1
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
2
|
Libberecht K, Vangansewinkel T, Van Den Bosch L, Lambrichts I, Wolfs E. Proteostasis plays an important role in demyelinating Charcot Marie Tooth disease. Biochem Pharmacol 2023; 216:115760. [PMID: 37604292 DOI: 10.1016/j.bcp.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.
Collapse
Affiliation(s)
- Karen Libberecht
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Tim Vangansewinkel
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Esther Wolfs
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium.
| |
Collapse
|
3
|
Stefanski KM, Li GC, Marinko JT, Carter BD, Samuels DC, Sanders CR. How T118M peripheral myelin protein 22 predisposes humans to Charcot-Marie-Tooth disease. J Biol Chem 2023; 299:102839. [PMID: 36581210 PMCID: PMC9860121 DOI: 10.1016/j.jbc.2022.102839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Geoffrey C Li
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin T Marinko
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Bosco L, Falzone YM, Previtali SC. Animal Models as a Tool to Design Therapeutical Strategies for CMT-like Hereditary Neuropathies. Brain Sci 2021; 11:1237. [PMID: 34573256 PMCID: PMC8465478 DOI: 10.3390/brainsci11091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Since ancient times, animal models have provided fundamental information in medical knowledge. This also applies for discoveries in the field of inherited peripheral neuropathies (IPNs), where they have been instrumental for our understanding of nerve development, pathogenesis of neuropathy, molecules and pathways involved and to design potential therapies. In this review, we briefly describe how animal models have been used in ancient medicine until the use of rodents as the prevalent model in present times. We then travel along different examples of how rodents have been used to improve our understanding of IPNs. We do not intend to describe all discoveries and animal models developed for IPNs, but just to touch on a few arbitrary and paradigmatic examples, taken from our direct experience or from literature. The idea is to show how strategies have been developed to finally arrive to possible treatments for IPNs.
Collapse
Affiliation(s)
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (Y.M.F.)
| |
Collapse
|
5
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Liu X, Duan X, Zhang Y, Fan D. Clinical and Genetic Diversity of PMP22 Mutations in a Large Cohort of Chinese Patients With Charcot-Marie-Tooth Disease. Front Neurol 2020; 11:630. [PMID: 32719652 PMCID: PMC7347970 DOI: 10.3389/fneur.2020.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The purpose of this study is to identify the clinical and genetic diversity of peripheral myelin protein 22 (PMP22) in Chinese patients with CMT disease and evaluate their correlations with the clinical manifestations. Using the multiplex ligation-dependent probe amplification (MLPA) technique and Sanger sequencing of PMP22 in a cohort of 465 Chinese families between 2007 and 2019, we identified 137 pedigrees with PMP22 duplications (29.5%), 26 pedigrees with PMP22 deletions (5.6%), and 10 pedigrees with point mutations (2.2%). By comparing our data with the results from other CMT centers in China, we estimate that the frequency of PMP22 mutation in mainland China is ~23.3% (261/1120). We confirmed de novo mutations in 40% (4/10) of PMP22 point mutations. We have also identified two severely affected patients who are compound heterozygotes for recessive PMP22 mutations (novel mutation c.320-1 G>A and R157W mutation) and a 1.5 Mb deletion in 17p11.2-p12, suggesting that c.320-1 G>A might be another recessive allele contributing to DSS in addition to the T118M and R157W mutations. A de novo mutation of S79P in PMP22 was also identified concomitantly with the R94W mutation in mitofusin2 (MFN2). Our study highlights the phenotypic variability associated with PMP22 mutations in mainland China. The results provide valuable insights into the current strategy of genetic testing for CMT disease. NGS technology has increased the potential for efficient detection of variants of unknown significance (VUS) and concurrent causative genes. Greater cooperation between neurologists and molecular biologists is needed in future investigations.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
7
|
Vanoye CG, Sakakura M, Follis RM, Trevisan AJ, Narayan M, Li J, Sanders CR, Carter BD. Peripheral myelin protein 22 modulates store-operated calcium channel activity, providing insights into Charcot-Marie-Tooth disease etiology. J Biol Chem 2019; 294:12054-12065. [PMID: 31213528 PMCID: PMC6690708 DOI: 10.1074/jbc.ra118.006248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a peripheral neuropathy associated with gene duplication and point mutations in the peripheral myelin protein 22 (PMP22) gene. However, the role of PMP22 in Schwann cell physiology and the mechanisms by which PMP22 mutations cause CMT are not well-understood. On the basis of homology between PMP22 and proteins associated with modulation of ion channels, we hypothesized that PMP22 alters ion channel activity. Using whole-cell electrophysiology, we show here that heterologous PMP22 expression increases the amplitude of currents similar to those ascribed to store-operated calcium (SOC) channels, particularly those involving transient receptor canonical channel 1 (TrpC1). These channels help replenish Ca2+ in the endoplasmic reticulum (ER) following stimulus-induced depletion. Currents with similar properties were recorded in WT but not pmp22-/- mouse Schwann cells. Heterologous expression of the CMT-associated PMP22_L16P variant, which fails to reach the plasma membrane and localizes to the ER, led to larger currents than WT PMP22. Similarly, Schwann cells isolated from Trembler J (TrJ; PMP22_L16P) mice had larger currents than WT littermates. Calcium imaging in live nerves and cultured Schwann cells revealed elevated intracellular Ca2+ in TrJ mice compared with WT. Moreover, we found that PMP22 co-immunoprecipitated with stromal interaction molecule 1 (STIM1), the Ca2+ sensor SOC channel subunit in the ER. These results suggest that in the ER, PMP22 interacts with STIM1 and increases Ca2+ influx through SOC channels. Excess or mutant PMP22 in the ER may elevate intracellular Ca2+ levels, which could contribute to CMT pathology.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232; Center for Human Genetics, Vanderbilt University, Nashville, Tennessee 37232.
| | - Masayoshi Sakakura
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Rose M Follis
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Malathi Narayan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Jun Li
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232; Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Charles R Sanders
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232.
| |
Collapse
|
8
|
Jouaud M, Mathis S, Richard L, Lia AS, Magy L, Vallat JM. Rodent models with expression of PMP22: Relevance to dysmyelinating CMT and HNPP. J Neurol Sci 2019; 398:79-90. [PMID: 30685714 DOI: 10.1016/j.jns.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth diseases (CMT) are due to abnormalities of many genes, the most frequent being linked to PMP22 (Peripheral Myelin Protein 22). In the past, only spontaneous genetic anomalies occurring in mouse mutants such as Trembler (Tr) mice were available; more recently, several rodent models have been generated for exploration of the pathophysiological mechanisms underlying these neuropathies. METHODS Based on the personal experience of our team, we describe here the pathological hallmarks of most of these animal models and compare them to the pathological features observed in some CMT patient nerves (CMT types 1A and E; hereditary neuropathy with liability to pressure palsies, HNPP). RESULTS We describe clinical data and detailed pathological analysis mainly by electron microscopy of the sciatic nerves of these animal models conducted in our laboratory; lesions of PMP22 deficient animals (KO and mutated PMP22) and PMP22 overexpressed models are described and compared to ultrastructural anomalies of nerve biopsies from CMT patients due to PMP22 gene anomalies. It is of note that while there are some similarities, there are also significant differences between the lesions in animal models and human cases. Such observations highlight the complex roles played by PMP22 in nerve development. CONCLUSION It should be borne in mind that we require additional correlations between animal models of hereditary neuropathies and CMT patients to rationalize the development of efficient drugs.
