1
|
Zhou L, He L, Liu CH, Qiu H, Zheng L, Sample KM, Wu Q, Li J, Xie K, Ampuero J, Li Z, Lv D, Liu M, Romero-Gómez M, Hu Y, Tang H. Liver cancer stem cell dissemination and metastasis: uncovering the role of NRCAM in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:311. [PMID: 37993901 PMCID: PMC10664624 DOI: 10.1186/s13046-023-02893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Liver cancer stem cells (LCSCs) play an important role in hepatocellular carcinoma (HCC), but the mechanisms that link LCSCs to HCC metastasis remain largely unknown. This study aims to reveal the contributions of NRCAM to LCSC function and HCC metastasis, and further explore its mechanism in detail. METHODS 117 HCC and 29 non-HCC patients with focal liver lesions were collected and analyzed to assess the association between NRCAM and HCC metastasis. Single-cell RNA sequencing (scRNA-seq) was used to explore the biological characteristics of cells with high NRCAM expression in metastatic HCC. The role and mechanism of NRCAM in LCSC dissemination and metastasis was explored in vitro and in vivo using MYC-driven LCSC organoids from murine liver cells. RESULTS Serum NRCAM is associated with HCC metastasis and poor prognosis. A scRNA-seq analysis identified that NRCAM was highly expressed in LCSCs with MYC activation in metastatic HCC. Moreover, NRCAM facilitated LCSC migration and invasion, which was confirmed in MYC-driven LCSC organoids. The in vivo tumor allografts demonstrated that NRCAM mediated intra-hepatic/lung HCC metastasis by enhancing the ability of LCSCs to escape from tumors into the bloodstream. Nrcam expression inhibition in LCSCs blocked HCC metastasis. Mechanistically, NRCAM activated epithelial-mesenchymal transition (EMT) and metastasis-related matrix metalloproteinases (MMPs) through the MACF1 mediated β-catenin signaling pathway in LCSCs. CONCLUSIONS LCSCs typified by high NRCAM expression have a strong ability to invade and migrate, which is an important factor leading to HCC metastasis.
Collapse
Affiliation(s)
- Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Linye He
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Klarke Michael Sample
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Qin Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
| | - Jiaxin Li
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Surgery and Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital, SeLiver Group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US), University of Seville, Seville, Spain.
- Digestive Disease Department and CIBERehd, Virgen del Rocío University Hospital, Avenida Manuel Siurot S/N, 41013, Seville, Spain.
| | - Yiguo Hu
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, 37 GuoXue Lane, Chengdu, 610041, Sichuan Province, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Xu G(B, Pan YX, Mei W, Chen H. Single-Cell RNA Sequencing (scRNA-seq) Identifies L1CAM as a Key Mediator between Epithelial Tuft Cell and Innate Lymphoid Cell in the Colon of Hnrnp I Knockout Mice. Biomedicines 2023; 11:2734. [PMID: 37893107 PMCID: PMC10604312 DOI: 10.3390/biomedicines11102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Guanying (Bianca) Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Tsuchimochi R, Yamagami K, Kubo N, Amimoto N, Raudzus F, Samata B, Kikuchi T, Doi D, Yoshimoto K, Mihara A, Takahashi J. Viral delivery of L1CAM promotes axonal extensions by embryonic cerebral grafts in mouse brain. Stem Cell Reports 2023; 18:899-914. [PMID: 36963389 PMCID: PMC10147836 DOI: 10.1016/j.stemcr.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/26/2023] Open
Abstract
Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy.
Collapse
Affiliation(s)
- Ryosuke Tsuchimochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keitaro Yamagami
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Kubo
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Amimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Aya Mihara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
4
|
Guédez G, Loers G, Jeffries CM, Kozak S, Meijers R, Svergun DI, Schachner M, Löw C. X-ray structure and function of fibronectin domains two and three of the neural cell adhesion molecule L1. FASEB J 2023; 37:e22823. [PMID: 36809668 DOI: 10.1096/fj.202201511r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.
Collapse
Affiliation(s)
- Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Sandra Kozak
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Institute for Protein Innovation, Boston, Massachusetts, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.,European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|
5
|
Chataigner LMP, Gogou C, den Boer MA, Frias CP, Thies-Weesie DME, Granneman JCM, Heck AJR, Meijer DH, Janssen BJC. Structural insights into the contactin 1 - neurofascin 155 adhesion complex. Nat Commun 2022; 13:6607. [PMID: 36329006 PMCID: PMC9633819 DOI: 10.1038/s41467-022-34302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christos Gogou
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maurits A. den Boer
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cátia P. Frias
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dominique M. E. Thies-Weesie
- grid.5477.10000000120346234Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joke C. M. Granneman
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dimphna H. Meijer
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bert J. C. Janssen
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
7
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
8
|
Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am J Hum Genet 2022; 109:518-532. [PMID: 35108495 DOI: 10.1016/j.ajhg.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.
Collapse
|
9
|
Kleene R, Loers G, Castillo G, Schachner M. Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain. FASEB J 2021; 36:e22074. [PMID: 34859928 DOI: 10.1096/fj.202100816r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gaston Castillo
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
11
|
Desse VE, Blanchette CR, Nadour M, Perrat P, Rivollet L, Khandekar A, Bénard CY. Neuronal post-developmentally acting SAX-7S/L1CAM can function as cleaved fragments to maintain neuronal architecture in C. elegans. Genetics 2021; 218:6296841. [PMID: 34115111 DOI: 10.1093/genetics/iyab086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal's growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants' neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Virginie E Desse
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Cassandra R Blanchette
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Malika Nadour
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Paola Perrat
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lise Rivollet
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Anagha Khandekar
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Y Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
Clements J, Buhler K, Winant M, Vulsteke V, Callaerts P. Glial and Neuronal Neuroglian, Semaphorin-1a and Plexin A Regulate Morphological and Functional Differentiation of Drosophila Insulin-Producing Cells. Front Endocrinol (Lausanne) 2021; 12:600251. [PMID: 34276554 PMCID: PMC8281472 DOI: 10.3389/fendo.2021.600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.
