1
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Sneyd J, Vera-Sigüenza E, Rugis J, Pages N, Yule DI. Calcium Dynamics and Water Transport in Salivary Acinar Cells. Bull Math Biol 2021; 83:31. [PMID: 33594615 PMCID: PMC8018713 DOI: 10.1007/s11538-020-00841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
Saliva is secreted from the acinar cells of the salivary glands, using mechanisms that are similar to other types of water-transporting epithelial cells. Using a combination of theoretical and experimental techniques, over the past 20 years we have continually developed and modified a quantitative model of saliva secretion, and how it is controlled by the dynamics of intracellular calcium. However, over approximately the past 5 years there have been significant developments both in our understanding of the underlying mechanisms and in the way these mechanisms should best be modelled. Here, we review the traditional understanding of how saliva is secreted, and describe how our work has suggested important modifications to this traditional view. We end with a brief description of the most recent data from living animals and discuss how this is now contributing to yet another iteration of model construction and experimental investigation.
Collapse
Affiliation(s)
- James Sneyd
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand.
| | | | | | | | - David I Yule
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, USA
| |
Collapse
|
3
|
Whitaker-Fornek JR, Nelson JK, Lybbert CW, Pilarski JQ. Development and regulation of breathing rhythms in embryonic and hatchling birds. Respir Physiol Neurobiol 2019; 269:103246. [DOI: 10.1016/j.resp.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
|
4
|
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. Int J Mol Sci 2019; 20:ijms20081880. [PMID: 30995769 PMCID: PMC6515432 DOI: 10.3390/ijms20081880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.
Collapse
|
5
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Abstract
Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place. Neurotransmitter switching produces up or down reversals of behavior. It is also observed in response to disease. These findings raise the possibility that neurotransmitter switching contributes to depression, schizophrenia, and other illnesses. Many early discoveries of the single gain or loss of a neurotransmitter may have been harbingers of neurotransmitter switching.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0357;
| |
Collapse
|
7
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Oliver VL, Poulios K, Ventura S, Haynes JM. A novel androgen signalling pathway uses dihydrotestosterone, but not testosterone, to activate the EGF receptor signalling cascade in prostate stromal cells. Br J Pharmacol 2014; 170:592-601. [PMID: 23869618 DOI: 10.1111/bph.12307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/26/2013] [Accepted: 07/08/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Human prostate growth and function are tightly controlled by androgens that are generally thought to exert their effects by regulating gene transcription. However, a rapid, non-genomic steroid action, often involving an elevation of intracellular calcium ([Ca(2+) ]i ), has also been described in a number of cell types. In this study we investigate whether androgens acutely regulate [Ca(2+) ]i in stromal cells derived from the human prostate. EXPERIMENTAL APPROACH Human-cultured prostatic stromal cells (HCPSCs) were loaded with the calcium-sensitive fluorophore, fura-2-acetoxymethyl ester (FURA-2AM) (10 μM). Changes in [Ca(2+) ]i in response to the androgens, dihydrotestosterone (DHT) and testosterone, as well as EGF were measured by fluorescence microscopy. KEY RESULTS DHT, but not testosterone (0.03-300 nM), elicited concentration-dependent elevations of [Ca(2+) ]i within 1 min of addition. These responses were blocked by the androgen receptor antagonist, flutamide (10 μM); the sarcoplasmic reticulum ATPase pump inhibitor, thapsigargin (1 μM); the inositol trisphosphate receptor inhibitor, 2-aminoethyldiphenyl borate (50 μM) and the PLC inhibitor, U-73122 (1 μM). Responses were also blocked by the L-type calcium channel blocker, nifedipine (1 μM), and by removal of extracellular calcium. A similar transient elevation of [Ca(2+) ]i was elicited by EGF (100 ng·mL(-1) ). The EGF receptor inhibitor, AG 1478 (30 nM), and the MMP inhibitor, marimastat (100 nM), blocked the DHT-induced elevation of [Ca(2+) ]i . CONCLUSIONS AND IMPLICATIONS These studies show that DHT elicits an androgen receptor-dependent acute elevation of [Ca(2+) ]i in HCPSC, most likely by activating EGF receptor signalling.
Collapse
Affiliation(s)
- V L Oliver
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Vic., Australia
| | | | | | | |
Collapse
|
9
|
Lewis BB, Miller LE, Herbst WA, Saha MS. The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis. J Comp Neurol 2014; 522:2518-31. [PMID: 24477801 PMCID: PMC4043876 DOI: 10.1002/cne.23547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
Abstract
Calcium activity has been implicated in many neurodevelopmental events, including the specification of neurotransmitter phenotypes. Higher levels of calcium activity lead to an increased number of inhibitory neural phenotypes, whereas lower levels of calcium activity lead to excitatory neural phenotypes. Voltage-gated calcium channels (VGCCs) allow for rapid calcium entry and are expressed during early neural stages, making them likely regulators of activity-dependent neurotransmitter phenotype specification. To test this hypothesis, multiplex fluorescent in situ hybridization was used to characterize the coexpression of eight VGCC α1 subunits with the excitatory and inhibitory neural markers xVGlut1 and xVIAAT in Xenopus laevis embryos. VGCC coexpression was higher with xVGlut1 than xVIAAT, especially in the hindbrain, spinal cord, and cranial nerves. Calcium activity was also analyzed on a single-cell level, and spike frequency was correlated with the expression of VGCC α1 subunits in cell culture. Cells expressing Cav2.1 and Cav2.2 displayed increased calcium spiking compared with cells not expressing this marker. The VGCC antagonist diltiazem and agonist (−)BayK 8644 were used to manipulate calcium activity. Diltiazem exposure increased the number of glutamatergic cells and decreased the number of γ-aminobutyric acid (GABA)ergic cells, whereas (−)BayK 8644 exposure decreased the number of glutamatergic cells without having an effect on the number of GABAergic cells. Given that the expression and functional manipulation of VGCCs are correlated with neurotransmitter phenotype in some, but not all, experiments, VGCCs likely act in combination with a variety of other signaling factors to determine neuronal phenotype specification. J. Comp. Neurol. 522:2518–2531, 2014.
