1
|
Angera IJ, Xu X, Rajewski BH, Hallinan GI, Zhang X, Ghetti B, Vidal R, Jiang W, Del Valle JR. Macrocyclic β-arch peptides that mimic the structure and function of disease-associated tau folds. Nat Chem 2025:10.1038/s41557-025-01805-z. [PMID: 40307419 DOI: 10.1038/s41557-025-01805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Tauopathies are a class of neurodegenerative disorders that feature tau protein aggregates in the brain. Misfolded tau has the capacity to seed the fibrillization of soluble tau, leading to the prion-like spread of aggregates. Within these filaments, tau protomers always exhibit a cross-β amyloid structure. However, distinct cross-β amyloid folds correlate with specific diseases. An understanding of how these conformations impact seeding activity remains elusive. Identifying the minimal epitopes required for transcellular propagation of tau aggregates represents a key step towards more relevant models of disease progression. Here we implement a diversity-oriented peptide macrocyclization approach towards miniature tau, or 'mini-tau', proteomimetics that can seed the aggregation of tau in engineered cells and primary neurons. Structural elucidation of one such seed-competent macrocycle reveals remarkable conformational congruence with core folds from patient-derived extracts of tau. The ability to impart β-arch form and function through peptide stapling has broad-ranging implications for the minimization and mimicry of pathological tau and other amyloid proteins that drive neurodegeneration.
Collapse
Affiliation(s)
- Isaac J Angera
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Xueyong Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Benjamin H Rajewski
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Grace I Hallinan
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoqi Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bernardino Ghetti
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology & Laboratory Medicine and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Juan R Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Zheng J, Pang H, Xiao H, Zhou J, Liu Z, Chen W, Liu H. Asymmetric structure of podophage N4 from the Schitoviridae family reveals a type of tube-sheath short-tail architecture. Structure 2025:S0969-2126(25)00142-X. [PMID: 40318628 DOI: 10.1016/j.str.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
The tails of the majority of reported podophages are typically composed of an adaptor, a nozzle, and a needle, and flanked by six or twelve fibers. However, the Schitoviridae family, as represented by podophage N4, exhibits a different tail architecture that remains poorly understood. In this study, we employed cryoelectron microscopy (cryo-EM) to determine the atomic structures of mature and empty podophage N4 particles. The N4 tail, which is connected to the head by a portal and flanked by 12 fibers, comprises an adaptor, a 12-fold extended tail tube encircled by a 6-fold tail sheath, and a plug. The extended tail sheath is composed of two proteins, gp65 and gp64. Furthermore, we identified two distinct tail conformations in the mature podophage N4. Our structures provide insights into the mechanisms of ejection and early transcription of podophage N4, as well as for N4-like phages and CrAssphages.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Junquan Zhou
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
3
|
Ren GG, Liu J, Wang ST, Zhang M, Hu Z, Wu H, Gang O. Effect of Local Heterogeneities on Single-Layer DNA-Directed Protein Lattices Through Non-Averaged Single-Molecule 3D Structure Determination. RESEARCH SQUARE 2025:rs.3.rs-6095207. [PMID: 40235486 PMCID: PMC11998798 DOI: 10.21203/rs.3.rs-6095207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Programmable and self-assembled two-dimensional (2D) protein lattices hold significant potential in synthetic biology, nanoscale catalysis, and biological devices. However, achieving high-order 2D lattices from three-dimensional (3D) nanoscale objects remains challenging due to structural heterogeneity caused by the flexibility and distortions of building blocks and their connectivity in a unit cell, leading to the formation of lattices with imperfections. This flexibility largely limits the analysis of key structural parameters at unit-cell resolutions due to the need to average 3D reconstructions in current methods. Here, we utilized advances in individual-particle cryo-electron tomography (IPET) to analyze the 3D structure of a designed 2D lattice formed by DNA-origami octahedral cages (unit-cell particles) encapsulating ferritin by determining the non-averaged 3D structure of each unit-cell particle. These protein-carrying DNA cages were analyzed at ferritin loading percentages of 100%, 70%, and 0%. Correlation analysis revealed that neither the ferritin loading percentage nor off-centralized placement in cages significantly affected lattice parameters, flexibility, or long-range order. Instead, the soft nature of DNA cages and interparticle linkages were the primary reasons for lattice imperfections. Structural improvements for enhancing lattice orders were evaluated through a series of molecular dynamics simulations. The developed cryo-EM 3D imaging reveals the molecular origin of heterogeneity of DNA-origami 2D lattices and highlights a path toward improved lattice designs.
Collapse
|
4
|
Chen Y, Xiao H, Zhou J, Peng Z, Peng Y, Song J, Zheng J, Liu H. The In Situ Structure of T-Series T1 Reveals a Conserved Lambda-Like Tail Tip. Viruses 2025; 17:351. [PMID: 40143278 PMCID: PMC11945409 DOI: 10.3390/v17030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
It is estimated that over 60% of known tailed phages are siphophages, which are characterized by a long, flexible, and non-contractile tail. Nevertheless, entire high-resolution structures of siphophages remain scarce. Using cryo-EM, we resolved the structures of T-series siphophage T1, encompassing its head, connector complex, tail tube, and tail tip, at near-atomic resolution. The density maps enabled us to build the atomic models for the majority of T1 proteins. The T1 head comprises 415 copies of the major capsid protein gp47, arranged into an icosahedron with a triangulation number of seven, decorated with 80 homologous trimers and 60 heterotrimers along the threefold and quasi-threefold axes of the icosahedron. The T1 connector complex is composed of two dodecamers (a portal and an adaptor) and two hexamers (a stopper and a tail terminator). The flexible tail tube comprises approximately 34 hexameric rings of tail tube. The extensive disulfide bond network along the successive tail rings may mediate the flexible bending. The distal tip of T1, which is cone-shaped and assembled by proteins gp33, gp34, gp36, gp37, and gp38, displays structural similarity to that of phage lambda. In conjunction with previous studies of lambda-like siphophages, our structure will facilitate further exploration of the structural and mechanistic aspects of lambda-like siphophages.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
| | - Junquan Zhou
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
| | - Zeng Peng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
| | - Yuning Peng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Jingdong Song
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Jing Zheng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410082, China
| |
Collapse
|
5
|
Lei Y, Fukunaga A, Imai H, Yamamoto R, Shimo-Kon R, Kamimura S, Mitsuoka K, Kato-Minoura T, Yagi T, Kon T. Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family. Cytoskeleton (Hoboken) 2025. [PMID: 39754393 DOI: 10.1002/cm.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the "phi-particle" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.