Collapse
|
13
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|
14
|
Liu Z, Chen Y, Rao Y. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila. Mol Brain 2020; 13:1. [PMID: 31900209 PMCID: PMC6942347 DOI: 10.1186/s13041-019-0541-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
The establishment of the functional nervous system requires coordinated development of neurons and glia in the embryo. Our understanding of underlying molecular and cellular mechanisms, however, remains limited. The developing Drosophila visual system is an excellent model for understanding the developmental control of the nervous system. By performing a systematic transgenic RNAi screen, we investigated the requirements of secreted proteins and cell-surface receptors for the development of photoreceptor neurons (R cells) and wrapping glia (WG) in the Drosophila visual system. From the screen, we identified seven genes whose knockdown disrupted the development of R cells and/or WG, including amalgam (ama), domeless (dome), epidermal growth factor receptor (EGFR), kuzbanian (kuz), N-Cadherin (CadN), neuroglian (nrg), and shotgun (shg). Cell-type-specific analysis revealed that ama is required in the developing eye disc for promoting cell proliferation and differentiation, which is essential for the migration of glia in the optic stalk. Our results also suggest that nrg functions in both eye disc and WG for coordinating R-cell and WG development.
Collapse
Affiliation(s)
- Zhengya Liu
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yixu Chen
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yong Rao
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
15
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 DOI: 10.3389/fnins.2020.00458.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 04/04/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
16
|
Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M. Adhesion Molecule L1 Agonist Mimetics Protect Against the Pesticide Paraquat-Induced Locomotor Deficits and Biochemical Alterations in Zebrafish. Front Neurosci 2020; 14:458. [PMID: 32547358 PMCID: PMC7270331 DOI: 10.3389/fnins.2020.00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.
Collapse
Affiliation(s)
| | - Nataraj Jagadeesan
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Liu Yang Sai
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Sudhanshu Sahu
- Center of Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center of Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner, ;
| |
Collapse
|
17
|
Clinical significance and biological role of L1 cell adhesion molecule in gastric cancer. Br J Cancer 2019; 121:1058-1068. [PMID: 31754264 PMCID: PMC6964673 DOI: 10.1038/s41416-019-0646-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background L1 cell adhesion molecule (L1CAM) is highly expressed in malignant tumours and might play a pivotal role in tumour progression. Methods We analysed by immunohistochemistry L1CAM protein expression in formalin-fixed, paraffin-embedded specimens from 309 GC patients. We performed propensity score matching (PSM) analysis to clarify the prognostic impact of L1CAM in GC patients. We evaluated L1CAM gene expression in fresh frozen specimens from another group of 131 GC patients to establish its clinical relevance. The effects of changes in L1CAM were investigated in vitro and in vivo. Results L1CAM was mainly expressed in tumour cells of GC tissues. Elevated L1CAM expression was an independent prognostic factor for overall and disease-free survival, and an independent risk factor for distant metastasis in GC patients. PSM analysis showed that high L1CAM expression was significantly associated with poor prognosis. L1CAM gene expression using fresh frozen specimens successfully validated all of these findings in an independent cohort. Inhibition of L1CAM suppressed cell proliferation, cycle progress, invasion, migration and anoikis resistance in GC cells. Furthermore, L1CAM inhibition suppressed the growth of peritoneal metastasis. Conclusion L1CAM may serve as a feasible biomarker for identification of patients who have a high risk of recurrence of GC.
Collapse
|
18
|
Yang WK, Chueh YR, Cheng YJ, Siegenthaler D, Pielage J, Chien CT. Epidermis-Derived L1CAM Homolog Neuroglian Mediates Dendrite Enclosure and Blocks Heteroneuronal Dendrite Bundling. Curr Biol 2019; 29:1445-1459.e3. [PMID: 31006568 DOI: 10.1016/j.cub.2019.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/31/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022]
Abstract
Building sensory dendritic arbors requires branching, growth, spacing, and substrate support. The conserved L1CAM family of cell-adhesion molecules generates neuronal isoforms to regulate neurite development in various aspects. However, whether non-neuronal isoforms participate in any of these aspects is unclear. In Drosophila, the L1CAM homolog Neuroglian (Nrg) is expressed as two isoforms: the neuronal isoform Nrg180 on dendritic surfaces of dendritic arborization (da) neurons and the non-neuronal isoform Nrg167 in epidermis innervated by dendrites. We found that epidermal Nrg167 encircles dendrites by interactions with dendritic Nrg180 to support dendrite growth, stabilization, and enclosure inside epidermis. Interestingly, whereas Nrg180 forms homophilic interactions to facilitate axonal bundling, heteroneuronal dendrites in the same innervating field avoid bundling through unknown mechanisms to maintain individual dendritic patterns. Here, we show that both epidermal Nrg167 depletion and neuronal Nrg180 overexpression can cause dendrite bundling, with genetic analyses suggesting that Nrg167-Nrg180 interactions antagonize Nrg180-Nrg180 homophilic interaction to prevent dendrite bundling. Furthermore, internalization of Nrg180 also participates in resolving dendrite bundling, as overexpression of endocytosis-defective Nrg180 and compromising endocytosis in neurons both exacerbated dendrite-bundling defects. Together, our study highlights the functional significance of substrate-derived Nrg167 in conferring dendrite stability, positioning, and avoidance.