Collapse
Affiliation(s)
- Brittany B Lewis
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185
| | | | | | | |
Collapse
|
10
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
11
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
12
|
Spitzer NC, Borodinsky LN, Root CM. Imaging and manipulating calcium transients in developing Xenopus spinal neurons. Cold Spring Harb Protoc 2013; 2013:653-64. [PMID: 23818661 DOI: 10.1101/pdb.prot066803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many forms of electrical excitability expressed in the embryonic nervous system depend on Ca(2+) influx. This discovery has stimulated investigation of the functions of spontaneous elevations of intracellular Ca(2+) and their roles in neuronal development. We present a protocol for imaging different classes of intracellular Ca(2+) transients in embryonic Xenopus (amphibian) spinal neurons grown in dissociated cell culture and in the intact neural tube (the developing spinal cord), focusing on early stages of neuronal differentiation around the time of neural tube closure. The protocol describes methods for gain-of-function and loss-of-function experiments to reveal the functions of these Ca(2+) transients. The methods can also be applied to explant and organotypic cultures. The procedures are sufficiently simple that they can be further adapted for dissociated neuronal cell cultures from other developing embryos, embryonic spinal cords of vertebrates such as zebrafish, and ganglia in the developing nervous systems of invertebrates.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section and Center for Molecular Genetics, Kavli Institute for Brain and Mind, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
13
|
Dulcis D, Spitzer NC. Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol 2012; 72:465-74. [PMID: 21595049 DOI: 10.1002/dneu.20920] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The identity of the neurotransmitters expressed by neurons has been thought to be fixed and immutable, but recent studies demonstrate that changes in electrical activity can rapidly and reversibly reconfigure the transmitters and corresponding transmitter receptors that neurons express. Induction of transmitter expression can be achieved by selective activation of afferents recruited by a physiological range of sensory input. Strikingly, neurons acquiring an additional transmitter project to appropriate targets prior to transmitter respecification in some cases, indicating the presence of reserve pools of neurons that can boost circuit function. We discuss the evidence for such reserve pools, their likely locations and ways to test for their existence, and the potential clinical value of such circuit-specific neurotransmitter respecification for treatments of neurological disorders.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
14
|
Yamamoto N, López-Bendito G. Shaping brain connections through spontaneous neural activity. Eur J Neurosci 2012; 35:1595-604. [PMID: 22607005 DOI: 10.1111/j.1460-9568.2012.08101.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An overwhelming number of observations demonstrate that neural activity and genetic programs interact to specify the composition and organization of neural circuits during all stages of development. Spontaneous neuronal activities have been documented in several developing neural regions in both invertebrates and vertebrates, and their roles are mostly conserved among species. Among these roles, Ca(2+) spikes and levels of electrical activity have been shown to regulate neurite growth, axon extension and axon branching. Here, we review selected findings concerning the role of spontaneous activity on circuit development.
Collapse
Affiliation(s)
- Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan.
| | | |
Collapse
|
15
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|
16
|
Abstract
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.
Collapse
|
17
|
Rational method in the repetitive calcium oscillation measurement in wild type human epithelial kidney cells. Cytotechnology 2011; 63:81-8. [PMID: 21221778 DOI: 10.1007/s10616-010-9332-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022] Open
Abstract
Cells stimulated with physiological stimuli usually exhibit oscillations in cytosolic Ca(2+) concentration ([Ca(2+)](i)), a signal playing central roles in regulation of various cellular processes. For explicating their unknown mechanisms, studies are commonly conducted in single cells from several cell lines, in particular the human epithelial kidney (HEK293) cell line. However, [Ca(2+)](i) oscillating responses to agonists in vitro are found difficult to be induced and varied with different types of cells and agonists. This study shows that treatment of the wild type HEK293 cells with low concentrations of carbachol (1-10 μM), an agonist of the muscarinic receptor, resulted in non-oscillated but sustained [Ca(2+)](i) increase by loading the cells with 1 μM fura2/AM. However, repetitive and long lasting [Ca(2+)](i) oscillations could be induced in 31.1% of the tested cells loaded with 0.1 μM fura2/AM. Additionally, the occurrence of the typical Ca(2+) spikes further increased to 47.2% and 60.7% when the Ca(2+) concentration in the bathing medium was decreased from 1.8 mM to 1.5 mM and the medium temperature was set to 35 ± 1°C from 22 ± 2°C. Therefore, this study provides a useful approach for measuring [Ca(2+)](i) oscillatory response to relevant physiological stimulation in a wild type cell line through the adjustments of the concentrations adopted for the Ca(2+) indicator and extracellular medium Ca(2+) and of the temperature set for the experiment.
