1
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
2
|
Yamamoto K, Scavenius C, Meschis MM, Gremida AME, Mogensen EH, Thøgersen IB, Bonelli S, Scilabra SD, Jensen A, Santamaria S, Ahnström J, Bou-Gharios G, Enghild JJ, Nagase H. A top-down approach to uncover the hidden ligandome of low-density lipoprotein receptor-related protein 1 in cartilage. Matrix Biol 2022; 112:190-218. [PMID: 36028175 DOI: 10.1016/j.matbio.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Emilie H Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Simone Bonelli
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Simone D Scilabra
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
3
|
Piipponen M, Riihilä P, Nissinen L, Kähäri VM. The Role of p53 in Progression of Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13184507. [PMID: 34572732 PMCID: PMC8466956 DOI: 10.3390/cancers13184507] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Skin cancers are the most common types of cancer worldwide, and their incidence is increasing. Melanoma, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC) are the three major types of skin cancer. Melanoma originates from melanocytes, whereas BCC and cSCC originate from epidermal keratinocytes and are therefore called keratinocyte carcinomas. Chronic exposure to ultraviolet radiation (UVR) is a common risk factor for skin cancers, but they differ with respect to oncogenic mutational profiles and alterations in cellular signaling pathways. cSCC is the most common metastatic skin cancer, and it is associated with poor prognosis in the advanced stage. An important early event in cSCC development is mutation of the TP53 gene and inactivation of the tumor suppressor function of the tumor protein 53 gene (TP53) in epidermal keratinocytes, which then leads to accumulation of additional oncogenic mutations. Additional genomic and proteomic alterations are required for the progression of premalignant lesion, actinic keratosis, to invasive and metastatic cSCC. Recently, the role of p53 in the invasion of cSCC has also been elucidated. In this review, the role of p53 in the progression of cSCC and as potential new therapeutic target for cSCC will be discussed.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Center for Molecular Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland; (M.P.); (P.R.); (L.N.)
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Correspondence: ; Tel.: +358-2-3131600
| |
Collapse
|
4
|
Huang HL, Liu YM, Sung TY, Huang TC, Cheng YW, Liou JP, Pan SL. TIMP3 expression associates with prognosis in colorectal cancer and its novel arylsulfonamide inducer, MPT0B390, inhibits tumor growth, metastasis and angiogenesis. Theranostics 2019; 9:6676-6689. [PMID: 31588243 PMCID: PMC6771239 DOI: 10.7150/thno.34020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Tissue inhibitors of metalloproteinase 3 (TIMP3) are a major endogenous inhibitor of matrix metalloproteinase (MMPs) that inhibit tumor growth, invasion, metastasis and angiogenesis. In this study, we found that TIMP3 expression is associated with positive prognosis of colorectal cancer (CRC) clinicopathologically. Therefore, we developed a series of arylsulfonamide derivatives as TIMP3 inducers in order to define potential colorectal cancer therapeutic agent. Among these, MPT0B390 was selected for anti-tumor, anti-metastasis, and anti-angiogenesis property determination. Methods: The relationship between TIMP3 expression and clinical pathological features in colorectal patients and cell lines were determined by immunohistochemistry, bioinformatics analysis and western blotting. The anti-tumor function was validated by using MTT, apoptosis pathway detection and in vivo xenograft model for tumor growth inhibition determination. The anti-metastatic function was validated using a transwell migration assay, and using in vivo lung metastasis and liver metastasis models. The mechanism of MPT0B390-induced TIMP3 expression was further tested using qPCR and Chromatin IP assay. The anti-angiogenesis function was examined by using transwell migration assay, and in vivo Matrigel plug assay. Results: After screening candidate compounds, we identified MPT0B390 as an effective inducer of TIMP3. We showed that MPT0B390 induces TIMP3 expression significantly and inhibits CRC cell growth in vitro and in vivo. By inducing TIMP3 expression, MPT0B390 can also exert its anti-metastasis effect to inhibit CRC cell migration and invasion and downregulates migration markers such as uPA, uPAR, and c-Met. Subsequent Chromatin immunoprecipitation assay revealed that MPT0B390 can significantly inhibit EZH2 expression as well as its binding to TIMP3 promoter region to regulate TIMP3 induction. In addition to the anti-tumor and anti-metastasis capability, MPT0B390 can also induce TIMP3 expression in endothelial cells to inhibit tumor angiogenesis. Conclusion: These data suggest the potential therapeutic applications of the TIMP3 inducer, MPT0B390, for colorectal cancer treatment.
Collapse
|
5
|
Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol 2019; 11:1758835919864247. [PMID: 31360238 PMCID: PMC6637839 DOI: 10.1177/1758835919864247] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3), a secreted glycoprotein, plays an important role in carcinogenesis. It can bind to many proteinases to suppress their activity and thus protect the extracellular matrix from degradation. TIMP-3 may have many anticancer properties, including apoptosis induction and antiproliferative, antiangiogenic, and antimetastatic activities. This review summarizes the structure, proteinase inhibition ability, genetic and epigenetic regulation, cancer therapy potential, and contribution to cancer development of TIMP-3. Furthermore, in this review we discuss its potential as a biomarker for predicting cancer progression and the current state of drugs that target TIMP-3, either alone or in combination with clinical treatment. In conclusion, TIMP-3 can be a biomarker of cancer and a potential target for cancer therapy. This review article can serve as a basis to understand how to modulate TIMP-3 levels as a drug target of cancers.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung 402
| |
Collapse
|
6
|
Zhang J, Liu Y, Lu L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci 2018; 207:227-233. [PMID: 29894714 DOI: 10.1016/j.lfs.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve injury is one of the most common clinical diseases. Although the regeneration of the peripheral nerve is better than that of the nerves of the central nervous system, because of its growth rate restrictions after damage. Hence, the outcome of repair after injury is not favorable. Small RNA, a type of non-coding RNA, has recently been gaining attention in neural injury. It is widely distributed in the nervous system in vivo and a significant change in the expression of small RNAs has been observed in a neural injury model. This suggests that MicroRNAs (miRNAs) may serve as a potential target for resolving the challenges of peripheral nerve repair. This review summarizes the current challenges in peripheral nerve injury repair, systematically expounds the mechanism of miRNAs in the process of nerve injury and repair and attempts to determine the possible treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
English WR, Ireland-Zecchini H, Baker AH, Littlewood TD, Bennett MR, Murphy G. Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells. PLoS One 2018; 13:e0195116. [PMID: 29617412 PMCID: PMC5884528 DOI: 10.1371/journal.pone.0195116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 02/08/2023] Open
Abstract
Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain.
Collapse
Affiliation(s)
- William R. English
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield School of Medicine, Sheffield, United Kingdom
- * E-mail:
| | - Heather Ireland-Zecchini
- Microscopy Core Facility, Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Andrew H. Baker
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Martin R. Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Gillian Murphy
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
8
|
Abu El-Asrar AM, Ahmad A, Bittoun E, Siddiquei MM, Mohammad G, Mousa A, De Hertogh G, Opdenakker G. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmol 2018; 96:e27-e37. [PMID: 28391660 DOI: 10.1111/aos.13451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Tissue inhibitors of metalloproteinases (TIMPs) block the catalysis by matrix metalloproteinases (MMPs) and have additional biologic activities, including regulation of cell growth and differentiation, apoptosis, angiogenesis and oncogenesis. We investigated the expression levels of all the four human TIMPs and correlated these levels with those of MMP-9 and vascular endothelial growth factor (VEGF) in proliferative diabetic retinopathy (PDR). METHODS Vitreous samples from 38 PDR and 21 nondiabetic control patients and epiretinal membranes from 14 patients with PDR and 10 patients with proliferative vitreoretinopathy (PVR) were studied by enzyme-linked immunosorbent assay, Western blot analysis and immunohistochemistry. RESULTS Tissue inhibitor of metalloproteinases-1, TIMP-4, MMP-9 and VEGF levels were significantly higher in vitreous samples from PDR patients than in nondiabetic controls (p < 0.0001 for all comparisons), whereas TIMP-2 and TIMP-3 levels did not differ significantly. TIMP-1, TIMP-4, MMP-9 and VEGF levels in PDR with active neovascularization were significantly higher than those in inactive PDR (p < 0.0001, 0.001, 0.013, 0.004, respectively). Significant positive correlations existed between levels of TIMP-1 and levels of TIMP-4 (r = 0.37; p = 0.004), MMP-9 (r = 0.65; p < 0.0001) and VEGF (r = 0.59; p < 0.0001), between levels of TIMP-4 and levels of MMP-9 (r = 0.61; p < 0.0001) and VEGF (r = 0.62; p < 0.0001) and between levels of MMP-9 and VEGF (r = 0.62; p < 0.0001). TIMP-1 and TIMP-3 were expressed in vascular endothelial cells in PDR epiretinal membranes and in myofibroblasts and leucocytes in PDR and PVR epiretinal membranes. CONCLUSION The differential expression of TIMPs in PDR suggests that among the 4 TIMPs, TIMP-1 and TIMP-4 may be possible biomarkers of disease activity.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Emilie Bittoun
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | | | - Ghulam Mohammad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Mousa
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The Role of Matrix Metalloproteinases (MMPs) in Human Caries. J Dent Res 2016; 85:22-32. [PMID: 16373676 DOI: 10.1177/154405910608500104] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of this review is to summarize our understanding of the role of host matrix metalloproteinases (MMPs) in the caries process and to discuss new therapeutic avenues. MMPs hydrolyze components of the extracellular matrix and play a central role in many biological and pathological processes. MMPs have been suggested to play an important role in the destruction of dentin organic matrix following demineralization by bacterial acids and, therefore, in the control or progression of carious decay. Host-derived MMPs can originate both from saliva and from dentin. They may be activated by an acidic pH brought about by lactate release from cariogenic bacteria. Once activated, they are able to digest demineralized dentin matrix after pH neutralization by salivary buffers. Furthermore, the degradation of SIBLINGs (Small Integrin-binding Ligand N-linked Glycoproteins) by the caries process may potentially enhance the release of MMPs and their activation. This review also explores the different available MMP inhibitors, natural or synthetic, and suggests that MMP inhibition by several inhibitors, particularly by natural substances, could provide a potential therapeutic pathway to limit caries progression in dentin.