Collapse
Affiliation(s)
- Wei-Kang Yang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ru Chueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Dominique Siegenthaler
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
19
|
Chu GCY, Chung LWK, Gururajan M, Hsieh CL, Josson S, Nandana S, Sung SY, Wang R, Wu JB, Zhau HE. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics. Asian J Urol 2018; 6:65-81. [PMID: 30775250 PMCID: PMC6363607 DOI: 10.1016/j.ajur.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
This article describes cell signaling network of metastatic prostate cancer (PCa) to bone and visceral organs in the context of tumor microenvironment and for the development of novel therapeutics. The article focuses on our recent progress in the understanding of: 1) The plasticity and dynamics of tumor–stroma interaction; 2) The significance of epigenetic reprogramming in conferring cancer growth, invasion and metastasis; 3) New insights on altered junctional communication affecting PCa bone and brain metastases; 4) Novel strategies to overcome therapeutic resistance to hormonal antagonists and chemotherapy; 5) Genetic-based therapy to co-target tumor and bone stroma; 6) PCa-bone-immune cell interaction and TBX2-WNTprotein signaling in bone metastasis; 7) The roles of monoamine oxidase and reactive oxygen species in PCa growth and bone metastasis; and 8) Characterization of imprinting cluster of microRNA, in tumor–stroma interaction. This article provides new approaches and insights of PCa metastases with emphasis on basic science and potential for clinical translation. This article referenced the details of the various approaches and discoveries described herein in peer-reviewed publications. We dedicate this article in our fond memory of Dr. Donald S. Coffey who taught us the spirit of sharing and the importance of focusing basic science discoveries toward translational medicine.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Murali Gururajan
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Bristol-Myer Squibb Company, Princeton, NJ, USA
| | - Chia-Ling Hsieh
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sajni Josson
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Oncoveda Cancer Research Center, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Srinivas Nandana
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Texas Tech University Health Sciences Center, Department of Cell Biology and Biochemistry, Lubbock, TX, USA
| | - Shian-Ying Sung
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason Boyang Wu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Garrett AM, Khalil A, Walton DO, Burgess RW. DSCAM promotes self-avoidance in the developing mouse retina by masking the functions of cadherin superfamily members. Proc Natl Acad Sci U S A 2018; 115:E10216-E10224. [PMID: 30297418 PMCID: PMC6205498 DOI: 10.1073/pnas.1809430115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During neural development, self-avoidance ensures that a neuron's processes arborize to evenly fill a particular spatial domain. At the individual cell level, self-avoidance is promoted by genes encoding cell-surface molecules capable of generating thousands of diverse isoforms, such as Dscam1 (Down syndrome cell adhesion molecule 1) in Drosophila Isoform choice differs between neighboring cells, allowing neurons to distinguish "self" from "nonself". In the mouse retina, Dscam promotes self-avoidance at the level of cell types, but without extreme isoform diversity. Therefore, we hypothesize that DSCAM is a general self-avoidance cue that "masks" other cell type-specific adhesion systems to prevent overly exuberant adhesion. Here, we provide in vivo and in vitro evidence that DSCAM masks the functions of members of the cadherin superfamily, supporting this hypothesis. Thus, unlike the isoform-rich molecules tasked with self-avoidance at the individual cell level, here the diversity resides on the adhesive side, positioning DSCAM as a generalized modulator of cell adhesion during neural development.
Collapse
Affiliation(s)
| | - Andre Khalil
- CompuMAINE Laboratory, Department of Biomedical Engineering, University of Maine, Orono, ME 04469
| | | | | |
Collapse
|
21
|
Li W, Xia S, Aronova A, Min IM, Verma A, Scognamiglio T, Gray KD, Ullmann TM, Liang H, Moore MD, Elemento O, Zarnegar R, Fahey TJ. CHL1 expression differentiates Hürthle cell carcinoma from benign Hürthle cell nodules. J Surg Oncol 2018; 118:1042-1049. [PMID: 30311656 DOI: 10.1002/jso.25214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Hürthle cell carcinoma (HCC) is an unusual and relatively rare type of differentiated thyroid cancer. Currently, cytologic analysis of fine-needle aspiration biopsy is limited in distinguishing benign Hürthle cell neoplasms from malignant ones. The aim of this study was to determine whether differences in the expression of specific genes could differentiate HCC from benign Hürthle cell nodules by evaluating differential gene expression in Hürthle cell disease. METHODS Eighteen benign Hürthle cell nodules and seven HCC samples were analyzed by whole-transcriptome sequencing. Bioinformatics analysis was carried out to identify candidate differentially expressed genes. Expression of these candidate genes was re-examined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was quantified by immunohistochemistry. RESULTS Close homolog of L1 (CHL1) was identified as overexpressed in HCC. CHL1 was found to have greater than 15-fold higher expression in fragments per kilobase million in HCC compared with benign Hurthle cell tumors. This was confirmed by qRT-PCR. Moreover, the immunoreactivity score of the CHL1 protein was significantly higher in HCC compared with benign Hürthle cell nodules. CONCLUSIONS CHL1 expression may represent a novel and useful prognostic biomarker to distinguish HCC from benign Hürthle cell disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shujun Xia
- Ultrasound Department, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Aronova
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Irene M Min
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Akanksha Verma
- Department of Physiology and Biophysics, Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Theresa Scognamiglio
- Department of Pathology, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Katherine D Gray
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Timothy M Ullmann
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Heng Liang
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Maureen D Moore
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Rasa Zarnegar
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| | - Thomas J Fahey
