1
|
Werner CM, Hallett LM, Shoemaker LG. Fluctuation-Dependent Coexistence of Stage-Structured Species. Am Nat 2025; 205:327-341. [PMID: 39965226 DOI: 10.1086/733382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractModern coexistence theory is a dominant framework for understanding how environmental fluctuations promote species coexistence. However, assessing fluctuation-dependent mechanisms of coexistence in empirical systems-in which species have diverse life histories and environment-competition relationships-has remained challenging for many ecologists. To help empiricists and theoreticians alike build intuition for the role of fluctuation-dependent mechanisms across systems and environments, we explore how two stage-structured life histories-perennial and seedbanking annuals-differ in competition with a nonseedbanking annual across three environmental scenarios. Our scenarios delineate how species partition resources within and among years and whether competition is most intense during favorable or unfavorable periods. We use this work to link differences in vital rates and interaction strengths to patterns and mechanisms of coexistence. Fluctuation-dependent mechanisms of coexistence can be equally important for perennial species with an adult "storage" stage as for seedbanking annuals. However, coexistence outcomes differentiate between these two stage-structured strategies based on whether they experience stronger or weaker competition in favorable environments. This work sets the stage for applying coexistence theory and fluctuation-dependent partitioning frameworks to perennial and mixed stage-structure communities, facilitating understanding of how environmental variation drives species dynamics across a broader range of systems.
Collapse
|
2
|
Halperin T. Georgii F. Gause's The Struggle for Existence and the Integration of Natural History and Mathematical Models. Am Nat 2025; 205:251-264. [PMID: 39965228 DOI: 10.1086/734003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractFor as long as ecology has existed, ecologists have struggled to reconcile natural history and mathematical models. This article revisits Gause's 1934 book, The Struggle for Existence, which effectively bridged their divide in his time by integrating insights from the then-separate natural history niche theory and the demographic Lotka-Volterra model. Gause's integration was based on a compelling verbal argument in which he reinterpreted the competition coefficient in terms of the niche concept. This interpretation was highly influential and was later embedded in models of modern coexistence theory. The discussion will compare Gause's verbal integration with current modeling-based approaches. While uncommon today, it will be argued that Gause's original approach carries unique advantages and remains relevant to contemporary ecology.
Collapse
|
3
|
Dickey JR, Mercer NM, Kuijpers MCM, Props R, Jackrel SL. Biodiversity within phytoplankton-associated microbiomes regulates host physiology, host community ecology, and nutrient cycling. mSystems 2025; 10:e0146224. [PMID: 39873522 PMCID: PMC11834400 DOI: 10.1128/msystems.01462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Biological diversity is declining across the tree of life, including among prokaryotes. With the increasing awareness of host-associated microbes as potential regulators of eukaryotic host physiology, behavior, and ecology, it is important to understand the implications of declining diversity within host microbiomes on host fitness, ecology, and ecosystem function. We used phytoplankton and their associated environmental microbiomes as model systems to test the independent and interactive effects of declining microbiome diversity with and without other stressors often caused by human activity-elevated temperature and altered nutrient availability. We found effects of low microbiome diversity on host physiology, phytoplankton community dynamics, and nutrient cycling. Low microbiome diversity caused greater host cellular stress, as indicated by elevated δ13C and δ15N. Microbiome diversity also significantly affected host cell morphological metrics, likely as a consequence of this effect on cell stress. Despite causing greater host cellular stress, the effects of low microbiome diversity on host community ecology included elevated phytoplankton community diversity and biomass. The diversity of these host-associated microbes also had cascading implications on ecosystem nutrient cycling, where lower microbiome diversity caused a depletion of total dissolved N and P in the environment. The magnitude of these effects, caused by microbiome diversity, was greatest among nutrient-depleted environments and at elevated temperatures. Our results emphasize the widespread implications of declining host-associated microbial diversity from host cellular physiology to ecosystem nutrient cycling. These demonstrated effects of declining microbiome diversity are likely to be amplified in ecosystems experiencing multiple stressors caused by anthropogenic activities. IMPORTANCE As evidence is emerging of the key roles that host-associated microbiomes often play in regulating the physiology, fitness, and ecology of their eukaryotic hosts, human activities are causing declines in biological diversity, including within the microbial world. Here, we use a multifactorial manipulative experiment to test the effects of declining diversity within host microbiomes both alone and in tandem with the effects of emerging global changes, including climate warming and shifts in nutrient bioavailability, which are inflicting increasing abiotic stress on host organisms. Using single-celled eukaryotic phytoplankton that harbor an external microbiome as a model system, we demonstrate that diversity within host-associated microbiomes impacts multiple tiers of biological organization, including host physiology, the host population and community ecology, and ecosystem nutrient cycling. Notably, these microbiome diversity-driven effects became magnified in abiotically stressful environments, suggesting that the importance of microbiome diversity may have increased over time during the Anthropocene.