Collapse
Affiliation(s)
- C Chaussain-Miller
- Groupe Matrice Extracellulaire et Biominéralisation, Université Paris 5, France.
| | | | | | | |
Collapse
|
10
|
Cuadriello EF, Fernández-Guinea Ó, Eiró N, González LO, Junquera S, Vizoso FJ. Relationship between morphological features and kinetic patterns of enhancement of the dynamic breast magnetic resonance imaging and tumor expression of metalloproteases and their inhibitors in invasive breast cancer. Magn Reson Imaging 2016; 34:1107-13. [PMID: 27114340 DOI: 10.1016/j.mri.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
Abstract
AIM Matrix metalloproteases (MMPs) expression and their inhibitors (TIMPs) play an important role in tumor physiopathology, so we investigated the relationship between the magnetic resonance (MR) and MMPs/TIMPs expression by breast carcinomas. MATERIALS AND METHODS MRI parameters of 64 breast carcinomas were investigated. An immunohistochemical study was also performed in these cases using tissue microarrays and specific antibodies against MMP-1, MMP-2, MMP-7, MMP-9, MMP-11, MMP-13, MMP-14, TIMP-1, TIMP-2 and TIMP-3. RESULTS Tumors with spiculated margins had a high global (score) values of MMP-1 or MMP-7, and high expression of TIMP-3 by tumor cells. Heterogeneous tumors had a higher score values of MMP-1, MMP-13, TIMP-2 or TIMP-3, and frequent expression of TIMP-3 by tumor cells. Tumors showing fast enhancement, had higher score values of MMP-1 or MMP-11. Associations between washout curve (type III) and MMP-1, MMP-11, MMP-13 and TIMP-1 expression by tumor cells, were found. CONCLUSIONS MRI features may predict in some grade the expressions of MMPs/TIMPs in breast tumors, which might to contribute to a better biological characterization of breast cancer.
Collapse
Affiliation(s)
| | - Óscar Fernández-Guinea
- Servicio de Radiologia Fundación Hospital de Jove, Avda. Eduardo de Castro, s/n., 33290, Gijón, Asturias
| | - Noemí Eiró
- Unidad de Investigación Fundación Hospital de Jove, Avda. Eduardo de Castro, s/n., 33290, Gijón, Asturias
| | - Luis O González
- Unidad de Investigación y Servicio de Anatomia Patológica Fundación Hospital de Jove, Avda. Eduardo de Castro, s/n., 33290, Gijón, Asturias
| | - Sara Junquera
- Unidad de Investigación Fundación Hospital de Jove, Avda. Eduardo de Castro, s/n., 33290, Gijón, Asturias
| | - Francisco J Vizoso
- Unidad de Investigación y Servicio de Cirugia General Fundación Hospital de Jove, Avda. Eduardo de Castro, s/n., 33290, Gijón, Asturias
| |
Collapse
|
11
|
Adissu HA, McKerlie C, Di Grappa M, Waterhouse P, Xu Q, Fang H, Khokha R, Wood GA. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer. Prostate 2015; 75:1831-43. [PMID: 26332574 DOI: 10.1002/pros.23056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. METHODS To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. RESULTS Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. CONCLUSIONS This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression.
Collapse
Affiliation(s)
- Hibret A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Colin McKerlie
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto 1 King's College Circle, Toronto, Ontario, Canada
| | - Marco Di Grappa
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Paul Waterhouse
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Qiang Xu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134:122-39. [PMID: 26432164 DOI: 10.1016/j.pneurobio.2015.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have attracted much attention since their regulatory roles in diverse cell processes were recognized. Emerging studies demonstrate that many ncRNAs are differentially expressed after injury to the nervous system, significantly affecting nerve regeneration. In this review, we compile the miRNAs and lncRNAs that have been reported to be dysregulated following a variety of central and peripheral nerve injuries, including acquired brain injury, spinal cord injury, and peripheral nerve injury. We also list investigations on how these miRNAs and lncRNAs exert the regulatory actions in neurodegenerative and neuroregenerative processes through different mechanisms involving their interaction with target coding genes. We believe that comprehension of the expression profiles and the possible functions of ncRNAs during the processes of nerve injury and regeneration will help understand the molecular mechanisms responsible for post-nerve-injury changes, and may contribute to the potential use of ncRNAs as a diagnostic marker and therapeutic target for nerve injury.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
13
|
Melnik BC. MiR-21: an environmental driver of malignant melanoma? J Transl Med 2015; 13:202. [PMID: 26116372 PMCID: PMC4482047 DOI: 10.1186/s12967-015-0570-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023] Open
Abstract
Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
14
|
Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, Yu B, Gu X, Ding F. miR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 2015; 586:43-9. [DOI: 10.1016/j.neulet.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
15
|
Wen CJ, Wu LX, Fu LJ, Yu J, Zhang YW, Zhang X, Zhou HH. Genomic screening for targets regulated by berberine in breast cancer cells. Asian Pac J Cancer Prev 2014; 14:6089-94. [PMID: 24289631 DOI: 10.7314/apjcp.2013.14.10.6089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Berberine, a common isoquinoline alkaloid, has been shown to possess anti-cancer activities. However, the underlying molecular mechanisms are still not completely understood. In the current study, we investigated the effects of berberine on cell growth, colony formation, cell cycle distribution, and whether it improved the anticancer efficiency of cisplatin and doxorubicin in human breast cancer estrogen receptor positive (ER+) MCF-7 cells and estrogen receptor negative (ER-) MDA-MB-231 cells. Notably, berberine treatment significantly inhibited cell growth and colony formation in the two cell lines, berberine in combination with cisplatin exerting synergistic growth inhibitory effects. Accompanied by decreased growth, berberine induced G1 phase arrest in MCF-7 but not MDA-MB-231 cells. To provide a more detailed understanding of the mechanisms of action of berberine, we performed genome-wide expression profiling of berberine-treated cells using cDNA microarrays. This revealed that there were 3,397 and 2,706 genes regulated by berberine in MCF-7 and MDA-MB-231 cells, respectively. Fene oncology (GO) analysis identified that many of the target genes were involved in regulation of the cell cycle, cell migration, apoptosis, and drug responses. To confirm the microarray data, qPCR analysis was conducted for 10 selected genes based on previously reported associations with breast cancer and GO analysis. In conclusion, berberine exhibits inhibitory effects on breast cancer cells proliferation, which is likely mediated by alteration of gene expression profiles.
Collapse
Affiliation(s)
- Chun-Jie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
16
|
Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther 2014; 21:290-6. [PMID: 24924200 DOI: 10.1038/cgt.2014.29] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022]
Abstract
Aberrantly expressed microRNAs (miRNAs) are involved in breast tumorigenesis. It is still unclear if and how miRNAs-221/222 are implicated in breast cancer and the resistance to estrogen receptor modulator tamoxifen. We investigated the roles and mechanisms of miR-221/222 in breast cancer cells, particularly in modulating response to tamoxifen therapy. MCF-7 and MDA-MB-231 breast cancer cells were transfected with antisense oligonucleotides AS-miR-221 and AS-miR-222 and their expression of miR-221 and miR-222 was assessed. The correlation of miR-221/222 with tissue inhibitor of metalloproteinase-3 (TIMP3) expression was investigated by fluorescence quantitative PCR and western blotting analysis. The therapeutic sensitivity of these cells, transfected and untransfected, to tamoxifen was determined. Transfection of AS-miR-221 and AS-miR-222 dramatically inhibited expression of miR-221 and miR-222, respectively, in both MCF-7 and MDA-MB-231 cells (P<0.05-0.01). Downregulation of miR-221/222 significantly increased the expression of TIMP3 compared with controls (P<0.05-0.01). The viability of estrogen receptor (ER)-positive MCF-7 cells transfected with AS-miR-221 or/and AS-miR-222 was significantly reduced by tamoxifen (P<0.05-0.01). We have demonstrated for the first time that suppression of miRNA-221/222 increases the sensitivity of ER-positive MCF-7 breast cancer cells to tamoxifen. This effect is mediated through upregulation of TIMP3. These findings suggest that upregulation of TIMP3 via inhibition of miRNA-221/222 could be a promising therapeutic approach for breast cancer.