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife 2018; 7:38309. [PMID: 30311906 PMCID: PMC6185108 DOI: 10.7554/elife.38309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ekin Ucuncu
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Lam Son Nguyen
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Nicouleau
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Joanna Lipecka
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany
| | - François Foulquier
- Université Lille, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Lille, France
| | | | | | - Laurence Colleaux
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Cantagrel
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
23
|
Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B. Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Exp Neurol 2018; 308:80-89. [DOI: 10.1016/j.expneurol.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
24
|
Kakad PP, Penserga T, Davis BP, Henry B, Boerner J, Riso A, Pielage J, Godenschwege TA. An ankyrin-binding motif regulates nuclear levels of L1-type neuroglian and expression of the oncogene Myc in Drosophila neurons. J Biol Chem 2018; 293:17442-17453. [PMID: 30257867 DOI: 10.1074/jbc.ra118.004240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is well-known for its importance in nervous system development and cancer progression. In addition to its role as a plasma membrane protein in cytoskeletal organization, recent in vitro studies have revealed that both transmembrane and cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus. In vitro studies indicate that nuclear L1CAM affects genes with functions in DNA post-replication repair, cell cycle control, and cell migration and differentiation, but its in vivo role and how its nuclear levels are regulated is less well-understood. Here, we report that mutations in the conserved ankyrin-binding domain affect nuclear levels of the sole Drosophila homolog neuroglian (Nrg) and that it also has a noncanonical role in regulating transcript levels of the oncogene Myc in the adult nervous system. We further show that altered nuclear levels of Nrg correlate with altered transcript levels of Myc in neurons, similar to what has been reported for human glioblastoma stem cells. However, whereas previous in vitro studies suggest that increased nuclear levels of L1CAM promote tumor cell survival, we found here that elevated levels of nuclear Nrg in neurons are associated with increased sensitivity to oxidative stress and reduced life span of adult animals. We therefore conclude that these findings are of potential relevance to the management of neurodegenerative diseases associated with oxidative stress and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Riso
- the Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458 and
| | - Jan Pielage
- the Department of Biology, Division of Zoology/Neurobiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | | |
Collapse
|
25
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Kraus K, Kleene R, Braren I, Loers G, Lutz D, Schachner M. A fragment of adhesion molecule L1 is imported into mitochondria, and regulates mitochondrial metabolism and trafficking. J Cell Sci 2018; 131:jcs.210500. [PMID: 29632241 DOI: 10.1242/jcs.210500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
The cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria. Genetic ablation of L1, inhibition of mitochondrial import of L1-70 or prevention of myelin basic protein-mediated generation of L1-70 all lead to reduced mitochondrial complex I activity, and impaired mitochondrial membrane potential, fusion, fission and motility, as well as increased retrograde transport. We identified NADH dehydrogenase ubiquinone flavoprotein 2 as a binding partner for L1, suggesting that L1-70 interacts with this complex I subunit to regulate complex I activity. The results of our study provide insights into novel functions of L1 in mitochondrial metabolism and cellular dynamics. These functions are likely to ameliorate the consequences of acute nervous system injuries and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Kraus
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - David Lutz
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
27
|
The Role of Cell Adhesion Molecule Genes Regulating Neuroplasticity in Addiction. Neural Plast 2018; 2018:9803764. [PMID: 29675039 PMCID: PMC5838467 DOI: 10.1155/2018/9803764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/10/2017] [Indexed: 01/06/2023] Open
Abstract
A variety of genetic approaches, including twin studies, linkage studies, and candidate gene studies, has established a firm genetic basis for addiction. However, there has been difficulty identifying the precise genes that underlie addiction liability using these approaches. This situation became especially clear in genome-wide association studies (GWAS) of addiction. Moreover, the results of GWAS brought into clarity many of the shortcomings of those early genetic approaches. GWAS studies stripped away those preconceived notions, examining genes that would not previously have been considered in the study of addiction, consequently creating a shift in our understanding. Most importantly, those studies implicated a class of genes that had not previously been considered in the study of addiction genetics: cell adhesion molecules (CAMs). Considering the well-documented evidence supporting a role for various CAMs in synaptic plasticity, axonal growth, and regeneration, it is not surprising that allelic variation in CAM genes might also play a role in addiction liability. This review focuses on the role of various cell adhesion molecules in neuroplasticity that might contribute to addictive processes and emphasizes the importance of ongoing research on CAM genes that have been implicated in addiction by GWAS.
Collapse
|
28
|
Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system. Dev Genes Evol 2016; 227:61-67. [PMID: 27942869 DOI: 10.1007/s00427-016-0569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NRCAM) is a neuronal cell adhesion molecule of the L1 immunoglobulin superfamily, which plays diverse roles during nervous system development including axon growth and guidance, synapse formation, and formation of the myelinated nerve. Perturbations in NRCAM function cause a wide variety of disorders, which can affect wiring and targeting of neurons, or cause psychiatric disorders as well as cancers through abnormal modulation of signaling events. In the present study, we characterize the Xenopus laevis homolog of nrcam. Expression of Xenopus nrcam is most abundant along the dorsal midline throughout the developing brain and in the outer nuclear layer of the retina.
