treated rats. In the therapeutic study, the effects of chronic NAC treatment were studied in rats with established hypertension which developed during 4 weeks of L-NAME administration. The blood pressure effects of chronic NAC treatment in established L-NAME hypertension were only moderate, although this treatment also restored NOS activity and lowered conjugated dienes in the heart and kidney. Since chronic NAC treatment had better preventive than therapeutic effects, it seems that reactive oxygen species play a more important role in the induction than in the maintenance of L-NAME hypertension.
Collapse
Affiliation(s)
- Hana Rauchová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
43
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2005; 64:854-63. [PMID: 15694707 DOI: 10.1016/j.mehy.2003.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 11/21/2003] [Indexed: 01/19/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure; production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells; as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
44
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2004; 62:993-1002. [PMID: 15142663 DOI: 10.1016/j.mehy.2003.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Accepted: 11/11/2003] [Indexed: 01/06/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure;production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells;as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
45
|
Simko F, Matuskova J, Luptak I, Krajcirovicova K, Kucharska J, Gvozdjakova A, Babal P, Pechanova O. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci 2004; 74:1211-24. [PMID: 14697405 DOI: 10.1016/j.lfs.2003.07.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals. We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, School of Medicine, Comenius University, Sasinkova 4, 813 72, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rossi MA, Ramos SG, Prado CM. Chronic inhibition of nitric oxide synthase induces hypertension and cardiomyocyte mitochondrial and myocardial collagen remodelling in the absence of hypertrophy. J Hypertens 2003; 21:993-1001. [PMID: 12714875 DOI: 10.1097/00004872-200305000-00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the morphometric and ultrastructural alterations of the heart produced by long-term inhibition of nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) and to examine whether the changes are caused by l-NAME-induced hypertension or a lack of NO. METHODS Male Wistar rats were divided randomly into three sets: control group, standard diet/l-NAME-treated group, and standard diet/l-NAME + captopril-treated group. RESULTS Chronic inhibition of NO synthesis with l-NAME given for 4 weeks promoted a time-dependent hypertensive response which was not accompanied by an increase in cardiac mass, myocellular hypertrophy or other evidence of myocyte damage. However, this response was associated with left ventricular cardiomyocyte mitochondrial remodelling and discrete interstitial fibrosis in both the left and right ventricles. The remodelling was characterized by an increase in the number and size of mitochondria. Importantly, systolic pressure overload did not result in left ventricle decompensation. The concomitant treatment with l-NAME and captopril abolished the development of hypertension and left ventricular cardiomyocyte subcellular remodelling, but not the discrete interstitial fibrosis in the left and right ventricle. CONCLUSIONS The present study suggests that, in the l-NAME model of hypertension, decreased NO production could be an important means of controlling cardiovascular hypertensive stress by regulating mitochondrial biogenesis and function in the tissue. On the other hand, discrete interstitial ventricular myocardial fibrosis observed in l-NAME-treated rats, either hypertensive or rendered normotensive with captopril, clearly indicates that this response depends on a process associated with NO insufficiency.
Collapse
Affiliation(s)
- Marcos A Rossi
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
47
|
de Andrade Zorzi RL, Meirelles Pereira LM, Mandarim-de-Lacerda CA. Beneficial effect of enalapril in spontaneously hypertensive rats cardiac remodeling with nitric oxide synthesis blockade. J Cell Mol Med 2002; 6:599-608. [PMID: 12611644 PMCID: PMC6741409 DOI: 10.1111/j.1582-4934.2002.tb00458.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AIMS To study the efficiency of an angiotensin converting enzyme inhibitor on the blood pressure (BP) and the myocardium remodeling when spontaneously hypertensive rats (SHRs) are submitted to nitric oxide synthesis (NOs) blockade (with L-NAME) and simultaneously treated. METHODS Young adult male SHRs were separated in four groups (n = 5) and treated for 20 days: Control, L-NAME, L-NAME+Enalapril, and Enalapril. The alterations of the BP, heart mass/body mass ratio and stereological parameters for myocytes, connective tissue and intramyocardial vessels were studied among the groups. RESULTS The SHRs with NOs blockade showed a great modification of the myocardium with extensive areas of reparative and interstitial fibrosis and accentuated hypertrophy of the cardiac myocytes (cross sectional area 60% higher in animals taking L-NAME than in Control SHRs). Comparing the SHRs with NO deficiency (L-NAME group), the Control SHRs and the Enalapril treated SHRs significant differences were found in the BP and in all stereological parameters. The NO deficiency caused an important BP increment in SHRs that was partially attenuated by Enalapril. This Enalapril effect was more pronounced in Control SHRs. A significant increment of the intramyocardial vessels was observed in NO deficient SHRs and Control SHRs treated with Enalapril demonstrated by the stereology (greater microvascular densities in treated SHRs). CONCLUSION Enalapril administration showed a beneficial effect on vascular remodeling and myocardial hypertrophy in SHRs. In SHRs with NO blockade, however, the beneficial effect of Enalapril occurred only in vascular remodeling.