Collapse
Affiliation(s)
- Yici Lei
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Akira Fukunaga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Rieko Shimo-Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takako Kato-Minoura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Toshiki Yagi
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Wang H, Zhang J, Liao S, Henstra AM, Leon D, Erde J, Loo JA, Ogorzalek Loo RR, Zhou ZH, Gunsalus RP. Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer. SCIENCE ADVANCES 2024; 10:eadr8596. [PMID: 39671499 PMCID: PMC11641113 DOI: 10.1126/sciadv.adr8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron tomography, we visualized the S-layer lattice surrounding Methanospirillum hungatei, a methanogenic archaeon. Though more compact than known structures, M. hungatei's S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer's cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment. M. hungatei cell's end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anne M. Henstra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Deborah Leon
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Erde
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| | | | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Pang H, Fan F, Zheng J, Xiao H, Tan Z, Song J, Kan B, Liu H. Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states. Structure 2024; 32:2364-2374.e2. [PMID: 39471801 DOI: 10.1016/j.str.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Lytic podophages (VP1-VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
Collapse
Affiliation(s)
- Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Fenxia Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
8
|
Bohnsack RN, Misra SK, Liu J, Ishihara-Aoki M, Pereckas M, Aoki K, Ren G, Sharp JS, Dahms NM. Lysosomal enzyme binding to the cation-independent mannose 6-phosphate receptor is regulated allosterically by insulin-like growth factor 2. Sci Rep 2024; 14:26875. [PMID: 39505925 PMCID: PMC11541866 DOI: 10.1038/s41598-024-75300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR) is clinically significant in the treatment of patients with lysosomal storage diseases because it functions in the biogenesis of lysosomes by transporting mannose 6-phosphate (M6P)-containing lysosomal enzymes to endosomal compartments. CI-MPR is multifunctional and modulates embryonic growth and fetal size by downregulating circulating levels of the peptide hormone insulin-like growth factor 2 (IGF2). The extracellular region of CI-MPR comprises 15 homologous domains with binding sites for M6P-containing ligands located in domains 3, 5, 9, and 15, whereas IGF2 interacts with residues in domain 11. How a particular ligand affects the receptor's conformation or its ability to bind other ligands remains poorly understood. To address these questions, we purified a soluble form of the receptor from newborn calf serum, carried out glycoproteomics to define the N-glycans at its 19 potential glycosylation sites, probed its ability to bind lysosomal enzymes in the presence and absence of IGF2 using surface plasmon resonance, and assessed its conformation in the presence and absence of IGF2 by negative-staining electron microscopy and hydroxyl radical protein footprinting studies. Together, our findings support the hypothesis that IGF2 acts as an allosteric inhibitor of lysosomal enzyme binding by inducing global conformational changes of CI-MPR.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mayumi Ishihara-Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Kazuhiro Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA.
| |
Collapse
|
9
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat Commun 2024; 15:9084. [PMID: 39433544 PMCID: PMC11494099 DOI: 10.1038/s41467-024-52914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 e-Å-2, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.5. Each map allows us to identify distinct RNA helices and determine a unique tertiary structure. Statistical analysis of these 120 structures confirms two reported conformations and reveals a range of kinetically trapped, intermediate, and highly compacted states, demonstrating a maturation folding landscape likely driven by helix-helix compaction interactions.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, 69120, Heidelberg, Germany
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Lethcoe K, Fox CA, Hafiane A, Kiss RS, Liu J, Ren G, Ryan RO. Foam fractionation studies of recombinant human apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184375. [PMID: 39128552 PMCID: PMC11365745 DOI: 10.1016/j.bbamem.2024.184375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Apolipoprotein A-I (apoA-I), the primary protein component of plasma high-density lipoproteins (HDL), is comprised of two structural regions, an N-terminal amphipathic α-helix bundle domain (residues 1-184) and a hydrophobic C-terminal domain (residues 185-243). When a recombinant fusion protein construct [bacterial pelB leader sequence - human apoA-I (1-243)] was expressed in Escherichia coli shaker flask cultures, apoA-I was recovered in the cell lysate. By contrast, when the C-terminal domain was deleted from the construct, large amounts of the truncated protein, apoA-I (1-184), were recovered in the culture medium. Consequently, following pelB leader sequence cleavage in the E. coli periplasmic space, apoA-I (1-184) was secreted from the bacteria. When the pelB-apoA-I (1-184) fusion construct was expressed in a 5 L bioreactor, substantial foam production (~30 L) occurred. Upon foam collection and collapse into a liquid foamate, SDS-PAGE revealed that apoA-I (1-184) was the sole major protein present. Incubation of apoA-I (1-184) with phospholipid vesicles yielded reconstituted HDL (rHDL) particles that were similar in size and cholesterol efflux capacity to those generated with full-length apoA-I. Mass spectrometry analysis confirmed that pelB leader sequence cleavage occurred and that foam fractionation did not result in unwanted protein modifications. The facile nature and scalability of bioreactor-based apolipoprotein foam fractionation provide a novel means to generate a versatile rHDL scaffold protein.
Collapse
Affiliation(s)
- Kyle Lethcoe
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Anouar Hafiane
- Department of Medicine, Division of Cardiology, McGill University, Montreal, QC, Canada
| | - Robert S Kiss
- Department of Medicine, Division of Cardiology, McGill University, Montreal, QC, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
11
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Peng Y, Tang H, Xiao H, Chen W, Song J, Zheng J, Liu H. Structures of Mature and Urea-Treated Empty Bacteriophage T5: Insights into Siphophage Infection and DNA Ejection. Int J Mol Sci 2024; 25:8479. [PMID: 39126049 PMCID: PMC11313276 DOI: 10.3390/ijms25158479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
T5 is a siphophage that has been extensively studied by structural and biochemical methods. However, the complete in situ structures of T5 before and after DNA ejection remain unknown. In this study, we used cryo-electron microscopy (cryo-EM) to determine the structures of mature T5 (a laboratory-adapted, fiberless T5 mutant) and urea-treated empty T5 (lacking the tip complex) at near-atomic resolutions. Atomic models of the head, connector complex, tail tube, and tail tip were built for mature T5, and atomic models of the connector complex, comprising the portal protein pb7, adaptor protein p144, and tail terminator protein p142, were built for urea-treated empty T5. Our findings revealed that the aforementioned proteins did not undergo global conformational changes before and after DNA ejection, indicating that these structural features were conserved among most myophages and siphophages. The present study elucidates the underlying mechanisms of siphophage infection and DNA ejection.