Collapse
|
29
|
Fontenas L, De Santis F, Di Donato V, Degerny C, Chambraud B, Del Bene F, Tawk M. Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish. PLoS Genet 2016; 12:e1006459. [PMID: 27902705 PMCID: PMC5130175 DOI: 10.1371/journal.pgen.1006459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery. Myelination is an important process that enables fast propagation of action potential along the axons. Schwann cells (SCs) are the specialized glial cells that ensure the ensheathment of the corresponding axons in the Peripheral Nervous System. In order to do so, SCs and axons need to communicate to organize the myelinating segments and the clustering of sodium channels at the nodes of Ranvier. We have investigated the early events of myelination in the zebrafish embryo. We here identify ndrg4 as a novel neuronal factor essential for sodium channel clustering at the nodes. Immuno-labeling analysis show defective vesicle patterning along the axons of ndrg4 mutants, while timelapse experiments monitoring the presence and the transport of these vesicles reveal a normal behavior. Molecular analysis unravels a novel function of ndrg4 in controlling the expression of the t-SNARE/NSF machinery required for vesicle docking and release. However, inhibiting specifically regulated synaptic vesicle release does not lead to sodium channel clustering defects. We thus propose that ndrg4 can regulate this process, at least partially, through its ability to regulate the expression of key components of the t-SNARE/NSF machinery, responsible for clustering of sodium channels along myelinated axons.
Collapse
Affiliation(s)
- Laura Fontenas
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | - Béatrice Chambraud
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Marcel Tawk
- U1195, Inserm, University Paris Sud, University Paris-Saclay, Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
30
|
Shapiro B, Tocci P, Haase G, Gavert N, Ben-Ze'ev A. Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget 2016; 6:34389-401. [PMID: 26399194 PMCID: PMC4741460 DOI: 10.18632/oncotarget.5360] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
Hyperactive Wnt signaling is a common feature in human colorectal cancer (CRC) cells. A central question is the identification and role of Wnt/β-catenin target genes in CRC and their relationship to genes enriched in colonic stem cells, since Lgr5+ intestinal stem cells were suggested to be the cell of CRC origin. Previously, we identified the neural immunoglobulin-like adhesion receptor L1 as a Wnt/β-catenin target gene localized in cells at the invasive front of CRC tissue and showed that L1 expression in CRC cells confers enhanced motility and liver metastasis. Here, we identified the clusterin (CLU) gene that is also enriched in Lgr5+ intestinal stem cells, as a gene induced during L1-mediated CRC metastasis. The increase in CLU levels by L1 in CRC cells resulted from transactivation of CLU by STAT-1. CLU overexpression in CRC cells enhanced their motility and the reduction in CLU levels in L1 overexpressing cells suppressed the ability of L1 to confer increased tumorigenesis and liver metastasis. Genes induced during L1-mediated CRC cell metastasis and enriched in intestinal stem cells might be important for both CRC progression and colonic epithelium homeostasis.
Collapse
Affiliation(s)
- Beny Shapiro
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Piera Tocci
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gal Haase
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
31
|
Samatov TR, Wicklein D, Tonevitsky AG. L1CAM: Cell adhesion and more. ACTA ACUST UNITED AC 2016; 51:25-32. [DOI: 10.1016/j.proghi.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
|
32
|
Lincoln BL, Alabsi SH, Frendo N, Freund R, Keller LC. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction. J Exp Neurosci 2015; 9:1-9. [PMID: 26512206 PMCID: PMC4612769 DOI: 10.4137/jen.s25516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments.
Collapse
Affiliation(s)
- Barron L Lincoln
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Sahar H Alabsi
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Nicholas Frendo
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Robert Freund
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Lani C Keller
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
33
|
Siegenthaler D, Enneking EM, Moreno E, Pielage J. L1CAM/Neuroglian controls the axon-axon interactions establishing layered and lobular mushroom body architecture. ACTA ACUST UNITED AC 2015; 208:1003-18. [PMID: 25825519 PMCID: PMC4384726 DOI: 10.1083/jcb.201407131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits.
Collapse
Affiliation(s)
- Dominique Siegenthaler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland University of Basel, 4003 Basel, Switzerland
| | - Eva-Maria Enneking
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland University of Basel, 4003 Basel, Switzerland
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
34
|
Shvab A, Haase G, Ben-Shmuel A, Gavert N, Brabletz T, Dedhar S, Ben-Ze'ev A. Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression. Oncogene 2015; 35:549-57. [PMID: 25915847 DOI: 10.1038/onc.2015.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023]
Abstract
Overactivation of Wnt-β-catenin signaling, including β-catenin-TCF target gene expression, is a hallmark of colorectal cancer (CRC) development. We identified the immunoglobulin family of cell-adhesion receptors member L1 as a β-catenin-TCF target gene preferentially expressed at the invasive edge of human CRC tissue. L1 can confer enhanced motility and liver metastasis when expressed in CRC cells. This ability of L1-mediated metastasis is exerted by a mechanism involving ezrin and the activation of NF-κB target genes. In this study, we identified the secreted modular calcium-binding matricellular protein-2 (SMOC-2) as a gene activated by L1-ezrin-NF-κB signaling. SMOC-2 is also known as an intestinal stem cell signature gene in mice expressing Lgr5 in cells at the bottom of intestinal crypts. The induction of SMOC-2 expression in L1-expressing CRC cells was necessary for the increase in cell motility, proliferation under stress and liver metastasis conferred by L1. SMOC-2 expression induced a more mesenchymal like phenotype in CRC cells, a decrease in E-cadherin and an increase in Snail by signaling that involves integrin-linked kinase (ILK). SMOC-2 was localized at the bottom of normal human colonic crypts and at increased levels in CRC tissue with preferential expression in invasive areas of the tumor. We found an increase in Lgr5 levels in CRC cells overexpressing L1, p65 or SMOC-2, suggesting that L1-mediated CRC progression involves the acquisition of a stem cell-like phenotype, and that SMOC-2 elevation is necessary for L1-mediated induction of more aggressive/invasive CRC properties.