Collapse
Affiliation(s)
- Jonathan R. Dickey
- Department of Ecology, Behavior and Evolution, University of California San Diego School of Biological Sciences, La Jolla, California, USA
| | - Nikki M. Mercer
- Department of Ecology, Behavior and Evolution, University of California San Diego School of Biological Sciences, La Jolla, California, USA
| | - Mirte C. M. Kuijpers
- Department of Ecology, Behavior and Evolution, University of California San Diego School of Biological Sciences, La Jolla, California, USA
| | | | - Sara L. Jackrel
- Department of Ecology, Behavior and Evolution, University of California San Diego School of Biological Sciences, La Jolla, California, USA
| |
Collapse
|
4
|
Shinohara N, Katsuhara KR. The effects of anisotropic dispersal on species coexistence in a metacommunity. Biol Lett 2025; 21:20240537. [PMID: 39965653 PMCID: PMC11835487 DOI: 10.1098/rsbl.2024.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Dispersal is a ubiquitous process occurring in any ecosystem, with a critical role in the regional coexistence of species that cannot coexist locally. However, previous studies have typically focused on a specific scenario where dispersal is isotropic, leaving the consequence of anisotropic, directionally skewed dispersal largely unexplored, despite its prevalence in natural ecosystems. In this study, we used simulations to study whether the anisotropy of dispersal promotes or hinders species coexistence in a metacommunity. We found that dispersal anisotropy plays a decisive role in species coexistence-with coexistence promoted when dispersal is more directed orthogonally to an environmental gradient, while it is less likely when dispersal is primarily parallel with the gradient. This occurred because dispersal directed orthogonally to the background environmental gradient transports individuals produced in 'good' habitats to other good habitats, creating conditions that favour several spatial coexistence mechanisms, such as spatial storage effects and fitness-density covariance. We conclude that the effect of anisotropic dispersal could be diverse, and therefore, it is necessary to consider the anisotropy and the distribution of environments for a better understanding of species coexistence in a metacommunity.
Collapse
Affiliation(s)
- Naoto Shinohara
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Koki R. Katsuhara
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Rafiq K, Beery S, Palmer MS, Harchaoui Z, Abrahms B. Generative AI as a tool to accelerate the field of ecology. Nat Ecol Evol 2025:10.1038/s41559-024-02623-1. [PMID: 39880986 DOI: 10.1038/s41559-024-02623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/06/2024] [Indexed: 01/31/2025]
Abstract
The emergence of generative artificial intelligence (AI) models specializing in the generation of new data with the statistical patterns and properties of the data upon which the models were trained has profoundly influenced a range of academic disciplines, industry and public discourse. Combined with the vast amounts of diverse data now available to ecologists, from genetic sequences to remotely sensed animal tracks, generative AI presents enormous potential applications within ecology. Here we draw upon a range of fields to discuss unique potential applications in which generative AI could accelerate the field of ecology, including augmenting data-scarce datasets, extending observations of ecological patterns and increasing the accessibility of ecological data. We also highlight key challenges, risks and considerations when using generative AI within ecology, such as privacy risks, model biases and environmental effects. Ultimately, the future of generative AI in ecology lies in the development of robust interdisciplinary collaborations between ecologists and computer scientists. Such partnerships will be important for embedding ecological knowledge within AI, leading to more ecologically meaningful and relevant models. This will be critical for leveraging the power of generative AI to drive ecological insights into species across the globe.