Collapse
Affiliation(s)
- Maxime Jouaud
- Equipe d'accueil 6309, Maintenance myélinique et Neuropathies périphériques, University of Limoges, 2 rue du Docteur Raymond Marcland, 87000 Limoges, France
| | - Stéphane Mathis
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), place Amélie Raba-Léon, 33000 Bordeaux, France; National Reference Center 'maladies neuromusculaires du Grand Sud-ouest', CHU Bordeaux (Pellegrin University Hospital), place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Laurence Richard
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Anne-Sophie Lia
- Equipe d'accueil 6309, Maintenance myélinique et Neuropathies périphériques, University of Limoges, 2 rue du Docteur Raymond Marcland, 87000 Limoges, France; Department of Biochemistry and Molecular Genetics, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Laurent Magy
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Jean-Michel Vallat
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France.
| |
Collapse
|
9
|
Ho KWD, Jerath NU. T118M Variant of PMP22 Gene Presents with Painful Peripheral Neuropathy and Varying Charcot-Marie-Tooth Features: A Case Series and Review of the Literature. Case Rep Genet 2018; 2018:2618071. [PMID: 30675404 PMCID: PMC6323496 DOI: 10.1155/2018/2618071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 12/09/2018] [Indexed: 11/18/2022] Open
Abstract
The clinical effect of T118M variant of the PMP22 gene has been controversial. Several studies have suggested that it may be autosomal recessive, partial loss of function, or a benign variant. Here we report three cases in further support that the T118M variant of the PMP22 gene is a partial loss of function variant. These three unrelated cases were heterozygotes with the T118M variant of the PMP22 gene. All three cases presented with painful peripheral neuropathy and varying degrees of Charcot-Marie-Tooth exam features. Electrophysiological studies revealed polyneuropathy with axonal and demyelinating features in one case, but there were minimal electrophysiological changes in the other two cases. We propose that the T118M variant can cause painful peripheral neuropathy, which may be an underrecognized feature of this variant.
Collapse
|
10
|
Huang H, Kuenze G, Smith JA, Taylor KC, Duran AM, Hadziselimovic A, Meiler J, Vanoye CG, George AL, Sanders CR. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. SCIENCE ADVANCES 2018; 4:eaar2631. [PMID: 29532034 PMCID: PMC5842040 DOI: 10.1126/sciadv.aar2631] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/02/2018] [Indexed: 05/21/2023]
Abstract
Mutations that induce loss of function (LOF) or dysfunction of the human KCNQ1 channel are responsible for susceptibility to a life-threatening heart rhythm disorder, the congenital long QT syndrome (LQTS). Hundreds of KCNQ1 mutations have been identified, but the molecular mechanisms responsible for impaired function are poorly understood. We investigated the impact of 51 KCNQ1 variants with mutations located within the voltage sensor domain (VSD), with an emphasis on elucidating effects on cell surface expression, protein folding, and structure. For each variant, the efficiency of trafficking to the plasma membrane, the impact of proteasome inhibition, and protein stability were assayed. The results of these experiments combined with channel functional data provided the basis for classifying each mutation into one of six mechanistic categories, highlighting heterogeneity in the mechanisms resulting in channel dysfunction or LOF. More than half of the KCNQ1 LOF mutations examined were seen to destabilize the structure of the VSD, generally accompanied by mistrafficking and degradation by the proteasome, an observation that underscores the growing appreciation that mutation-induced destabilization of membrane proteins may be a common human disease mechanism. Finally, we observed that five of the folding-defective LQTS mutant sites are located in the VSD S0 helix, where they interact with a number of other LOF mutation sites in other segments of the VSD. These observations reveal a critical role for the S0 helix as a central scaffold to help organize and stabilize the KCNQ1 VSD and, most likely, the corresponding domain of many other ion channels.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Keenan C. Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Amanda M. Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| | - Arina Hadziselimovic
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Liao YC, Tsai PC, Lin TS, Hsiao CT, Chao NC, Lin KP, Lee YC. Clinical and Molecular Characterization of PMP22 point mutations in Taiwanese patients with Inherited Neuropathy. Sci Rep 2017; 7:15363. [PMID: 29127354 PMCID: PMC5681590 DOI: 10.1038/s41598-017-14771-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
Abstract
Point mutations in the peripheral myelin protein 22 (PMP22) gene have been identified to cause demyelinating Charcot-Marie-Tooth disease (CMT) and hereditary neuropathy with liability to pressure palsy (HNPP). To investigate the mutation spectrum of PMP22 in Han-Chinese population residing in Taiwan, 53 patients with molecularly unassigned demyelinating CMT and 52 patients with HNPP-like neuropathy of unknown genetic causes were screened for PMP22 mutations by Sanger sequencing. Three point mutations were identified in four patients with demyelinating CMT, including c.256 C > T (p.Q86X) in two, and c.310delA (p.I104FfsX7) and c.319 + 1G > A in one each. One PMP22 missense mutation, c.124 T > C (p.C42R), was identified in a patient with HNPP-like neuropathy. The clinical presentations of these mutations vary from mild HNPP-like syndrome to severe infantile-onset demyelinating CMT. In vitro analyses revealed that both PMP22 p.Q86X and p.I104FfsX7 mutations result in truncated PMP22 proteins that are almost totally retained within cytosol, whereas the p.C42R mutation partially impairs cell membrane localization of PMP22 protein. In conclusion, PMP22 point mutations account for 7.5% and 1.9% of demyelinating CMT and HNPP patients with unknown genetic causes, respectively. This study delineates the clinical and molecular features of PMP22 point mutations in Taiwan, and emphasizes their roles in demyelinating CMT or HNPP-like neuropathy.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC. .,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.
| | - Pei-Chien Tsai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Thy-Sheng Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Cheng-Tsung Hsiao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Division of Neurology, Department of Internal Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan, ROC.,Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Nai-Chen Chao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Mittendorf KF, Marinko JT, Hampton CM, Ke Z, Hadziselimovic A, Schlebach JP, Law CL, Li J, Wright ER, Sanders CR, Ohi MD. Peripheral myelin protein 22 alters membrane architecture. SCIENCE ADVANCES 2017; 3:e1700220. [PMID: 28695207 PMCID: PMC5498104 DOI: 10.1126/sciadv.1700220] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/19/2017] [Indexed: 05/10/2023]
Abstract
Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin.