Collapse
Affiliation(s)
- A Shvab
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - G Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - A Ben-Shmuel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - T Brabletz
- Department of Experimental Medicine 1, University of Erlangen-Nuernberg, Erlangen, Germany
| | - S Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - A Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Tang DY, Yu Y, Zhao XJ, Schachner M, Zhao WJ. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res 2015; 330:336-345. [PMID: 25447207 DOI: 10.1016/j.yexcr.2014.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023]
Abstract
L1CAM plays important roles during ontogeny, including promotion of neuronal cell migration and neuritogenesis, and stimulation of axonal outgrowth, fasciculation and myelination. These functions are at least partially exerted through a 16-mer amino acid sequence in the third fibronectin type III-like repeat of L1, which associates with several interaction partners, including integrins, other adhesion molecules and growth factor receptors. Here, using the Tomlinson I library for phage display, we obtained two single-chain variable fragment antibodies (scFvs) against this peptide sequence of human L1, hereafter called H3 peptide. Both scFvs recognize the H3 peptide and the extracellular domain of L1, as tested by enzyme-linked immunosorbent assay (ELISA), Western blot analysis and immunofluorescence staining of L1 expresssing cells. Furthermore, both scFvs reduce U-87 MG cell adhesion to fibronectin, while stimulating cell migration. Application of scFvs to human neuroblastoma SK-N-SH cells promote process outgrowth. Similar to triggering of endogenous L1 functions at the cell surface, both scFvs activate the signal transducers Erk and Src in these cells. Our results indicate that scFvs against a functionally pivotal domain in L1 trigger its regeneration-beneficial functions in vitro, encouraging thoughts on therapy of neurodegenerative diseases in the hope to ameliorate human nervous system diseases.
Collapse
Affiliation(s)
- Dan-Yang Tang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Yang Yu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Xuan-Jun Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China.
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Jinping District, Shantou, Guangdong 515041, People׳s Republic of China.
| |
Collapse
|
36
|
Zhang H, Wang Y, Wong J, Lim KL, Liou YC, Wang H, Yu F. Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Dev Cell 2014; 30:463-78. [DOI: 10.1016/j.devcel.2014.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|
37
|
Gallistel CR, Tucci V, Nolan PM, Schachner M, Jakovcevski I, Kheifets A, Barboza L. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120464. [PMID: 24446498 PMCID: PMC3895989 DOI: 10.1098/rstb.2012.0464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.
Collapse
Affiliation(s)
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Patrick M. Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Melitta Schachner
- Departments of Genetics and Neurobiology, D251 Nelson Labs, 604 Allison Road, Piscataway, NJ 08854-6999, USA
| | - Igor Jakovcevski
- Zentrum für Molekulare Neurobiologie, Universitaetskrankenhaus Hamburg-Eppendorf, Falkenried 94, Hamburg D20251, Germany
| | - Aaron Kheifets
- Department of Psychology, Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854-8020, USA
| | - Luendro Barboza
- Department of Psychology, Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
38
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach. PLoS One 2013; 8:e82512. [PMID: 24324802 PMCID: PMC3853202 DOI: 10.1371/journal.pone.0082512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
Background/Aims The neural cell adhesion molecule L1CAM is a transmembrane glycoprotein abnormally expressed in tumors and previously associated with cell proliferation, adhesion and invasion, as well as neurite outgrowth in endometriosis. Being an attractive target molecule for antibody-based therapy, the present study assessed the ability of the monoclonal anti-L1 antibody (anti-L1 mAb) to impair the development of endometriotic lesions invivo and endometriosis-associated nerve fiber growth. Methods and Results Endometriosis was experimentally induced in sexually mature B6C3F1 (n=34) and CD-1 nude (n=21) mice by autologous and heterologous transplantation, respectively, of endometrial fragments into the peritoneal cavity. Transplantation was confirmed four weeks post-surgery by invivo magnetic resonance imaging and laparotomy, respectively. Mice were then intraperitoneally injected with anti-L1 mAb or an IgG isotype control antibody twice weekly, over a period of four weeks. Upon treatment completion, mice were sacrificed and endometrial implants were excised, measured and fixed. Endometriosis was histologically confirmed and L1CAM was detected by immunohistochemistry. Endometriotic lesion size was significantly reduced in anti-L1-treated B6C3F1 and CD-1 nude mice compared to mice treated with control antibody (P<0.05). Accordingly, a decreased number of PCNA positive epithelial and stromal cells was detected in autologously and heterologously induced endometriotic lesions exposed to anti-L1 mAb treatment. Anti-L1-treated mice also presented a diminished number of intraperitoneal adhesions at implantation sites compared with controls. Furthermore, a double-blind counting of anti-neurofilament L stained nerves revealed significantly reduced nerve density within peritoneal lesions in anti-L1 treated B6C3F1 mice (P=0.0039). Conclusions Local anti-L1 mAb treatment suppressed endometriosis growth in B6C3F1 and CD-1 nude mice and exerted a potent anti-neurogenic effect on induced endometriotic lesions invivo. The findings of this preliminary study in mice provide a strong basis for further testing in invivo models.