Collapse
Affiliation(s)
- R Gan
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, China
| | - Y Yang
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, China
| | - X Yang
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, China
| | - L Zhao
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, China
| | - J Lu
- 1] Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, China [2] Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China [3] Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, China
| | - Q H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer, Houston, TX, USA
| |
Collapse
|
17
|
Anticancer gene transfer for cancer gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:255-80. [PMID: 25001541 DOI: 10.1007/978-1-4471-6458-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field.
Collapse
|
18
|
Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways. PLoS One 2013; 8:e70709. [PMID: 23894681 PMCID: PMC3722146 DOI: 10.1371/journal.pone.0070709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/26/2013] [Indexed: 12/18/2022] Open
Abstract
Background The matrix metalloproteinases (MMPs) and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1–4) are responsible for the physiological remodeling of the extracellular matrix (ECM). Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells. Methodology/Principal Findings Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ) or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2), ribosomal S6 kinase (RSK1) and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction. Conclusion The results demonstrate that exclusively cell surface-bound endogenous TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival signaling pathways.
Collapse
|
19
|
Yu BF, Wu J, Zhang Y, Sung HW, Xie J, Li RK. Ultrasound-targeted HSVtk and Timp3 gene delivery for synergistically enhanced antitumor effects in hepatoma. Cancer Gene Ther 2013; 20:290-7. [DOI: 10.1038/cgt.2013.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Leivonen SK, Lazaridis K, Decock J, Chantry A, Edwards DR, Kähäri VM. TGF-β-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2. PLoS One 2013; 8:e57474. [PMID: 23468994 PMCID: PMC3585359 DOI: 10.1371/journal.pone.0057474] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/22/2013] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) promotes extracellular matrix deposition by down-regulating the expression of matrix degrading proteinases and upregulating their inhibitors. Tissue inhibitor of metalloproteinases (TIMP)-3 is an ECM-associated specific inhibitor of matrix degrading metalloproteinases. Here, we have characterized the signaling pathways mediating TGF-β-induced expression of TIMP-3. Basal and TGF-β-induced TIMP-3 mRNA expression was abolished in Smad4-deficient mouse embryonic fibroblasts and restoring Smad4 expression rescued the response. Inhibition of Smad signaling by expression of Smad7 and dominant negative Smad3 completely abolished TGF-β-elicited expression of TIMP-3 in human fibroblasts, whereas overexpression of Smad3 enhanced it. Inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation with PD98059 and p38 mitogen-activated protein kinase activity by SB203580 resulted in suppression of TGF-β-induced TIMP-3 expression, indicating that ERK1/2 and p38 MAPK mediate the effect of TGF-β on TIMP-3 expression. Specific activation of p38α and ERK1/2 by constitutively active mutants of MKK3b or MEK1, respectively, and simultaneous co-expression of Smad3 resulted in induction of TIMP-3 expression in the absence of TGF-β indicating that Smad3 co-operates with p38 and ERK1/2 in the induction of TIMP-3 expression. These results demonstrate the complex interplay between Smad3, p38α, and ERK1/2 signaling in the regulation of TIMP-3 gene expression in fibroblasts, which may play a role in inflammation, tissue repair, and fibrosis.
Collapse
Affiliation(s)
- Suvi-Katri Leivonen
- Department of Dermatology, University of Turku, and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Julie Decock
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Dylan R. Edwards
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail: (DRE); (V-MK)
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku, and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- * E-mail: (DRE); (V-MK)
| |
Collapse
|
21
|
Kallio JP, Hopkins-Donaldson S, Baker AH, Kähäri VM. TIMP-3 promotes apoptosis in nonadherent small cell lung carcinoma cells lacking functional death receptor pathway. Int J Cancer 2011; 128:991-6. [PMID: 20473894 DOI: 10.1002/ijc.25404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) has previously been identified as a tumor suppressor for adherent malignant and normal cells. TIMP-3 inhibits adhesion of cells to extracellular matrix and promotes apoptosis through death receptor-activated, caspase-8-mediated pathway. Here, we have studied the effect of adenovirally mediated overexpression of TIMP-3 on small cell lung cancer (SCLC) cell lines SW2 and N417, which grow in suspension and lack functional caspase-8. The results show that adenoviral delivery of TIMP-3 promotes apoptotic cell death in SCLC cells in the absence of caspase-8 activation. These results suggest TIMP-3 as a promising therapeutic anticancer protein also in nonadherent malignant cells lacking functional death receptor signaling.
Collapse
Affiliation(s)
- Janne P Kallio
- Department of Dermatology, University of Turku and Turku University Hospital and MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
22
|
Protodynamic intracellular acidification by cis-urocanic acid promotes apoptosis of melanoma cells in vitro and in vivo. J Invest Dermatol 2010; 130:2431-9. [PMID: 20520626 DOI: 10.1038/jid.2010.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extracellular tumor microenvironment is acidified, whereas the intracellular pH of tumor and stromal cells is neutral. cis-Urocanic acid (cis-UCA), an endogenous compound of the skin, can acidify the cytosol by transporting protons into the cells. This phenomenon, termed the protodynamic concept, was studied here in human cancer cells. cis-UCA dose-dependently reduced the number of viable human melanoma, cervical carcinoma, and fibrosarcoma cells at weakly acidic extracellular pH. The intracellular pH decreased by up to 0.5 pH units in a concentration-dependent manner with 0.3-30 m cis-UCA at extracellular pH 6.5 but not at pH 7.4. Under the same conditions, 30 mM cis-UCA induced annexin-V binding and activation of caspase-3 in A2058 melanoma cells as signs of apoptotic cell death. Finally, growth of human melanoma xenografts in SCID mice was suppressed by 60% following intratumoral injection of cis-UCA. Accordingly, the percentage of tumor necrosis and active caspase-3-immunopositive cells increased, whereas proliferation activity decreased. These results identify cis-UCA as an anticancer agent inhibiting melanoma growth by immediate intracellular acidification followed by apoptotic cell death in vivo.
Collapse
|
23
|
Expression of metalloproteases and their inhibitors by tumor and stromal cells in ductal carcinoma in situ of the breast and their relationship with microinvasive events. J Cancer Res Clin Oncol 2010; 136:1313-21. [PMID: 20127359 DOI: 10.1007/s00432-010-0782-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/14/2010] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed to investigate the expression of matrix metalloproteases (MMPs) and their inhibitors (TIMPs) in ductal carcinoma in situ (DCIS). METHODS We used inmunohistochemistry to compare the expression of MMPs and TIMPs in tumor or stromal cells for 50 pure DCIS and 12 DCIS with microinvasive foci. RESULTS Score values for collagenase-1 (MMP-1), membrane type 1 MMP (MMP-14), and TIMP-1, were significantly higher in pure DCIS than in DCIS with microinvasive foci, whereas stromalysin-3 (MMP-11) expression was significantly higher in DCIS with microinvasive foci. Both fibroblasts and mononuclear inflammatory cells (MICs) surrounding pure DCIS showed more frequently expression of MMP-1, MMP-14, and TIMP-3, whereas MMP-11 expression was more frequent in MICs of microinvasive tumors. MICs of microinvasive foci more frequently showed the expression of gelatinase A (MMP-2), MMP-11, collagenase-3 (MMP-13), and TIMP-1, than MICs surrounding pure DCIS; whereas peri-ductal MICs and fibroblasts from pure DCIS expressed TIMP-3 more commonly than these cells at microinvasive foci. CONCLUSIONS There are significant differences in the expression of MMPs and TIMPs, so in tumor cells and stromal cells, between pure DCIS and DCIS with microinvasive foci. Therefore, these staining patterns might display potential applications as biological markers, such as in evaluating microinvasion in resection specimens of breast tumors.
Collapse
|
24
|
Kaur B, Cripe TP, Chiocca EA. "Buy one get one free": armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 2010; 9:341-55. [PMID: 19860649 DOI: 10.2174/156652309789753329] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oncolytic viral therapy is a promising biological therapy for the treatment of cancer. Recent advances in genetic engineering have facilitated the construction of custom-built oncolytic viruses that can be exquisitely targeted to tumors by exploiting each cancer's unique biology and their efficacy can be further enhanced by "arming" them with additional therapeutic genes. Such an approach allows the virus to unload its "therapeutic cargo" at the tumor site, thereby enhancing its anti-neoplastic properties. While several clever strategies have been recently described using genes that can induce cellular apoptosis/suicide and/or facilitate tumor/virus imaging, viruses armed with genes that also affect the tumor microenvironment present an exciting and promising approach to therapy. In this review we discuss recently developed oncolytic viruses armed with genes encoding for angiostatic factors, inflammatory cytokines, or proteases that modulate the extracellular matrix to regulate tumor vascularization, anti-tumor immune responses and viral spread throughout the solid tumor.