Collapse
Affiliation(s)
- Kathleen F. Mittendorf
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Justin T. Marinko
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Cheri M. Hampton
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zunlong Ke
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arina Hadziselimovic
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Jonathan P. Schlebach
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Cheryl L. Law
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Jun Li
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elizabeth R. Wright
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding author. (M.D.O.); (C.R.S.)
| | - Melanie D. Ohi
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Corresponding author. (M.D.O.); (C.R.S.)
| |
Collapse
|
13
|
Bello M, Torres MJ, Méndez-Tenorio A, Correa-Basurto J. Conformational changes associated with L16P and T118M mutations in the membrane-embedded PMP22 protein, consequential in CMT-1A. J Biomol Struct Dyn 2016; 35:2880-2894. [PMID: 27609586 DOI: 10.1080/07391102.2016.1234415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot-Marie-Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein-protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.
Collapse
Affiliation(s)
- Martiniano Bello
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| | - Mixtli J Torres
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - Alfonso Méndez-Tenorio
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| |
Collapse
|
14
|
Jouaud M, Gonnaud PM, Richard L, Latour P, Ollagnon-Roman E, Sturtz F, Mathis S, Magy L, Vallat JM. Congenital hypomyelinating neuropathy due to the association of a truncating mutation in PMP22 with the classical HNPP deletion. Neuromuscul Disord 2016; 26:316-21. [DOI: 10.1016/j.nmd.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
15
|
Kraus A, Michalak M. Endoplasmic reticulum quality control and dysmyelination. Biomol Concepts 2015; 2:261-74. [PMID: 25962034 DOI: 10.1515/bmc.2011.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dysmyelination contributes to several human diseases including multiple sclerosis, Charcot-Marie-Tooth, leukodystrophies, and schizophrenia and can result in serious neurological disability. Properly formed, compacted myelin sheaths are required for appropriate nerve conduction velocities and the health and survival of neurons. Many different molecular mechanisms contribute to dysmyelination and many of these mechanisms originate at the level of the endoplasmic reticulum. The endoplasmic reticulum is a critical organelle for myelin biosynthesis and maintenance as the site of myelin protein folding quality control, Ca2+ homeostasis, cholesterol biosynthesis, and modulation of cellular stress. This review paper highlights the role of the endoplasmic reticulum and its resident molecules as an upstream and dynamic contributor to myelin and myelin pathologies.
Collapse
|
16
|
Schlebach JP, Narayan M, Alford C, Mittendorf KF, Carter BD, Li J, Sanders CR. Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22. J Am Chem Soc 2015; 137:8758-68. [PMID: 26102530 PMCID: PMC4507940 DOI: 10.1021/jacs.5b03743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Despite broad biochemical
relevance, our understanding of the physiochemical
reactions that limit the assembly and cellular trafficking of integral
membrane proteins remains superficial. In this work, we report the
first experimental assessment of the relationship between the conformational
stability of a eukaryotic membrane protein and the degree to which
it is retained by cellular quality control in the secretory pathway.
We quantitatively assessed both the conformational equilibrium and
cellular trafficking of 12 variants of the α-helical membrane
protein peripheral myelin protein 22 (PMP22), the intracellular misfolding
of which is known to cause peripheral neuropathies associated with
Charcot–Marie–Tooth disease (CMT). We show that the
extent to which these mutations influence the energetics of Zn(II)-mediated
PMP22 folding is proportional to the observed reduction in cellular
trafficking efficiency. Strikingly, quantitative analyses also reveal
that the reduction of motor nerve conduction velocities in affected
patients is proportional to the extent of the mutagenic destabilization.
This finding provides compelling evidence that the effects of these
mutations on the energetics of PMP22 folding lie at the heart of the
molecular basis of CMT. These findings highlight conformational stability
as a key factor governing membrane protein biogenesis and suggest
novel therapeutic strategies for CMT.
Collapse
Affiliation(s)
| | | | - Catherine Alford
- #Flow Cytometry Core, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | | | | - Jun Li
- ⊥Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
17
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
18
|
Hara T, Hashimoto Y, Akuzawa T, Hirai R, Kobayashi H, Sato K. Rer1 and calnexin regulate endoplasmic reticulum retention of a peripheral myelin protein 22 mutant that causes type 1A Charcot-Marie-Tooth disease. Sci Rep 2014; 4:6992. [PMID: 25385046 PMCID: PMC4227013 DOI: 10.1038/srep06992] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Many PMP22 mutants accumulate in excess in the endoplasmic reticulum (ER) and lead to the inherited neuropathies of Charcot-Marie-Tooth (CMT) disease. However, the mechanism through which PMP22 mutants accumulate in the ER is unknown. Here, we studied the quality control mechanisms for the PMP22 mutants L16P and G150D, which were originally identified in mice and patients with CMT. We found that the ER-localised ubiquitin ligase Hrd1/SYVN1 mediates ER-associated degradation (ERAD) of PMP22(L16P) and PMP22(G150D), and another ubiquitin ligase, gp78/AMFR, mediates ERAD of PMP22(G150D) as well. We also found that PMP22(L16P), but not PMP22(G150D), is partly released from the ER by loss of Rer1, which is a Golgi-localised sorting receptor for ER retrieval. Rer1 interacts with the wild-type and mutant forms of PMP22. Interestingly, release of PMP22(L16P) from the ER was more prominent with simultaneous knockdown of Rer1 and the ER-localised chaperone calnexin than with the knockdown of each gene. These results suggest that CMT disease-related PMP22(L16P) is trapped in the ER by calnexin-dependent ER retention and Rer1-mediated early Golgi retrieval systems and partly degraded by the Hrd1-mediated ERAD system.
Collapse
Affiliation(s)
- Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yukiko Hashimoto
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
19
|
Mittendorf KF, Kroncke BM, Meiler J, Sanders CR. The homology model of PMP22 suggests mutations resulting in peripheral neuropathy disrupt transmembrane helix packing. Biochemistry 2014; 53:6139-41. [PMID: 25243937 PMCID: PMC4188248 DOI: 10.1021/bi500809t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Peripheral myelin protein 22 (PMP22)
is a tetraspan membrane protein
strongly expressed in myelinating Schwann cells of the peripheral
nervous system. Myriad missense mutations in PMP22 result in varying
degrees of peripheral neuropathy. We used Rosetta 3.5 to generate
a homology model of PMP22 based on the recently published crystal
structure of claudin-15. The model suggests that several mutations
known to result in neuropathy act by disrupting transmembrane helix
packing interactions. Our model also supports suggestions from previous
studies that the first transmembrane helix is not tightly associated
with the rest of the helical bundle.