Collapse
|
18
|
Haupt C, Langhoff J, Huber AB. Adenylate Cyclase 1 modulates peripheral nerve branching patterns. Mol Cell Neurosci 2010; 45:439-48. [DOI: 10.1016/j.mcn.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/24/2022] Open
|
19
|
Characterization of rhythmic Ca2+ transients in early embryonic chick motoneurons: Ca2+ sources and effects of altered activation of transmitter receptors. J Neurosci 2009; 29:15232-44. [PMID: 19955376 DOI: 10.1523/jneurosci.3809-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the nervous system, spontaneous Ca(2+) transients play important roles in many developmental processes. We previously found that altering the frequency of electrically recorded rhythmic spontaneous bursting episodes in embryonic chick spinal cords differentially perturbed the two main pathfinding decisions made by motoneurons, dorsal-ventral and pool-specific, depending on the sign of the frequency alteration. Here, we characterized the Ca(2+) transients associated with these bursts and showed that at early stages while motoneurons are still migrating and extending axons to the base of the limb bud, they display spontaneous, highly rhythmic, and synchronized Ca(2+) transients. Some precursor cells in the ependymal layer displayed similar transients. T-type Ca(2+) channels and a persistent Na(+) current were essential to initiate spontaneous bursts and associated transients. However, subsequent propagation of activity throughout the cord resulted from network-driven chemical transmission mediated presynaptically by Ca(2+) entry through N-type Ca(2+) channels and postsynaptically by acetylcholine acting on nicotinic receptors. The increased [Ca(2+)](i) during transients depended primarily on L-type and T-type channels with a modest contribution from TRP (transient receptor potential) channels and ryanodine-sensitive internal stores. Significantly, the drugs used previously to produce pathfinding errors altered transient frequency but not duration or amplitude. These observations imply that different transient frequencies may differentially modulate motoneuron pathfinding. However, the duration of the Ca(2+) transients differed significantly between pools, potentially enabling additional distinct pool-specific downstream signaling. Many early events in spinal motor circuit formation are thus potentially sensitive to the rhythmic Ca(2+) transients we have characterized and to any drugs that perturb them.
Collapse
|
20
|
Moruzzi AM, Abedini NC, Hansen MA, Olson JE, Bosma MM. Differential expression of membrane conductances underlies spontaneous event initiation by rostral midline neurons in the embryonic mouse hindbrain. J Physiol 2009; 587:5081-93. [PMID: 19736299 DOI: 10.1113/jphysiol.2009.180091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spontaneous activity is expressed in many developing CNS structures and is crucial in correct network development. Previous work using [Ca(2+)](i) imaging showed that in the embryonic mouse hindbrain spontaneous activity is initiated by a driver population, the serotonergic neurons of the nascent raphe. Serotonergic neurons derived from former rhombomere 2 drive 90% of all hindbrain events at E11.5. We now demonstrate that the electrical correlate of individual events is a spontaneous depolarization, which originates at the rostral midline and drives events laterally. Midline events have both a rapid spike and a large plateau component, while events in lateral tissue comprise only a smaller amplitude plateau. Lateral cells have a large resting conductance and are highly coupled via neurobiotin-permeant gap junctions, while midline cells are significantly less gap junction-coupled and uniquely express a T-type Ca(2+) channel. We propose that the combination of low resting conductance and expression of T-type Ca(2+) current is permissive for midline neurons to acquire the initiator or driver phenotype, while cells without these features cannot drive activity. This demonstrates that expression of specific conductances contributes to the ability to drive spontaneous activity in a developing network.
Collapse
Affiliation(s)
- Audrey M Moruzzi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | | | | | |
Collapse
|
21
|
Sibilla S, Ballerini L. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Prog Neurobiol 2009; 89:46-60. [PMID: 19539686 DOI: 10.1016/j.pneurobio.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation.
Collapse
Affiliation(s)
- Sara Sibilla
- Life Science Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | |
Collapse
|
22
|
Abstract
Within the developing Xenopus spinal cord, voltage-gated potassium (Kv) channel genes display different expression patterns, many of which occur in opposing dorsal-ventral gradients. Regional differences in Kv gene expression would predict different patterns of potassium current (I(Kv)) regulation. However, during the first 24 h of postmitotic differentiation, all primary spinal neurons undergo a temporally coordinated upregulation of I(Kv) density that shortens the duration of the action potential. Here, we tested whether spinal neurons demonstrate regional differences in I(Kv) regulation subsequent to action potential maturation. We show that two types of neurons, I and II, can be identified in culture on the basis of biophysical and pharmacological properties of I(Kv) and different firing patterns. Chronic increases in extracellular potassium, a signature of high neuronal activity, do not alter excitability properties of either neuron type. However, elevating extracellular potassium acutely after the period of action potential maturation leads to different changes in membrane properties of the two types of neurons. I(Kv) of type I neurons gains sensitivity to the blocker XE991, whereas type II neurons increase I(Kv) density and fire fewer action potentials. Moreover, by recording from neurons in vivo, we found that primary spinal neurons can be identified as either type I or type II. Type I neurons predominate in dorsal regions, whereas type II neurons localize to ventral regions. The findings reveal a dorsal-ventral gradient for I(Kv) regulation and a novel form of neuronal plasticity in spinal cord neurons.
Collapse
|
23
|
Gakhar-Koppole N, Bengtson CP, Parlato R, Horsch K, Eckstein V, Ciccolini F. Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neurons. Eur J Neurosci 2008; 27:269-83. [DOI: 10.1111/j.1460-9568.2007.06020.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sun QQ. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord? Rev Neurosci 2007; 18:295-310. [PMID: 18019611 DOI: 10.1515/revneuro.2007.18.3-4.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?
