1
|
Guo Y, Gujarati NA, Chow AK, Boysan BT, Bronstein R, He JC, Revelo MP, Pabla N, Rizzo RC, Das B, Mallipattu SK. A Small Molecule Agonist of Krüppel-Like Factor 15 in Proteinuric Kidney Disease. J Am Soc Nephrol 2024:00001751-990000000-00387. [PMID: 39133556 DOI: 10.1681/asn.0000000000000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024] Open
Abstract
Key Points
A human podocyte-based high-throughput screen identified a novel agonist of Krüppel-like factor 15 (BT503), independent of glucocorticoid signaling.BT503 demonstrated renoprotective effects in three independent proteinuric kidney murine models.BT503 directly binds to inhibitor of nuclear factor kappa-B kinase subunit beta to inhibit NF-κB activation, which, subsequently restores Krüppel-like factor 15 under cell stress.
Background
Podocyte loss is the major driver of primary glomerular diseases such as FSGS. While systemic glucocorticoids remain the initial and primary therapy for these diseases, high-dose and chronic use of glucocorticoids is riddled with systemic toxicities. Krüppel-like factor 15 (KLF15) is a glucocorticoid-responsive gene, which is essential for the restoration of mature podocyte differentiation markers and stabilization of actin cytoskeleton in the setting of cell stress. Induction of KLF15 attenuates podocyte injury and glomerulosclerosis in the setting of cell stress.
Methods
A cell-based high-throughput screen with a subsequent structure–activity relationship study was conducted to identify novel agonists of KLF15 in human podocytes. Next, the agonist was tested in cultured human podocytes under cell stress and in three independent proteinuric models (LPS, nephrotoxic serum nephritis, and HIV-1 transgenic mice). A combination of RNA sequencing and molecular modeling with experimental validation was conducted to demonstrate the direct target of the agonist.
Results
The high-throughput screen with structure–activity relationship study identified BT503, a urea-based compound, as a novel agonist of KLF15, independent of glucocorticoid signaling. BT503 demonstrated protective effects in cultured human podocytes and in three independent proteinuric murine models. Subsequent molecular modeling with experimental validation shows that BT503 targets the inhibitor of nuclear factor kappa-B kinase complex by directly binding to inhibitor of nuclear factor kappa-B kinase subunit beta to inhibit canonical NF-κB signaling, which, in turn, restores KLF15 under cell stress, thereby rescuing podocyte loss and ameliorating kidney injury.
Conclusions
By developing and validating a cell-based high-throughput screen in human podocytes, we identified a novel agonist for KLF15 with salutary effects in proteinuric murine models through direct inhibition of inhibitor of nuclear factor kappa-B kinase subunit beta kinase activity.
Collapse
Affiliation(s)
- Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Andrew K Chow
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Brock T Boysan
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Robert Bronstein
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Bhaskar Das
- Pharmaceutical Sciences, Long Island University, Brookville, New York
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
- Renal Section, Northport VA Medical Center, Northport, New York
| |
Collapse
|
2
|
Hiltunen J, Helminen L, Paakinaho V. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol (Lausanne) 2024; 15:1437179. [PMID: 39027480 PMCID: PMC11254642 DOI: 10.3389/fendo.2024.1437179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies and is primarily driven by aberrant androgen receptor (AR) signaling. While AR-targeted therapies form the cornerstone of prostate cancer treatment, they often inadvertently activate compensatory pathways, leading to therapy resistance. This resistance is frequently mediated through changes in transcription factor (TF) crosstalk, reshaping gene regulatory programs and ultimately weakening treatment efficacy. Consequently, investigating TF interactions has become crucial for understanding the mechanisms driving therapy-resistant cancers. Recent evidence has highlighted the crosstalk between the glucocorticoid receptor (GR) and AR, demonstrating that GR can induce prostate cancer therapy resistance by replacing the inactivated AR, thereby becoming a driver of the disease. In addition to this oncogenic role, GR has also been shown to act as a tumor suppressor in prostate cancer. Owing to this dual role and the widespread use of glucocorticoids as adjuvant therapy, it is essential to understand GR's actions across different stages of prostate cancer development. In this review, we explore the current knowledge of GR in prostate cancer, with a specific focus on its crosstalk with other TFs. GR can directly and indirectly interact with a variety of TFs, and these interactions vary significantly depending on the type of prostate cancer cells. By highlighting these crosstalk interactions, we aim to provide insights that can guide the research and development of new GR-targeted therapies to mitigate its harmful effects in prostate cancer.
Collapse
Affiliation(s)
| | | | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Chang van Oordt DA, Taff CC, Pipkin MA, Ryan TA, Vitousek MN. Experimentally elevated corticosterone does not affect bacteria killing ability of breeding female tree swallows (Tachycineta bicolor). Horm Behav 2024; 160:105500. [PMID: 38316079 DOI: 10.1016/j.yhbeh.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
The immune system can be modulated when organisms are exposed to acute or chronic stressors. Glucocorticoids (GCs), the primary hormonal mediators of the physiological stress response, are suspected to play a crucial role in immune modulation. However, most evidence of stress-associated immunomodulation does not separate the effects of glucocorticoid-dependent pathways from those of glucocorticoid-independent mechanisms on immune function. In this study, we experimentally elevated circulating corticosterone, the main avian glucocorticoid, in free-living female tree swallows (Tachycineta bicolor) for one to two weeks to test its effects on immune modulation. Natural variation in bacteria killing ability (BKA), a measure of innate constitutive immunity, was predicted by the interaction between timing of breeding and corticosterone levels. However, experimental elevation of corticosterone had no effect on BKA. Therefore, even when BKA is correlated with natural variation in glucocorticoid levels, this relationship may not be causal. Experiments are necessary to uncover the causal mechanisms of immunomodulation and the consequences of acute and chronic stress on disease vulnerability. Findings in other species indicate that acute increases in GCs can suppress BKA; but our results support the hypothesis that this effect does not persist over longer timescales, during chronic elevations in GCs. Direct comparisons of the effects of acute vs. chronic elevation of GCs on BKA will be important for testing this hypothesis.
Collapse
Affiliation(s)
- David A Chang van Oordt
- Dept. of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA.
| | - Conor C Taff
- Dept. of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| | - Monique A Pipkin
- Dept. of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| | - Thomas A Ryan
- Dept. of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| | - Maren N Vitousek
- Dept. of Ecology and Evolutionary Biology, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Porto ACRC, Redoan MA, Massoco CO, Furtado PV, Oliveira CA. Additional effects using progestins in mares on levels of thyroid hormones and steroids in neonates. Anim Reprod 2023; 20:e20230029. [PMID: 38148929 PMCID: PMC10750809 DOI: 10.1590/1984-3143-ar2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
The risk of pregnancy loss in mares leads to the use of exogenous hormones to help pregnancy maintenance. The objective was to evaluate the proportion of thyroid hormones and steroids in neonates, in the following postpartum period, born to mares fed with synthetic progesterone and to verify the existence of a correlation between the level of progesterone between mother and neonate. Twenty-seven mares and their foals were used. The animals were divided into 5 experimental groups: group 1 (control, without hormonal supplementation), group 2 (random samples fed to 120 days of pregnancy with long-term progesterone), group 3 (mares fed with short-term progesterone as of 280.º day of pregnancy), group 4 (mares fed with long-term progesterone as of 280.º day of pregnancy) and group 5 (mares fed with synthetic hormone [altrenogest] as of 280.º day of pregnancy). The animal's blood collection took place immediately after parturition for the hormonal measurement. The hormones measured in neonates were total T3, free T4, TSH, progesterone and cortisone. In mares, only levels of progesterone. The groups of neonates showed no difference on levels of total T3, free T4, TSH and progesterone. There was no difference on levels of progesterone in mares among the groups. Neonates from groups 4 and 5 had higher and lower cortisone levels, respectively. No neonate showed clinical change. There was also no correlation between levels of progesterone in mares and foals. Thus, hormonal supplementation with long-term progesterone as of 280 days of pregnancy leds to an increase in the neonate's cortisone levels, in the meantime, supplementation with altrenogest as of 280 days of pregnancy caused a decrease on cortisone levels in foals, despite clinical signs have not been observed on these animals.