Collapse
Affiliation(s)
- Kathleen F Mittendorf
- Department of Biochemistry, ‡Center for Structural Biology, and §Departments of Pharmacology and Bioinformatics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
20
|
Bouhy D, Timmerman V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013; 74:391-6. [PMID: 23913540 DOI: 10.1002/ana.23987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
21
|
Winslow S, Leandersson K, Larsson C. Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells. Mol Cancer 2013; 12:156. [PMID: 24321297 PMCID: PMC3866477 DOI: 10.1186/1476-4598-12-156] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
Background Regulation of mRNAs is one way to control protein levels and thereby important cellular processes such as growth, invasion and apoptosis. G3BPs constitute a family of mRNA-binding proteins, shown to be overexpressed in several cancer types, including breast, colon and pancreas cancer. G3BP has been reported to both stabilize and induce degradation of specific mRNAs. Results Here, we show that G3BP1, but not G3BP2, supports proliferation of several breast cancer cell lines. Global gene expression analyses of G3BP1- and G3BP2-depleted cells indicate that primarily G3BP1, and much less G3BP2, influences mRNA expression levels. Peripheral myelin protein 22 (PMP22) was one gene that was significantly influenced by G3BP1 depletion which led to a 2–3 fold increased expression. Depletion of PMP22 resulted in increased proliferation and the G3BP1-mediated effect on proliferation was not seen upon PMP22-depletion. Conclusions This indicates a novel role for G3BP1 in the regulation of cell proliferation in breast cancer cells, perhaps via a regulatory effect on PMP22 expression.
Collapse
Affiliation(s)
| | | | - Christer Larsson
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Building 404:C3, Lund, 223 81, Sweden.
| |
Collapse
|
22
|
Bouhy D, Timmerman V. Modèles animaux dans la maladie de Charcot-Marie-Tooth et applications de la compréhension de la maladie chez l’homme. Rev Neurol (Paris) 2013; 169:971-7. [DOI: 10.1016/j.neurol.2013.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/26/2022]
|
23
|
Schlebach JP, Peng D, Kroncke BM, Mittendorf KF, Narayan M, Carter BD, Sanders CR. Reversible folding of human peripheral myelin protein 22, a tetraspan membrane protein. Biochemistry 2013; 52:3229-41. [PMID: 23639031 DOI: 10.1021/bi301635f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Misfolding of the α-helical membrane protein peripheral myelin protein 22 (PMP22) has been implicated in the pathogenesis of the common neurodegenerative disease known as Charcot-Marie-Tooth disease (CMTD) and also several other related peripheral neuropathies. Emerging evidence suggests that the propensity of PMP22 to misfold in the cell may be due to an intrinsic lack of conformational stability. Therefore, quantitative studies of the conformational equilibrium of PMP22 are needed to gain insight into the molecular basis of CMTD. In this work, we have investigated the folding and unfolding of wild type (WT) human PMP22 in mixed micelles. Both kinetic and thermodynamic measurements demonstrate that the denaturation of PMP22 by n-lauroyl sarcosine (LS) in dodecylphosphocholine (DPC) micelles is reversible. Assessment of the conformational equilibrium indicates that a significant fraction of unfolded PMP22 persists even in the absence of the denaturing detergent. However, we find the stability of PMP22 is increased by glycerol, which facilitates quantitation of thermodynamic parameters. To our knowledge, this work represents the first report of reversible unfolding of a eukaryotic multispan membrane protein. The results indicate that WT PMP22 possesses minimal conformational stability in micelles, which parallels its poor folding efficiency in the endoplasmic reticulum. Folding equilibrium measurements for PMP22 in micelles may provide an approach to assess the effects of cellular metabolites or potential therapeutic agents on its stability. Furthermore, these results pave the way for future investigation of the effects of pathogenic mutations on the conformational equilibrium of PMP22.
Collapse
Affiliation(s)
- Jonathan P Schlebach
- Department of Biochemistry and ‡Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors 2013; 39:233-41. [PMID: 23780694 DOI: 10.1002/biof.1076] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 12/15/2022]
Abstract
The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.
Collapse
Affiliation(s)
- Huijong Han
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
25
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
26
|
Li J, Parker B, Martyn C, Natarajan C, Guo J. The PMP22 gene and its related diseases. Mol Neurobiol 2012; 47:673-98. [PMID: 23224996 DOI: 10.1007/s12035-012-8370-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50 % of all patients with inherited peripheral neuropathies, including Charcot-Marie-Tooth type-1A (CMT1A) with trisomy of PMP22, hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of PMP22, and CMT1E with point mutations of PMP22. While overexpression and point-mutations of the PMP22 gene may produce gain-of-function phenotypes, deletion of PMP22 results in a loss-of-function phenotype that reveals the normal physiological functions of the PMP22 protein. In this article, we will review the basic genetics, biochemistry and molecular structure of PMP22, followed by discussion of the current understanding of pathogenic mechanisms involving in the inherited neuropathies with mutations in PMP22 gene.
Collapse
Affiliation(s)
- Jun Li
- VA Tennessee Valley Healthcare System, 1310 24th Avenue South, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
27
|
Fledrich R, Stassart RM, Sereda MW. Murine therapeutic models for Charcot-Marie-Tooth (CMT) disease. Br Med Bull 2012; 102:89-113. [PMID: 22551516 DOI: 10.1093/bmb/lds010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION OR BACKGROUND Charcot-Marie-Tooth (CMT) disease represents a broad group of inherited motor and sensory neuropathies which can originate from various genetic aberrations, e.g. mutations, deletions and duplications. SOURCES OF DATA We performed a literature review on murine animal models of CMT disease with regard to experimental therapeutic approaches. Hereby, we focussed on the demyelinating subforms of CMT (CMT1). PubMed items were CMT, animal model, demyelination and therapy. AREAS OF AGREEMENT Patients affected by CMT suffer from slowly progressive, distally pronounced muscle atrophy caused by an axonal loss. The disease severity is highly variable and impairments may result in wheelchair boundness. No therapy is available yet. AREAS OF CONTROVERSY Numerous rodent models for the various CMT subtypes are available today. The selection of the correct animal model for the specific CMT subtype provides an important prerequisite for the successful translation of experimental findings in patients. GROWING POINTS Despite more than 20 years of remarkable progress in CMT research, the disease is still left untreatable. There is a growing number of experimental therapeutic strategies that may be translated into future clinical trials in patients with CMT. AREAS TIMELY FOR DEVELOPING RESEARCH The slow disease progression and insensitive outcome measures hamper clinical therapy trials in CMT. Biomarkers may provide powerful tools to monitor therapeutic efficacy. Recently, we have shown that transcriptional profiling can be utilized to assess and predict the disease severity in a transgenic rat model and in affected humans.