Collapse
Affiliation(s)
- Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, 400 West 12th Avenue, Columbus, OH 43210,USA.
| | | | | |
Collapse
|
25
|
Celebiler Cavusoglu A, Kilic Y, Saydam S, Canda T, Başkan Z, Sevinc AI, Sakizli M. Predicting invasive phenotype with CDH1, CDH13, CD44, and TIMP3 gene expression in primary breast cancer. Cancer Sci 2009; 100:2341-5. [PMID: 19799609 PMCID: PMC11158734 DOI: 10.1111/j.1349-7006.2009.01333.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We aimed to determine changes in the expression of the genes CDH1, CDH13, CD44, and TIMP3 to look for any relationship between them, HER2 and ESR1 expression at the RNA level, and the histopathological properties of tumors. We also analyzed the expression properties of double-negative (estrogen receptor [ER] and human epidermal growth factor receptor [HER2] both negative) breast tumors. Expression status was studied in fresh tissue at the mRNA level with quantitative PCR using hydrolysis probes. Sixty-two cancer patients and four normal controls were included in the study. When the tumor group was analyzed as a whole, the correlations of ESR1 with CDH1, CDH13, and TIMP3 were P < 0.05, P < 0.005, and P < 0.005, respectively. In ER-positive tumors, CDH1 and CDH13 were correlated directly (P < 0.005) when HER2 was correlated with CDH1, CDH13, and TIMP3 indirectly (P < 0.005, P < 0.005, and P < 0.05, respectively). CDH1 and CD44 had a strong indirect correlation (P < 0.005) in ER-negative tumors. There were significant differences in the expression levels of the CDH13, TIMP3, and CD44 genes (P < 0.005, P < 0.005, and P < 0.05, respectively) between the ER-positive and -negative groups. All four genes were found to be correlated with invasive properties in both ER-positive and -negative tumors. In double-negative tumor samples, only CD44 had a significant and strong correlation with stage, lymph node involvement, and metastasis (P < 0.05, P < 0.005, and P < 0.05, respectively). As a conclusion, a decrease in CDH1, CDH13, and TIMP3 expression levels with an increase in CD44 can be used as an indicator for invasion in both ER-positive and -negative breast tumors. In double-negative tumor tissues, CD44 can be considered a marker for aggressive properties.
Collapse
|
26
|
Ndong JDLC, Jean D, Rousselet N, Frade R. Down-regulation of the expression of RB18A/MED1, a cofactor of transcription, triggers strong tumorigenic phenotype of human melanoma cells. Int J Cancer 2009; 124:2597-606. [PMID: 19243021 DOI: 10.1002/ijc.24253] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The RB18A/MED1 human gene, also named TRAP220, DRIP205 and PBP, encodes for a single 205 kDa component, which interacts with nuclear receptors and transcription factors. RB18A/MED1 chromosome localization on locus 17q12-q21.1 suggests its involvement in human cancers. We herein analyzed RB18A/MED1 expression in human melanoma cell lines. We found that RB18A/MED1 is either highly or weakly expressed in melanoma cells, depending on their respectively non or highly-tumorigenic phenotype. We therefore investigated the possible existence of a relationship between the RB18A/MED1 expression level and melanoma cell phenotype. For this purpose, we down-regulated RB18A/MED1 expression by transfecting melanoma cells with a RB18A/MED1 small interfering RNA (siRNA), specific to the 3'-untranslated region of native RB18A/MED1 RNA, already demonstrated to inhibit specifically RB18A/MED1 protein expression. A nonspecific (scrambled) siRNA was used as control. This RB18A/MED1 siRNA did not modify the expression of cathepsin L forms or lamin A/C, nor the secretion of procathepsin L and MMP2 in transfected cells. Analysis using a microarray membrane with 113 cancer-related genes, western blot and specific tests, demonstrated that RB18A/MED1 knockdown significantly inhibits tissue inhibitor of metalloproteinase-3 expression, and increases uPAR expression, two genes well known to be involved in melanoma cell invasion, through modifications of the tumor microenvironment. Indeed, RB18A/MED1 knockdown in melanoma cells in vitro increased their invasive properties, without modification of cell proliferation. Furthermore, RB18A/MED1 knockdown in vivo switched melanoma phenotype from non to strongly-tumorigenic in nude mice. Our data thus demonstrated for the first time that a decrease of RB18A/MED1 expression in human melanoma cells increases their tumorigenic phenotype.
Collapse
Affiliation(s)
- Jean de La Croix Ndong
- INSERM U.672, Immunochemistry of Cell Regulations and Viral Interactions, EVRY Cedex, France
| | | | | | | |
Collapse
|
27
|
Zadelaar SM, Boesten LSM, Pires NMM, van Nieuwkoop A, Biessen EAL, Jukema W, Havekes LM, van Vlijmen BJM, Willems van Dijk K. Local Cre-mediated gene recombination in vascular smooth muscle cells in mice. Transgenic Res 2009; 15:31-6. [PMID: 16475008 DOI: 10.1007/s11248-005-3226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/17/2005] [Indexed: 01/06/2023]
Abstract
Here we describe a means to conditionally modify genes at a predefined and localized region of the vasculature using a perivascular drug delivery device (PDD). A 4-hydroxytamoxifen (4-OHT)-eluting PDD was applied around the carotid or femoral artery of a mouse strain carrying both the tamoxifen-inducible and smooth muscle cell (SMC)-specific Cre-recombinase (SM-Cre-ER(T2)) transgene and a stop-floxed beta-galactosidase gene in the Rosa26 locus: the SM-CreER(T2)(ki)/rosa26 mouse. A dose and time curve of 0-10% (w/w) 4-OHT and 0-14 days application of the PDD in SM-CreER(T2)(ki)/rosa26 mice showed optimal gene recombination at 1% (w/w) 4-OHT loading at 7 days post application (carotid artery 2.4+/-1.8%; femoral artery 4.0+/-3.8% of SMCs). The unique 4-OHT-eluting PDD allowed us to achieve SMC-specific recombination in the same order of magnitude as compared to systemic tamoxifen administration. In addition, recombination was completely confined to the PDD-treated vessel wall segment. Thus, local application of a 4-OHT-eluting PDD results in vascular SMC-specific Cre-mediated recombination in SM-CreER(T2)(ki)/rosa26 mice without affecting additional SMCs.
Collapse
MESH Headings
- Animals
- Drug Delivery Systems
- Integrases/genetics
- Integrases/physiology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Promoter Regions, Genetic
- Recombination, Genetic/drug effects
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Susanne M Zadelaar
- Department of Cardiology, p/o TNO-Quality of Life Gaubius Laboratory, Leiden University Medical Centre, Zernikedreef 9, P.O. Box 2215, 2301 CE, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonzalez LO, Corte MD, Vazquez J, Junquera S, Sanchez R, Viña A, Rodriguez JC, Lamelas ML, Vizoso F. Study of matrix metalloproteinases and their tissue inhibitors in ductal in situ carcinomas of the breast. Histopathology 2009; 53:403-15. [PMID: 18983606 DOI: 10.1111/j.1365-2559.2008.03136.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS To analyse the expression of metalloproteinases (MMPs) and their inhibitors (TIMPs) in ductal carcinoma in situ of the breast (DCIS). METHODS AND RESULTS An immunohistochemical study was performed in 56 patients with pure DCIS, in 39 with DCIS adjacent to invasive carcinoma (IDC) and 63 patients with T1 IDC, using tissue microarrays and specific antibodies against MMPs and TIMPs. Immunohistochemical results were categorized using a specific software program. The data were analysed by unsupervised hierarchical cluster analysis by each cellular type. IDC showed a higher expression rate of MMP-7 and TIMP-1 than pure DCIS, as well as a higher expression rate of MMP-9 and TIMP-3 than the DCIS component of mixed cases, whereas pure DCIS showed a higher rate of expression of MMP-9 and -11 and TIMP-3 than in the DCIS component of mixed cases. Pure DCIS with a periductal inflammatory infiltrate showed significantly higher MMP-2, -14 and TIMP-1. Dendograms identified two cluster groups with distinct MMP/TIMP expression profiles in neoplastic cells and fibroblastic or mononuclear inflammatory cells surrounding the neoplastic ducts of pure DCIS. CONCLUSIONS The results indicate the distinct variability in MMP/TIMP expression by DCIS, which may be of potential biological and clinical interest in breast cancer.