Collapse
|
40
|
Differential effects of human L1CAM mutations on complementing guidance and synaptic defects in Drosophila melanogaster. PLoS One 2013; 8:e76974. [PMID: 24155914 PMCID: PMC3796554 DOI: 10.1371/journal.pone.0076974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023] Open
Abstract
A large number of different pathological L1CAM mutations have been identified that result in a broad spectrum of neurological and non-neurological phenotypes. While many of these mutations have been characterized for their effects on homophilic and heterophilic interactions, as well as expression levels in vitro, there are only few studies on their biological consequences in vivo. The single L1-type CAM gene in Drosophila, neuroglian (nrg), has distinct functions during axon guidance and synapse formation and the phenotypes of nrg mutants can be rescued by the expression of human L1CAM. We previously showed that the highly conserved intracellular FIGQY Ankyrin-binding motif is required for L1CAM-mediated synapse formation, but not for neurite outgrowth or axon guidance of the Drosophila giant fiber (GF) neuron. Here, we use the GF as a model neuron to characterize the pathogenic L120V, Y1070C, C264Y, H210Q, E309K and R184Q extracellular L1CAM missense mutations and a L1CAM protein with a disrupted ezrin-moesin-radixin (ERM) binding site to investigate the signaling requirements for neuronal development. We report that different L1CAM mutations have distinct effects on axon guidance and synapse formation. Furthermore, L1CAM homophilic binding and signaling via the ERM motif is essential for axon guidance in Drosophila. In addition, the human pathological H210Q, R184Q and Y1070C, but not the E309K and L120V L1CAM mutations affect outside-in signaling via the FIGQY Ankyrin binding domain which is required for synapse formation. Thus, the pathological phenotypes observed in humans are likely to be caused by the disruption of signaling required for both, guidance and synaptogenesis.
Collapse
|
41
|
He LH, Ma Q, Shi YH, Ge J, Zhao HM, Li SF, Tong ZS. CHL1 is involved in human breast tumorigenesis and progression. Biochem Biophys Res Commun 2013; 438:433-8. [PMID: 23906755 DOI: 10.1016/j.bbrc.2013.07.093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/28/2022]
Abstract
Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.
Collapse
Affiliation(s)
- Li-Hong He
- Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Enneking EM, Kudumala SR, Moreno E, Stephan R, Boerner J, Godenschwege TA, Pielage J. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian. PLoS Biol 2013; 11:e1001537. [PMID: 23610557 PMCID: PMC3627646 DOI: 10.1371/journal.pbio.1001537] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
Experiments in peripheral and central synapses reveal the regulatory mechanisms that enable trans-synaptic control of synapse development and maintenance by the L1-type CAM Neuroglian. The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg–Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture. The function of neuronal circuits relies on precise connectivity, and processes like learning and memory involve refining this connectivity through the selective formation and elimination of synapses. Cell adhesion molecules (CAMs) that directly mediate cell–cell interactions at synaptic contacts are thought to mediate this structural synaptic plasticity. In this study, we used an unbiased genetic screen to identify the Drosophila L1-type CAM Neuroglian as a central regulator of synapse formation and maintenance. We show that the intracellular Ankyrin interaction motif, which links Neuroglian to the cytoskeleton, is an essential regulatory site for Neuroglian mobility, adhesion, and synaptic function. In motoneurons, the strength of Ankyrin binding directly controls the balance between synapse formation and maintenance. At a central synapse, however, a dynamic regulation of the Neuroglian–Ankyrin interaction is required to coordinate transsynaptic development. Our study identifies the interaction of the L1-type CAM with Ankyrin as a novel regulatory module enabling local and precise control of synaptic connectivity without altering general neuronal circuit architecture. This interaction is relevant for normal nervous system development and disease as mutations in L1-type CAMs cause mental retardation and psychiatric diseases in humans.
Collapse
Affiliation(s)
- Eva-Maria Enneking
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raiko Stephan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jana Boerner
- Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Tanja A. Godenschwege
- Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail: (JP); (TAG)
| | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail: (JP); (TAG)
| |
Collapse
|
43
|
Abstract
Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and ectopic expression of L1 in fibroblastic cells induces metastasis-associated gene expression. Previous studies on L1 homologs indicated that four N-terminal immunoglobulin-like domains form a horseshoe-like structure that mediates homophilic interactions. Various models including the zipper, domain-swap, and symmetry-related models are proposed to be involved in structural mechanism of homophilic interaction of the L1 family members. Recently, cryo-electron tomography of L1 and crystal structure studies of neurofascin, an L1 family protein, have been performed. This review focuses on recent discoveries of different models and describes the possible structural mechanisms of homophilic interactions of L1 family members. Understanding structural mechanisms of homophilic interactions in various cell adhesion proteins should aid the development of therapeutic strategies for L1 family cell adhesion molecule-associated diseases.
Collapse
Affiliation(s)
- Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea
| | | |
Collapse
|
44
|
Schmid JS, Bernreuther C, Nikonenko AG, Ling Z, Mies G, Hossmann KA, Jakovcevski I, Schachner M. Heterozygosity for the mutated X-chromosome-linked L1 cell adhesion molecule gene leads to increased numbers of neurons and enhanced metabolism in the forebrain of female carrier mice. Brain Struct Funct 2012. [PMID: 23196656 DOI: 10.1007/s00429-012-0463-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the X-chromosomal L1CAM gene lead to severe neurological deficits. In this study, we analyzed brains of female mice heterozygous for L1 (L1+/-) to gain insights into the brain structure of human females carrying one mutated L1 allele. From postnatal day 7 onward into adulthood, L1+/- female mice show an increased density of neurons in the neocortex and basal ganglia in comparison to wild-type (L1+/+) mice, correlating with enhanced metabolic parameters as measured in vivo. The densities of astrocytes and parvalbumin immunoreactive interneurons were not altered. No significant differences between L1+/- and L1+/+ mice were seen for cell proliferation in the cortex during embryonic days 11.5-15.5. Neuronal differentiation as estimated by analysis of doublecortin-immunoreactive cortical cells of embryonic brains was similar in L1+/- and L1+/+ mice. Interestingly, at postnatal days 3 and 5, apoptosis was reduced in L1+/- compared to L1+/+ mice. We suggest that reduced apoptosis leads to increased neuronal density in adult L1+/- mice. In conclusion, L1+/- mice display an unexpected phenotype that is not an intermediate between L1+/+ mice and mice deficient in L1 (L1-/y), but a novel phenotype which is challenging to understand regarding its underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Janinne Sylvie Schmid
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mualla R, Nagaraj K, Hortsch M. A phylogenetic analysis of the L1 family of neural cell adhesion molecules. Neurochem Res 2012; 38:1196-207. [PMID: 23011207 DOI: 10.1007/s11064-012-0892-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
L1-type genes form one of several distinct gene families that encode adhesive proteins, which are predominantly expressed in developing and mature metazoan nervous systems. These proteins have a multitude of different important cellular functions in neuronal and glial cells. L1-type gene products are transmembrane proteins with a characteristic extracellular domain structure consisting of six immunoglobulin and three to five fibronectin type III protein folds. As reported here, L1-type proteins can be identified in most metazoan phyla with the notable exception of Porifera (sponges). This puts the origin of L1-type genes at a point in time when primitive cellular neural networks emerged, approximately 1,200 to 1,500 million years ago. Subsequently, several independent gene duplication events generated multiple paralogous L1-type genes in some phyla, allowing for a considerable diversification of L1 structures and the emergence of new functional features and molecular interactions. One such evolutionary newer feature is the appearance of RGD integrin-binding motifs in some vertebrate L1 family members.