Collapse
Affiliation(s)
- Yuning Peng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; (Y.P.); (H.X.); (W.C.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China;
| | - Huanrong Tang
- School of Computer Science, Xiangtan University, Xiangtan 411105, China;
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; (Y.P.); (H.X.); (W.C.)
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; (Y.P.); (H.X.); (W.C.)
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China;
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; (Y.P.); (H.X.); (W.C.)
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; (Y.P.); (H.X.); (W.C.)
| |
Collapse
|
13
|
Datler J, Hansen JM, Thader A, Schlögl A, Bauer LW, Hodirnau VV, Schur FKM. Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nat Struct Mol Biol 2024; 31:1114-1123. [PMID: 38316877 PMCID: PMC11257981 DOI: 10.1038/s41594-023-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.
Collapse
Affiliation(s)
- Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Alois Schlögl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lukas W Bauer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
14
|
Shi B, Zhang K, Fleet DJ, McLeod RA, Dwayne Miller RJ, Howe JY. Deep generative priors for biomolecular 3D heterogeneous reconstruction from cryo-EM projections. J Struct Biol 2024; 216:108073. [PMID: 38432598 DOI: 10.1016/j.jsb.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Cryo-electron microscopy has become a powerful tool to determine three-dimensional (3D) structures of rigid biological macromolecules from noisy micrographs with single-particle reconstruction. Recently, deep neural networks, e.g., CryoDRGN, have demonstrated conformational and compositional heterogeneity of complexes. However, the lack of ground-truth conformations poses a challenge to assess the performance of heterogeneity analysis methods. In this work, variational autoencoders (VAE) with three types of deep generative priors were learned for latent variable inference and heterogeneous 3D reconstruction via Bayesian inference. More specifically, VAEs with "Variational Mixture of Posteriors" priors (VampPrior-SPR), non-parametric exemplar-based priors (ExemplarPrior-SPR) and priors from latent score-based generative models (LSGM-SPR) were quantitatively compared with CryoDRGN. We built four simulated datasets composed of hypothetical continuous conformation or discrete states of the hERG K + channel. Empirical and quantitative comparisons of inferred latent representations were performed with affine-transformation-based metrics. These models with more informative priors gave better regularized, interpretable factorized latent representations with better conserved pairwise distances, less deformed latent distributions and lower within-cluster variances. They were also tested on experimental datasets to resolve compositional and conformational heterogeneity (50S ribosome assembly, cowpea chlorotic mottle virus, and pre-catalytic spliceosome) with comparable high resolution. Codes and data are available: https://github.com/benjamin3344/DGP-SPR.
Collapse
Affiliation(s)
- Bin Shi
- Department of Materials Science and Engineering, University of Toronto, ON M5S 3H5, Canada
| | - Kevin Zhang
- Department of Materials Science and Engineering, University of Toronto, ON M5S 3H5, Canada
| | - David J Fleet
- Department of Computer Science, University of Toronto, ON M5S 3H5, Canada
| | - Robert A McLeod
- Hitachi High-Technologies Canada, Inc. Based out of Victoria, BC, Canada, British Columbia, Canada
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, ON M5S 3H6, Canada.
| | - Jane Y Howe
- Department of Materials Science and Engineering, University of Toronto, ON M5S 3H5, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON M5S 3E5, Canada
| |
Collapse
|
15
|
Zhang M, Díaz-Celis C, Liu J, Tao J, Ashby PD, Bustamante C, Ren G. Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography. Nat Commun 2024; 15:4395. [PMID: 38782894 PMCID: PMC11116431 DOI: 10.1038/s41467-024-48305-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Ashby
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carlos Bustamante
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Guo Z, Liu J, Wang Y, Chen M, Wang D, Xu D, Cheng J. Diffusion models in bioinformatics and computational biology. NATURE REVIEWS BIOENGINEERING 2024; 2:136-154. [PMID: 38576453 PMCID: PMC10994218 DOI: 10.1038/s44222-023-00114-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/06/2024]
Abstract
Denoising diffusion models embody a type of generative artificial intelligence that can be applied in computer vision, natural language processing and bioinformatics. In this Review, we introduce the key concepts and theoretical foundations of three diffusion modelling frameworks (denoising diffusion probabilistic models, noise-conditioned scoring networks and score stochastic differential equations). We then explore their applications in bioinformatics and computational biology, including protein design and generation, drug and small-molecule design, protein-ligand interaction modelling, cryo-electron microscopy image data analysis and single-cell data analysis. Finally, we highlight open-source diffusion model tools and consider the future applications of diffusion models in bioinformatics.
Collapse
Affiliation(s)
- Zhiye Guo
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Yanli Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Mengrui Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
18
|
Farci D, Milenkovic S, Iesu L, Tanas M, Ceccarelli M, Piano D. Structural characterization and functional insights into the type II secretion system of the poly-extremophile Deinococcus radiodurans. J Biol Chem 2024; 300:105537. [PMID: 38072042 PMCID: PMC10828601 DOI: 10.1016/j.jbc.2023.105537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024] Open
Abstract
The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| | - Stefan Milenkovic
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Luca Iesu
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Marta Tanas
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| |
Collapse
|
19
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
20
|
Liu J, Lu Y, Zhu L. A kinetic model for solving a combination optimization problem in ab-initio Cryo-EM 3D reconstruction. Brief Bioinform 2024; 25:bbad473. [PMID: 38261343 PMCID: PMC10805181 DOI: 10.1093/bib/bbad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryo-Electron Microscopy (cryo-EM) is a widely used and effective method for determining the three-dimensional (3D) structure of biological molecules. For ab-initio Cryo-EM 3D reconstruction using single particle analysis (SPA), estimating the projection direction of the projection image is a crucial step. However, the existing SPA methods based on common lines are sensitive to noise. The error in common line detection will lead to a poor estimation of the projection directions and thus may greatly affect the final reconstruction results. To improve the reconstruction results, multiple candidate common lines are estimated for each pair of projection images. The key problem then becomes a combination optimization problem of selecting consistent common lines from multiple candidates. To solve the problem efficiently, a physics-inspired method based on a kinetic model is proposed in this work. More specifically, hypothetical attractive forces between each pair of candidate common lines are used to calculate a hypothetical torque exerted on each projection image in the 3D reconstruction space, and the rotation under the hypothetical torque is used to optimize the projection direction estimation of the projection image. This way, the consistent common lines along with the projection directions can be found directly without enumeration of all the combinations of the multiple candidate common lines. Compared with the traditional methods, the proposed method is shown to be able to produce more accurate 3D reconstruction results from high noise projection images. Besides the practical value, the proposed method also serves as a good reference for solving similar combinatorial optimization problems.