Collapse
Affiliation(s)
- Qian-Quan Sun
- Laboratory of Neural Development and Learning, Department of Zoology and Physiology and Neuroscience Program, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
25
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
26
|
Hanson MG, Milner LD, Landmesser LT. Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. ACTA ACUST UNITED AC 2007; 57:77-85. [PMID: 17920131 DOI: 10.1016/j.brainresrev.2007.06.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
During embryonic development chick and mouse spinal cords are activated by highly rhythmic episodes of spontaneous bursting activity at very early stages, while motoneurons are still migrating and beginning to extend their axons to the base of the limb. While such spontaneous activity has been shown to be important in refining neural projections once axons have reached their targets, early pathfinding events have been thought to be activity independent. However, in-ovo pharmacological manipulation of the transmitter systems that drive such early activity has shown that early motor axon pathfinding events are highly dependent on the normal pattern of bursting activity. A modest decrease in episode frequency resulted in dorsal-ventral pathfinding errors by lumbar motoneurons, and in the downregulation of several molecules required to successfully execute this guidance decision. In contrast, increasing the episode frequency was without effect on dorsal-ventral pathfinding. However, it prevented the subsequent motoneuron pool specific fasciculation of axons and their targeting to appropriate muscles, resulting in marked segmental pathfinding errors. These observations emphasize the need to better evaluate how such early spontaneous electrical activity may influence the molecular and transcription factor pathways that have been shown to regulate the differentiation of motor and interneuron phenotypes and the formation of spinal cord circuits. The intracellular signaling pathways by which episode frequency affects motor axon pathfinding must now be elucidated and it will be important to more precisely characterize the patterns with which specific subsets of motor and inter-neurons are activated normally and under conditions that alter spinal circuit formation.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | |
Collapse
|
27
|
Endepols H, Helmbold F, Walkowiak W. GABAergic projection neurons in the basal ganglia of the green tree frog (Hyla cinerea). Brain Res 2007; 1138:76-85. [PMID: 17275797 DOI: 10.1016/j.brainres.2006.12.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/19/2022]
Abstract
The basal ganglia of tetrapods have been considered to be a conservative system sharing a common pattern with respect to connectivity and transmitters. One important transmitter found in mammalian basal ganglia is gamma-aminobutyric acid (GABA) which is used by nearly all striatal and pallidal projection neurons. In order to investigate whether GABAergic projection neurons exist in the basal ganglia of anurans as well, we combined tracer applications in the diencephalic portion of the lateral forebrain bundle with GABA immunohistochemistry in an isolated brain preparation of the green tree frog Hyla cinerea. Additionally, double-labeling studies using antibodies against GABA, GAD 65, and GAD 67 helped to clarify which neurons could be regarded as GABAergic. On average 7.29-7.40% of striatal and 3.29-3.98% of pallidal projection neurons were strongly GABA-immunoreactive; lightly labeled neurons were disregarded. We conclude that GABAergic projection neurons are present in the striatum and dorsal pallidum of H. cinerea, but their numbers are much lower compared to the same regions in mammals.
Collapse
Affiliation(s)
- Heike Endepols
- University of Cologne, Institute of Zoology, Weyertal 119, 50923 Köln, Germany.
| | | | | |
Collapse
|
28
|
Trinh HH, Reid J, Shin E, Liapi A, Parnavelas JG, Nadarajah B. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures. Eur J Neurosci 2007; 24:2967-77. [PMID: 17156358 DOI: 10.1111/j.1460-9568.2006.05194.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely believed that the pyramidal cells and interneurons of the cerebral cortex are distinct in their origin, lineage and genetic make up. In view of these findings, the current thesis is that the phenotype determination of cortical neurons is primarily directed by genetic mechanisms. Using in vitro assays, the present study demonstrates that secreted factors from ganglionic eminence (GE) of the ventral telencephalon have the potency to induce the differentiation of a subset of cortical neurons towards gamma-aminobutyric acid (GABA)ergic lineage. Characterization of cortical cultures that were exposed to medium derived from GE illustrated a significant increase in the number of GABA-, calretinin- and calbindin-positive neurons. Calcium imaging together with pharmacological studies showed that the application of exogenous medium significantly elevated the intracellular calcium transients in cortical neurons through the activation of ionotropic glutamate receptors. The increase in GABA+ neurons appeared to be associated with the elevated calcium activity; treatment with blockers specific for glutamate receptors abolished both the synchronized transients and reduced the differentiation of GABAergic neurons. Such studies demonstrate that although intrinsic mechanisms determine the fate of cortical interneurons, extrinsic factors have the potency to influence their neurochemical differentiation and contribute towards their molecular diversity.
Collapse
Affiliation(s)
- H-h Trinh
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The construction of the brain during embryonic development was thought to be largely independent of its electrical activity. In this view, proliferation, migration and differentiation of neurons are driven entirely by genetic programs and activity is important only at later stages in refinement of connections. However, recent findings demonstrate that activity plays essential roles in early development of the nervous system. Activity has similar roles in the incorporation of newly born neurons in the adult nervous system, suggesting that there are general rules underlying activity-dependent development. The extensive involvement of activity makes it likely that it is required at all developmental stages as a necessary partner with genetic programs.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Centre for Molecular Genetics, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093-0357, USA.
| |
Collapse
|
30
|
Hanson MG, Landmesser LT. Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J Neurosci 2006; 26:12769-80. [PMID: 17151280 PMCID: PMC6674837 DOI: 10.1523/jneurosci.4170-06.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhythmic spontaneous bursting activity, which occurs in many developing neural circuits, has been considered to be important for the refinement of neural projections but not for early pathfinding decisions. However, the precise frequency of bursting activity differentially affects the two major pathfinding decisions made by chick lumbosacral motoneurons. Moderate slowing of burst frequency was shown previously to cause motoneurons to make dorsoventral (D-V) pathfinding errors and to alter the expression of molecules involved in that decision. Moderate speeding up of activity is shown here not to affect these molecules or D-V pathfinding but to strongly perturb the anteroposterior (A-P) pathfinding process by which motoneurons fasciculate into pool-specific fascicles at the limb base and then selectively grow to muscle targets. Resumption of normal frequency allowed axons to correct the A-P pathfinding errors by altering their trajectories distally, indicating the dynamic nature of this process and its continued sensitivity to patterned activity.