Collapse
Affiliation(s)
- L O Gonzalez
- Unidad de Investigación, Hospital de Jove, Gijón, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chetty C, Lakka SS, Bhoopathi P, Kunigal S, Geiss R, Rao JS. Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res 2008; 68:4736-45. [PMID: 18559520 DOI: 10.1158/0008-5472.can-07-6612] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2) expression is often up-regulated in advanced cancers and known to play an important role in tumor angiogenesis. We previously showed that adenoviral-mediated delivery of siRNA for MMP-2 (Ad-MMP-2-Si) inhibited lung cancer growth, angiogenesis, and metastasis. In this study, we investigated the signaling mechanisms involved in Ad-MMP-2-Si-mediated inhibition of angiogenesis. Ad-MMP-2-Si treatment inhibited neovascularization in vivo as determined by mouse dorsal air sac model, and conditioned medium from Ad-MMP-2-Si-infected A549 lung cancer cells (Ad-MMP-2-Si-CM) inhibited endothelial tube formation in vitro. Ad-MMP-2-Si-CM decreased proliferation as determined by Ki-67 immunofluorescence and induced apoptosis in endothelial cells as determined by terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) assay. Furthermore, Ad-MMP-2-Si-CM inhibited AKT phosphorylation and induced phosphorylation of extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase in endothelial cells. Overexpression of constitutively active AKT reversed the Ad-MMP-2-Si-CM-mediated inhibition of tube formation and induction of ERK phosphorylation. Conversely, Ad-MMP-2-Si-CM induced tissue inhibitor of metalloproteinase (TIMP) 3 expression, and the interaction of vascular endothelial growth factor 2 and TIMP-3 was determined by coimmunoprecipitation experiments. TIMP-3 induction was mediated by ERK activation. In addition, electrophoretic mobility shift and chromatin immunoprecipitation assays show that Sp1 transcription factor mediated Ad-MMP-2-Si-CM-stimulated increase of TIMP-3. Vasculature destruction was confirmed with colocalization studies with TUNEL and an endothelial marker, CD31, in tumor sections of Ad-MMP-2-Si-treated mice. Our data collectively suggest that MMP-2 inhibition induces endothelial apoptosis in vivo and inhibits endothelial tube formation. These experiments provide the first evidence that inhibition of p-AKT and induction of p-ERK1/2 are crucial events in the induction of TIMP-3-mediated endothelial apoptosis in MMP-2 inhibited lung tumors.
Collapse
Affiliation(s)
- Chandramu Chetty
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hofmeister V, Schrama D, Becker JC. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 2008; 57:1-17. [PMID: 17661033 PMCID: PMC11029837 DOI: 10.1007/s00262-007-0365-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/05/2007] [Indexed: 12/12/2022]
Abstract
For anti-tumor therapy different strategies have been employed, e.g., radiotherapy, chemotherapy, or immunotherapy. Notably, these approaches do not only address the tumor cells themselves, but also the tumor stroma cells, e.g., endothelial cells, fibroblasts, and macrophages. This is of advantage, since these cells actively contribute to the proliferative and invasive behavior of the tumor cells via secretion of growth factors, angiogenic factors, cytokines, and proteolytic enzymes. In addition, tumor stroma cells take part in immune evasion mechanisms of cancer. Thus, approaches targeting the tumor stroma attract increasing attention as anti-cancer therapy. Several molecules including growth factors (e.g., VEGF, CTGF), growth factor receptors (CD105, VEGFRs), adhesion molecules (alphavbeta3 integrin), and enzymes (CAIX, FAPalpha, MMPs, PSMA, uPA) are induced or upregulated in the tumor microenvironment which are otherwise characterized by a restricted expression pattern in differentiated tissues. Consequently, these molecules can be targeted by inhibitors as well as by active and passive immunotherapy to treat cancer. Here we discuss the results of these approaches tested in preclinical models and clinical trials.
Collapse
Affiliation(s)
- Valeska Hofmeister
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - David Schrama
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Jürgen C. Becker
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| |
Collapse
|
31
|
Zhang Y, Qian H, Lin C, Lang J, Xiang Y, Fu M, Zhang X, Liang X. Adenovirus carrying TIMP-3: A potential tool for cervical cancer treatment. Gynecol Oncol 2008; 108:234-40. [DOI: 10.1016/j.ygyno.2007.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/03/2007] [Accepted: 09/21/2007] [Indexed: 12/18/2022]
|
32
|
Chetty C, Bhoopathi P, Lakka SS, Rao JS. MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene 2007; 26:7675-83. [PMID: 17599056 PMCID: PMC2167629 DOI: 10.1038/sj.onc.1210584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have previously reported that the downregulation of MMP-2 by adenovirus-mediated delivery of MMP-2 siRNA (Ad-MMP-2) reduced spheroid invasion and angiogenesis in vitro, and, metastasis and tumor growth in vivo. In this study, we investigated the mechanism of Ad-MMP-2-mediated growth inhibition in vitro and in vivo. Ad-MMP-2 infection led to the induction of apoptosis as determined by TUNEL assay, Annexin-V staining and PARP-1 cleavage in a dose-dependent manner in A549 cells. Ad-MMP-2 decreased the content of the antiapoptotic members of the Bcl-2 family proteins (Bcl-2 and Bcl-xL) and increased the content of the pro-apoptotic members of the Bcl-2 family (Bax and Bcl-xS) as determined by immunoblotting analysis. Furthermore, Ad-MMP-2-mediated apoptosis was accompanied by increase in truncated Bid, release of cytochrome c and the activation of caspase-8, -9 and -3. Immunoblot analysis showed that Ad-MMP-2 infection caused upregulation of Fas/Fas-L and FADD, and Anti-Fas-L antibody reversed Ad-MMP-2-induced apoptosis. Tissue inhibitor of metalloproteinases (TIMP)-3, an endogenous inhibitor of MMP-2, which cleaves Fas-L and activates the Fas/Fas-L inducing apoptotic pathway, was increased in Ad-MMP-2-treated cells. Adenovirus-mediated expression of MMP-2 siRNA in human lung xenografts in vivo resulted in increased immunostaining of Fas, Fas-L, cleaved Bid and TIMP-3. This is the first report, to our knowledge, showing that MMP-2 inhibition upregulates TIMP-3 levels, which in turn, promotes apoptosis in lung cancer.
Collapse
Affiliation(s)
- C Chetty
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | | | |
Collapse
|
33
|
Bogaczewicz J, Jasielski P, Mosiewicz A, Trojanowski T, Suchozebrska-Jesionek D, Stryjecka-Zimmer M. [The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in invasion of tumours of neuroepithelial tissue]. Neurol Neurochir Pol 2007; 45:291-338. [PMID: 17103354 DOI: 10.1080/10408360801973244] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumour invasion requires degradation of extracellular matrix components and migration of cells through degraded structures into surrounding tissues. Matrix metalloproteinases (MMP) constitute a family of zinc and calcium-dependent endopeptidases that play a key role in the breakdown of extracellular matrix, and in processing of cytokines, growth factors, chemokines and cell surface receptors. Their activity is regulated at the levels of transcription, activation and inhibition by tissue inhibitors of metalloproteinases (TIMP). Changes in expression of MMP and TIMP are implicated in tumour invasion, because they may contribute to both migration of tumour cells and angiogenesis. Alterations of MMP expression observed in brain tumours arouse interest in the development and evaluation of synthetic matrix metalloproteinase inhibitors as antitumour agents.
Collapse
Affiliation(s)
- Jarosław Bogaczewicz
- Katedra i Klinika Neurochirurgii i Neurochirurgii Dzieciêcej, Akademia Medyczna im. prof. Feliksa Skubiszewskiego, ul. Jaczewskiego 8, 20-954 Lublin.
| | | | | | | | | | | |
Collapse
|
34
|
Mylona E, Magkou C, Giannopoulou I, Agrogiannis G, Markaki S, Keramopoulos A, Nakopoulou L. Expression of tissue inhibitor of matrix metalloproteinases (TIMP)-3 protein in invasive breast carcinoma: relation to tumor phenotype and clinical outcome. Breast Cancer Res 2007; 8:R57. [PMID: 17032447 PMCID: PMC1779495 DOI: 10.1186/bcr1607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/28/2006] [Accepted: 10/10/2006] [Indexed: 11/16/2022] Open
Abstract
Introduction Our aim was to study the expression pattern of tissue inhibitor of metalloproteinases (TIMP)-3 protein in invasive breast carcinoma, and its clinicopathological and prognostic value as well as its relation to markers indicative of the tumor phenotype. Methods Immunohistochemistry was performed on paraffin-embedded tissue specimens from 173 invasive breast carcinomas to detect the proteins TIMP-3, estrogen receptor (ER), progesterone receptor, p53, c-erbB-2, topoisomerase IIα and Bcl-2. Results TIMP-3 protein was immunodetected in the cytoplasm of the malignant cells and the peritumoral stroma, as well as in in situ carcinoma and normal epithelium. Reduced expression of TIMP-3 protein within cancer cells was correlated with carcinomas of high nuclear and histological grade (p = 0.032 and p = 0.015, respectively), and low ER expression (p = 0.053). Moreover, TIMP-3 immunopositivity was inversely correlated with the expression of p53 and topoIIα proteins (p = 0.002 and p = 0.008, respectively), whereas it was positively associated with Bcl-2 expression (p = 0.020). Reduced expression of TIMP-3 protein within cancer cells was found to have an unfavorable impact on disease-free survival (p = 0.052) in the entirety of the patient population, as well as in both subgroups of lymph-node-positive and mutant-p53-negative patients (p = 0.007 and p = 0.037, respectively). Stromal localization of TIMP-3 protein was found to have no clinicopathological or prognostic value. Conclusion This is the first immunohistochemical study to show that TIMP-3 protein within cancer cells is associated with tumor phenotype. Reduced expression of TIMP-3 protein within cancer cells was found to correlate with an aggressive tumor phenotype, negatively affecting the disease-free survival of both subgroups of lymph node-positive and mutant-p53-negative patients.