Collapse
Affiliation(s)
| | | | - Cristina Oliveira Massoco
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Priscila Viau Furtado
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudio Alvarenga Oliveira
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
6
|
Liu Z, Chen H, Tan C, Zha J, Liu H, Chen G. Activation of CD3+TIM3+ T Cells Contributes to Excessive Inflammatory Response During Glucocorticoid Treatment. Biochem Pharmacol 2023; 212:115551. [PMID: 37044297 DOI: 10.1016/j.bcp.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Glucocorticoids (GCs) are widely used to treat autoimmune and inflammatory diseases, but recent research has challenged the notion that GCs are universally anti-inflammatory. In this study, we investigated the effects of long-term GC exposure on circulating T cells in a retrospective cohort of 5,476 patients with primary glomerular diseases. Our results revealed that GCs altered the composition pattern of circulating leukocytes and the correlation between circulating lymphocytes and serum cytokines in response to infections, as well as the subsets of CD4+ T cells. Specifically, GCs promoted the loss of CD4+ T cells and increased the proportions of CD3+TIM3+ T cells in response to infections, which correlated with the expression of serum inflammatory cytokines, such as IFNG and IL-10. Using animal models of cecal ligation and puncture, we demonstrated that long-term GC exposure exacerbated apoptosis of CD4+ T cells and cytokine storm during sepsis, which was mechanistically linked to the increase of CD3+TIM3+ T cells. Notably, we found that CD3+TIM3+ T cells expressed high levels of multiple cytokine genes during infections, suggesting a potent role of TIM3 in the regulation of T cell biology. In vitro studies further showed that engagement of anti-TIM3 treatment enhanced the inflammatory activity of CD3+ T cells. Our findings suggest a causal relationship between chronic exposure to GCs and an excessive inflammatory response mediated by T cells during infections, which is, at least partly, driven by dysregulation of CD3+TIM3+ T cells.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Chongqing Tan
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| |
Collapse
|
7
|
Zhao X, Duan MX, Lu YY, Bai LP, Zhao XY. Short-term prognostic analysis of patients with systemic lupus erythematosus co-infection and comparison of mNGS and conventional microbiological test results. Front Cell Infect Microbiol 2023; 13:1131258. [PMID: 37051301 PMCID: PMC10083406 DOI: 10.3389/fcimb.2023.1131258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
ObjectivesInfection is one of the major causes of morbidity and mortality in patients with systemic lupus erythematosus (SLE), and as a new diagnostic technique, metagenomic next-generation sequencing (mNGS) is increasingly used for the pathogenetic detection of co-infected SLE patients. However, conventional microbiological testing (CMT) is still the gold standard for pathogenic diagnosis, and the specific diagnostic efficacy of mNGS versus CMT in such patients is not known. In addition, there are few studies on the short-term prognosis of co-infected SLE patients.MethodsThis study retrospectively included 58 SLE patients with co-infection admitted to the First Affiliated Hospital of Zhengzhou University from October 2020 to August 2022. Patients were divided into a survivors (n=27) and a non-survivors (n=31) according to their discharge status. Baseline characteristics and etiological data were collected and statistically analyzed for all patients during their hospitalization. The sequential organ failure assessment (SOFA) score, acute physiology and chronic health evaluation (APACHE) II and systemic lupus erythematosus disease activity index (SLEDAI) were calculated for each patient to assess the predictive ability of the 3 scores on the short-term prognosis of SLE patients. The mNGS and CMT culture results were also compared to clarify the flora characteristics of patients with SLE infection.ResultsMore patients in the non-survivors had renal impairment, neurological manifestations, multiplasmatic cavity effusion and gastrointestinal manifestations compared to the survivors (p < 0.05). The SOFA score, APACHE II and SLEDAI were significantly higher in the non-survivors than in the survivors (p < 0.01). There were also significant differences between the two groups in several tests such as hemoglobin, platelets, albumin, total bilirubin, C-reactive protein (CRP), procalcitonin (PCT), and complement C3 (p < 0.05). In addition, the absolute values of T lymphocytes, CD4+ T cells and CD8+ T cells were smaller in the non-survivors than in the survivors (p < 0.05). The most common type of infection in this study was pulmonary infection, followed by bloodstream infection. mNGS and CMT positivity rates were not significantly different among patients in the non-survivors, but were significantly different among patients in the survivors (p=0.029). In-hospital survival of patients with SLE infection could be predicted based on the SOFA score in relation to 6. For patients with SOFA <6, we recommend earlier mNGS testing to identify the pathogen and improve patient prognosis.ConclusionsFor SLE patients with co-infection, in-hospital survival can be predicted based on SOFA score. For patients with SOFA <6, advising them to complete mNGS testing as early as possible may improve the prognosis to some extent.
Collapse
|
8
|
de Carvalho JCS, da Silva-Neto PV, Toro DM, Fuzo CA, Nardini V, Pimentel VE, Pérez MM, Fraga-Silva TFC, Oliveira CNS, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Santos IKFM, Fernandes APM, Maruyama SR, Russo EMS, Bonato VLD, Cardoso CRB, Dias-Baruffi M, Faccioli LH, Sorgi CA. The Interplay among Glucocorticoid Therapy, Platelet-Activating Factor and Endocannabinoid Release Influences the Inflammatory Response to COVID-19. Viruses 2023; 15:v15020573. [PMID: 36851787 PMCID: PMC9959303 DOI: 10.3390/v15020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
Collapse
Affiliation(s)
- Jonatan C. S. de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Pedro V. da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Diana M. Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vinícius E. Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Malena M. Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Thais F. C. Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Camilla N. S. Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Augusto M. Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Fátima M. Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Marley R. Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Rogerio S. Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - José J. R. da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Fernando C. Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Gilberto G. Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Isabel K. F. M. Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Ana P. M. Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto-EERP, Universidade de São Paulo-USP, Ribeirao Preto 14040-902, SP, Brazil
| | - Sandra R. Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos-UFSCar, Sao Carlos 13565-905, SP, Brazil
| | - Elisa M. S. Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vânia L. D. Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Cristina R. B. Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Carlos A. Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-3315-9176
| | | |
Collapse
|
9
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
10
|
Dynamics of temperature change during experimental respiratory virus challenge: Relationships with symptoms, stress hormones, and inflammation. Brain Behav Immun 2022; 99:157-165. [PMID: 34624484 DOI: 10.1016/j.bbi.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Thermoregulation is a complex, dynamic process involving coordination between multiple autonomic, endocrine, and behavioral mechanisms. In the context of infection, this intricate machinery generates fever, a process believed to serve vital functions in the body's defense against pathogens. In addition to increasing core temperature, infection can lead to changes in the dynamic fluctuations in body temperature over time. The patterns of these deviations may convey information about the health of the body and the course of illness. Here, we utilized dynamic structural equation modeling to explore patterns of body temperature change following an experimental respiratory virus challenge in an aggregated, archival dataset of human participants (N = 1,412). We also examined whether temperature dynamics during infection were related to symptom severity, as well as individual differences in biomarkers of inflammation and stress. We found that individuals meeting the criteria for infection exhibited higher but less stable body temperatures over time compared to those not meeting criteria of infection. While temperature parameters did not reliably predict symptom severity, higher levels of nasal proinflammatory cytokines were associated with lower, more consistent temperatures during the study period. Further, levels of salivary cortisol and urinary catecholamines measured at the beginning of the study appeared to have disparate effects on temperature change. In sum, this research highlights the utility of dynamic time series modeling as a framework for studying body temperature change and lends novel insights into how stress may interact with infection to influence patterns of thermoregulation.