Collapse
Affiliation(s)
- Jiaxuan Liu
- School of Information Science and Engineering, Lanzhou
| | - Yonggang Lu
- School of Information Science and Engineering, Lanzhou
| | - Li Zhu
- School of Life Sciences, Lanzhou University
| |
Collapse
|
21
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming resolution attenuation during tilted cryo-EM data collection. Nat Commun 2024; 15:389. [PMID: 38195598 PMCID: PMC10776679 DOI: 10.1038/s41467-023-44555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
Affiliation(s)
- Sriram Aiyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Philip R Baldwin
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shi Min Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- College of Pharmacy, Kyung Hee University, Seoul, 02247, Republic of Korea
| | - Atousa Mehrani
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gordon Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua A Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Benjamin A Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Joseph A P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Carrascosa JL. Characterization of Complexes and Supramolecular Structures by Electron Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:191-205. [PMID: 38507208 DOI: 10.1007/978-3-031-52193-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Recent advancements in cryo-electron microscopy (cryo-TEM) have enabled the determination of structures of macromolecular complexes at near-atomic resolution, establishing it as a pivotal tool in Structural Biology. This high resolution allows for the detection of ligands and substrates under physiological conditions. Enhancements in detectors and imaging devices, like phase plates, improve signal quality, facilitating the reconstruction of even smaller macromolecular complexes. The 100-kDa barrier has been surpassed, presenting new opportunities for pharmacological research and expanding the scope of crystallographic analyses in the pharmaceutical industry. Cryo-TEM produces vast data sets from minimal samples, and refined classification methods can identify different conformational states of macromolecular complexes, offering deeper insights into the functional characteristics of macromolecular systems. Additionally, cryo-TEM is paving the way for time-resolved microscopy, with rapid freezing techniques capturing snapshots of vital structural changes in biological complexes. Finally, in Structural Cell Biology, advanced cryo-TEM, through tomographic procedures, is revealing conformational changes related to the specific subcellular localization of macromolecular systems and their interactions within cells.
Collapse
Affiliation(s)
- José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB, CSIC), Madrid, Spain.
| |
Collapse
|
23
|
Cuervo A, Losana P, Carrascosa JL. Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2734:13-25. [PMID: 38066360 DOI: 10.1007/978-1-0716-3523-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transmission electron microscopy (TEM) is an ideal method to observe and determine the structure of bacteriophages. From early studies by negative staining to the present atomic structure models derived from cryo-TEM, bacteriophage detection, classification, and structure determination have been mostly done by electron microscopy. Although embedding in metal salts has been a routine method for virus observation for many years, the preservation of bacteriophages in a thin layer of fast frozen buffer has proven to be the most convenient preparation method for obtaining images using cryo-electron microscopy (cryo-EM). In this technique, frozen samples are observed at liquid nitrogen temperature, and the images are acquired using different recording media. The incorporation of direct electron detectors has been a fundamental step in achieving atomic resolution images of a number of viruses. These projection images can be numerically combined using different approaches to render a three-dimensional model of the virus. For those viral components exhibiting any symmetry, averaging can nowadays achieve atomic structures in most cases. Image processing methods have also evolved to improve the resolution in asymmetric viral components or regions showing different types of symmetries (symmetry mismatch).
Collapse
Affiliation(s)
- Ana Cuervo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | - Patricia Losana
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
24
|
Xiao H, Tan L, Tan Z, Zhang Y, Chen W, Li X, Song J, Cheng L, Liu H. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly. PLoS Biol 2023; 21:e3002441. [PMID: 38096144 PMCID: PMC10721106 DOI: 10.1371/journal.pbio.3002441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Le Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Yewei Zhang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Xiaowu Li
- School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Diao L, Zheng W, Zhao Q, Liu M, Fu Z, Zhang X, Bao L, Cong Y. Cryo-EM of α-tubulin isotype-containing microtubules revealed a contracted structure of α4A/β2A microtubules. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1551-1560. [PMID: 37439022 PMCID: PMC10577476 DOI: 10.3724/abbs.2023130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/14/2023] Open
Abstract
Microtubules are hollow α/β-tubulin heterodimeric polymers that play critical roles in cells. In vertebrates, both α- and β-tubulins have multiple isotypes encoded by different genes, which are intrinsic factors in regulating microtubule functions. However, the structures of microtubules composed of different tubulin isotypes, especially α-tubulin isotypes, remain largely unknown. Here, we purify recombinant tubulin heterodimers composed of different mouse α-tubulin isotypes, including α1A, α1C and α4A, with the β-tubulin isotype β2A. We further assemble and determine the cryo-electron microscopy (cryo-EM) structures of α1A/β2A, α1C/β2A, and α4A/β2A microtubules. Our structural analysis demonstrates that α4A/β2A microtubules exhibit longitudinal contraction between tubulin interdimers compared with α1A/β2A and α1C/β2A microtubules. Collectively, our findings reveal that α-tubulin isotype composition can tune microtubule structures, and also provide evidence for the "tubulin code" hypothesis.
Collapse
Affiliation(s)
- Lei Diao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Wei Zheng
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyi Liu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhenglin Fu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Lan Bao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yao Cong
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
26
|
Zheng J, Chen W, Xiao H, Yang F, Song J, Cheng L, Liu H. Asymmetric Structure of Podophage GP4 Reveals a Novel Architecture of Three Types of Tail Fibers. J Mol Biol 2023; 435:168258. [PMID: 37660940 DOI: 10.1016/j.jmb.2023.168258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bacteriophage tail fibers (or called tail spikes) play a critical role in the early stage of infection by binding to the bacterial surface. Podophages with known structures usually possess one or two types of fibers. Here, we resolved an asymmetric structure of the podophage GP4 to near-atomic resolution by cryo-EM. Our structure revealed a symmetry-mismatch relationship between the components of the GP4 tail with previously unseen topologies. In detail, two dodecameric adaptors (adaptors I and II), a hexameric nozzle, and a tail needle form a conserved tail body connected to a dodecameric portal occupying a unique vertex of the icosahedral head. However, five chain-like extended fibers (fiber I) and five tulip-like short fibers (fiber II) are anchored to a 15-fold symmetric fiber-tail adaptor, encircling the adaptor I, and six bamboo-like trimeric fibers (fiber III) are connected to the nozzle. Five fibers I, each composed of five dimers of the protein gp80 linked by an elongated rope protein, are attached to the five edges of the tail vertex of the icosahedral head. In this study, we identified a new structure of the podophage with three types of tail fibers, and such phages with different types of fibers may have a broad host range and/or infect host cells with considerably high efficiency, providing evolutionary advantages in harsh environments.