Collapse
Affiliation(s)
- R L de Andrade Zorzi
- Laboratory of Morphometry & Cardiovascular Morphology, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
48
|
Bernátová I, Pechánová O, Babál P, Kyselá S, Stvrtina S, Andriantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol 2002; 282:H942-8. [PMID: 11834490 DOI: 10.1152/ajpheart.00724.2001] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of the red wine polyphenolic compounds (Provinol) on hypertension, left ventricular hypertrophy, myocardial fibrosis, and vascular remodeling were investigated after chronic inhibition of nitric oxide (NO) synthase by administration of N(G)-nitro-L-arginine methyl ester (L-NAME) to rats. Rats were divided into four groups: a control group, a group treated for 4 wk with L-NAME (40 mg x kg(-1) x day(-1)), and two groups treated with L-NAME followed by 3 wk of either spontaneous recovery or recovery with Provinol treatment (40 mg x kg(-1) x day(-1)). Administration of Provinol produced a greater readiness of the decrease in blood pressure than that in the spontaneous recovery group. Provinol significantly depressed myocardial fibrosis and expedited the decrease in aortic cross-sectional area, the increase in endothelium-dependent relaxation, and the decrease in contraction of the aorta. These effects of Provinol were associated with a greater increase of NO synthase activity in the left ventricle and the aorta. The present study provides evidence that Provinol accelerates the regression of blood pressure and improves structural and functional cardiovascular changes produced by chronic inhibition of NO synthesis.
Collapse
Affiliation(s)
- Iveta Bernátová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 813 71 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
49
|
Simko F. Physiologic and pathologic myocardial hypertrophy--physiologic and pathologic regression of hypertrophy? Med Hypotheses 2002; 58:11-4. [PMID: 11863392 DOI: 10.1054/mehy.2001.1399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophy of the left ventricle is an adaptive phenomenon of ambiguous biological value. It enables improvement of the heart performance without substantial enhancement of energetic demands. On the other hand, pathologic left ventricular hypertrophy (LVH) is characterized by increased fibrosis, diminished coronary flow reserve and protein remodeling, resulting in increased cardiovascular morbidity and mortality. Achievement of LVH regression is thus considered a principal therapeutic aim. However, the reversal of LVH is a very complex process in which both hemodynamic and non-hemodynamic alterations participate. Reversal of LVH does not mean the re-expression of the original genotype and normalization of myocardial structure and function. It does not guarantee that the heart will be normal in all aspects. Regression of hypertrophy induced by different therapeutic means may exhibit different properties and patterns, with variable biological implications. Physiologic growth stimulators seem to induce LVH without prognostically undesirable alterations. It is a challenge to determine which approach to treatment of hemodynamic overload and concomitant LVH is optimal.
Collapse
Affiliation(s)
- F Simko
- Department of Pathophysiology, Faculty of Medicine, Bratislava, Slovak Republic.
| |
Collapse
|
50
|
Rossi MA, Colombini-Netto M. Chronic inhibition of NO synthesis per se promotes structural intimal remodeling of the rat aorta. J Hypertens 2001; 19:1567-79. [PMID: 11564976 DOI: 10.1097/00004872-200109000-00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We characterized, using histomorphometry and transmission and scanning electron microscopy, the intimal remodeling of the thoracic aorta of normocholesterolemic young rats chronically-treated with N(omega)-nitro-L-arginine methylester (L-NAME) and examined the question whether these changes were caused by the lack of NO per se or by the hypertension which L-NAME administration induces. METHODS Male Wistar rats were divided randomly into three sets: control group, standard diet/L-NAME-treated group, and standard diet/L-NAME + captopril-treated group. RESULTS The treatment of rats with L-NAME for 4 weeks resulted in increased blood pressure (by 32% at the end of the treatment) as compared with the control value and intimal remodeling comprising a continuous layer of enlarged endothelial cells with irregular nuclear and cytoplasmic contours, lying over a thickened layer of fibrocollagenous support tissue focally expanded with lymphomononuclear cells and mainly diffuse foci of smooth muscle cells. In addition, the NO synthase inhibition caused a marked thickened tunica intima (150% thicker than the control value) and a significantly augmented intima : media ratio (126% higher than the control value). On the other hand, captopril prevented hypertension in rats simultaneously treated with L-NAME as compared with controls, and induced intimal remodeling comprising the same qualitative changes as those observed in L-NAME-treated rats. The tunica intima of l-NAME + captopril-treated rats was moderately thickened (60% increase in comparison with that of controls and 65% thinner as compared with L-NAME-treated rats). In the same way, the mean intima : media ratio of rats concomitantly treated with L-NAME and captopril was moderately increased (45% more) as compared with controls and significantly lower in comparison with rats administered L-NAME alone (36% less). CONCLUSIONS Chronic inhibition of NO synthesis per se promotes structural intimal remodeling of the rat aorta, which is potentiated by L-NAME-induced hypertension. Most important, the present findings favor the idea that blockade of NO synthesis by causing intimal remodeling might be a primary cause, as individual biologic phenomenon, in the development of an atherosclerotic plaque.
Collapse
Affiliation(s)
- M A Rossi
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|