Collapse
Affiliation(s)
- Kasim Rafiq
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.
| | - Sara Beery
- AI and Decision Making, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meredith S Palmer
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Zaid Harchaoui
- Allen School in Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Colares LF, Herdina ADS, Bender M, Dambros CDS. Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil. INSECT SCIENCE 2025. [PMID: 39822161 DOI: 10.1111/1744-7917.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 01/19/2025]
Abstract
Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process. Using morphometric analysis, we measured wing and thorax traits and assessed trait changes over succession through mixed models. Our findings revealed that carrion succession follows distinct trajectories in forest and grassland environments. Specifically, we observed that Calliphora lopesi predominantly visited carcasses during the final phase of decomposition, resulting in significant differences in species composition and wing size between habitats. In forests, wing size increased toward the later stages of succession, whereas an opposite trend was observed in grasslands. Notably, these trait patterns were only evident at the species level, indicating that intraspecific trait variation is irrelevant. Stronger dispersers tend to arrive during the later stages of succession, suggesting that dispersal has a negligible role in shaping successional dynamics. Instead, environmental differences between habitats drive trait patterns throughout succession. Our results suggest that community composition in ephemeral resources is governed by deterministic processes and that successional stages can be predicted based on blowfly wing traits. Specifically, the presence of the large-winged C. lopesi indicates late decay, while the small-winged Chrysomia albiceps and Lucilia eximia are indicative of early decay.
Collapse
Affiliation(s)
- Lucas Ferreira Colares
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Anita da Silva Herdina
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mariana Bender
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Marine Macroecology and Conservation Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristian de Sales Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Lubiana Botelho L, Jeynes-Smith C, Vollert SA, Bode M. Calibrated Ecosystem Models Cannot Predict the Consequences of Conservation Management Decisions. Ecol Lett 2025; 28:e70034. [PMID: 39737694 DOI: 10.1111/ele.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
Ecosystem models are often used to predict the consequences of management interventions in applied ecology and conservation. These models are often high-dimensional and nonlinear, yet limited data are available to calibrate or validate them. Consequently, their utility as decision-support tools is unclear. In this paper, we calibrate ecosystem models to time series data from 110 different experimental microcosm ecosystems, each containing three to five interacting species. Then, we assess their ability to predict the consequences of management interventions. Our results show that for each time series dataset, multiple divergent parameter sets offer equivalent, good fits. However, these models have poor predictive accuracy when forecasting future dynamics or when predicting how the ecosystem will respond to management intervention. Closer inspection reveals that the models fail because calibration cannot determine the nature of the interspecific interactions. Our findings question whether ecosystem models can support applied ecological decision-making when calibrated against real-world datasets.
Collapse
Affiliation(s)
- Larissa Lubiana Botelho
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Securing Antarctica's Environmental Future, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cailan Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah A Vollert
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Securing Antarctica's Environmental Future, School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Colares LF, Herdina ADS, Bender M, Dambros CDS. Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil. INSECT SCIENCE 2024. [PMID: 39740800 DOI: 10.1111/1744-7917.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process. Using morphometric analysis, we measured wing and thorax traits and assessed trait changes over succession through mixed models. Our findings revealed that carrion succession follows distinct trajectories in forest and grassland environments. Specifically, we observed that Calliphora lopesi predominantly visited carcasses during the final phase of decomposition, resulting in significant differences in species composition and wing size between habitats. In forests, wing size increased toward the later stages of succession, whereas an opposite trend was observed in grasslands. Notably, these trait patterns were only evident at the species level, indicating that intraspecific trait variation is irrelevant. Stronger dispersers tend to arrive during the later stages of succession, suggesting that dispersal has a negligible role in shaping successional dynamics. Instead, environmental differences between habitats drive trait patterns throughout succession. Our results suggest that community composition in ephemeral resources is governed by deterministic processes and that successional stages can be predicted based on blowfly wing traits. Specifically, the presence of the large-winged C. lopesi indicates late decay, while the small-winged Chrysomia albiceps and Lucilia eximia are indicative of early decay.