Collapse
Affiliation(s)
- Robert Fledrich
- Research Group 'Molecular and Translational Neurology', Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | |
Collapse
|
28
|
Sakakura M, Hadziselimovic A, Wang Z, Schey KL, Sanders CR. Structural basis for the Trembler-J phenotype of Charcot-Marie-Tooth disease. Structure 2011; 19:1160-9. [PMID: 21827951 DOI: 10.1016/j.str.2011.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state, transmembrane helices 2-4 (TM2-4) form a molten globular bundle, while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein-folding quality control, which leads to loss of function and toxic accumulation of aggregates that result in CMTD.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-8725, USA
| | | | | | | | | |
Collapse
|
29
|
Lee SM, Olzmann JA, Chin LS, Li L. Mutations associated with Charcot-Marie-Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome-autophagy pathways. J Cell Sci 2011; 124:3319-31. [PMID: 21896645 DOI: 10.1242/jcs.087114] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in SIMPLE cause an autosomal dominant, demyelinating form of peripheral neuropathy termed Charcot-Marie-Tooth disease type 1C (CMT1C), but the pathogenic mechanisms of these mutations remain unknown. Here, we report that SIMPLE is an early endosomal membrane protein that is highly expressed in the peripheral nerves and Schwann cells. Our analysis has identified a transmembrane domain (TMD) embedded within the cysteine-rich (C-rich) region that anchors SIMPLE to the membrane, and suggests that SIMPLE is a post-translationally inserted, C-tail-anchored membrane protein. We found that CMT1C-linked pathogenic mutations are clustered within or around the TMD of SIMPLE and that these mutations cause mislocalization of SIMPLE from the early endosome membrane to the cytosol. The CMT1C-associated SIMPLE mutant proteins are unstable and prone to aggregation, and they are selectively degraded by both the proteasome and aggresome-autophagy pathways. Our findings suggest that SIMPLE mutations cause CMT1C peripheral neuropathy by a combination of loss-of-function and toxic gain-of-function mechanisms, and highlight the importance of both the proteasome and autophagy pathways in the clearance of CMT1C-associated mutant SIMPLE proteins.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
30
|
Russo M, Laurá M, Polke JM, Davis MB, Blake J, Brandner S, Hughes RAC, Houlden H, Bennett DLH, Lunn MPT, Reilly MM. Variable phenotypes are associated with PMP22 missense mutations. Neuromuscul Disord 2010; 21:106-14. [PMID: 21194947 DOI: 10.1016/j.nmd.2010.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/19/2010] [Indexed: 01/30/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is the commonest hereditary neuropathy encompassing a large group of clinically and genetically heterogeneous disorders. The commonest form of CMT, CMT1A, is usually caused by a 1.4 megabase duplication of chromosome 17 containing the PMP22 gene. Mutations of PMP22 are a less common cause of CMT. We describe clinical, electrophysiological and molecular findings of 10 patients carrying PMP22 missense mutations. The phenotype varied from mild hereditary neuropathy with liability to pressure palsies (HNPP) to severe CMT1. We identified six different point mutations, including two novel mutations. Three families were also found to harbour a Thr118Met mutation. Although PMP22 point mutations are not common, our findings highlight the importance of sequencing the PMP22 gene in patients with variable CMT phenotypes and also confirm that the PMP22 Thr118Met mutation is associated with a neuropathy albeit with reduced penetrance.
Collapse
Affiliation(s)
- M Russo
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neurosciences, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kabzińska D, Sinkiewicz-Darol E, Hausmanowa-Petrusewicz I, Kochański A. Charcot-Marie-Tooth type 1A disease caused by a novel Ser112Arg mutation in thePMP22 gene, coexisting with a slowly progressive hearing impairment. J Appl Genet 2010; 51:203-9. [DOI: 10.1007/bf03195729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Pisciotta C, Manganelli F, Iodice R, Bellone E, Geroldi A, Volpi N, Mandich P, Santoro L. Two families with novelPMP22point mutations: genotype-phenotype correlation. J Peripher Nerv Syst 2009; 14:208-12. [DOI: 10.1111/j.1529-8027.2009.00235.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Myers JK, Mobley CK, Sanders CR. The peripheral neuropathy-linked Trembler and Trembler-J mutant forms of peripheral myelin protein 22 are folding-destabilized. Biochemistry 2008; 47:10620-9. [PMID: 18795802 DOI: 10.1021/bi801157p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dominant mutations in the tetraspan membrane protein peripheral myelin protein 22 (PMP22) are known to result in peripheral neuropathies such as Charcot-Marie-Tooth type 1A (CMT1A) disease via mechanisms that appear to be closely linked to misfolding of PMP22 in the membrane of the endoplasmic reticulum (ER). To characterize the molecular defects in PMP22, we examined the structure and stability of two human disease mutant forms of PMP22 that are also the basis for mouse models of peripheral neuropathies: G150D ( Trembler phenotype) and L16P ( Trembler-J phenotype). Circular dichroism and NMR spectroscopic studies indicated that, when folded, the three-dimensional structures of these disease-linked mutants are similar to that of the folded wild-type protein. However, the folded forms of the mutants were observed to be destabilized relative to the wild-type protein, with the L16P mutant being particularly unstable. The rate of refolding from an unfolded state was observed to be very slow for the wild-type protein, and no refolding was observed for either mutant. These results lead to the hypothesis that ER quality control recognizes the G150D and L16P mutant forms of PMP22 as defective through mechanisms closely related to their conformational instability and/or slow folding. It was also seen that wild-type PMP22 binds Zn(II) and Cu(II) with micromolar affinity, a property that may be important to the stability and function of this protein. Zn(II) was able to rescue the stability defect of the Tr mutant.
Collapse
Affiliation(s)
- Jeffrey K Myers
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8725, USA
| | | | | |
Collapse
|
34
|
Mobley CK, Myers JK, Hadziselimovic A, Ellis CD, Sanders CR. Purification and initiation of structural characterization of human peripheral myelin protein 22, an integral membrane protein linked to peripheral neuropathies. Biochemistry 2007; 46:11185-95. [PMID: 17824619 DOI: 10.1021/bi700855j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene duplications, deletions, and point mutations in peripheral myelin protein 22 (PMP22) are linked to several inherited peripheral neuropathies. However, the structural and biochemical properties of this very hydrophobic putative tetraspan integral membrane protein have received little attention, in part because of difficulties in obtaining milligram quantities of wild type and disease-linked mutant forms of the protein. In this study a fusion protein was constructed consisting of a fragment of lambda repressor, a decahistidine tag, an intervening TEV protease cleavage site, a Strep tag, and the human PMP22 sequence. This fusion protein was expressed in Escherichia coli at a level of 10-20 mg/L of protein. Following TEV cleavage of the fusion partner, PMP22 was purified and its structural properties were examined in several different types of detergent micelles using cross-linking, near and far-UV circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy. PMP22 is highly helical and, in certain detergents, shows evidence of stable tertiary structure. The protein exhibits a strong tendency to dimerize. The 1H-15N TROSY NMR spectrum is well dispersed and contains signals from all regions of the protein. It appears that detergent-solubilized PMP22 is amenable to detailed structural characterization via crystallography or NMR. This work sets the stage for more detailed studies of the structure, folding, and misfolding of wild type and disease-linked mutants in order to unravel the molecular defects underlying peripheral neuropathies.