Collapse
Affiliation(s)
- M. Gartz Hanson
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| |
Collapse
|
31
|
Fabbro A, Pastore B, Nistri A, Ballerini L. Activity-independent intracellular Ca2+ oscillations are spontaneously generated by ventral spinal neurons during development in vitro. Cell Calcium 2006; 41:317-29. [PMID: 16950510 DOI: 10.1016/j.ceca.2006.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/17/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
Within the CNS, distinct neurons may rely on different processes to modulate cytosolic Ca2+ depending on the network developmental phase. In particular, in the immature spinal cord, synchronous electrical discharges are coupled with biochemical signals triggered by intracellular Ca2+ waves. Nevertheless, the presence of neuronal-specific Ca2+ elevations independent from synaptic activity within mammalian spinal networks has not yet been described. The present report is the first description of repetitive calcium events generated by discrete ventral spinal neurons maintained in organotypic culture during in vitro maturation stages crucial for network evolution. Ventral interneurons in one-third of slices displayed spontaneous intracellular calcium transients suppressed by calcium-free extracellular solution or by application of cobalt, and resistant to blockers of network activity like TTX, CNQX, APV, strychnine or bicuculline. Our data suggest a primary role for mitochondria in intracellular calcium oscillations, because CCCP, that selectively collapses the mitochondrial electrochemical gradient, eliminated the ability of these neurons to show activity-independent calcium oscillations. Likewise, CGP-37157, a blocker of mitochondrial Na+/Ca2+ exchanger, inhibited oscillations in the majority of neurons. We propose that spontaneous Ca2+ transients, dynamically regulated by mitochondria, occurred in a discrete cluster of interneurons possibly to guide the development of synaptic connections.
Collapse
Affiliation(s)
- Alessandra Fabbro
- Neurobiology Sector and CNR-INFM Democritos National Simulation Center, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
32
|
Pineda RH, Svoboda KR, Wright MA, Taylor AD, Novak AE, Gamse JT, Eisen JS, Ribera AB. Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development. Development 2006; 133:3827-36. [PMID: 16943272 DOI: 10.1242/dev.02559] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics, 8307 University of Colorado Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sokolowski BHA. Survey of inward ionic currents acquired by the cochleovestibular ganglion of the early-aged embryonic chick. J Neurosci Res 2006; 83:638-46. [PMID: 16447282 DOI: 10.1002/jnr.20769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acquisition of ion channels is critical to the formation of neuronal pathways in the peripheral and central nervous systems. This study describes the different types of inward currents (Ii) recorded from the soma of isolated cochleovestibular ganglion (CVG) cells of the embryonic chicken, Gallus gallus. Cells were isolated for whole-cell tight-seal recording from embryonic day (ED) 3, an age when the CVG is a cell cluster, to ED 9, an age when the cochlear and vestibular ganglia (CG, VG) are distinct structures. Results show Na+ and Ca2+ currents (INa and ICa) are acquired by ED 3, although INa dominates with greater density levels that peak by ED 6-7 in VG neurons. In the CG, INa acquisition is slower, reaching peak values by ED 8-9. Isolation of ICa, using Ba2+ as the charge carrier, showed both transient (IBaT)- and sustained (IBaL)-type currents on ED 3. Unlike INa, IBa density varied with age and ganglion. Total IBa increased steadily, showing a decline only in CG cells on ED 8-9 as a result of a decrease in IBaT. IBaL density increased over time, reaching a maximum on ED 6-7 in VG cells, followed by a decline on ED 8-9. In comparison, IBaL in CG neurons, did not increase significantly beyond mean values measured on ED 5. The early onset of these currents and the variations in Ca2+ channel expression between the ganglia suggests that intracellular signals relevant to phenotypic differentiation begin within these early time frames.
Collapse
Affiliation(s)
- Bernd H A Sokolowski
- Department of Otolaryngology-HNS, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
34
|
Gómez-Lira G, Lamas M, Romo-Parra H, Gutiérrez R. Programmed and induced phenotype of the hippocampal granule cells. J Neurosci 2006; 25:6939-46. [PMID: 16049169 PMCID: PMC6724843 DOI: 10.1523/jneurosci.1674-05.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Certain neurons choose the neurotransmitter they use in an activity-dependent manner, and trophic factors are involved in this phenotypic differentiation during development. Developing hippocampal granule cells (GCs) constitutively express the markers of the glutamatergic and GABAergic phenotypes, but when development is completed, the GABAergic phenotype shuts off. With electrophysiological, single-cell reverse transcription-PCR and immunohistological techniques, we show here that short-term (24 h) cultures of fully differentiated adult glutamatergic GCs, which express glutamate, VGlut-1 (vesicular glutamate transporter) mRNA, calbindin, and dynorphin mRNA, can be induced to reexpress the GABAergic markers GABA, GAD67 (glutamate decarboxylase 67 kDa isoform), and VGAT (vesicular GABA transporter) mRNA, by sustained synaptic or direct activation of glutamate receptors and by activation of TrkB (tyrosine receptor kinase B) receptors, with brain-derived neurotrophic factor (BDNF) (30 min). The expression of the GABAergic markers was prevented by the blockade of glutamate receptors and sodium or calcium channels, and by inhibitors of protein kinases and protein synthesis. In hippocampal slices of epileptic rats and in BDNF-treated slices from naive rats, we confirmed the appearance of monosynaptic GABAA receptor-mediated responses to GC stimulation, in the presence of glutamate receptors blockers. Accordingly, GC cultures prepared from these slices showed the coexpression of the glutamatergic and GABAergic markers. Our results demonstrate that the neurotransmitter choice of the GCs, which are unique in terms of their continuing birth and death throughout life, depends on programmed and environmental factors, and this process is neither limited by a critical developmental period nor restricted by their insertion in their natural network.