Collapse
Affiliation(s)
- Lucas Ferreira Colares
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Anita da Silva Herdina
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mariana Bender
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Marine Macroecology and Conservation Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristian de Sales Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Xia S, Zhang S, Cui Y, Gao Z, Song K, Da L. Spatial variations of soil seed banks in Shanghai's urban wasteland: a gradient analysis of urbanization effects. PeerJ 2024; 12:e18764. [PMID: 39726747 PMCID: PMC11670764 DOI: 10.7717/peerj.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Urbanization greatly impacts both the diversity of soil seed banks and the spatial dynamics of species. These seed banks serve as a window into the ecological history and potential for recovery in urban wastelands, which are continually evolving due to urbanization. In this study, we selected 24 plots along urban-rural gradients in Shanghai, China. Soil samples were collected from each plot for seed bank germination experiment in both spring and autumn. We tested whether the seed density, species diversity, and composition of soil seed banks in wasteland varied along an urban-rural gradient. The results showed that seed density was higher in autumn than in spring and no significant difference was found along urban-rural gradients. A total of 74 species, belonging to 26 families and 69 genera, was recorded in soil seed banks, in which annuals were the dominant life form and autochory was the dominant dispersal model. The proportion of exotic species was nearly 40%. There is no significant difference along urban-rural gradients for functional composition, species diversity, and species composition, excepting that marginal significant for autumn Shannon-Wiener index and species composition among urban-rural gradients. The relative homogeneity in the seed bank across urban-rural gradients may primarily be due to the young age of the wastelands.
Collapse
Affiliation(s)
- Siyi Xia
- Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shumeng Zhang
- Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yichong Cui
- Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhiwen Gao
- Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Global Institute for Urban and Regional Sustainability, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| | - Kun Song
- Zhejiang Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Global Institute for Urban and Regional Sustainability, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| | - Liangjun Da
- Institute of Science and Engineering of Ecology in Arid and Semi-arid Areas, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Wang YC, Zhang XN, Yang JF, Tian JY, Song DH, Li XH, Zhou SF. Spatial heterogeneity of soil factors enhances intraspecific variation in plant functional traits in a desert ecosystem. FRONTIERS IN PLANT SCIENCE 2024; 15:1504238. [PMID: 39801819 PMCID: PMC11721652 DOI: 10.3389/fpls.2024.1504238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Introduction Functional traits of desert plants exhibit remarkable responsiveness, adaptability and plasticity to environmental heterogeneity. Methods In this study, we measured six crucial plant functional traits (leaf carbon, leaf nitrogen, leaf phosphorus, leaf thickness, chlorophyll concentration, and plant height) and employed exemplar analysis to elucidate the effects of soil environmental heterogeneity on intraspecific traits variation in the high-moisture-salinity and low-moisture-salinity habitats of the Ebinur LakeWetland National Nature Reserve. Results The results showed that (1) The soil moisture and electrical conductivity heterogeneity showed significant differences between the two moisture-salinity habitats. Moreover, soil nutrient in high moisture-salinity habitat exhibited higher heterogeneity than in low moisture-salinity habitat. The order of intraspecific trait variation among different life forms was herbs > shrubs > trees in both the soil moisture-salinity habitats. (2) At the community level, intraspecific variation of leaf carbon, nitrogen, plant height and chlorophyll content in high moisture-salinity habitat was higher than that in low moisture-salinity habitat, while the opposite was true for leaf thickness and leaf phosphorus content. (3) Our findings revealed a positive impact of soil heterogeneity on intraspecific traits variation. In high moisture-salinity habitat, the heterogeneity of soil organic carbon had the highest explanatory power for intraspecific traits variation, reaching up to 20.22%, followed by soil total nitrogen (9.55%) and soil total phosphorus (3.49%). By comparison, in low-moisture-salinity habitat, the heterogeneity of soil moisture alone contributes the highest explanatory power for intraspecific traits variation in community-level, reaching up to 13.89%, followed by the heterogeneity of soil total nitrogen (3.76%). Discussion This study emphasizes the differences in soil heterogeneity and intraspecific trait variation among plant life forms under various soil moisture-salinity habitats and confirms the significant promoting effect of soil heterogeneity on intraspecific trait variation of desert plant. Our findings provide valuable theoretical basis and reference for predicting plant adaptation strategies under environmental change scenarios.