Collapse
Affiliation(s)
- Rula Mualla
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
46
|
Global analysis of L1-transcriptomes identified IGFBP-2 as a target of ezrin and NF-κB signaling that promotes colon cancer progression. Oncogene 2012; 32:3220-30. [DOI: 10.1038/onc.2012.340] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
|
47
|
Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 2012; 32:7439-53. [PMID: 22649224 DOI: 10.1523/jneurosci.5318-11.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Doublecortin on X chromosome (DCX) is one of two major genetic loci underlying human lissencephaly, a neurodevelopmental disorder with defects in neuronal migration and axon outgrowth. DCX is a microtubule-binding protein, and much work has focused on its microtubule-associated functions. DCX has other reported binding partners, including the cell adhesion molecule neurofascin, but the functional significance of the DCX-neurofascin interaction is not understood. Neurofascin localizes strongly to the axon initial segment in mature neurons, where it plays a role in assembling and maintaining other axon initial segment components. During development, neurofascin likely plays additional roles in axon guidance and in GABAergic synaptogenesis. We show here that DCX can modulate the surface distribution of neurofascin in developing cultured rat neurons and thereby the relative extent of accumulation between the axon initial segment and soma and dendrites. Mechanistically, DCX acts via increasing endocytosis of neurofascin from soma and dendrites. Surprisingly, DCX increases neurofascin endocytosis apparently independently of its microtubule-binding activity. We additionally show that the patient allele DCXG253D still binds microtubules but is deficient in promoting neurofascin endocytosis. We propose that DCX acts as an endocytic adaptor for neurofascin to fine-tune its surface distribution during neuronal development.
Collapse
|
48
|
Pan Y, Han C, Wang C, Hu G, Luo C, Gan X, Zhang F, Lu Y, Ding X. ADAM10 promotes pituitary adenoma cell migration by regulating cleavage of CD44 and L1. J Mol Endocrinol 2012; 49:21-33. [PMID: 22586143 DOI: 10.1530/jme-11-0174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ADAM10 is a metalloproteinase that regulates invasiveness in many tumors. Here, we found that ADAM10 expression correlates with the invasiveness of pituitary adenomas and contributes to invasion by cleaving L1 and CD44. In high-grade pituitary adenoma patients, ADAM10 expression levels were found to be elevated compared with low-grade pituitary adenomas. In a phorbol 12-myristate 13-acetate (PMA)-stimulated pituitary adenoma cell line, AtT-20 cells, we found that the cleavage of L1 was correspondingly enhanced with the increased interaction between Src and Shc. Increases in PMA-induced L1 cleavage and the phosphorylation of residue 418 of Src (418Src) were promoted by overexpression of ADAM10. Inversely, knockdown of Adam10 suppressed PMA-induced L1 cleavage and the phosphorylation of Src, which was blocked by the Src inhibitor PP2 and the MEK inhibitor PD98059. On the other hand, calcium flux activation in AtT-20 cells resulted in increased CD44 cleavage, with reduction of the interaction between calmodulin and ADAM10. The induction of enhanced CD44 cleavage by calcium flux activation was inhibited by knockdown of Adam10. In addition, Adam10 knockdown repressed AtT-20 cell migration, which was reversed by CD44EXT (CD44 ectodomain cleavage). Collectively, these data indicated that ADAM10 facilitated cell migration through modulation of CD44 and L1 cleavage.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
50
|
Sun M, Xie W. Cell adhesion molecules in Drosophila synapse development and function. SCIENCE CHINA-LIFE SCIENCES 2012; 55:20-6. [PMID: 22314487 DOI: 10.1007/s11427-012-4273-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
Synapse is a highly specialized inter-cellular structure between neurons or between a neuron and its target cell that mediates cell-cell communications. Ample results indicate that synaptic adhesion molecules are critically important in modulating the complexity and specificity of the synapse. And disruption of adhesive properties of synapses may lead to neurodevelopmental or neurodegenerative diseases. In this review, we will use the Drosophila NMJ as a model system for glutamatergic synapses to discuss the structure and function of homophilic and heterophilic synaptic adhesion molecules with special focus on recent findings in neurexins and neuroligins in Drosophila.
Collapse
Affiliation(s)
- Mingkuan Sun
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | | |
Collapse
|