Collapse
Affiliation(s)
- Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Fan Yang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
27
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
28
|
Kong L, Liu J, Zhang M, Lu Z, Xue H, Ren A, Liu J, Li J, Ling WL, Ren G. Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature. Nat Commun 2023; 14:5641. [PMID: 37704637 PMCID: PMC10499825 DOI: 10.1038/s41467-023-41266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Although structures of vitrified supramolecular complexes have been determined at near-atomic resolution, elucidating in situ molecular structure in living cells remains a challenge. Here, we report a straightforward liquid cell technique, originally developed for real-time visualization of dynamics at a liquid-gas interface using transmission electron microscopy, to image wet biological samples. Due to the scattering effects from the liquid phase, the micrographs display an amplitude contrast comparable to that observed in negatively stained samples. We succeed in resolving subunits within the protein complex GroEL imaged in a buffer solution at room temperature. Additionally, we capture various stages of virus cell entry, a process for which only sparse structural data exists due to their transient nature. To scrutinize the morphological details further, we used individual particle electron tomography for 3D reconstruction of each virus. These findings showcase this approach potential as an efficient, cost-effective complement to other microscopy technique in addressing biological questions at the molecular level.
Collapse
Affiliation(s)
- Lingli Kong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zhuoyang Lu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Amy Ren
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Jinping Li
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wai Li Ling
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
29
|
Short JM, Palmer CM, Burnley T, Winn MD, Zhang Q, Venkataram Prasad BV, Chen S, Crowther RA, Unwin PNT, Henderson R. MRC2020: improvements to Ximdisp and the MRC image-processing programs. IUCRJ 2023; 10:579-583. [PMID: 37493524 PMCID: PMC10478516 DOI: 10.1107/s2052252523006309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
The great success of single-particle electron cryo-microscopy (cryoEM) during the last decade has involved the development of powerful new computer programs and packages that guide the user along a recommended processing workflow, in which the wisdom and choices made by the developers help everyone, especially new users, to obtain excellent results. The ability to carry out novel, non-standard or unusual combinations of image-processing steps is sometimes compromised by the convenience of a standard procedure. Some of the older programs were written with great flexibility and are still very valuable. Among these, the original MRC image-processing programs for structure determination by 2D crystal and helical processing alongside general-purpose utility programs such as Ximdisp, label, imedit and twofile are still available. This work describes an updated version of the MRC software package (MRC2020) that is freely available from CCP-EM. It includes new features and improvements such as extensions to the MRC format that retain the versatility of the package and make it particularly useful for testing novel computational procedures in cryoEM.
Collapse
Affiliation(s)
- J. M. Short
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - C. M. Palmer
- Science & Technology Facilities Council, Research Complex at Harwell, Harwell, Didcot OX11 0FA, United Kingdom
| | - T. Burnley
- Science & Technology Facilities Council, Research Complex at Harwell, Harwell, Didcot OX11 0FA, United Kingdom
| | - M. D. Winn
- Science & Technology Facilities Council, Research Complex at Harwell, Harwell, Didcot OX11 0FA, United Kingdom
| | - Q. Zhang
- Sun Yat Sen University, School of Life Science, State Key Laboratory of Biocontrol, Guangzhou 510275, People’s Republic of China
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Chen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - R. A. Crowther
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - P. N. T. Unwin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - R. Henderson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
30
|
Baker MR, Fan G, Arige V, Yule DI, Serysheva II. Understanding IP 3R channels: From structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 2023; 114:102770. [PMID: 37393815 PMCID: PMC10529787 DOI: 10.1016/j.ceca.2023.102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
32
|
DiIorio MC, Kulczyk AW. Novel Artificial Intelligence-Based Approaches for Ab Initio Structure Determination and Atomic Model Building for Cryo-Electron Microscopy. MICROMACHINES 2023; 14:1674. [PMID: 37763837 PMCID: PMC10534518 DOI: 10.3390/mi14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method for near-atomic structure determination, shedding light on the important molecular mechanisms of biological macromolecules. However, the inherent dynamics and structural variability of biological complexes coupled with the large number of experimental images generated by a cryo-EM experiment make data processing nontrivial. In particular, ab initio reconstruction and atomic model building remain major bottlenecks that demand substantial computational resources and manual intervention. Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep learning, have the potential to overcome the limitations that cannot be adequately addressed by traditional image processing approaches. Here, we review newly proposed AI-based methods for ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We highlight the advancements made by the implementation of AI methods, as well as discuss remaining limitations and areas for future development.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry & Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
33
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming Resolution Attenuation During Tilted Cryo-EM Data Collection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548955. [PMID: 37503021 PMCID: PMC10369999 DOI: 10.1101/2023.07.14.548955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
|
34
|
McRae EKS, Rasmussen HØ, Liu J, Bøggild A, Nguyen MTA, Sampedro Vallina N, Boesen T, Pedersen JS, Ren G, Geary C, Andersen ES. Structure, folding and flexibility of co-transcriptional RNA origami. NATURE NANOTECHNOLOGY 2023; 18:808-817. [PMID: 36849548 PMCID: PMC10566746 DOI: 10.1038/s41565-023-01321-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
RNA origami is a method for designing RNA nanostructures that can self-assemble through co-transcriptional folding with applications in nanomedicine and synthetic biology. However, to advance the method further, an improved understanding of RNA structural properties and folding principles is required. Here we use cryogenic electron microscopy to study RNA origami sheets and bundles at sub-nanometre resolution revealing structural parameters of kissing-loop and crossover motifs, which are used to improve designs. In RNA bundle designs, we discover a kinetic folding trap that forms during folding and is only released after 10 h. Exploration of the conformational landscape of several RNA designs reveal the flexibility of helices and structural motifs. Finally, sheets and bundles are combined to construct a multidomain satellite shape, which is characterized by individual-particle cryo-electron tomography to reveal the domain flexibility. Together, the study provides a structural basis for future improvements to the design cycle of genetically encoded RNA nanodevices.