Collapse
|
11
|
A short Mindfulness retreat can improve biological markers of stress and inflammation. Psychoneuroendocrinology 2022; 135:105579. [PMID: 34775250 DOI: 10.1016/j.psyneuen.2021.105579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Mindfulness practice, a form of meditation, has shown benefit for psychological and physical health. In this study, we investigated the effect of an intensive period of Mindfulness practice on some biological mediators of stress and inflammation during a 3-day residential retreat. METHODS A total of 95 healthy individuals (aged 18-67) were recruited and randomized to a Mindfulness retreat arm or an active control arm. Before (t0) and after (t1) the intervention, all the participants were assessed for salivary cortisol levels and for a panel of pro- and anti-inflammatory cytokines measured in saliva. Psychometric measures on stress, anxiety and awareness were carried out using PSS, STAI-Y and MAAS questionnaires, respectively. RESULTS As to the within-group differences, we observed a statistically significant decrease in perceived stress (β = -8.85, p < 0.0001), and anxiety scores (β = -12.39, p < 0.0001), while awareness increased (β = 15.26, p < 0.0001) between t0 to t1 in retreat participants. In the mindfulness intervention group, we also observed a statistically significant reduction in the levels of pro-inflammatory cytokines IL-6 (β = -0.94 p = 0.001) and IL-8 (β = -176.40, p < 0.0001), and an increase in anti-inflammatory IL-10 (β = 0.89 p < 0.0001) levels at the end of the retreat. At t1 we observed a highly significant correlation between cortisol levels and both anxiety (r = 0.56, p < 0.0001) and perceived stress (r = 0.92, p < 0.0001) scores. CONCLUSIONS Mindfulness retreat participants showed a significant reduction in perceived stress and anxiety levels, as well as an improved balance of some key mediators of inflammatory states. Our data provide evidence that a mindfulness retreat may be effective in improving physical and mental health. Future studies with larger numbers of subjects and follow-up periods may examine mindfulness practice as a non-pharmacological alternative to promote stress reduction and overall health and wellbeing.
Collapse
|
12
|
Kennedy BJ, Lato AM, Fisch AR, Burke SJ, Kirkland JK, Prevatte CW, Dunlap LE, Smith RT, Vogiatzis KD, Collier JJ, Campagna SR. Potent Anti-Inflammatory, Arylpyrazole-Based Glucocorticoid Receptor Agonists That Do Not Impair Insulin Secretion. ACS Med Chem Lett 2021; 12:1568-1577. [PMID: 34676039 DOI: 10.1021/acsmedchemlett.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids (GCs) are widely used in medicine for their role in the treatment of autoimmune-mediated conditions, certain cancers, and organ transplantation. The transcriptional activities GCs elicit include transrepression, postulated to be responsible for the anti-inflammatory activity, and transactivation, proposed to underlie the undesirable side effects associated with long-term use. A GC analogue that could elicit only transrepression and beneficial transactivation properties would be of great medicinal value and is highly sought after. In this study, a series of 1-(4-substituted phenyl)pyrazole-based GC analogues were synthesized, biologically screened, and evaluated for SARs leading to the desired activity. Activity observed in compounds bearing an electron deficient arylpyrazole moiety showed promise toward a dissociated steroid, displaying transrepression while having limited transactivation activity. In addition, compounds 11aa and 11ab were found to have anti-inflammatory efficacy comparable to that of dexamethasone at 10 nM, with minimal transactivation activity and no reduction of insulin secretion in cultured rat 832/13 beta cells.
Collapse
Affiliation(s)
- Brandon J. Kennedy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M. Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexander R. Fisch
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Justin K. Kirkland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carson W. Prevatte
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lee E. Dunlap
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Russell T. Smith
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Bruscoli S, Febo M, Riccardi C, Migliorati G. Glucocorticoid Therapy in Inflammatory Bowel Disease: Mechanisms and Clinical Practice. Front Immunol 2021; 12:691480. [PMID: 34149734 PMCID: PMC8209469 DOI: 10.3389/fimmu.2021.691480] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn's disease (CD). IBD etiopathology is multifactorial and involves alteration of immune cells and chronic activation of the inflammatory cascade against yet unknown environmental factors that trigger the disease. IBD therapy aims at improving the quality of life and reducing the risk of disease-related complications to avoid the need for surgery. There is no specific cure for IBDs, and the focus of therapy is supportive measures and use of anti-inflammatory and immunosuppressive drugs. Glucocorticoids (GCs) are powerful anti-inflammatory and immunomodulatory agents used to treat many acute and chronic inflammatory diseases. GCs remain basic treatment for moderate-to-severe IBD, but their use is limited by several important adverse drug effects. Topical administration of a second-generation of GCs, such as budesonide and beclomethasone dipropionate (BDP), represents a valid alternative to use of older, systemic GCs. Administration of second-generation GCs shows promisingly high topical activity and less systemic toxicity, but maintenance therapy with these new GCs in IBD patients is associated with multiple adverse effects. In this review, we make a comparative analysis of the efficacy of first-generation and second-generation GCs in IBD treatment. Unraveling GC biology at the molecular level to uncouple their clinical benefits from detrimental effects is important. One approach is to consider new GC mediators, such as glucocorticoid-induced leucine zipper, which may have similar anti-inflammatory properties, but avoids the side effects of GCs. This in-depth analysis can help to improve the development and the clinical outcomes of GC therapies in IBD.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
14
|
Viveros-Paredes JM, Puebla-Pérez AM, Gutiérrez-Coronado O, Macías-Lamas AM, Hernández-Flores G, Ortiz-Lazareno PC, Bravo-Cuéllar A, Villaseñor-García MM. Capsaicin attenuates immunosuppression induced by chronic stress in BALB/C mice. Int Immunopharmacol 2021; 93:107341. [PMID: 33486334 DOI: 10.1016/j.intimp.2020.107341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Although acute stress generally exerts positive effects on the immune system, chronic stress typically causes immunosuppression via the hypothalamic-pituitary-adrenal (HPA) axis. In this study, the effects of capsaicin (1.28 mg/kg intraperitoneally [i.p.] for 7 days) on immune parameters were evaluated under conditions of chronic stress. Capsaicin treatment significantly increased the immune response as evaluated by the delayed-type hypersensitivity (DTH) reaction to dinitrofluorobenzene (DNFB) and splenocyte proliferation assays- It also is able to rescue the splenocytes of the apoptosis induced by stress. The capsaicin treatment increased the production of Th1 cytokines and decreased the production of Th2 cytokines and TGF-β1 in the plasma and culture supernatants of immunosuppressed mice, which is associated with the modulation of Th2 induced by stress cells. Moreover, the production of corticosterone significantly decreased in capsaicin-treated animals as compared to control groups. The capsaicin treatment further attenuated the immunosuppression induced by the corticosterone treatment (40 mg/kg i.p. for 7 days), albeit less potently, as exhibited in the DTH response. Intriguingly, the capsaicin treatment decreased the induction of IL-10, IL-4, and TGF-β1 through high doses of corticosterone, indicating direct cellular immunomodulation. These results show, that capsaicin is able to modulate chronic stress-induced immunosuppression, mediating corticosterone released inhibition, but also, that capsaicin significantly modulates the pharmacological action of corticosterone in vivo.
Collapse
Affiliation(s)
- J M Viveros-Paredes
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - A M Puebla-Pérez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - O Gutiérrez-Coronado
- Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara. Lagos de Moreno, Jalisco, Mexico
| | - A M Macías-Lamas
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - G Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS). Guadalajara, Jalisco, Mexico
| | - P C Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS). Guadalajara, Jalisco, Mexico
| | - A Bravo-Cuéllar
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS). Guadalajara, Jalisco, Mexico; Dpto de Ciencias de Salud, CUALTOS, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - M M Villaseñor-García
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS). Guadalajara, Jalisco, Mexico.
| |
Collapse
|
15
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
16
|
Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia Muscle 2019; 10:903-918. [PMID: 31020810 PMCID: PMC6711418 DOI: 10.1002/jcsm.12434] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy is defined as a reduction of muscle mass caused by excessive protein degradation. However, the development of therapeutic interventions is still in an early stage. Although glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex-4) and dulaglutide, are widely used for the treatment of diabetes, their effects on muscle pathology are unknown. In this study, we investigated the therapeutic potential of GLP-1R agonist for muscle wasting and the mechanisms involved. METHODS Mouse C2C12 myotubes were used to evaluate the in vitro effects of Ex-4 in the presence or absence of dexamethasone (Dex) on the regulation of the expression of muscle atrophic factors and the underlying mechanisms using various pharmacological inhibitors. In addition, we investigated the in vivo therapeutic effect of Ex-4 in a Dex-induced mouse muscle atrophy model (20 mg/kg/day i.p.) followed by injection of Ex-4 (100 ng/day i.p.) for 12 days and chronic kidney disease (CKD)-induced muscle atrophy model. Furthermore, we evaluated the effect of a long-acting GLP-1R agonist by treatment of dulaglutide (1 mg/kg/week s.c.) for 3 weeks, in DBA/2J-mdx mice, a Duchenne muscular dystrophy model. RESULTS Ex-4 suppressed the expression of myostatin (MSTN) and muscle atrophic factors such as F-box only protein 32 (atrogin-1) and muscle RING-finger protein-1 (MuRF-1) in Dex-treated C2C12 myotubes. The suppression effect was via protein kinase A and protein kinase B signalling pathways through GLP-1R. In addition, Ex-4 treatment inhibited glucocorticoid receptor (GR) translocation by up-regulating the proteins of GR inhibitory complexes. In a Dex-induced muscle atrophy model, Ex-4 ameliorated muscle atrophy by suppressing muscle atrophic factors and enhancing myogenic factors (MyoG and MyoD), leading to increased muscle mass and function. In the CKD muscle atrophy model, Ex-4 also increased muscle mass, myofiber size, and muscle function. In addition, treatment with a long-acting GLP-1R agonist, dulaglutide, recovered muscle mass and function in DBA/2J-mdx mice. CONCLUSIONS GLP-1R agonists ameliorate muscle wasting by suppressing MSTN and muscle atrophic factors and enhancing myogenic factors through GLP-1R-mediated signalling pathways. These novel findings suggest that activating GLP-1R signalling may be useful for the treatment of atrophy-related muscular diseases.