Collapse
Affiliation(s)
- Gisela Gómez-Lira
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, 07000 Distrito Federal, Mexico
| | | | | | | |
Collapse
|
35
|
Calderon DP, Leverkova N, Peinado A. Gq/11-induced and spontaneous waves of coordinated network activation in developing frontal cortex. J Neurosci 2005; 25:1737-49. [PMID: 15716410 PMCID: PMC6725933 DOI: 10.1523/jneurosci.2765-04.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated episodes of spontaneous large-scale neuronal bursting and calcium influx in the developing brain can potentially affect such fundamental processes as circuit formation and gene expression. Between postnatal day 3 (P3) and P7, the immature cortex can express one such form of activation whereby a wave of neuronal activity propagates through cortical networks, generating massive calcium influx. We previously showed that this activity could be triggered by brief stimulation of muscarinic receptors. Here, we show, by monitoring large cortical areas at low magnification, that although all areas respond to muscarinic agonists to some extent, only some areas are likely to generate the coordinated wave-like activation. The waves can be triggered repeatedly in frontal areas where, as we also show, waves occur spontaneously at a low frequency. In parietal and occipital areas, no such waves are seen. This selectivity may be related in part to differences in the cortical distribution of dopaminergic signaling, because we find that activation of dopamine receptors enables the response. Because M1 muscarinic receptors are typically coupled with G-alpha(q)/11, we investigated whether other receptors known to couple with this G-protein (group I glutamate metabotropic receptors, neurotensin type 1) could similarly elicit wave-like activation in responsive cortical areas. Our results suggest that multiple neurotransmitter systems can enable this form of activation in the frontal cortex. The findings suggest that a poorly recognized, developmentally regulated form of strong network activation found predominantly in the frontal cortex could potentially exert a profound influence on brain development.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Action Potentials
- Animals
- Benzazepines/pharmacology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Dopamine/physiology
- Frontal Lobe/growth & development
- Frontal Lobe/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11/drug effects
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Glutamic Acid/pharmacology
- Indans/pharmacology
- Muscarine/pharmacology
- Nerve Tissue Proteins/physiology
- Neurotensin/pharmacology
- Occipital Lobe/growth & development
- Parietal Lobe/growth & development
- Peptide Fragments/pharmacology
- Phenanthridines/pharmacology
- Picrotoxin/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Wistar
- Receptor, Metabotropic Glutamate 5
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/physiology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
Collapse
Affiliation(s)
- D Paola Calderon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Jiang M, Swann JW. A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons. Neuroscience 2005; 135:839-50. [PMID: 16154277 DOI: 10.1016/j.neuroscience.2005.06.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
While inhibitory interneurons are well recognized to play critical roles in the brain, relatively little is know about the molecular events that regulate their growth and differentiation. Calcium ions are thought to be important in neuronal development and L-type voltage gated Ca(+2) channels have been implicated in activity-dependent mechanisms of early-life. However, few studies have examined the role of these channels in the maturation of interneurons. The studies reported here were conducted in hippocampal slice cultures and indicate that the L-type Ca(+2) channel agonists and antagonists accelerate and suppress respectively the growth of parvalbumin-containing interneurons. The effects of channel blockade were reversible suggesting they are not the result of interneuronal cell death. Results from immunoblotting showed that these drugs have similar effects on the expression of the GABA synthetic enzymes, glutamic acid decarboxylase65, glutamic acid decarboxylase67 and the vesicular GABA transporter. This suggests that L-type Ca(+2) channels regulate not only parvalbumin expression but also interneuron development. These effects are likely mediated by actions on the interneurons themselves since the alpha subunits of L-type channels, voltage-gated calcium channel subunit 1.2 and voltage-gated calcium channel subunit 1.3 were found to be highly expressed in neonatal mouse hippocampus and co-localized with parvalbumin in interneurons. Results also showed that while these interneurons can contain either subunit, voltage-gated calcium channel subunit 1.3 was more widely expressed. Taken together results suggest that an important subset of developing interneurons expresses L-type Ca(+2) channels alpha subunits, voltage-gated calcium channel subunit 1.2 and especially voltage-gated calcium channel subunit 1.3 and that these channels likely regulate the development of these interneurons in an activity-dependent manner.
Collapse
Affiliation(s)
- M Jiang
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, 6621 Fannin Street, MC 3-6365, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Andres RH, Ducray AD, Huber AW, Pérez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR. Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 2005; 95:33-45. [PMID: 16045451 DOI: 10.1111/j.1471-4159.2005.03337.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.
Collapse
Affiliation(s)
- R H Andres
- Department of Neurosurgery, University Hospital, Berne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
39
|
Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005; 76:213-35. [PMID: 16280194 DOI: 10.1016/j.pneurobio.2005.09.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/22/2022]
Abstract
A characteristic feature of sensory circuits is the existence of orderly connections that represent maps of sensory space. A major research focus in developmental neurobiology is to elucidate the relative contributions of neural activity and guidance molecules in sensory map formation. Two model systems for addressing map formation are the retinotopic map formed by retinal projections to the superior colliculus (SC) (or its non-mammalian homolog, the optic tectum (OT)), and the eye-specific map formed by retinal projections to the lateral geniculate nucleus of the thalamus. In mammals, a substantial portion of retinotopic and eye-specific refinement of retinal axons occurs before vision is possible, but at a time when there is a robust, patterned spontaneous retinal activity called retinal waves. Though complete blockade of retinal activity disrupts normal map refinement, attempts at more refined perturbations, such as pharmacological and genetic manipulations that alter features of retinal waves critical for map refinement, remain controversial. Here we review: (1) the mechanisms that underlie the generation of retinal waves; (2) recent experiments that have investigated a role for guidance molecules and retinal activity in map refinement; and (3) experiments that have implicated various signaling cascades, both in retinal ganglion cells (RGCs) and their post-synaptic targets, in map refinement. It is likely that an understanding of retinal activity, guidance molecules, downstream signaling cascades, and the interactions between these biological systems will be critical to elucidating the mechanisms of sensory map formation.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
40
|