Collapse
Affiliation(s)
- Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Helena Østergaard Rasmussen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Michael T A Nguyen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Pinelo JEE, Manandhar P, Popovic G, Ray K, Tasdelen MF, Nguyen Q, Iavarone AT, Offenbacher AR, Hudson NE, Sen M. Systematic mapping of the conformational landscape and dynamism of soluble fibrinogen. J Thromb Haemost 2023; 21:1529-1543. [PMID: 36746319 PMCID: PMC10407912 DOI: 10.1016/j.jtha.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fibrinogen is a soluble, multisubunit, and multidomain dimeric protein, which, upon its proteolytic cleavage by thrombin, is converted to insoluble fibrin, initiating polymerization that substantially contributes to clot growth. Fibrinogen contains numerous, transiently accessible "cryptic" epitopes for hemostatic and immunologic proteins, suggesting that fibrinogen exhibits conformational flexibility, which may play functional roles in its temporal and spatial interactions. Hitherto, there have been limited integrative approaches characterizing the solution structure and internal flexibility of fibrinogen. METHODS Here, utilizing a multipronged, biophysical approach involving 2 solution-based techniques, temperature-dependent hydrogen-deuterium exchange mass spectrometry and small angle X-ray scattering, corroborated by negative stain electron microscopy, we present a holistic, conformationally dynamic model of human fibrinogen in solution. RESULTS Our data reveal 4 major and distinct conformations of fibrinogen accommodated by a high degree of internal protein flexibility along its central scaffold. We propose that the fibrinogen structure in the solution consists of a complex, conformational landscape with multiple local minima. This is further supported by the location of numerous point mutations that are linked to dysfibrinogenemia and posttranslational modifications, residing near the identified fibrinogen flexions. CONCLUSION This work provides a molecular basis for the structural "dynamism" of fibrinogen that is expected to influence the broad swath of its functionally diverse macromolecular interactions and fine-tune the structural and mechanical properties of blood clots.
Collapse
Affiliation(s)
- Jose E E Pinelo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Pragya Manandhar
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Grega Popovic
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Katherine Ray
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet F Tasdelen
- Department of Computer Science, University of Houston, Houston, Texas, USA
| | - Quoc Nguyen
- Department of Mathematics, University of Houston, Houston, Texas, USA
| | - Anthony T Iavarone
- QB3/Chemistry/Mass Spectrometry Facility, University of California, Berkeley, California, USA
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
| |
Collapse
|
36
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Tertiary structure of single-instant RNA molecule reveals folding landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541511. [PMID: 37292713 PMCID: PMC10245749 DOI: 10.1101/2023.05.19.541511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The folding of RNA and protein molecules during their synthesis is a crucial self-assembly process that nature employs to convert genetic information into the complex molecular machinery that supports life. Misfolding events are the cause of several diseases, and the folding pathway of central biomolecules, such as the ribosome, is strictly regulated by programmed maturation processes and folding chaperones. However, the dynamic folding processes are challenging to study because current structure determination methods heavily rely on averaging, and existing computational methods do not efficiently simulate non-equilibrium dynamics. Here we utilize individual-particle cryo-electron tomography (IPET) to investigate the folding landscape of a rationally designed RNA origami 6-helix bundle that undergoes slow maturation from a "young" to "mature" conformation. By optimizing the IPET imaging and electron dose conditions, we obtain 3D reconstructions of 120 individual particles at resolutions ranging from 23-35 Å, enabling us first-time to observe individual RNA helices and tertiary structures without averaging. Statistical analysis of 120 tertiary structures confirms the two main conformations and suggests a possible folding pathway driven by helix-helix compaction. Studies of the full conformational landscape reveal both trapped states, misfolded states, intermediate states, and fully compacted states. The study provides novel insight into RNA folding pathways and paves the way for future studies of the energy landscape of molecular machines and self-assembly processes.
Collapse
|
37
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
38
|
Kusznir EA, Hau JC, Portmann M, Reinhart AG, Falivene F, Bastien J, Worm J, Ross A, Lauer M, Ringler P, Sladojevich F, Huber S, Bleicher K, Keller M. Propensities of Fatty Acid-Modified ASOs: Self-Assembly vs Albumin Binding. Bioconjug Chem 2023; 34:866-879. [PMID: 37145959 DOI: 10.1021/acs.bioconjchem.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We conducted a biophysical study to investigate the self-assembling and albumin-binding propensities of a series of fatty acid-modified locked nucleic acid (LNA) antisense oligonucleotide (ASO) gapmers specific to the MALAT1 gene. To this end, a series of biophysical techniques were applied using label-free ASOs that were covalently modified with saturated fatty acids (FAs) of varying length, branching, and 5'/3' attachment. Using analytical ultracentrifugation (AUC), we demonstrate that ASOs conjugated with fatty acids longer than C16 exhibit an increasing tendency to form self-assembled vesicular structures. The C16 to C24 conjugates interacted via the fatty acid chains with mouse and human serum albumin (MSA/HSA) to form stable adducts with near-linear correlation between FA-ASO hydrophobicity and binding strength to mouse albumin. This was not observed for the longer fatty acid chain ASO conjugates (>C24) under the experimental conditions applied. The longer FA-ASO however adopted self-assembled structures with increasing intrinsic stabilities proportional to the fatty acid chain length. For instance, FA chain lengths smaller than C24 readily formed self-assembled structures containing 2 (C16), 6 (C22, bis-C12), and 12 (C24) monomers, as measured by analytical ultracentrifugation (AUC). Incubation with albumin disrupted these supramolecular architectures to form FA-ASO/albumin complexes mostly with 2:1 stoichiometry and binding affinities in the low micromolar range, as determined by isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC). Binding of FA-ASOs underwent a biphasic pattern for medium-length FA chain lengths (>C16) with an initial endothermic phase of particulate disruption, followed by an exothermic binding event to the albumin. Conversely, ASO modified with di-palmitic acid (C32) formed a strong, hexameric complex. This structure was not disrupted when incubated with albumin under conditions above the critical nanoparticle concentration (CNC; <0.4 μM). It is noteworthy that the interaction of parent, fatty acid-free malat1 ASO to albumin was below detectability by ITC (KD ≫150 μM). This work demonstrates that the nature of mono- vs multimeric structures of hydrophobically modified ASOs is governed by the hydrophobic effect. Consequently, supramolecular assembly to form particulate structures is a direct consequence of the fatty acid chain length. This provides opportunities to exploit the concept of hydrophobic modification to influence pharmacokinetics (PK) and biodistribution for ASOs in two ways: (1) binding of the FA-ASO to albumin as a carrier vehicle and (2) self-assembly resulting in albumin-inert, supramolecular architectures. Both concepts create opportunities to influence biodistribution, receptor interaction, uptake mechanism, and pharmacokinetics/pharmacodynamics (PK/PD) properties in vivo, potentially enabling access to extrahepatic tissues in sufficient concentration to treat disease.