Collapse
Affiliation(s)
- Yeonhee Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Jong Han Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Kwang Won Jeong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon, Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| |
Collapse
|
17
|
Hasikova L, Pavlikova M, Hulejova H, Kozlik P, Kalikova K, Mahajan A, Herrmann M, Stiburkova B, Zavada J. Serum uric acid increases in patients with systemic autoimmune rheumatic diseases after 3 months of treatment with TNF inhibitors. Rheumatol Int 2019; 39:1749-1757. [PMID: 31363829 DOI: 10.1007/s00296-019-04394-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 02/04/2023]
Abstract
In patients with gout, the serum uric acid (SUA) is usually lower during acute gouty attacks than during intercritical periods. It has been suggested that systemic inflammatory response can cause this phenomenon. The objective is to determine whether therapy with TNF inhibitors (TNFis) affects SUA levels in patients with systemic autoimmune rheumatic diseases (SARDs) and whether SUA changes correlate with pro-inflammatory cytokines or with the oxidative stress marker allantoin. In this study, SUA, CRP, creatinine, MCP-1, IFN-α2, IFN-γ, Il-1β, IL-6, IL-8, IL-10, IL-12, IL-17a, IL-18, IL-23, IL-33, TNF-α, and allantoin levels were measured prior to and after 3 months of TNFis treatment in patients with SARDs. The values obtained in the biochemical assays were then tested for associations with the patients' demographic and disease-related data. A total of 128 patients (rheumatoid arthritis, n = 44; ankylosing spondylitis, n = 45; psoriatic arthritis, n = 23; and adults with juvenile idiopathic arthritis, n = 16) participated in this study. Among the entire patient population, SUA levels significantly increased 3 months after starting treatment with TNFis (279.5 [84.0] vs. 299.0 [102.0] μmol/l, p < 0.0001), while the levels of CRP, IL-6, IL-8, and MCP-1 significantly decreased. Male sex was the most powerful baseline predictor of ΔSUA in univariate and multivariate models. None of the measured laboratory-based parameters had statistically significant effects on the magnitude of ΔSUA. 3 months of anti-TNF therapy increased the levels of SUA in patients with SARDs, but neither the measured pro-inflammatory cytokines nor the oxidation to allantoin appeared responsible for this effect.
Collapse
Affiliation(s)
- Lenka Hasikova
- Institute of Rheumatology, Na Slupi 4, 128 50, Prague 2, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Hana Hulejova
- Institute of Rheumatology, Na Slupi 4, 128 50, Prague 2, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kveta Kalikova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aparna Mahajan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Blanka Stiburkova
- Institute of Rheumatology, Na Slupi 4, 128 50, Prague 2, Czech Republic.,Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jakub Zavada
- Institute of Rheumatology, Na Slupi 4, 128 50, Prague 2, Czech Republic. .,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
18
|
Chronic psychological stress impairs germinal center response by repressing miR-155. Brain Behav Immun 2019; 76:48-60. [PMID: 30414952 DOI: 10.1016/j.bbi.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
Germinal centers (GC) are vital to adaptive immunity. BCL6 and miR-155 are implicated in control of GC reaction and lymphomagenesis. FBXO11 causes BCL6 degradation through ubiquitination in B-cell lymphomas. Chronic psychological stress is known to drive immunosuppression. Corticosterone (CORT) is an adrenal hormone expressed in response to stress and can similarly impair immune functions. However, whether GC formation is disrupted by chronic psychological stress and its molecular mechanism remain to be elucidated. To address this issue, we established a GC formation model in vivo, and a GC B cell differentiation model in vitro. Comparing Naive B cells to GC B cells in vivo and in vitro, the differences of BCL6 and FBXO11 mRNA do not match the changes at the protein level and miR-155 levels that were observed. Next we demonstrated that CORT increase, induced by chronic psychological stress, reduced GC response, IgG1 antibody production and miR-155 level in vivo. The effect of chronic psychological stress can be blocked by a glucocorticoid receptor (GR) antagonist. Similarly, impaired GC B cell generation and isotope class switching were observed. Furthermore, we found that miR-155 and BCL6 expression were downregulated, but FBXO11 expression was upregulated in GC B cells treated with CORT in vitro. In addition, we demonstrated that miR-155 directly down-regulated FBXO11 expression by binding to its 3́-untranslated region. The subsequent overexpression of miR-155 significantly blocked the stress-induced impairment of GC response, due to changes in FBXO11 and BCL6 expression, as well as increased apoptosis in B cells both in vivo and in vitro. Our findings suggest perturbation of GC reaction may play a role in chronic psychological stress-induced immunosuppression through a glucocorticoid pathway, and miR-155-mediated post-transcriptional regulation of FBXO11 and BCL6 expression may contribute to the impaired GC response.
Collapse
|
19
|
Sanches MD, Mimura LAN, Oliveira LRC, Ishikawa LLW, Garces HG, Bagagli E, Sartori A, Kurokawa CS, Fraga-Silva TFC. Differential Behavior of Non- albicans Candida Species in the Central Nervous System of Immunocompetent and Immunosuppressed Mice. Front Microbiol 2019; 9:2968. [PMID: 30671026 PMCID: PMC6332706 DOI: 10.3389/fmicb.2018.02968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/18/2018] [Indexed: 12/16/2022] Open
Abstract
The genus Candida includes commensal fungi that can cause local and systemic infections, frequently involving vital organs as the central nervous system (CNS). Candida spp. occupy the fourth place among infections that affect the CNS. Although the incidence of Candida albicans is decreasing among patients under immunosuppressive therapies, the incidence of non-albicans Candida is increasing. In this context, the objective of this work was to evaluate the ability of non-albicans Candida species to spread to the CNS of immunocompetent and immunosuppressed mice. Adult female C57BL/6 mice were treated with prednisolone, intravenously infected with Candida glabrata, Candida krusei and Candida parapsilosis yeasts and then evaluated at the 3rd and 14th days after infection. All Candida species disseminated to the brain from immunocompetent animals and induced local inflammation at the third day post-infection. The immunosuppression resulted in body weight loss, leukopenia and reduced IL-2 production by spleen cell cultures. Higher fungal loads were recovered from the CNS of immunosuppressed mice. Inflammatory infiltration associated to a Th1 subset profile was higher in brain samples from C. krusei immunosuppressed mice compared with immunocompetent ones. Additionally, C. krusei was able to transform into pseudohypha inside microglia in vitro infected cells and also to induce elevated nitric oxide production. Altogether, these results indicate that C. glabrata, C. krusei and C. parapsilosis are able to disseminate to the CNS and promote local inflammation in both immunocompetent and immunosuppressed mice. C. krusei displayed a distinct behavior at the CNS triggering a local Th1 profile. The possible contribution of these non-albicans Candida species to other CNS pathologies as multiple sclerosis, Parkinson’s and Alzheimer’s diseases deserves further attention.
Collapse
Affiliation(s)
| | - Luiza A N Mimura
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Hans G Garces
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Eduardo Bagagli
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | |
Collapse
|
20
|
Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 2018; 132:1529-1543. [DOI: 10.1042/cs20171505] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.