Collapse
Affiliation(s)
- Eleni Mylona
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, GR-115 27 Athens, Greece
| | - Christina Magkou
- Department of Pathology, Attikon Hospital, 1 Rimini Street, GR-124 62 Chaidari, Athens, Greece
| | - Ioanna Giannopoulou
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, GR-115 27 Athens, Greece
| | - George Agrogiannis
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, GR-115 27 Athens, Greece
| | - Sofia Markaki
- Department of Pathology, Alexandra Hospital, 80 Vasilissis Sofias Street, GR-115 28 Athens, Greece
| | - Antonios Keramopoulos
- Department of Pathology, Alexandra Hospital, 80 Vasilissis Sofias Street, GR-115 28 Athens, Greece
| | - Lydia Nakopoulou
- Department of Pathology, Attikon Hospital, 1 Rimini Street, GR-124 62 Chaidari, Athens, Greece
| |
Collapse
|
35
|
Abstract
Matrix metalloproteases (MMPs) are a collection of enzymes capable of cleaving extracellular matrix components, growth factors, and cell-surface receptors. MMPs modulate most aspects of tumorigenesis and are highly expressed in cancer compared with normal tissues. Preclinical studies have demonstrated that head and neck squamous cell carcinomas (HNSCCs) express high levels of MMPs in vivo and that inhibition of these enzymes in vitro and in mouse models decreases invasion and metastasis. However, the clinical trials for MMP inhibitors have failed to demonstrate a significant survival advantage in most cancers. The disparity between preclinical and clinical studies has led to the reevaluation of how MMP functions in cancer and the design of clinical trials for molecularly targeted agents. Mouse model data and analysis of HNSCC tumor specimens suggests that membrane type-1 MMP (MT1-MMP) may be a critical enzyme in tumor cell invasion and survival in vivo. This accumulated data provide evidence for development of selective MT1-MMP inhibitors as therapy in HNSCC.
Collapse
Affiliation(s)
- Eben L Rosenthal
- Department of Surgery, Division of Otolaryngology, BDB Suite 563, 1530 3rd Avenue South, Birmingham, AL 35294-0012, USA.
| | | |
Collapse
|
36
|
Abstract
Tumor-associated vasculature is a relatively accessible component of solid cancers that is essential for tumor survival and growth, providing a vulnerable target for cancer gene therapy administered by intravenous injection. Several features of tumor-associated vasculature are different from normal vasculature, including overexpression of receptors for angiogenic growth factors, markers of vasculogenesis, upregulation of coagulation cascades, aberrant expression of adhesion molecules and molecular consequences of hypoxia. Many of these differences provide candidate targets for tumor-selective 'transductional targeting' of genetically- or chemically modified vectors and upregulated gene expression can also enable 'transcriptional targeting', regulating tumor endothelia-selective expression of transgenes following nonspecific gene delivery. Tumor vasculature also represents an important site of therapeutic action by the secreted products of antiangiogenic gene therapies that are expressed in non-endothelial cells. In this review we assess the challenges faced and the vectors that may be suitable for gene delivery to exploit these targets. We also overview some of the strategies that have been developed to date and highlight the most promising areas of research.
Collapse
Affiliation(s)
- M Bazan-Peregrino
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, UK
| | | | | |
Collapse
|
37
|
Vignaud JM, Ménard O, Weinbreck N, Siat J, Borrelly J, Marie B, Martinet N, Martinet Y. Evaluation of the Spatial Diffusion of Methylene Blue Injected in vivo by Bronchoscopy into Non-Small Cell Lung Carcinoma. Respiration 2006; 73:658-63. [PMID: 16825754 DOI: 10.1159/000094392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 05/10/2006] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to smoking prevalence and the poor efficiency of current therapy, lung cancer is the leading cause of cancer death in developed countries, and its worldwide incidence is steadily increasing. Gene therapy by direct intratumoral injection of different types of gene constructs through a fiberscope has been suggested and evaluated in a few patients. OBJECTIVE It was the aim of this study to observe the actual volume of diffusion within a lung tumor using a color marker. METHODS Using bronchoscopy, just after anesthesia, methylene blue was injected into patient tumors. These patients subsequently underwent surgery for treatment of a non-small cell lung cancer. RESULTS We observed a diffusion of methylene blue in resected lung tumors with a mean infiltrated versus noninfiltrated tumor volume ratio of 29 +/- 15%. Interestingly, some large tumor areas were not stained. At the cellular level, a preferential diffusion of the dye was observed in the tumor stroma compartment versus the tumor cellular compartment, where basal cells were more frequently and strongly labeled than the other tumor cells. CONCLUSIONS Since a cancer is cured when most, if not all, cancer cells are killed, the preliminary evaluation of the spatial diffusion of any injected gene construct should be carried out as a first step in any cancer type.
Collapse
Affiliation(s)
- Jean-Michel Vignaud
- Service d'Anatomie Pathologique, Hôpital Central, CHU de Nancy, Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vähä-Koskela MJV, Kallio JP, Jansson LC, Heikkilä JE, Zakhartchenko VA, Kallajoki MA, Kähäri VM, Hinkkanen AE. Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res 2006; 66:7185-94. [PMID: 16849565 DOI: 10.1158/0008-5472.can-05-2214] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses have gained attention as a novel form of cancer treatment. Many viral vectors in use today have been rendered safe by deletion of genes encoding viral structural proteins, thus making them unable to spread beyond the first infected cells. Hence, such replication-deficient constructs may lack efficacy. Here, we analyzed the oncolytic potential of the replication-competent vector VA7-EGFP, based on the avirulent Semliki Forest virus (SFV) strain A7(74), to kill cancer cells in culture as well as to target s.c. human melanoma xenografts in severe combined immunodeficient (SCID) mice. VA7-EGFP was able to infect most cancer cell lines studied, leading to complete lysis of the cells within 72 hours after infection. In SCID mice grafted with A2058 human melanoma, marked regression of the xenografts was observed following a single injection of 10(6) plaque-forming units of virus given either i.p., i.v., or intratumorally. Histologic analysis revealed the presence of virus not only in all treated tumors but also in the brains of the treated mice, causing progressing neuropathology beginning at day 16 after infection. Following initial oncolysis, clusters of viable tumor cells were observed embedded in connective tissue, and at later stages, encapsulated tumor nodules had formed. Infection of melanoma cells from explant cultures of these nodules revealed that a portion of the cells were resistant to virus. To be eligible for use in virotherapy, the ability of avirulent SFV to spread within tumor tissue may have to be improved and the biological safety of the virus may have to be addressed thoroughly in higher animals.
Collapse
Affiliation(s)
- Markus J V Vähä-Koskela
- Abo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Deng X, Bhagat S, Dong Z, Mullins C, Chinni SR, Cher M. Tissue inhibitor of metalloproteinase-3 induces apoptosis in prostate cancer cells and confers increased sensitivity to paclitaxel. Eur J Cancer 2006; 42:3267-73. [PMID: 16950615 DOI: 10.1016/j.ejca.2006.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Accepted: 07/18/2006] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most common cancer and the second leading cause of cancer-related death in American men. To investigate the possible usefulness of tissue inhibitor of metalloproteinase-3 (TIMP-3) in prostate cancer gene therapy, we used an adenovirus expressing TIMP-3 to assess its role as an apoptosis trigger in highly metastatic prostate cancer cell lines PC-3 and DU-145. We showed that TIMP-3 alone induced apoptotic cell death which was triggered by mitochondrion-mediated caspase-3 activation. In combination treatment, we found that adenovirus-mediated expression of TIMP-3 greatly sensitised prostate cancer cells to chemotherapeutic drug paclitaxel, indicating a superadditive or synergistic effect of TIMP-3 and cytostatic treatment on prostate cancer cell death. The proper combination of adenovirus-mediated expression of TIMP-3 with conventional chemotherapeutic drug(s) could have potential benefits in treating highly metastatic prostate cancer.