Collapse
Affiliation(s)
- Eric-André Kusznir
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Christophe Hau
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Falivene
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica Bastien
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jesper Worm
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, 2970 Hoersholm, Denmark
| | - Alfred Ross
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, CH - 4056 Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
39
|
Lee H, Chofflet N, Liu J, Fan S, Lu Z, Resua Rojas M, Penndorf P, Bailey AO, Russell WK, Machius M, Ren G, Takahashi H, Rudenko G. Designer molecules of the synaptic organizer MDGA1 reveal 3D conformational control of biological function. J Biol Chem 2023; 299:104586. [PMID: 36889589 PMCID: PMC10131064 DOI: 10.1016/j.jbc.2023.104586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1β, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.
Collapse
Affiliation(s)
- Hubert Lee
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shanghua Fan
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhuoyang Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin Resua Rojas
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Patrick Penndorf
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mischa Machius
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada.
| | - Gabby Rudenko
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
40
|
Abstract
Cryo-electron microscopy (cryo-EM) has become the mainstream technique for studying macromolecular structures. Determining the structures of protein complexes is more accessible to structural biologists than ever before. Nevertheless, obtaining high-resolution structures of molecular motors like dynein is still an extremely challenging goal due to their troublesome behaviors in ice, their exceedingly flexible conformations, and their intricate architectures. Dynein is a large molecular machine that drives the movement of many essential cellular cargos and is also the key force generator that powers ciliary motility. High-resolution structural information of dyneins in different states is critical for the in-depth mechanistic understanding of their roles in cells. Here, we summarize the cryo-EM approaches that we have used to study the structures of outer-arm dynein arrays bound to microtubule doublets. Our approaches can be applied to other similar structures and further optimized to deal with even more complicated targets.
Collapse
|
41
|
Liu Z, Xiang Y. Structural studies of the nucleus-like assembly of jumbo bacteriophage 201φ2-1. Front Microbiol 2023; 14:1170112. [PMID: 37138628 PMCID: PMC10149743 DOI: 10.3389/fmicb.2023.1170112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
The jumbo phages encode proteins that assemble to form a nucleus-like compartment in infected cells. Here we report the cryo-EM structure and biochemistry characterization of gp105, a protein that is encoded by the jumbo phage 201φ2-1 and is involved in the formation of the nucleus-like compartment in phage 201φ2-1 infected Pseudomonas chlororaphis. We found that, although most gp105 molecules are in the monomeric state in solution, a small portion of gp105 assemble to form large sheet-like assemblies and small cube-like particles. Reconstruction of the cube-like particles showed that the particle consists of six flat head-to-tail tetramers arranged into an octahedral cube. The four molecules at the contact interface of two head-to-tail tetramers are 2-fold symmetry-related and constitute a concave tetramer. Further reconstructions without applying symmetry showed that molecules in the particles around the distal ends of a 3-fold axis are highly dynamic and have the tendency to open up the assembly. Local classifications and refinements of the concave tetramers in the cube-like particle resulted in a map of the concave tetramer at a resolution of 4.09 Å. Structural analysis of the concave tetramer indicates that the N and C terminal fragments of gp105 are important for mediating the intermolecular interactions, which was further confirmed by mutagenesis studies. Biochemistry assays showed that, in solution, the cube-like particles of gp105 are liable to either disassemble to form the monomers or recruit more molecules to form the high molecular weight lattice-like assembly. We also found that monomeric gp105s can self-assemble to form large sheet-like assemblies in vitro, and the assembly of gp105 in vitro is a reversible dynamic process and temperature-dependent. Taken together, our results revealed the dynamic assembly of gp105, which helps to understand the development and function of the nucleus-like compartment assembled by phage-encoded proteins.
Collapse
|
42
|
Tan YZ, Abbas YM, Wu JZ, Wu D, Keon KA, Hesketh GG, Bueler SA, Gingras AC, Robinson CV, Grinstein S, Rubinstein JL. CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7. Life Sci Alliance 2022; 5:e202201527. [PMID: 35794005 PMCID: PMC9263379 DOI: 10.26508/lsa.202201527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.6% of complexes bound mEAK-7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK-7 showed that mEAK-7's TLDc domain interacts with V-ATPase's stator, whereas its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, unlike the yeast TLDc protein Oxr1p, exogenous mEAK-7 does not inhibit V-ATPase and mEAK-7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that the mEAK-7:V-ATPase interaction is disrupted by ATP-induced rotation of the rotor. Comparison of Oxr1p and mEAK-7 binding explains this difference. These results show that V-ATPase binding by TLDc domain proteins can lead to effects ranging from strong inhibition to formation of labile interactions that are sensitive to the enzyme's activity.
Collapse
Affiliation(s)
- Yong Zi Tan
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Yazan M Abbas
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Ramírez-Aportela E, Carazo JM, Sorzano COS. Higher resolution in cryo-EM by the combination of macromolecular prior knowledge and image-processing tools. IUCRJ 2022; 9:632-638. [PMID: 36071808 PMCID: PMC9438491 DOI: 10.1107/s2052252522006959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Single-particle cryo-electron microscopy has become a powerful technique for the 3D structure determination of biological molecules. The last decade has seen an astonishing development of both hardware and software, and an exponential growth of new structures obtained at medium-high resolution. However, the knowledge accumulated in this field over the years has hardly been utilized as feedback in the reconstruction of new structures. In this context, this article explores the use of the deep-learning approach deepEMhancer as a regularizer in the RELION refinement process. deepEMhancer introduces prior information derived from macromolecular structures, and contributes to noise reduction and signal enhancement, as well as a higher degree of isotropy. These features have a direct effect on image alignment and reduction of overfitting during iterative refinement. The advantages of this combination are demonstrated for several membrane proteins, for which it is especially useful because of their high disorder and flexibility.