Collapse
|
21
|
Bruscoli S, Sorcini D, Flamini S, Gagliardi A, Adamo F, Ronchetti S, Migliorati G, Bereshchenko O, Riccardi C. Glucocorticoid-Induced Leucine Zipper Inhibits Interferon-Gamma Production in B Cells and Suppresses Colitis in Mice. Front Immunol 2018; 9:1720. [PMID: 30083167 PMCID: PMC6064738 DOI: 10.3389/fimmu.2018.01720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is transcriptionally upregulated by glucocorticoids (GCs) and mediates many of the anti-inflammatory effects of GCs. Since B cell activity has been linked to cytokine production and modulation of inflammatory responses, we herein investigated the role of GILZ in B cells during colitis development. B cell-specific gilz knock-out (gilz B cKO) mice exhibited increased production of the pro-inflammatory cytokine IFN-γ in B cells, and consequently CD4+ T cell activation. Increased IFN-γ production in B cells was associated with enhanced transcriptional activity of the transcription factor activator protein-1 (AP-1) on the IFN-γ promoter. Moreover, GILZ deficiency in B cells was linked to enhanced susceptibility to experimental colitis in mice, and this was reversed by administering GILZ protein. Interestingly, we observed increased production of IFN-γ in both B and T cells infiltrating the lamina propria (LP) of gilz B cKO mice. Together, these findings indicate that GILZ controls IFN-γ production in B cells, which also affects T cell activity, and increased production of IFN-γ by B and T cells in LP is associated with predisposition to inflammatory colitis in mice.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Section of Hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Flamini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Gagliardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Adamo
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Oxana Bereshchenko
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Gharesouran J, Taheri M, Sayad A, Ghafouri-Fard S, Mazdeh M, Omrani MD. The Growth Arrest-Specific Transcript 5 (GAS5) and Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1): Novel Markers Involved in Multiple Sclerosis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:102-110. [PMID: 30276165 PMCID: PMC6148504 DOI: 10.22088/ijmcm.bums.7.2.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Recent studies have revealed that long noncoding RNAs (lncRNAs) are connected with pathogenesis of neurodegenerative diseases. Additionally, glucocorticoids have fundamental regulatory roles on the immune system, and act as potent therapeutic compounds for autoimmune and inflammatory diseases. The long noncoding RNA growth arrest-specific 5 (GAS5) which accumulates inside the cells in response to cellular starvation/growth arrest, acts as a potent repressor of the glucocorticoid receptor (GR) through its glucocorticoid response element (GRE). The aim of the present study was to investigate the role of lncRNA GAS5 and its downstream target Nuclear Receptor Subfamily 3 Group C Member 1(NR3C1) in the pathogenesis of multiple sclerosis (MS), and to define the role of GAS5 in the regulation of NR3C1 expression. Quantitative polymerase chain reaction was performed for investigating the expression of GAS5 and NR3C1 in MS patients and healthy subjects. We found that GAS5 levels were up-regulated in the MS patients, blood compared with healthy subjects in correlation with NR3C1 expression. Our findings suggest that GAS5 may play on important role in the molecular etiology and treatment of MS.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,First two authors contributed equally in the writing of the paper
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,First two authors contributed equally in the writing of the paper
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Donor Genotype and Intragraft Expression of CYP3A5 Reflect the Response to Steroid Treatment During Acute Renal Allograft Rejection. Transplantation 2017; 101:2017-2025. [PMID: 27926596 DOI: 10.1097/tp.0000000000001584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Glucocorticoid (GC)-refractory acute rejection (AR) is a risk factor for inferior renal allograft outcome. We investigated genetic predisposition to the response to steroid treatment of acute allograft rejection. METHODS Single nucleotide polymorphisms of genes involved in GC signaling (GR, GLCCI1) and drug metabolism and transport (CYP3A5, ABCB1, and PXR) were analyzed in kidney transplant recipients (1995-2005, Leiden cohort, n = 153) treated with methylprednisolone. Significant associations were verified in a second cohort (Berlin cohort, n = 66). RESULTS Patients who received a CYP3A5*1 allele expressing allograft had a lower risk of resistance to methylprednisolone during AR (odds ratio, 0.29; 95% confidence interval, 0.11-0.79; P = 0.016 in combined cohorts analysis). No differences were observed for GC signaling or other drug metabolism/transport-related genes. Both before transplantation (n = 69) and at time of AR (n = 88), tissue CYP3A5 mRNA expression was significantly higher in CYP3A5*1 allele expressing donor kidneys than in CYP3A5*3/*3 allografts (P < 0.00001). Moreover, steroid-responsive patients (n = 64) expressed significantly higher intragraft CYP3A5 mRNA levels compared to steroid-refractory patients (n = 42) in AR (P = 0.006). CONCLUSIONS CYP3A5 protein expression was detected in tubular epithelial cells and inflammatory cells within the grafts. Our findings show that steroid resistance during AR is associated with donor genotype and intragraft expression levels of CYP3A5.
Collapse
|
25
|
Paterniti I, Campolo M, Cordaro M, Impellizzeri D, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. PPAR-α Modulates the Anti-Inflammatory Effect of Melatonin in the Secondary Events of Spinal Cord Injury. Mol Neurobiol 2017; 54:5973-5987. [PMID: 27686077 DOI: 10.1007/s12035-016-0131-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Melatonin is the principal secretory product of the pineal gland, and its role as an immunomodulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and reduces the development of inflammation and tissue injury events associated with spinal cord trauma. Previous results suggest that peroxisome proliferator-activated receptor α (PPAR-α), a nuclear receptor protein that functions as a transcription factor activated by fatty acids, plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI).With the aim to characterize the role of PPAR-α in melatonin-mediated anti-inflammatory activity, we tested the efficacy of melatonin (30 mg/kg) in an experimental model of spinal cord trauma, induced in mice, by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild-type (WT) mice.The results obtained indicate that melatonin-mediated anti-inflammatory activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, melatonin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation and tissue injury, neutrophil infiltration, pro-inflammatory cytokine expression, nuclear factor κB (NF-κB) activation, and inducible nitric oxide synthase (iNOS) expression. This study indicates that PPAR-α can contribute to the anti-inflammatory activity of melatonin in SCI.
Collapse
Affiliation(s)
- I Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Campolo
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - D Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Siracusa
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Crupi
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - E Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - S Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
26
|
Lucafò M, Di Silvestre A, Romano M, Avian A, Antonelli R, Martelossi S, Naviglio S, Tommasini A, Stocco G, Ventura A, Decorti G, De Iudicibus S. Role of the Long Non-Coding RNA Growth Arrest-Specific 5 in Glucocorticoid Response in Children with Inflammatory Bowel Disease. Basic Clin Pharmacol Toxicol 2017; 122:87-93. [PMID: 28722800 DOI: 10.1111/bcpt.12851] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
Glucocorticoids (GCs) are widely employed in inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in inflammatory bowel disease (IBD). Given the high incidence of suboptimal response, associated with a significant number of side-effects, that are particularly severe in paediatric patients, the identification of subjects that are most likely to respond poorly to GCs is extremely important. Recent evidence suggests that the long non-coding RNA (lncRNA) GAS5 could be a potential marker of GC resistance. To address this issue, we evaluated the association between the lncRNA GAS5 and the efficacy of steroids, in terms of inhibition of proliferation, in two cell lines derived from colon and ovarian cancers, to confirm the sensitivity and specificity of these lncRNAs. These cells showed a different sensitivity to GCs and revealed differential expression of GAS5 after treatment. GAS5 was up-regulated in GC-resistant cells and accumulated more in the cytoplasm compared to the nucleus in response to the drug. The functions of GAS5 were assessed by silencing, and we found that GAS5 knock-down reduced the proliferation during GC treatment. Furthermore, for the first time, we measured GAS5 levels in 19 paediatric IBD patients at diagnosis and after the first cycle of GCs, and we demonstrated an up-regulation of the lncRNA in patients with unfavourable steroid response. Our preliminary results indicate that GAS5 could be considered a novel pharmacogenomic marker useful for the personalization of GC therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alice Avian
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Stefano Martelossi
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Ventura
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
27
|
Racchi M, Buoso E, Ronfani M, Serafini MM, Galasso M, Lanni C, Corsini E. Role of Hormones in the Regulation of RACK1 Expression as a Signaling Checkpoint in Immunosenescence. Int J Mol Sci 2017; 18:ijms18071453. [PMID: 28684670 PMCID: PMC5535944 DOI: 10.3390/ijms18071453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Immunosenescence defines the decline in immune function that occurs with aging. This has been associated, at least in part, with defective cellular signaling via protein kinase C (PKC) signal transduction pathways. Our data suggest reduced PKC activation and consequently reduced response to lipopolysaccharide (LPS) stimulation and cytokine release. The lack of PKC activation seems to be dependent on the reduced expression of the receptor for activated C kinase 1 (RACK1), a scaffolding protein involved in multiple signal transduction cascades. The defective expression of RACK1 may be dependent on age-related alteration of the balance between the adrenal hormones cortisol and dehydroepiandrosterone (DHEA). DHEA levels reduce with aging, while cortisol levels remain substantially unchanged, resulting in an overall increase in the cortisol:DHEA ratio. These hormonal changes are significant in the context of RACK1 expression and signaling function because DHEA administration in vivo and in vitro can restore the levels of RACK1 and the function of the PKC signaling cascade in aged animals and in human cells. In contrast, there is evidence that cortisol can act as a negative transcriptional regulator of RACK1 expression. The rack1 gene promoter contains a glucocorticoid responsive element that is also involved in androgen signaling. Furthermore DHEA may have an indirect influence on the post-transcriptional regulation of the functions of the glucocorticoid receptor. In this review, we will examine the role of the hormonal regulation of rack1 gene transcriptional regulation and the consequences on signaling and function in immune cells and immunosenescence.