Collapse
Affiliation(s)
- Xiyun Deng
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Cutroneo KR, White SL, Chiu JF, Ehrlich HP. Tissue fibrosis and carcinogenesis: divergent or successive pathways dictate multiple molecular therapeutic targets for oligo decoy therapies. J Cell Biochem 2006; 97:1161-74. [PMID: 16408276 DOI: 10.1002/jcb.20750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) is composed of several families of macromolecular components: fibrous proteins such as collagens, type I collagen (COL1), type III collagen (COL3), fibronectin, elastin, and glycoconjugates such as proteoglycans and matrix glycoproteins. Their receptors on the cell membrane, most of which in the case of the ECM belong to the integrins, which are heterodimeric proteins composed of alpha and beta chains. COL1 is the major fibrous collagen of bone, tendon, and skin; while COL3 is the more pliable collagen of organs like liver. Focus will not only be given to the regulation of synthesis of several fibrogenic parameters but also modulation of their degradation during growth factor-induced tissue fibrosis and cancer development. Evidence will be provided that certain tissues, which undergo fibrosis, also become cancerous. Why does there exist a divergency between tissues, which undergo frank fibrosis as an endpoint, and those tissues that undergo fibrosis and subsequently are susceptible to carcinogenicity; resulting from the etiological factor(s) causing the initial injury? For example, why does a polyvinyl alcohol (PVA) sponge implant become encapsulated and filled with fibrous tissue then fibrosis tissue growth stops? Why does the subcutaneous injection of a fibrogenic growth factor cause a benign growth and incisional wounding results in fibrosis and ultimately scarring? There are many examples of tissues, which undergo fibrosis as a prerequisite to carcinogenesis. Is there a cause-effect relationship? If you block tissue fibrosis in these precancerous tissues, would you block cancer formation? What are the molecular targets for blocking fibrosis and ultimately carcinogenesis? How can oligo decoys may be used to attenuate carcinogenesis and which oligo decoys specifically attenuate fibrogenesis as a prelude to carcinogenesis? What are other molecular targets for oligo decoy therapy in carcinogenesis?
Collapse
Affiliation(s)
- Kenneth R Cutroneo
- Department of Biochemistry, College of Medicine, 89 Beaumont Avenue, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
41
|
Montel V, Mose ES, Tarin D. Tumor-stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. Int J Cancer 2006; 119:251-63. [PMID: 16482564 DOI: 10.1002/ijc.21757] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study used a unique xenogeneic breast cancer model to study the effects of tumor cells and neighboring host cells upon each other in tumor growth and metastasis. It exploited species differences between the interacting components to determine how the host influenced the tumor and vice versa. It was found that the gene expression profiles of highly and poorly metastatic clones from the same human breast carcinoma changed differentially when the cells were transferred from growth in vitro to the mammary gland. We describe novel sets of genes, validated by human-specific probes, which were induced in the 2 isogenic, but phenotypically different, tumor lineages by the mammary environment. Conversely, the tumor cells also induced changes in gene expression in the neighboring host stromal (i.e., mesenchymal) cell lineages, validated by mouse-specific probes. Reciprocal inductive interactions were also demonstrated in the tumor deposits formed preferentially in the lungs and lymph nodes by the highly metastatic tumor cells. Subtraction of the induced gene changes in the primary site from those in the metastases revealed that the number and magnitude of specific gene inductions in colonized organs were moderate. This finding indicates that the gene expression program causing metastasis has only limited flexibility and fits well with clinical observations that tumor cells form metastases preferentially in select organs, although tumor cells are scattered ubiquitously. This dependency on suitable host niches suggests new molecular therapeutic avenues that target genes in the host-support system that is manipulated by the malignant cells.
Collapse
Affiliation(s)
- Valérie Montel
- Rebecca and John Moores Comprehensive Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0803, USA
| | | | | |
Collapse
|
42
|
Lam P, Sian Lim K, Mei Wang S, Hui KM. A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. Mol Ther 2006; 12:144-52. [PMID: 15963930 DOI: 10.1016/j.ymthe.2005.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 12/17/2022] Open
Abstract
Glial cell invasion is a multistep cellular process that involves a complex system of tightly regulated proteases (matrix metalloproteinases; MMPs) and their endogenous inhibitors (tissue inhibitors of metalloproteinases; TIMPs) to mediate the degradation of the basement membrane and extracellular matrix. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of MMPs. In the present study, we have overexpressed the TIMP3 gene in human glioma cells with a herpes simplex virus type 1 amplicon-based vector. Oligonucleotide DNA arrays were employed to identify genes that were differentially modulated by the overexpression of TIMP-3. Consistent with the function of TIMP-3, genes associated with angiogenesis, growth factors, cytokines, death receptors, and substrates of the various MMPs were found to be up-regulated. Furthermore, caspases are important in the signaling pathway of cellular apoptosis, and the overexpression of TIMP-3 in glioma cells is tightly associated with the activation of caspases, including caspase-1, at both the mRNA level (P=0.0371) and the protein level. Moreover, the activation of an apoptotic pathway via the overexpression of TIMP-3 induced apoptosis of transduced human glioma cells in vitro and the growth inhibition of human glioma tumor xenografts in immunodeficient mice.
Collapse
Affiliation(s)
- Paula Lam
- Gene Vector Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh 11211, Saudi Arabia
| | | |
Collapse
|
44
|
Lamfers MLM, Gianni D, Tung CH, Idema S, Schagen FHE, Carette JE, Quax PHA, Van Beusechem VW, Vandertop WP, Dirven CMF, Chiocca EA, Gerritsen WR. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 2005; 65:9398-405. [PMID: 16230403 DOI: 10.1158/0008-5472.can-04-4264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic adenoviruses exhibiting tumor-selective replication are promising anticancer agents. Insertion and expression of a transgene encoding tissue inhibitor of metalloproteinase-3 (TIMP-3), which has been reported to inhibit angiogenesis and tumor cell infiltration and induce apoptosis, may improve the antitumor activity of these agents. To assess the effects of TIMP-3 gene transfer to glioma cells, a replication-defective adenovirus encoding TIMP-3 (Ad.TIMP-3) was employed. Ad.TIMP-3 infection of a panel of glioma cell cultures decreased the proliferative capacity of these cells and induced morphologic changes characteristic for apoptosis. Next, a conditionally replicating adenovirus encoding TIMP-3 was constructed by inserting the TIMP-3 expression cassette into the E3 region of the adenoviral backbone containing a 24-bp deletion in E1A. This novel oncolytic adenovirus, AdDelta24TIMP-3, showed enhanced oncolytic activity on a panel of primary cell cultures and two glioma cell lines compared with the control oncolytic virus AdDelta24Luc. In vivo inhibition of matrix metalloproteinase (MMP) activity by AdDelta24TIMP-3 was shown in s.c. glioma xenografts. The functional activity of TIMP-3 was imaged noninvasively using a near-IR fluorescent MMP-2-activated probe. Tumoral MMP-2 activity was significantly reduced by 58% in the AdDelta24TIMP-3-treated tumors 24 hours after infection. A study into the therapeutic effects of combined oncolytic and antiproteolytic therapy was done in both a s.c. and an intracranial model for malignant glioma. Treatment of s.c. (U-87MG) or intracranial (U-87deltaEGFR) tumors with AdDelta24TIMP-3 and AdDelta24Luc both significantly inhibited tumor growth and prolonged survival compared with PBS-treated controls. However, expression of TIMP-3 in the context of AdDelta24 did not significantly affect the antitumor efficacy of this oncolytic agent.
Collapse
Affiliation(s)
- Martine L M Lamfers
- Department of Neurosurgery, Division of Gene Therapy, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yu XF, Yang C, Liang LH, Liu B, Zhou B, Li B, Han ZC. Inhibition of human leukemia xenograft in nude mice by adenovirus-mediated tissue inhibitor of metalloproteinase-3. Leukemia 2005; 20:1-8. [PMID: 16281069 DOI: 10.1038/sj.leu.2404021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Considerable studies have demonstrated the pivotal roles of matrix metalloproteinases (MMPs) in leukemia dissemination and extramedullary infiltration. Tissue inhibitors of matrix metalloproteinases (TIMPs) are multifunctional proteins with MMPs inhibitory effects. However, little is known about the application of TIMPs in the treatment of leukemia. Here, we investigated the effects of TIMP-3 overexpression via adenoviral gene delivery on the in vitro growth and invasiveness of leukemic cells and the in vivo progress of K562-derived xenografts in nude mice. The in vitro invasiveness of K562 cells was markedly impaired by AdTIMP-3 infection. Moreover, TIMP-3 significantly inhibited K562-derived angiogenic factors-induced proliferation, migration and bFGF-induced tube formation of endothelial cells (ECs) in vitro, and reduced VEGF-induced gelatinases expression and activation in ECs. Although TIMP-3 overexpression had no direct effect on the growth of K562 cells in vitro, repeated intratumoral injection of AdTIMP-3 significantly inhibited the growth of K562 xenografts in nude mice. Furthermore, lower microvessel density, less vessel maturity and increased apoptosis were observed in AdTIMP-3-treated K562 xenografts, suggesting the importance of antiangiogenic action of TIMP-3. These data demonstrated the potential of applying AdTIMP-3 as an effective antiangiogenic adjuvant in the treatment of leukemia progression.