Collapse
Affiliation(s)
- Charles K Mobley
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | |
Collapse
|
35
|
Khajavi M, Shiga K, Wiszniewski W, He F, Shaw CA, Yan J, Wensel TG, Snipes GJ, Lupski JR. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am J Hum Genet 2007; 81:438-53. [PMID: 17701891 PMCID: PMC1950845 DOI: 10.1086/519926] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/16/2007] [Indexed: 11/03/2022] Open
Abstract
Mutations in myelin genes cause inherited peripheral neuropathies that range in severity from adult-onset Charcot-Marie-Tooth disease type 1 to childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Many myelin gene mutants that cause severe disease, such as those in the myelin protein zero gene (MPZ) and the peripheral myelin protein 22 gene (PMP22), appear to make aberrant proteins that accumulate primarily within the endoplasmic reticulum (ER), resulting in Schwann cell death by apoptosis and, subsequently, peripheral neuropathy. We previously showed that curcumin supplementation could abrogate ER retention and aggregation-induced apoptosis associated with neuropathy-causing MPZ mutants. We now show reduced apoptosis after curcumin treatment of cells in tissue culture that express PMP22 mutants. Furthermore, we demonstrate that oral administration of curcumin partially mitigates the severe neuropathy phenotype of the Trembler-J mouse model in a dose-dependent manner. Administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and results in increased number and size of myelinated axons in sciatic nerves, leading to improved motor performance. Our findings indicate that curcumin treatment is sufficient to relieve the toxic effect of mutant aggregation-induced apoptosis and improves the neuropathologic phenotype in an animal model of human neuropathy, suggesting a potential therapeutic role in selected forms of inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2007. [PMID: 16775378 DOI: 10.1385/nmm:] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.
Collapse
Affiliation(s)
- Axel Niemann
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
37
|
Shy ME, Siskind C, Swan ER, Krajewski KM, Doherty T, Fuerst DR, Ainsworth PJ, Lewis RA, Scherer SS, Hahn AF. CMT1X phenotypes represent loss of GJB1 gene function. Neurology 2007; 68:849-55. [PMID: 17353473 DOI: 10.1212/01.wnl.0000256709.08271.4d] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate possible genotype-phenotype correlations and to evaluate the natural history of patients with Charcot-Marie-Tooth disease type 1X (CMT1X). BACKGROUND CMT1X is caused by over 260 distinct mutations in the gap junction beta 1 (GJB1) gene, located on the X chromosome, which encodes the gap junction protein connexin 32 (Cx32). The natural history of CMT1X is poorly understood, and it remains unknown whether particular mutations cause more severe neuropathies through abnormal gain-of-function mechanisms. METHODS We evaluated 73 male patients with CMT1X, who each have 1 of 28 different GJB1 mutations predicted to affect nearly all domains of Cx32. Disability was evaluated quantitatively by the CMT Neuropathy Score (CMTNS) as well as by the CMT Symptom Score (CMTSS) and the CMT Examination Score (CMTES), which are both based on the CMTNS. Patients were also evaluated by neurophysiology. RESULTS In all patients, disability increased with age, and the degree of disability was comparable with that observed in patients with a documented GJB1 deletion. Disability correlated with a loss of motor units as assessed by motor unit number estimates. CONCLUSIONS Taken together, these data suggest that most GJB1 mutations cause neuropathy by a loss of normal connexin 32 function. Therefore, treatment of male patients with Charcot-Marie-Tooth disease type 1X may prove amenable to gene replacement strategies.
Collapse
Affiliation(s)
- M E Shy
- Department of Neurology, Wayne State University, 421 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fortun J, Verrier JD, Go JC, Madorsky I, Dunn WA, Notterpek L. The formation of peripheral myelin protein 22 aggregates is hindered by the enhancement of autophagy and expression of cytoplasmic chaperones. Neurobiol Dis 2006; 25:252-65. [PMID: 17174099 PMCID: PMC1857308 DOI: 10.1016/j.nbd.2006.09.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/29/2006] [Accepted: 09/07/2006] [Indexed: 11/29/2022] Open
Abstract
The accumulation of misfolded proteins is associated with various neurodegenerative conditions. Peripheral myelin protein 22 (PMP22) is a hereditary neuropathy-linked, short-lived molecule that forms aggresomes when the proteasome is inhibited or the protein is mutated. We previously showed that the removal of pre-existing PMP22 aggregates is assisted by autophagy. Here we examined whether the accumulation of such aggregates could be suppressed by experimental induction of autophagy and/or chaperones. Enhancement of autophagy during proteasome inhibition hinders protein aggregate formation and correlates with a reduction in accumulated proteasome substrates. Conversely, simultaneous inhibition of autophagy and the proteasome augments the formation of aggregates. An increase of heat shock protein levels by geldanamycin treatment or heat shock preconditioning similarly hampers aggresome formation. The beneficial effects of autophagy and chaperones in preventing the accumulation of misfolded PMP22 are additive and provide a potential avenue for therapeutic approaches in hereditary neuropathies linked to PMP22 mutations.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Autophagy/physiology
- Cells, Cultured
- Cytoplasm/metabolism
- Cytoplasm/pathology
- Heat-Shock Proteins/metabolism
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/metabolism
- Heredodegenerative Disorders, Nervous System/physiopathology
- Inclusion Bodies/metabolism
- Inclusion Bodies/ultrastructure
- Mice
- Mice, Neurologic Mutants
- Microscopy, Electron, Transmission
- Molecular Chaperones/metabolism
- Myelin Proteins/metabolism
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Peripheral Nerves/metabolism
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Peripheral Nervous System Diseases/genetics
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- Phagosomes/metabolism
- Phagosomes/ultrastructure
- Proteasome Endopeptidase Complex/metabolism
- Protein Folding
- Rats
Collapse
Affiliation(s)
- Jenny Fortun
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 100 Newell Drive, Box 100244, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kochański A. How to assess the pathogenicity of mutations in Charcot-Marie-Tooth disease and other diseases? J Appl Genet 2006; 47:255-60. [PMID: 16877806 DOI: 10.1007/bf03194633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Knowledge whether a certain DNA variant is a pathogenic mutation or a harmless polymorphism is a critical issue in medical genetics, in which results of a molecular analysis may serve as a basis for diagnosis and genetic counseling. Due to its genetic heterogeneity expressed at the levels of loci, genes and mutations, Charcot-Marie-Tooth (CMT) disease can serve as a model group of clinically homogenous diseases for studying the pathogenicity of mutations. Close to a 17p11.2-p12 duplication occurring in 70% of patients with the demyelinating form of CMT disease, numerous mutations have been identified in poorly characterized genes coding for proteins of an unknown function. Functional analyses, segregation analyses of large pedigrees, and inclusion of large control groups are required to assess the potential pathogenicity of CMT mutations. Hence, the pathogenicity of numerous CMT mutations remains unclear. Some variants detected in the CMT genes and originally described as pathogenic mutations have been shown to have a polymorphic character. In contrast, polymorphisms initially considered harmless were later reclassified as pathogenic mutations. However, the process of assessing the pathogenicity of mutations, as presented in this study for CMT disorders, is a more general issue concerning all disorders with a genetic background. Since the number of DNA variants is still growing, in the near future geneticists will increasingly have to cope with the problem of pathogenicity of identified genetic variants.