Collapse
Affiliation(s)
- Marco Racchi
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Erica Buoso
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Melania Ronfani
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Melania M Serafini
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
- Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy.
| | - Marilisa Galasso
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Cristina Lanni
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental Science and Policy, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
28
|
|
29
|
Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:127-138. [DOI: 10.1002/jez.2078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Stefanny Christie Monteiro Titon
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Vania Regina Assis
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Braz Titon Junior
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Bruna de Oliveira Cassettari
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Pedro Augusto Carlos Magno Fernandes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Fernando Ribeiro Gomes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
30
|
Azevedo VF, Lopes MP, Catholino NM, Paiva EDS, Araújo VA, Pinheiro GDRC. Critical revision of the medical treatment of gout in Brazil. REVISTA BRASILEIRA DE REUMATOLOGIA 2017; 57:346-355. [PMID: 28743362 DOI: 10.1016/j.rbre.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Gout is considered the most common form of inflammatory arthritis in men over 40 years. The authors present a brief review of the current treatment of gout and discuss the existing pharmacological limitations in Brazil for the treatment of this disease. Although allopurinol is still the main drug administered for decreasing serum levels of uric acid in gout patients in this country, the authors also present data that show a great opportunity for the Brazilian drug market for the treatment of hyperuricemia and gout and especially for patients using private and public (SUS) health care systems.
Collapse
Affiliation(s)
- Valderilio Feijó Azevedo
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clinica Médica, Curitiba, PR, Brazil.
| | - Maicon Piana Lopes
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clinica Médica, Curitiba, PR, Brazil
| | - Nathan Marostica Catholino
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clinica Médica, Curitiba, PR, Brazil
| | - Eduardo Dos Santos Paiva
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clinica Médica, Curitiba, PR, Brazil
| | - Vitor Andrei Araújo
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clinica Médica, Curitiba, PR, Brazil
| | | |
Collapse
|
31
|
Bellini G, Torella M, Manzo I, Tortora C, Luongo L, Punzo F, Colacurci N, Nobili B, Maione S, Rossi F. PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity. Pharmacol Res 2016; 115:267-274. [PMID: 27919827 DOI: 10.1016/j.phrs.2016.11.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
In this study, we investigated the role of the endovanilloid/endocannabinoid system in the glucocorticoid-induced osteoclast overactivity. Receptorial and enzymatic component of the endovanilloid/endocannabinoid system are expressed in bone cells, and dysregulated when bone mass is reduced. Moreover, blockade or desensitization of vanilloid receptor 1 (TRPV1) and/or stimulation of cannabinoid receptor 2 (CB2) are beneficial for reducing number and activity of the bone cells modulating resorption, the osteoclasts. We have treated in vitro healthy woman derived osteoclasts with methylprednisolone in presence or not of CB2 or TRPV1 agonists/antagonists, analysing the effect on osteoclast function and morphology through a multidisciplinary approach. Moreover, a treatment with a protein kinase C inhibitor to evaluate osteoclast activity and endovanilloid/endocannabinoid component expression levels was performed in osteoclasts derived from healthy subjects in presence of not of methylprednisolone. Our results show, for the first time, that the endovanilloid/endocannabinoid system is dysregulated by the treatment with methylprednisolone, that the osteoclast activity is increased and that pharmacological compounds stimulating CB2 or inhibiting TRPV1 might reduce, possible inhibiting protein kinase C beta II, the methylprednisolone-induced osteoclast over-activation, suggesting their therapeutic use for protecting from the glucocorticoid-induced bone mass loss.
Collapse
Affiliation(s)
- Giulia Bellini
- Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
| | - Marco Torella
- Department of Woman, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Iolanda Manzo
- Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
| | - Francesca Punzo
- Department of Woman, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Bruno Nobili
- Department of Woman, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Second University of Naples, 80138 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, Second University of Naples, 80138 Naples, Italy.
| |
Collapse
|
32
|
Titon SCM, de Assis VR, Titon B, Barsotti AMG, Flanagan SP, Gomes FR. Calling rate, corticosterone plasma levels and immunocompetence of Hypsiboas albopunctatus. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:53-60. [DOI: 10.1016/j.cbpa.2016.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
33
|
Ray A, Gulati K, Rai N. Stress, Anxiety, and Immunomodulation: A Pharmacological Analysis. VITAMINS AND HORMONES 2016; 103:1-25. [PMID: 28061967 DOI: 10.1016/bs.vh.2016.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress and stressful events are common occurrences in our daily lives and such aversive situations bring about complex changes in the biological system. Such stress responses influence the brain and behavior, neuroendocrine and immune systems, and these responses orchestrate to increase or decrease the ability of the organism to cope with such stressors. The brain via expression of complex behavioral paradigms controls peripheral responses to stress and a bidirectional link exists in the modulation of stress effects. Anxiety is a common neurobehavioral correlate of a variety of stressors, and both acute and chronic stress exposure could precipitate anxiety disorders. Psychoneuroimmunology involves interactions between the brain and the immune system, and it is now being increasingly recognized that the immune system could contribute to the neurobehavioral responses to stress. Studies have shown that the brain and its complex neurotransmitter networks could influence immune function, and there could be a possible link between anxiogenesis and immunomodulation during stress. Physiological and pharmacological data have highlighted this concept, and the present review gives an overview of the relationship between stress, anxiety, and immune responsiveness.
Collapse
Affiliation(s)
- A Ray
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - K Gulati
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - N Rai
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
34
|
Rekers NV, de Fijter J, Claas FH, Eikmans M. Mechanisms and risk assessment of steroid resistance in acute kidney transplant rejection. Transpl Immunol 2016; 38:3-14. [DOI: 10.1016/j.trim.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
|
35
|
Abstract
This study demonstrates demographic, clinical and laboratory characteristics with special reference to infections in Saudi patients with SLE. One-hundred and ninety-nine patients with SLE treated at Riyadh Armed Forces Hospital, Saudi Arabia over a period of 15 years (1990—2005) were retrospectively reviewed. There were 162 females and 37 males (4.4 : 1) with an average age of 35 years at onset of disease. Duration of diseases ranged from one to 23 years with a mean of 7.23 years. Some of the clinical characteristics of SLE patients observed were nephritis (53.7%), fever (53.26%), neuropsychological disorder (36.18%), malar/butterfly rash (27.6%), pulmonary disorder (22.6%), photosensitivity (21.6%), cardiac involvement (21.1%) and oral ulcers (19.09%). Infection was the major complication with 58.79% of SLE patient having suffered from various infections. A total of 22 species of pathogens including gram positive and gram negative bacteria, viruses and fungi were isolated from 117 SLE patients. Single to multiple episode of infection with various pathogens were recorded however, majority of patients harboured one or two species of pathogens. Bacterial infection was predominant (78.6%) followed by viral (28.2%) and fungal (28.2%) infections. Forty-four percent of SLE patients were found to be infected with organisms classified as opportunistic. The high incidence of infections in SLE patients may be attributed to the multiple intrinsic and extrinsic risk factors including deficiency of complement (C3 and C4), disease activity, renal impairment, use of glucocorticoid and cytotoxic drugs. It is concluded that more judicious use of corticosteroids and other immunosuppressive agents will be critical to limit the infections in SLE and a high alert and close monitoring of patients will ensure optimal patient outcome, both in terms of morbidity and mortality. Lupus (2007) 16, 755—763.