Collapse
Affiliation(s)
- X F Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Three mammalian collagenases (MMP-1, MMP-8, and MMP-13) belong to family of matrix metalloproteinases and are the principal secreted endopeptidases capable of cleaving collagenous extracellular matrix. In addition to fibrillar collagens, collagenases can cleave several other matrix and non-matrix proteins including growth factors, and this way regulate cell growth and survival. Collagenases are important proteolytic tools for extracellular matrix remodeling during organ development and tissue regeneration, but they also apparently play important roles in many pathological situations and tumor progression and metastasis. Because of their potentially destructive characteristics the expression and activity of collagenases are strictly controlled. Synthesis of collagenases is regulated by extracellular signals via cellular signal transduction pathways at transcriptional and post-transcriptional level. Collagenases are synthesized as inactive pro-forms, and once activated, their activity is inhibited by specific tissue inhibitors of metalloproteinases, TIMPs, as well as by non-specific proteinase inhibitors. In this review we discuss the current view on the role of collagenases in tumor growth, invasion, and metastasis, as a basis for their feasibility in diagnosis and prognostication, as well as therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Risto Ala-aho
- Department of Medical Biochemistry and Molecular Biology, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | | |
Collapse
|
47
|
Abstract
Angiogenesis is the process by which new blood vessels are formed from preexisting vasculature. It is an essential feature of the female reproductive cycle, embryonic development and wound repair. Angiogenesis has also been identified as a causal or contributing factor in several pathologies, including cancer, where it is a rate-limiting step during tumor progression. Matrix metalloproteinases (MMPs) are a family of soluble and membrane-anchored proteolytic enzymes that can degrade components of the extracellular matrix (ECM) as well as a growing number of modulators of cell function. Several of the MMPs, in particular the gelatinases and membrane-type 1 MMP (MT1-MMP), have been linked to angiogenesis. Potential roles for these proteases during the angiogenic process include degradation of the basement membrane and perivascular ECM components, unmasking of cryptic biologically relevant sites in ECM components, modulation of angiogenic factors and production of endogenous angiogenic inhibitors. This review brings together what is currently known about the functions of the MMPs and the closely related ADAM (a disintegrin and metalloproteinase domain) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) families in angiogenesis and considers how this information might be useful in manipulation of the angiogenic process, with a view to constraining tumor progression.
Collapse
Affiliation(s)
- Madeleine M Handsley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
48
|
Lovelock JD, Baker AH, Gao F, Dong JF, Bergeron AL, McPheat W, Sivasubramanian N, Mann DL. Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2005; 288:H461-8. [PMID: 15650153 DOI: 10.1152/ajpheart.00402.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The balance between matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), plays a critical role in cardiac remodeling. Although a number of studies have characterized the pathophysiological role of MMPs in the heart, very little is known with respect to the role of TIMPs in the heart. To delineate the role of TIMPs in the heart we examined the effects of adenovirus-mediated overexpression of TIMP-1, -2, -3, and -4 in cardiac fibroblasts. Infection of cardiac fibroblasts with adenoviral constructs containing human recombinant TIMP (AdTIMP-1, -2, -3, and -4) provoked a significant (P < 0.0001) 1.3-fold in increase in bromodeoxyuridine (BrdU) incorporation. Similarly, treatment of cardiac fibroblasts with AdTIMP-1-, -2-, -3-, and -4-conditioned medium led to a 1.2-fold increase in BrdU incorporation (P < 0.0001) that was abolished by pretreatment with anti-TIMP-1, -2, -3, and -4 antibodies. The effects of TIMPs were not mimicked by treating the cells with RS-130830, a broad-based MMP inhibitor, suggesting that the effects of TIMPs were independent of their ability to inhibit MMPs. Infection with AdTIMP-1, -2, -3, and -4 led to a significant increase in alpha-smooth muscle actin staining, consistent with TIMP-induced phenotypic differentiation into myofibroblasts. Finally, infection with AdTIMP-2 resulted in a significant increase in collagen synthesis, whereas infection with AdTIMP-3 resulted in a significant increase in fibroblast apoptosis. TIMPs exert overlapping as well as diverse effects on isolated cardiac fibroblasts. The observation that TIMPs stimulate fibroblast proliferation as well as phenotypic differentiation into myofibroblasts suggests that TIMPs may play an important role in tissue repair in the heart that extends beyond their traditional role as MMP inhibitors.
Collapse
Affiliation(s)
- Joshua D Lovelock
- Winters Center for Heart Failure Research, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nygårdas PT, Grönberg SAM, Heikkilä J, Joronen K, Sorsa T, Hinkkanen AE. Treatment of Experimental Autoimmune Encephalomyelitis with a Neurotropic Alphavirus Vector Expressing Tissue Inhibitor of Metalloproteinase-2. Scand J Immunol 2004; 60:372-81. [PMID: 15379862 DOI: 10.1111/j.0300-9475.2004.01491.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prompted by our recent observations of increased MMP-8 and MMP-9 with simultaneous downregulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-3 mRNA levels in the central nervous system (CNS) of mice with severe experimental autoimmune encephalomyelitis (EAE), we used Semliki Forest virus (SFV) to transfer and express recombinant murine TIMP-1-3 genes in the CNS. TIMP-1, TIMP-2 and TIMP-3 expression was confirmed in cultured cells and in the CNS of infected mice. Following intraperitoneal infection with 10(6) plaque-forming units (PFU) of SFV-TIMP, focal TIMP protein expression was achieved throughout the brain. Although already treatment with empty vector inhibited development of EAE to some extent, the expression of TIMP-2 by the virus significantly enhanced the inhibition. TIMP-3-administered mice also had lower disease grade, but the inhibition was not statistically significant. In contrast, SFV-TIMP-1 had no effect, similar to co-infection with TIMP-2 and TIMP-3. We found TIMP-2 expression also by non-infected CNS-resident cells surrounding the virus-positive areas, suggesting a bystander TIMP-2 induction. These data strengthen the view that matrix metalloproteinases are involved in the pathogenesis of EAE and provide clear evidence that virus-mediated delivery of their protein inhibitors can be effective in preventing the clinical disease. TIMPs might be candidates for novel treatment regimens in CNS autoimmune disorders, such as multiple sclerosis.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Gene Expression
- Genetic Therapy
- Genetic Vectors
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Semliki forest virus/genetics
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-3/genetics
Collapse
Affiliation(s)
- P T Nygårdas
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Elezkurtaj S, Kopitz C, Baker AH, Perez-Cantó A, Arlt MJE, Khokha R, Gansbacher B, Anton M, Brand K, Krüger A. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis. J Gene Med 2004; 6:1228-37. [PMID: 15390257 DOI: 10.1002/jgm.637] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are critical for metastasis of tumor cells. Tissue inhibitor of metalloproteinases-1 (TIMP-1), a natural MMP inhibitor, was shown to reduce metastasis in different models. Here, we investigated whether increased TIMP-1 levels in the liver achieved by adenoviral gene transfer will effectively inhibit liver metastasis of two independent tumor cell lines. METHOD TIMP-1 was transferred with adenoviral vectors into the livers of DBA/2 and Balb/c mice, which were subsequently challenged by hematogenous experimental metastases of the T-cell lymphoma cell line L-CI.5s or the colorectal carcinoma cell line CT-26, respectively. RESULTS MMP-9 expression in the liver was induced upon metastasis in both tumor types. Adenoviral gene transfer led to high transduction efficacy as indicated by lacZ expression in 60% of hepatocytes. TIMP-1, a key inhibitor of MMP-9, was expressed at 10(5)-fold higher levels by adenoviral gene transfer as compared with levels achieved in TIMP-1 transgenic mice, previously shown to be inefficient to reduce T-cell lymphoma metastasis. High local and systemic (serum) levels of TIMP-1 led to substantial (94%) reduction of T-cell lymphoma and colorectal carcinoma (73%) experimental liver metastasis. CONCLUSIONS Adenoviral gene transfer led to systemic and local TIMP-1 levels sufficient to inhibit metastasis of a highly aggressive T-cell lymphoma, pointing at the requirement of threshold levels for effective anti-metastatic efficacy. This approach was also efficient in a colon carcinoma solid tumor model. We propose that viral gene transfer of TIMP-1 can provide a suitable defense strategy to prevent metastatic spread to the liver.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cell Line, Tumor
- Colonic Neoplasms/pathology
- Gene Transfer Techniques
- Genetic Therapy
- Genetic Vectors
- Liver/metabolism
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/secondary
- Lymphoma, T-Cell/pathology
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mice, Knockout
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Tissue Inhibitor of Metalloproteinase-1/biosynthesis
- Tissue Inhibitor of Metalloproteinase-1/genetics
Collapse
Affiliation(s)
- Sefer Elezkurtaj
- Institute for Biology, Humboldt University Berlin, at the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|