Collapse
Affiliation(s)
- Erney Ramírez-Aportela
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Jose M. Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Universidad CEU San Pablo, Campus Urb. Montepríncipe, Boadilla del Monte, Madrid 28668, Spain
| |
Collapse
|
44
|
Structure of an Intranucleosomal DNA Loop That Senses DNA Damage during Transcription. Cells 2022; 11:cells11172678. [PMID: 36078089 PMCID: PMC9454427 DOI: 10.3390/cells11172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Transcription through chromatin by RNA polymerase II (Pol II) is accompanied by the formation of small intranucleosomal DNA loops containing the enzyme (i-loops) that are involved in survival of core histones on the DNA and arrest of Pol II during the transcription of damaged DNA. However, the structures of i-loops have not been determined. Here, the structures of the intermediates formed during transcription through a nucleosome containing intact or damaged DNA were studied using biochemical approaches and electron microscopy. After RNA polymerase reaches position +24 from the nucleosomal boundary, the enzyme can backtrack to position +20, where DNA behind the enzyme recoils on the surface of the histone octamer, forming an i-loop that locks Pol II in the arrested state. Since the i-loop is formed more efficiently in the presence of SSBs positioned behind the transcribing enzyme, the loop could play a role in the transcription-coupled repair of DNA damage hidden in the chromatin structure.
Collapse
|
45
|
Feng J, Dong X, Su Y, Lu C, Springer TA. Monomeric prefusion structure of an extremophile gamete fusogen and stepwise formation of the postfusion trimeric state. Nat Commun 2022; 13:4064. [PMID: 35831325 PMCID: PMC9279424 DOI: 10.1038/s41467-022-31744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Here, we study the gamete fusogen HAP2 from Cyanidioschyzon merolae (Cyani), an extremophile red algae that grows at acidic pH at 45 °C. HAP2 has a trimeric postfusion structure with similarity to viral class II fusion proteins, but its prefusion structure has been elusive. The crystal structure of a monomeric prefusion state of Cyani HAP2 shows it is highly extended with three domains in the order D2, D1, and D3. Three hydrophobic fusion loops at the tip of D2 are each required for postfusion state formation. We followed by negative stain electron microscopy steps in the process of detergent micelle-stimulated postfusion state formation. In an intermediate state, two or three linear HAP2 monomers associate at the end of D2 bearing its fusion loops. Subsequently, D2 and D1 line the core of a trimer and D3 folds back over the exterior of D1 and D2. D3 is not required for formation of intermediate or postfusion-like states.
Collapse
Affiliation(s)
- Juan Feng
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Su
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Malhi H, Homad LJ, Wan YH, Poudel B, Fiala B, Borst AJ, Wang JY, Walkey C, Price J, Wall A, Singh S, Moodie Z, Carter L, Handa S, Correnti CE, Stoddard BL, Veesler D, Pancera M, Olson J, King NP, McGuire AT. Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Rep Med 2022; 3:100658. [PMID: 35705092 PMCID: PMC9245003 DOI: 10.1016/j.xcrm.2022.100658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023]
Abstract
Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 165,000 deaths annually. EBV is also the etiological agent of infectious mononucleosis and is linked to multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine would have a significant global health impact. EBV is orally transmitted and has tropism for epithelial and B cells. Therefore, a vaccine would need to prevent infection of both in the oral cavity. Passive transfer of monoclonal antibodies against the gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we evaluate the immunogenicity of several gH/gL nanoparticle vaccines. All display superior immunogenicity relative to monomeric gH/gL. A nanoparticle displaying 60 copies of gH/gL elicits antibodies that protect against lethal EBV challenge in humanized mice, whereas antibodies elicited by monomeric gH/gL do not. These data motivate further development of gH/gL nanoparticle vaccines for EBV.
Collapse
Affiliation(s)
- Harman Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Leah J Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Yu-Hsin Wan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Bibhav Poudel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jing Yang Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jason Price
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Simran Handa
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - James Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA.
| |
Collapse
|
47
|
Farci D, Haniewicz P, de Sanctis D, Iesu L, Kereïche S, Winterhalter M, Piano D. The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions. J Biol Chem 2022; 298:102031. [PMID: 35577074 PMCID: PMC9189128 DOI: 10.1016/j.jbc.2022.102031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
The radiation-resistant bacterium Deinococcus radiodurans is known as the world’s toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive β-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland; Department of Chemistry, Umeå University, Linnaeus väg 6, Umeå, 90736, Sweden.
| | - Patrycja Haniewicz
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland
| | - Daniele de Sanctis
- ESRF, The European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Luca Iesu
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, 09123, Italy
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic
| | - Mathias Winterhalter
- Department of Life Sciences & Chemistry, Jacobs University Bremen, Bremen, 28759, Germany
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland; Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, 09123, Italy.
| |
Collapse
|
48
|
EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking. Nat Commun 2022; 13:2468. [PMID: 35513367 PMCID: PMC9072698 DOI: 10.1038/s41467-022-29994-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Deep learning is a popular method for facilitating particle picking in single-particle cryo-electron microscopy (cryo-EM), which is essential for developing automated processing pipelines. Most existing deep learning algorithms for particle picking rely on supervised learning where the features to be identified must be provided through a training procedure. However, the generalization performance of these algorithms on unseen datasets with different features is often unpredictable. In addition, while they perform well on the latest training datasets, these algorithms often fail to maintain the knowledge of old particles. Here, we report an exemplar-based continual learning approach, which can accumulate knowledge from the new dataset into the model by training an existing model on only a few new samples without catastrophic forgetting of old knowledge, implemented in a program called EPicker. Therefore, the ability of EPicker to identify bio-macromolecules can be expanded by continuously learning new knowledge during routine particle picking applications. Powered by the improved training strategy, EPicker is designed to pick not only protein particles but also general biological objects such as vesicles and fibers. Many existing deep learning algorithms for particle picking are not predictable on unseen datasets. Here the authors report an exemplar-based continual learning approach, EPicker, enabling accumulation of new knowledge of cryoEM particle picking without catastrophic forgetting of old knowledge.
Collapse
|
49
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
50
|
DeVore K, Chiu PL. Probing Structural Perturbation of Biomolecules by Extracting Cryo-EM Data Heterogeneity. Biomolecules 2022; 12:628. [PMID: 35625556 PMCID: PMC9138638 DOI: 10.3390/biom12050628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) has become an indispensable tool to probe high-resolution structural detail of biomolecules. It enables direct visualization of the biomolecules and opens a possibility for averaging molecular images to reconstruct a three-dimensional Coulomb potential density map. Newly developed algorithms for data analysis allow for the extraction of structural heterogeneity from a massive and low signal-to-noise-ratio (SNR) cryo-EM dataset, expanding our understanding of multiple conformational states, or further implications in dynamics, of the target biomolecule. This review provides an overview that briefly describes the workflow of single-particle cryo-EM, including imaging and data processing, and new methods developed for analyzing the data heterogeneity to understand the structural variability of biomolecules.
Collapse
Affiliation(s)
| | - Po-Lin Chiu
- School of Molecular Sciences, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA;
| |
Collapse
|