Collapse
Affiliation(s)
- Yong-chang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Xue-ni Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Ji-fen Yang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Jing-ye Tian
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Dan-hong Song
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Xiao-hui Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| | - Shuang-fu Zhou
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, China
| |
Collapse
|
11
|
Jacobs J, Salmaniw Y, Lam KY, Zhai L, Wang H, Zhang B. Fundamental principles of the effect of habitat fragmentation on species with different movement rates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14424. [PMID: 39699289 DOI: 10.1111/cobi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 12/20/2024]
Abstract
Habitat loss and fragmentation have independent impacts on biodiversity; thus, field studies are needed to distinguish their impacts. Moreover, species with different locomotion rates respond differently to fragmentation, complicating direct comparisons of the effects of habitat loss and fragmentation across differing taxa and landscapes. To overcome these challenges, we combined mechanistic mathematical modeling and laboratory experiments to compare how species with different locomotion rates were affected by low (∼80% intact) and high (∼30% intact) levels of habitat loss. In our laboratory experiment, we used Caenorhabditis elegans strains with different locomotion rates and subjected them to the different levels of habitat loss and fragmentation by placing Escherichia coli (C. elegans food) over different proportions of the Petri dish. We developed a partial differential equation model that incorporated spatial and biological phenomena to predict the impacts of habitat arrangement on populations. Only species with low rates of locomotion declined significantly in abundance as fragmentation increased in areas with low (p = 0.0270) and high (p = 0.0243) levels of habitat loss. Despite that species with high locomotion rates changed little in abundance regardless of the spatial arrangement of resources, they had the lowest abundance and growth rates in all environments because the negative effect of fragmentation created a mismatch between the population distribution and the resource distribution. Our findings shed new light on incorporating the role of locomotion in determining the effects of habitat fragmentation.
Collapse
Affiliation(s)
- Jamaal Jacobs
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurij Salmaniw
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, Alberta, Canada
| | - King-Yeung Lam
- Department of Mathematics, Ohio State University, Columbus, Ohio, USA
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
12
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
13
|
Deng J, Shu H, Tang S, Wang L, Wang XS. Coexistence or extinction: Dynamics of multiple lizard species with competition, dispersal and intraguild predation. J Math Biol 2024; 89:65. [PMID: 39581903 DOI: 10.1007/s00285-024-02162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
Biological invasions significantly impact native ecosystems, altering ecological processes and community behaviors through predation and competition. The introduction of non-native species can lead to either coexistence or extinction within local habitats. Our research develops a lizard population model that integrates aspects of competition, intraguild predation, and the dispersal behavior of intraguild prey. We analyze the model to determine the existence and stability of various ecological equilibria, uncovering the potential for bistability under certain conditions. By employing the dispersal rate as a bifurcation parameter, we reveal complex bifurcation dynamics associated with the positive equilibrium. Additionally, we conduct a two-parameter bifurcation analysis to investigate the combined impact of dispersal and intraguild predation on ecological structures. Our findings indicate that intraguild predation not only influences the movement patterns of brown anoles but also plays a crucial role in sustaining the coexistence of different lizard species in diverse habitats.