Collapse
Affiliation(s)
- Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Center, Pawinskiego 5, 02-106 Warszawa, Poland.
| |
Collapse
|
40
|
Shy ME, Scavina MT, Clark A, Krajewski KM, Li J, Kamholz J, Kolodny E, Szigeti K, Fischer RA, Saifi GM, Scherer SS, Lupski JR. T118M PMP22 mutation causes partial loss of function and HNPP-like neuropathy. Ann Neurol 2006; 59:358-64. [PMID: 16437560 DOI: 10.1002/ana.20777] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine the clinical consequences of the PMP22 point mutation, T118M, which has been previously considered to either cause an autosomal recessive form of Charcot-Marie-Tooth (CMT) disease or be a benign polymorphism. METHODS We analyzed patients from five separate kindreds and characterized their peripheral nerve function by clinical and electrophysiological methods. RESULTS All heterozygous patients had clinical and/or electrophysiological features of a neuropathy similar to hereditary neuropathy with liability to pressure palsies (HNPPs). The homozygous patient had a severe axonal neuropathy without features of demyelination. INTERPRETATION These findings suggest that T118M PMP22 retains some normal PMP22 activity, allowing the formation of compact myelin and normal nerve conduction velocities in the homozygous state. Taken together, these findings suggest that T118M is a pathogenic mutation causing a dominantly inherited form of CMT by a partial loss of PMP22 function.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fortun J, Go JC, Li J, Amici SA, Dunn WA, Notterpek L. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis 2006; 22:153-64. [PMID: 16326107 DOI: 10.1016/j.nbd.2005.10.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/18/2005] [Accepted: 10/23/2005] [Indexed: 11/25/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is commonly associated with duplication of the peripheral myelin protein 22 (PMP22) gene. Mice expressing seven copies of the human PMP22, termed C22, suffer from a demyelinating neuropathy and display phenotypic traits of CMT1A. In this article, we investigate whether protein aggregates play a role in the CMT1A-like pathology of C22 mice. Utilizing biochemical and immunochemical tools, we found slowed turnover rate of the newly-synthesized PMP22 and the presence of cytoplasmic protein aggregates in affected nerves. The formation of these aggregates correlates with reduced proteasome activity and the accumulation of detergent-insoluble ubiquitinated substrates. A fraction of the aggregates associates with autophagosomes and lysosomes. Together, these data indicate that as a result of missorting and inefficient proteasomal degradation, the aggregation of PMP22 and recruitment of autophagosomes and lysosomes are key factors in the subcellular pathogenesis of CMT1A neuropathies.
Collapse
Affiliation(s)
- Jenny Fortun
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnson JS, Roux KJ, Fletcher BS, Fortun J, Notterpek L. Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: implications for neuropathy severity. J Neurosci Res 2006; 82:743-52. [PMID: 16273544 DOI: 10.1002/jnr.20691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations in peripheral myelin protein 22 (PMP22) expression are associated with a heterogeneous group of hereditary demyelinating peripheral neuropathies. Two mutations at glycine 94, a single guanine insertion or deletion in PMP22, result in different reading frameshifts and, consequently, an extended G94fsX222 or a truncated G94fsX110 protein, respectively. Both of these autosomal dominant mutations alter the second half of PMP22 and yet are linked to clinical phenotypes with distinct severities. The G94fsX222 is associated with hereditary neuropathy with liability to pressure palsies, whereas G94fsX110 causes severe neuropathy diagnosed as Dejerine-Sottas disease or Charcot-Marie-Tooth disease type IA. To investigate the subcellular changes associated with the G94 frameshift mutations, we expressed epitope-tagged forms in primary rat Schwann cells. Biochemical and immunolabeling studies indicate that, unlike the wild-type protein, which is targeted for the plasma membrane, frameshift PMP22s are retained in the cell, prior to reaching the medial Golgi compartment. Similar to Wt-PMP22, both frameshift mutants are targeted for proteasomal degradation and accumulate in detergent-insoluble, ubiquitin-containing aggregates upon inhibition of this pathway. The extended frameshift PMP22 shows the ability to form spontaneous aggregates in the absence of proteasome inhibition. On the other hand, Schwann cells expressing the truncated protein proliferate at a significantly higher rate than Schwann cells expressing the wild-type or the extended PMP22. In summary, these results suggest that a greater potential for PMP22 aggregation is associated with a less severe phenotype, whereas dysregulation of Schwann cell proliferation is linked to severe neuropathy.
Collapse
Affiliation(s)
- J S Johnson
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, 32610-0244, USA
| | | | | | | | | |
Collapse
|
43
|
Berger P, Niemann A, Suter U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 2006; 54:243-57. [PMID: 16856148 DOI: 10.1002/glia.20386] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the last 15 years, a number of mutations in a variety of genes have been identified that lead to inherited motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disease (CMT). In this review we will focus on the molecular and cellular mechanisms that cause the Schwann cell pathologies observed in dysmyelinating and demyelinating forms of CMT. In most instances, the underlying gene defects alter primarily myelinating Schwann cells followed by secondary axonal degeneration. The first set of proteins affected by disease-causing mutations includes the myelin components PMP22, P0/MPZ, Cx32/GJB1, and periaxin. A second group contains the regulators of myelin gene transcription EGR2/Krox20 and SOX10. A third group is composed of intracellular Schwann cells proteins that are likely to be involved in the synthesis, transport and degradation of myelin components. These include the myotubularin-related lipid phosphatase MTMR2 and its regulatory binding partner MTMR13/SBF2, SIMPLE, and potentially also dynamin 2. Mutations affecting the mitochondrial fission factor GDAP1 may indicate an important contribution of mitochondria in myelination or myelin maintenance, whereas the functions of other identified genes, including NDRG1, KIAA1985, and the tyrosyl-tRNA synthase YARS, are not yet clear. Mutations in GDAP1, YARS, and the pleckstrin homology domain of dynamin 2 lead to an intermediate form of CMT that is characterized by moderately reduced nerve conduction velocity consistent with minor myelin deficits. Whether these phenotypes originate in Schwann cells or in neurons, or whether both cell types are directly affected, remains a challenging question. However, based on the advances in systematic gene identification in CMT and the analyses of the function and dysfunction of the affected proteins, crucially interconnected pathways in Schwann cells in health and disease have started to emerge. These networks include the control of myelin formation and stability, membrane trafficking, intracellular protein sorting and quality control, and may extend to mitochondrial dynamics and basic protein biosynthesis.
Collapse
Affiliation(s)
- Philipp Berger
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
44
|
Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2006; 8:217-42. [PMID: 16775378 DOI: 10.1385/nmm:8:1-2:217] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/10/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.
Collapse
Affiliation(s)
- Axel Niemann
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
45
|
Liu N, Varma S, Shooter EM, Tolwani RJ. Enhancement of Schwann cell myelin formation by K252a in the Trembler-J mouse dorsal root ganglion explant culture. J Neurosci Res 2005; 79:310-7. [PMID: 15605381 DOI: 10.1002/jnr.20357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Trembler-J (TrJ) mouse, containing a point mutation in the peripheral myelin protein 22 gene, is characterized by severe hypomyelination and is a representative model of Charcot-Marie-Tooth 1A disease/Dejerine-Sottas Syndrome. Previous studies have shown that protein kinase inhibitor K252a enhances wild-type Schwann cell myelination in culture. We used a dorsal root ganglion (DRG) explant culture system from the heterozygous TrJ/+ mouse to investigate if myelination could be enhanced by K252a. The TrJ/+ DRG explant cultures replicated some important features of the TrJ/+ mouse, showing reduced myelin protein accumulation, thinner myelin sheaths, and shortened myelin internodes. K252a increased myelin protein accumulation and myelin sheath thickness but did not substantially increase myelin internode length. Furthermore, the TrJ/+ DRG explant culture and sciatic nerves continued to respond to K252a during the stage when myelination is complete in the wild type. A general tyrosine kinase inhibitor, genistein, but not inhibitors of serine/threonine protein kinase inhibitors, had a similar effect to K252a. K252a is therefore able to partially overcome hypomyelination by enhancing mutant Schwann cell myelin formation in the TrJ/+ mouse.