Collapse
Affiliation(s)
- H Al-Rayes
- Department of Medicine, Armed Forces Hospital, Riyadh 11159, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
36
|
Adrenal-Derived Hormones Differentially Modulate Intestinal Immunity in Experimental Colitis. Mediators Inflamm 2016; 2016:4936370. [PMID: 27403034 PMCID: PMC4923585 DOI: 10.1155/2016/4936370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
The adrenal glands are able to modulate immune responses through neuroimmunoendocrine interactions and cortisol secretion that could suppress exacerbated inflammation such as in inflammatory bowel disease (IBD). Therefore, here we evaluated the role of these glands in experimental colitis induced by 3% dextran sulfate sodium (DSS) in C57BL/6 mice subjected to adrenalectomy, with or without glucocorticoid (GC) replacement. Mice succumbed to colitis without adrenals with a higher clinical score and augmented systemic levels of IL-6 and lower LPS. Furthermore, adrenalectomy negatively modulated systemic regulatory markers. The absence of adrenals resulted in augmented tolerogenic lamina propria dendritic cells but no compensatory local production of corticosterone and decreased mucosal inflammation associated with increased IFN-γ and FasL in the intestine. To clarify the importance of GC in this scenario, GC replacement in adrenalectomized mice restored different markers to the same degree of that observed in DSS group. Finally, this is the first time that adrenal-derived hormones, especially GC, were associated with the differential local modulation of the gut infiltrate, also pointing to a relationship between adrenalectomy and the modulation of systemic regulatory markers. These findings may elucidate some neuroimmunoendocrine mechanisms that dictate colitis outcome.
Collapse
|
37
|
Mallipattu SK, Guo Y, Revelo MP, Roa-Peña L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma'ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC. Krüppel-Like Factor 15 Mediates Glucocorticoid-Induced Restoration of Podocyte Differentiation Markers. J Am Soc Nephrol 2016; 28:166-184. [PMID: 27288011 DOI: 10.1681/asn.2015060672] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.
Collapse
Affiliation(s)
| | - Yiqing Guo
- Division of Nephrology, Departments of Medicine and
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | | | - Jason Ling
- Division of Nephrology, Departments of Medicine and
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Victoria Ly
- Division of Nephrology, Departments of Medicine and
| | | | - Mukesh K Jain
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yuan Lu
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics and
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Rabi Yacoub
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | | | | | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Department of Pharmacology and Systems Therapeutics and.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
38
|
Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Physiol Renal Physiol 2016; 311:F46-51. [PMID: 27097894 DOI: 10.1152/ajprenal.00184.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury contributes to the onset and progression of glomerular diseases such as minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), diabetic nephropathy, and HIV-associated nephropathy (HIVAN). Since podocytes are terminally differentiated with minimal capacity to self-replicate, they are extremely sensitive to cellular injury. In the past two decades, our understanding of the mechanism(s) by which podocyte injury occurs has greatly expanded. With this newfound knowledge, therapeutic strategies have shifted to identifying targets directed specifically at the podocyte. Although the systemic effects of these agents are important, their direct effect on the podocyte proves to be essential in ameliorating glomerular disease. In this review, we highlight the mechanisms by which these agents directly target the podocyte independent of its systemic effects.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Renal Section, James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
39
|
Mok HP, Lu F, Zhang HY, Gao Q. Perioperative corticosteroids for reducing postoperative complications following esophagectomy. Hippokratia 2015. [DOI: 10.1002/14651858.cd011955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hsiao-Pei Mok
- Southern Medical University; Department of Plastic and Cosmetic Surgery, Southern Hospital; Guangzhou Guangdong China
- Southern Medical University; Guangzhou China
| | - Feng Lu
- Southern Medical University; Department of Plastic and Cosmetic Surgery, Southern Hospital; Guangzhou Guangdong China
| | - Hong-Yu Zhang
- Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences; Department of Cardiovascular Surgery; Guangzhou China
| | - Qiang Gao
- Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences; Department of Cardiovascular Surgery; Guangzhou China
| |
Collapse
|
40
|
Zhu Y, Xie F, Ding L, Fan X, Ding X, Zhang QY. Intestinal epithelium-specific knockout of the cytochrome P450 reductase gene exacerbates dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 2015; 354:10-7. [PMID: 25926522 DOI: 10.1124/jpet.115.223263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells. DSS treatment (2.5% in drinking water for 6 days) caused more severe colon inflammation, as evidenced by the presence of higher levels of myeloperoxidase and proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1β], and greater weight loss, colonic tissue damage, and colon shortening, in IE-Cpr-null mice than in WT mice. The IE-Cpr-null mice were deficient in colonic corticosterone (CC) synthesis, as indicated by the inability of ex vivo cultured colonic tissues from DSS-treated IE-Cpr-null mice (in contrast to DSS-treated WT mice) to show increased CC production, compared with vehicle-treated mice, and by the ability of added deoxycorticosterone (DOC), a precursor of CC biosynthesis via mitochondrial CYP11B1, to restore ex vivo CC production by colonic tissues from DSS-treated null mice. Intriguingly, null (but not WT) mice failed to show increased serum CC levels following DSS treatment. Nevertheless, cotreatment of DSS-exposed mice with DOC, which did not restore DSS-induced increase in serum CC, abolished the hypersensitivity of IE-Cpr-null mice to DSS-induced colon injury. Taken together, our results strongly support the notion that microsomal P450 enzymes in the intestine play an important role in protecting colon epithelium from DSS-induced inflammation and injury, possibly through increased local CC synthesis in response to DSS challenge.
Collapse
Affiliation(s)
- Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Liang Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xiaoyu Fan
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| |
Collapse
|
41
|
Mazzon E, Bruscoli S, Galuppo M, Biagioli M, Sorcini D, Bereshchenko O, Fiorucci C, Migliorati G, Bramanti P, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ) controls inflammation and tissue damage after spinal cord injury. CNS Neurosci Ther 2014; 20:973-81. [PMID: 25146427 DOI: 10.1111/cns.12315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023] Open
Abstract
AIMS Spinal cord injury (SCI) occurs following damage to the spinal column. Following trauma, tissue damage is further exacerbated by a secondary damage due to a SCI-activated inflammatory process. Control of leukocytes activity is essential to therapeutic inhibition of the spinal cord damage to ameliorate the patient's conditions. The mechanisms that regulate neuroinflammation following SCI, including T-cell infiltration, have not been completely clarified. Glucocorticoids (GC) are antiinflammatory drugs widely used in therapy, including treatment of SCI. GC efficacy may be linked to many molecular mechanisms that are involved in regulation of leukocytes migration, activation, and differentiation. We have previously shown that the antiinflammatory activity of GC is in part mediated by glucocorticoid-induced leucine zipper (GILZ). Here, we investigated the role of GILZ in inflammation and spinal cord tissue damage following a spinal trauma. METHODS We address the role of GILZ in SCI-induced inflammation and tissue damage using a model of SCI in gilz knockout (gilz KO) and wild-type (WT) mice. RESULTS We found that GILZ deficiency is associated with a strong reduction of SCI-induced inflammation and a significantly reduced lesion area following SCI. CONCLUSION These results demonstrate that GILZ is involved in induction of neuroinflammation and functional outcomes of spinal cord trauma.