Gruol DL, Netzeband JG, Quina LA, Blakely-Gonzalez PK. Contribution of L‐type channels to Ca 2+ regulation of neuronal properties in early developing Purkinje neurons. THE CEREBELLUM 2005; 4:128-39. [PMID: 16035195 DOI: 10.1080/14734220510007969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Activity driven Ca2+ signaling is an important regulator of neuronal development. Early developing Purkinje neurons (postnatal day 5-7) prior to the stage of dendritic development express a somatic Ca2+ signaling pathway that is electrically driven and communicates information from the cell membrane to the cytosol and nucleus. In the current studies, we examined the properties and potential functional role of this pathway using acutely isolated Purkinje neurons from postnatal day 5-7 rat pups and brief K+ stimulation to activate the pathway. Results show that the amplitude of the nuclear Ca2+ signal increases as a function of the cytosolic Ca2+ signal but is larger than the cytosolic Ca2+ signal at strong K+ stimulations. Both L-type and P-type Ca2+ channels contribute to the Ca2+ signal. We also show using semiquantitative immunohistochemical methods that activation of this Ca2+ signaling pathway results in activation the transcription factor CREB and that L-type Ca2+ channels play a prominent role in this effect. The level of cfos, a transcription factor whose expression is regulated by CREB, was also increased by K+ stimulation. K+ stimulation also altered the level of the Ca2+ binding protein calbindin, an effect that involved L-type Ca2+ channels. The relationship between increases in Ca2+ and calbindin expression was bell-shaped, with high levels of Ca2+ decreasing calbindin expression. The level of the transmitter GABA was also increased by K+ stimulation but this effect was not dependent on L-type Ca2+ channels. Taken together, these results support a role for L-type channels in the phenotypic expression of Purkinje neuron properties during early development and suggest that the different activity patterns of early developing Purkinje neurons could be one mechanism for signaling the induction of specific genes through differences in cytosolic or nuclear Ca2+.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
41
|
Spitzer NC, Borodinsky LN, Root CM. Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium 2005; 37:417-23. [PMID: 15820389 DOI: 10.1016/j.ceca.2005.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 01/21/2023]
Abstract
Calcium-signaling plays a central role in specification of the chemical transmitters neurons express, adjusting the numbers of cells that express excitatory and inhibitory transmitters as if to achieve homeostatic regulation of excitability. Here we review the extent to which this activity-dependent regulation is observed for a range of different transmitters. Strikingly the homeostatic paradigm is observed both for classical and for peptide transmitters and in mature as well as in embryonic nervous systems. Transmitter homeostasis adds another dimension to homeostatic regulation of function in the nervous system that includes regulation of levels of voltage-gated ion channels, densities of neurotransmitter receptors, and synapse numbers and strength.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, UCSD, La Jolla, CA 92093-0357, USA.
| | | | | |
Collapse
|
42
|
Wu C, Fry PM, Sui G, Fry CH. Intracellular Ca2+ regulation in a human prostate stromal cell culture. Neurourol Urodyn 2005; 24:81-8. [PMID: 15570578 DOI: 10.1002/nau.20088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Prostate stromal cell cultures are used in vitro to study the cellular pathophysiology of benign prostatic hyperplasia (BPH), but their functional properties are poorly understood. This study characterized intracellular Ca2+ ([Ca2+]i) regulation in a cultured cell line in comparison to freshly isolated cells, as a background to understanding contractile regulation and cellular proliferation in this tissue. METHODS Prostate stromal cells were isolated from either PrS6 cell cultures, with an extended life span by transfection with the SV40 T-antigen, tsA58-U19, or freshly obtained transition zone prostate samples, primary cells. [Ca2+]i was measured in vitro with the indicator Fura-2 by epifluorescence microscopy. RESULTS Phenylephrine, high-K+, and caffeine induced Ca2+-transients in primary cells (resting [Ca2+]i 94 +/- 8 nM, n = 29; peak 193 +/- 26 nM, n = 19). In PrS6 cells resting [Ca2+]i was 96 +/- 8 nM (n = 78) and in 34 of these 78 cells, 30 microM phenylephrine increased [Ca2+]i to 296 +/- 28 nM. 5-methyl-urapidil (10-30 microM) inhibited this response in 10 of 16 cells. Spontaneous Ca2+-transients were also observed in 91% of phenylephrine-responsive cells, but in only 20% of non-responsive cells (P < 0.01). Ca2+-transients were also induced by high-K+ solution, and 20 mM caffeine. The latter abolished the response to subsequent phenylephrine application. Depletion of intracellular Ca2+ stores by caffeine or restoration from a Ca2+-free superfusate caused a substantial rise of [Ca2+]i. CONCLUSIONS PrS6 prostate stromal cells express functional alpha1-adrenoceptors associated with spontaneous intracellular Ca2+-transients. They exhibit functional Ca2+ channels, intracellular Ca2+ stores, and Ca2+ entry induced by store depletion. Stromal cultures can therefore be used to characterize the cellular physiology of prostate stromal cell contraction and proliferation.
Collapse
Affiliation(s)
- C Wu
- Institute of Urology, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Moody WJ. Subtype-specific mechanisms for regulating K+ channel density during development. Focus on "The carboxyl tail region of the Kv2.2 subunit mediates novel developments of channel density". J Neurophysiol 2004; 92:3169-70. [PMID: 15548633 DOI: 10.1152/jn.00795.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Bosch M, Pineda JR, Suñol C, Petriz J, Cattaneo E, Alberch J, Canals JM. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp Neurol 2004; 190:42-58. [PMID: 15473979 DOI: 10.1016/j.expneurol.2004.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/16/2004] [Accepted: 06/22/2004] [Indexed: 11/22/2022]
Abstract
The implementation of cell replacement therapies for Huntington's disease using multipotent neural stem cells (NSCs) requires the specific differentiation into gamma-aminobutyric acid (GABA) neuronal subtype before transplantation. Here we present an efficient culture procedure that induces stable GABAergic neurons from the immortalized striatal neural stem cell line ST14A. This process requires sequential retinoic acid treatment and KCl depolarization. Initial addition of 10 microM retinoic acid increased cell survival and promoted neuronal differentiation. Subsequent stimulation with 40 mM KCl induced specific differentiation into GABAergic neurons, yielding 74% of total cultured cells. KCl-evoked Ca(2+) influx reduced cell proliferation and nestin expression, and induced neurite outgrowth and GABAergic markers as well as GABA contents, release, and uptake. Characterization of the integration, survival, and phenotype of these predifferentiated GABAergic neurons following transplantation into the adult brain in a model of Huntington's disease revealed long-term survival in quinolinate-lesioned striata. Under these conditions, cells maintained their GABAergic phenotype and elaborated neurite processes with synaptic contacts with endogenous neurons. In conclusion, we have generated a homogeneous population of functional GABAergic neurons from a neural stem cell line, which survive and maintain their acquired fate in vivo. These data may lend support to the possibility of cell replacement therapies for Huntington's disease using neural stem cells.