Collapse
MESH Headings
- Animals
- Carbazoles/pharmacology
- Cells, Cultured
- Charcot-Marie-Tooth Disease/drug therapy
- Charcot-Marie-Tooth Disease/metabolism
- Charcot-Marie-Tooth Disease/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Genistein/pharmacology
- Indole Alkaloids
- Male
- Mice
- Mice, Neurologic Mutants
- Microscopy, Electron, Transmission
- Myelin Proteins/drug effects
- Myelin Proteins/metabolism
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Sciatic Nerve/drug effects
- Sciatic Nerve/metabolism
- Sciatic Nerve/ultrastructure
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurobiology, School of Medicine Stanford University, 299 Campus Drive, Fairchild Building D225, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
46
|
Vallat JM, Tazir M, Magdelaine C, Sturtz F, Grid D. Autosomal-Recessive Charcot-Marie-Tooth Diseases. J Neuropathol Exp Neurol 2005; 64:363-70. [PMID: 15892292 DOI: 10.1093/jnen/64.5.363] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In certain countries around the Mediterranean basin such as Algeria, which have a high prevalence of consanguineous marriages, autosomal-recessive (AR) inheritance may account for more than 50% of all forms of Charcot-Marie-Tooth (CMT) disease. Like with the dominant forms, it is usual to differentiate the demyelinating forms (CMT 4 corresponding to autosomal-recessive CMT 1 [AR-CMT 1] from the axonal forms [AR-CMT 2]). Genetic analysis of large families with recessive transmission has uncovered novel CMT genotypes (genes: GDAP 1, MTMR 2, MTMR 13, KIAA1985, NDGR1, periaxi, lamin). The clinical and especially the histologic phenotypes often indicate that a specific gene is implicated. We present and discuss microscopic lesions seen on nerve biopsies from patients in a number of consanguineous Algerian families, and we outline the characteristic lesions that would prompt a search for mutations in genes such as MTMR 2, MTMR 13, KIAA1985, periaxin for CMT 4, and lamin for AR-CMT 2. Like with the dominant forms, there are undoubtedly many more mutations of other genes to be discovered.
Collapse
Affiliation(s)
- Jean-Michel Vallat
- Neurology Department, University Hospital, 2 Avenue Martin Luther King, 87042 Limoges, France.
| | | | | | | | | |
Collapse
|
47
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
48
|
Hasse B, Bosse F, Hanenberg H, Müller HW. Peripheral myelin protein 22 kDa and protein zero: domain specific trans-interactions. Mol Cell Neurosci 2005; 27:370-8. [PMID: 15555916 DOI: 10.1016/j.mcn.2004.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/18/2004] [Accepted: 06/20/2004] [Indexed: 10/26/2022] Open
Abstract
The peripheral myelin proteins P0 and PMP22 are associated in preparations of compact myelin and in cell cultures coexpressing both molecules. The mechanism of this interaction, however, still needs to be unravelled. We have established three different (cell-cell, cell-protein, protein-protein based) assay systems using retrovirally transduced HeLa cells that overexpressed either PMP22 or P0 and purified GST fusion oligopeptides of PMP22 and P0 to detect domain-specific interactions between these proteins. The results revealed that PMP22 and P0 are involved in both trans-homophilic and trans-heterophilic interactions. Moreover, the data clearly indicate that the heterophilic trans-interaction is mediated through the second loop of PMP22, while the first loop is involved in homophilic trans-interaction of PMP22 proteins. Both modes of interaction are due to direct protein-protein binding. In addition, we demonstrate that disease-related point mutations of P0 resulted in a decreased adhesion capability correlating with the severity of the respective disease phenotype.
Collapse
Affiliation(s)
- Birgit Hasse
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
Surfactant protein C (SP-C) is a hydrophobic 35-amino acid peptide that co-isolates with the phospholipid fraction of lung surfactant. SP-C represents a structurally and functionally challenging protein for the alveolar type 2 cell, which must synthesize, traffic, and process a 191-197-amino acid precursor protein through the regulated secretory pathway. The current understanding of SP-C biosynthesis considers the SP-C proprotein (proSP-C) as a hybrid molecule that incorporates structural and functional features of both bitopic integral membrane proteins and more classically recognized luminal propeptide hormones, which are subject to post-translational processing and regulated exocytosis. Adding to the importance of a detailed understanding of SP-C biosynthesis has been the recent association of mutations in the proSP-C sequence with chronic interstitial pneumonias in children and adults. Many of these mutations involve either missense or deletion mutations located in a region of the proSP-C molecule that has structural homology to the BRI family of proteins linked to inherited degenerative dementias. This review examines the current state of SP-C biosynthesis with a focus on recent developments related to molecular and cellular mechanisms implicated in the emerging role of SP-C mutations in the pathophysiology of diffuse parenchymal lung disease.
Collapse
Affiliation(s)
- Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA.
| | | |
Collapse
|
50
|
Liu N, Yamauchi J, Shooter EM. Recessive, but not dominant, mutations in peripheral myelin protein 22 gene show unique patterns of aggregation and intracellular trafficking. Neurobiol Dis 2004; 17:300-9. [PMID: 15474367 DOI: 10.1016/j.nbd.2004.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/22/2004] [Accepted: 07/09/2004] [Indexed: 11/26/2022] Open
Abstract
A characteristic feature of mouse models of the peripheral neuropathies caused by dominant mutations in peripheral myelin protein 22 (pmp22) is the appearance, in Schwann cells, of pmp22 aggregates. Using a set of dominant and recessive pmp22 mutations that cause human disease of varying degrees of severity, we compared their potential for aggregation and trafficking patterns with those of wild-type pmp22. The potential for aggregation was assessed by determining the size distribution of the various pmp22 mutant proteins under conditions where wild-type pmp22 showed little or no aggregation. All disease-causing dominant mutations showed significant aggregation and failed to traffic to the cell surface. Although the position of the dominant mutation in the pmp22 molecule determined both its potential for aggregation and how far it trafficked in the cell, there was no correlation between aggregation and the severity of the disease. On the other hand, recessive mutations were uniquely distinguished from dominant mutations by both the low potential for aggregation and their trafficking to the cell surface. In the course of these studies, it was also noted that the potential for aggregation and the trafficking of mutant pmp22s is influenced by the nature and/or location of the epitope tag.
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurobiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|