Collapse
Affiliation(s)
- Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Okutsu M, Ishii K, Niu K, Nagatomi R. Cortisol is not the primary mediator for augmented CXCR4 expression on natural killer cells after acute exercise. J Appl Physiol (1985) 2014; 117:199-204. [DOI: 10.1152/japplphysiol.00176.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CXC-chemokine receptor 4 (CXCR4) and its ligand, stromal-derived factor 1α (SDF-1α; also known as CXCL12), are crucial for the redistribution of immune cells after acute exercise. We investigated the relationships between acute exercise and CXCR4 expression on natural killer (NK) cells. Peripheral blood mononuclear cells (PBMCs) were cultured with cortisol and analyzed for CXCR4 expression on CD3−/CD56+ NK cells and NK cell migration activity. To determine the effect of exercise, we isolated PBMCs from subjects before and after a 90-min exercise at 70% peak O2 uptake (V̇o2peak) and determined the changes in CXCR4 expression on NK cells after exercise. We cultured PBMCs with plasma obtained before and after exercise and with the glucocorticoid antagonist RU-486 to determine NK cell migration activity and the effects of cortisol on CXCR4 expression in vitro. Cortisol treatment increased CXCR4 expression ( P < 0.05) and migration activity ( P < 0.05) of NK cells. Exercise did not affect CXCR4 expression on NK cells, whereas incubating them with postexercise plasma significantly increased CXCR4 expression ( P < 0.05) and migration activity ( P < 0.05). RU-486 blocked cortisol-induced CXCR4 upregulation on NK cells, but only partially blocked (7%) CXCR4 upregulation when PMBCs were incubated with postexercise plasma. Thus acute exercise increases CXCR4 expression on NK cells and their migration activity and may contribute to NK cell redistribution after acute exercise; however, cortisol did not appear to be the primary mediator of augmented CXCR4 expression.
Collapse
Affiliation(s)
- Mitsuharu Okutsu
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Ishii
- Nanodevice Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kaijun Niu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| |
Collapse
|
43
|
Johnson SL, Gopal R, Enriquez A, Monroy FP. Role of glucocorticoids and Toxoplasma gondii infection on murine intestinal epithelial cells. Parasitol Int 2014; 63:687-94. [PMID: 24875937 DOI: 10.1016/j.parint.2014.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/24/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs) are stress hormones secreted in response to perceived psychological and or physiological stress. GCs have been shown to reduce tissue inflammation by down-regulating the production of inflammatory chemokines produced by epithelial cells. The protozoan parasite Toxoplasma gondii is known to increase cytokine, chemokine, and Toll-like receptors (TLRs) expression in parasite infected mouse intestinal epithelial cells (IECs). We sought to analyze the role of an anti-inflammatory protein, glucocorticoid-induced leucine zipper (GILZ) in MODE-K cells during infection with T. gondii. GILZ expression in MODE-K cells was assessed by PCR and immunoblotting after stimulation with GCs (corticosterone, CORT) or T. gondii infection. GILZ mRNA was constitutively expressed in MODE-K cells but not its protein product. While infection and pre-exposure to CORT decreased GILZ isoforms of 28 and 17 kD, the presence of CORT during infection increased levels of 17 kD isoform. Infected cells treated with CORT had decreased expression of chemokines (IP-10/CXCL10, MCP-1/CCL2, MIP-2/CXCL8) while their expression was increased when endogenous GILZ was removed by siRNA treatment. GILZ up-regulation during infection may serve as a mechanism to decrease epithelial cell responses and facilitate parasite replication.
Collapse
Affiliation(s)
- Stacy L Johnson
- Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA
| | - Radha Gopal
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Amber Enriquez
- Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA
| | - Fernando P Monroy
- Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA.
| |
Collapse
|
44
|
|
45
|
Corticosteroids modulate the expression of the PKC-anchoring protein RACK-1 and cytokine release in THP-1 cells. Pharmacol Res 2014; 81:10-6. [PMID: 24462857 DOI: 10.1016/j.phrs.2014.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/01/2014] [Accepted: 01/11/2014] [Indexed: 12/20/2022]
Abstract
We demonstrated that cortisol reduces the expression of RACK-1 (Receptor for Activated C Kinase-1), a protein required for immune cell activation. The aim of this study was to evaluate whether and to what extent other clinically relevant corticosteroids may modulate RACK-1 expression. We used the human promyelocytic cell line THP-1 to investigate the effects of cortisol, prednisone, prednisolone, budesonide, betamethasone and methylprednisolone on RACK-1 expression and cytokine production. As anticipated, all corticosteroids inhibited at non-cytotoxic concentrations in a dose and time related manner LPS-induced TNF-α and IL-8 release, with budesonide, betamethasone and methylprednisolone being the most active followed by prednisolone, cortisol and prednisone. To a similar extent, all corticosteroids also reduced RACK-1 mRNA expression and RACK-1 protein levels as assessed by Real Time PCR and Western blot, respectively. Prednisone was the least potent compound while betamethasone and methylprednisolone where the most active. A good correlation was observed between RACK-1 mRNA or protein levels and cytokine release (Pearson r=0.7376, p=0.0471 for RACK-1 mRNA and TNF-α release, and Pearson r=0.8108, p=0.0252 for RACK-1 protein and IL-8 release). Mifepristone, a potent glucocorticoid receptor (GR) antagonist, completely prevented the effect of cortisol, demonstrating that RACK-1 downregulation is via GR. Furthermore, to by-pass the defective PKC activation due to the decrease in RACK-1, we used a RACK-1 pseudosubstrate, that directly activates PKC-beta. RACK-1 pseudosubstrate was able to restore LPS-induced cytokine production affected by cortisol, supporting the role of RACK-1 in the anti-inflammatory effect of corticosteroids. These results confirm the involvement of RACK-1 in immune cell activation and identify this protein as a novel transcriptional target of corticosteroid-induced anti-inflammatory effects.
Collapse
|
46
|
Ko YH, Tsai MS, Lee PH, Liang JT, Chang KC. Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats. PLoS One 2013; 8:e69636. [PMID: 23874978 PMCID: PMC3714265 DOI: 10.1371/journal.pone.0069636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022] Open
Abstract
Introduction Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid) on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. Methods Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg−1 day−1 lipopolysaccharide) for either 2 or 4 weeks. Arterial wave transit time (τ) was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. Results Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs) in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO), which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp). However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp. However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. Conclusion Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.
Collapse
Affiliation(s)
- Ya-Hui Ko
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shian Tsai
- School of Chinese Medicine for Post-Baccalaureate I-Shou University and Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Tung Liang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chu Chang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Giardino G, Fusco A, Romano R, Gallo V, Maio F, Esposito T, Palamaro L, Parenti G, Salerno MC, Vajro P, Pignata C. Betamethasone therapy in ataxia telangiectasia: unraveling the rationale of this serendipitous observation on the basis of the pathogenesis. Eur J Neurol 2012; 20:740-7. [PMID: 23121321 DOI: 10.1111/ene.12024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive neurological dysfunction. To date, only supportive care aimed to halt the progressive neurodegeneration is available for the treatment. Recently, an improvement of neurological signs during short-term treatment with betamethasone has been reported. To date, the molecular and biochemical mechanisms by which the steroid produces such effects have not yet been elucidated. Therefore, a review of the literature was carried out to define the potential molecular and functional targets of the steroid effects in A-T. Glucocorticoids (GCs) are capable of diffusing into the CNS by crossing the blood-brain barrier (BBB) where they exert effects on the suppression of inflammation or as antioxidant. GCs have been shown to protect post-mitotic neurons from apoptosis. Eventually, GCs may also modulate synaptic plasticity. A better understanding of the mechanisms of action of GCs in the brain is needed, because in A-T during the initial phase of cell loss the neurological impairment may be rescued by interfering in the biochemical pathways. This would open a new window of intervention in this so far incurable disease.
Collapse
Affiliation(s)
- G Giardino
- Department of Pediatrics, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Masuda Y, Takahashi T, Yoshida K, Nishitani Y, Mizuno M, Mizoguchi H. Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels. J Biosci Bioeng 2012; 114:292-6. [DOI: 10.1016/j.jbiosc.2012.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 01/03/2023]
|
49
|
Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, Zhou WB, Li J. Possible Involvement of Toll-Like Receptors in the Pathogenesis of Myasthenia Gravis. Inflammation 2012; 36:121-30. [DOI: 10.1007/s10753-012-9526-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Pilipović I, Radojević K, Perišić M, Leposavić G. Glucocorticoid-catecholamine interplay within the composite thymopoietic regulatory network. Ann N Y Acad Sci 2012; 1261:34-41. [DOI: 10.1111/j.1749-6632.2012.06623.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|