Collapse
Affiliation(s)
- Miquel Bosch
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Hanson MG, Landmesser LT. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 2004; 43:687-701. [PMID: 15339650 DOI: 10.1016/j.neuron.2004.08.018] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/19/2004] [Accepted: 08/03/2004] [Indexed: 10/25/2022]
Abstract
Rhythmic spontaneous electrical activity occurs in many parts of the developing nervous system, where it plays essential roles in the refinement of neural connections. By blocking or slowing this bursting activity, via in ovo drug applications at precise developmental periods, we show that such activity is also required at much earlier stages for spinal motoneurons to accurately execute their first major dorsal-ventral pathfinding decision. Blockade or slowing of rhythmic bursting activity also prevents the normal expression patterns of EphA4 and polysialic acid on NCAM, which may contribute to the pathfinding errors observed. More prolonged (E2-5) blockade resulted in a downregulation of LIM homeodomain transcription factors, but since this occurred only after the pathfinding errors and alterations in guidance molecules, it cannot have contributed to them.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Neurosciences, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
46
|
Spitzer NC, Root CM, Borodinsky LN. Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice. Trends Neurosci 2004; 27:415-21. [PMID: 15219741 DOI: 10.1016/j.tins.2004.05.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Appropriate specification of neurotransmitters is a key feature of neuronal network assembly. There is much evidence that genetic programs are responsible for this aspect of cell fate and neuronal differentiation. Are there additional ways in which these processes are shaped? Recent findings demonstrate that altering patterned Ca(2+) spike activity that is spontaneously generated by different classes of embryonic spinal neurons in vivo changes expression of neurotransmitters in a homeostatic manner, as if to achieve a constant level of excitation. Activity-dependent changes in presynaptic transmitter expression pose a matching problem: are there corresponding changes in postsynaptic transmitter receptor expression, or are axons rerouted to novel targets with which functional synapses can be formed?
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section and Center for Molecular Genetics, Division of Biological Sciences, UCSD, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
47
|
Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004; 429:523-30. [PMID: 15175743 DOI: 10.1038/nature02518] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 03/29/2004] [Indexed: 11/08/2022]
Abstract
Neurotransmitters are essential for interneuronal signalling, and the specification of appropriate transmitters in differentiating neurons has been related to intrinsic neuronal identity and to extrinsic signalling proteins. Here we show that altering the distinct patterns of Ca2+ spike activity spontaneously generated by different classes of embryonic spinal neurons in vivo changes the transmitter that neurons express without affecting the expression of markers of cell identity. Regulation seems to be homeostatic: suppression of activity leads to an increased number of neurons expressing excitatory transmitters and a decreased number of neurons expressing inhibitory transmitters; the reverse occurs when activity is enhanced. The imposition of specific spike frequencies in vitro does not affect labels of cell identity but again specifies the expression of transmitters that are inappropriate for the markers they express, during an early critical period. The results identify a new role of patterned activity in development of the central nervous system.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, UCSD, La Jolla, California 92093-0357, USA.
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Marcotti W, Johnson SL, Rusch A, Kros CJ. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 2003; 552:743-61. [PMID: 12937295 PMCID: PMC2343463 DOI: 10.1113/jphysiol.2003.043612] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.
Collapse
Affiliation(s)
- Walter Marcotti
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
50
|
Patz S, Wirth MJ, Gorba T, Klostermann O, Wahle P. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex. Eur J Neurosci 2003; 18:1-12. [PMID: 12859332 DOI: 10.1046/j.1460-9568.2003.02702.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental factors are known to regulate the molecular differentiation of neocortical interneurons. Their class-defining transmitter synthetic enzymes are the glutamic acid decarboxylases (GAD); yet, fairly little is known about the developmental regulation of transcription and translation of the GAD-65/67 isoforms. We have characterized the role of neuronal activity, neurotrophins and afferent systems for GAD-65/67 expression in visual cortex in organotypic cultures (OTC) compared with in vivo in order to identify cortex-intrinsic regulatory mechanisms. Spontaneously active OTC prepared at postnatal day 0 displayed from 10 days in vitro (DIV) onwards 12-14% GAD-65/GAD-67 neurons similar to in vivo. However, GAD-65 mRNA was higher, whereas GAD-67 protein was lower, than in vivo. During the first week neurotrophins increased whereas the Trk receptor inhibitor K252a and MEK inhibitors decreased both GAD mRNAs and proteins. After 10 DIV GAD expression no longer depended on neurotrophin signalling. Activity-deprived OTC revealed only 6% GAD-67 neurons and mRNA and protein were reduced by 50%. GAD-65 mRNA was less reduced, but protein was reduced by half, suggesting translational regulation. Upon recovery of activity GAD mRNAs, cell numbers, and both proteins quickly returned to normal and these 'adult' levels were resistant to late-onset deprivation. In 20 DIV activity-deprived OTC, only neurotrophin 4 increased GAD-65/67 mRNAs, rescued the percentage of GAD-67 neurons and increased both proteins in a TrkB-dependent manner. Activity deprivation had thus shifted the period of neurotrophin sensitivity to older ages. The results suggested neuronal activity as a major regulator differentially affecting transcription and translation of the GAD isoforms. The early presence of neuronal activity promoted the GAD expression in OTC to a neurotrophin-independent state suggesting that neurotrophins play a context-dependent role.
Collapse
Affiliation(s)
- Silke Patz
- AG Entwicklungsneurobiologie, Fakultät für Biologie, ND 6/72, Ruhr-Universität, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|