Collapse
Affiliation(s)
- Jiawei Deng
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Hongying Shu
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Sanyi Tang
- School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, P.R. China
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Xiang-Sheng Wang
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| |
Collapse
|
14
|
Li X, Gao X, Tang N, Wang L, Xing W. Functional traits of exotic submerged macrophytes mediate diversity-invasibility relationship in freshwater communities under eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175060. [PMID: 39067607 DOI: 10.1016/j.scitotenv.2024.175060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Plant diversity may respond differently in terms of whether it can drive plant invasions in freshwater ecosystem. Linkages and interactions between diversity and invasibility have not been clearly resolved, and it is unclear how nutrient enrichment (e.g., eutrophication) will affect this relationship. As a key predictor of plant growth, the ability of functional traits to mediate trade-offs in the diversity-invasibility relationship is unknown. Here, we conducted a series of experiments to determine the role of exotic plant functional traits in the diversity-invasibility relationship of submerged macrophyte communities under eutrophication. We selected common native and exotic submerged macrophytes in the subtropics to construct different diverse submerged macrophyte communities to simulate invasion. Meanwhile, to test the adaptability and importance of functional traits, we experimentally verified the differences in functional traits between exotic and native species. Our results showed a positive correlation between native plant diversity and community invasibility. Moreover, the invader's performance was predominantly determined by functional traits of exotic species, such as plant biomass and tissue nutrients, which were significantly altered by species diversity. Furthermore, our results suggested that functional traits contribute significantly more to the invasiveness of exotic submerged macrophytes than the other factors to which they are subjected. Plant functional traits can mediate the diversity-invasibility relationship because of the higher intrinsic dominance of exotic submerged macrophyte species. In summary, our study revealed diversity-invasibility relationship in submerged macrophyte communities and highlighted functional traits as key drivers of invasion of high-risk exotic submerged macrophyte species. Although previous studies have elucidated the importance of functional trait studies for plant invasions, our study provides the only current evidence demonstrating the important role of invaders' functional traits in mediating the diversity-invasibility relationship. This novel perspective offers valuable insights into the management and control of invasive aquatic plants.
Collapse
Affiliation(s)
- Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Na Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Lei Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Ellner SP, Snyder RE, Adler PB, Hernández CM, Hooker G. It's about (taking up) space: Discreteness of individuals and the strength of spatial coexistence mechanisms. Ecology 2024; 105:e4404. [PMID: 39370719 DOI: 10.1002/ecy.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/30/2024] [Accepted: 04/13/2024] [Indexed: 10/08/2024]
Abstract
One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation-based approach to quantifying IGRs in this situation, building on our previous approach for spatially non-varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth-density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.
Collapse
Affiliation(s)
- Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Robin E Snyder
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter B Adler
- Department of Wildland Resources & The Ecology Center, Utah State University, Logan, Utah, USA
| | - Christina M Hernández
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Biology, Oxford University, Oxford, UK
| | - Giles Hooker
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Ren Z, Baer SG, Johnson LC, Galliart MB, Gibson DJ. Effects of Manipulated Rainfall and Intraspecific Variation Within Dominant Species on Community Assembly: Insights From a Long-Term Grassland Restoration Experiment. Ecol Evol 2024; 14:e70571. [PMID: 39554882 PMCID: PMC11569867 DOI: 10.1002/ece3.70571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Grasslands converted to agricultural land use can be reestablished by sowing seeds of native species and temporal dynamics of diversity under altered climate can inform community assembly in the context of global change. We quantified three aspects of diversity (species richness, phylogenetic diversity, and functional diversity) in restored prairie plots sown with different ecotypes of two dominant grass species and manipulated rainfall to understand the relative importance of abiotic filtering and population source of dominant species on community assembly. We also evaluated the contributions of intra- and interspecific variations in functional traits across plots sown with different ecotypes of dominant species. Since the fourth year of community establishment, species richness decreased over time as dominant species gradually established. Phylogenetic and functional diversity was unaffected by the ecotypic sources of dominant species during restoration. Experimental drought did not affect species richness, phylogenetic, or functional diversity. Community structure in the grasslands was mainly shaped by intraspecific, within-population variation in the dominant species rather than by differences in traits among species. Our results showed that intraspecific biotic interactions contribute more than environmental filtering to community assembly in a tallgrass-dominated prairie ecosystem.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- School of Biological SciencesSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Sara G. Baer
- Department of Ecology & Evolutionary Biology and Kansas Biological Survey & Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| | | | | | - David J. Gibson
- School of Biological SciencesSouthern Illinois UniversityCarbondaleIllinoisUSA
| |
Collapse
|
17
|
Devadhasan A, Kolodny O, Carja O. Competition for resources can reshape the evolutionary properties of spatial structure. PLoS Comput Biol 2024; 20:e1012542. [PMID: 39576832 PMCID: PMC11623808 DOI: 10.1371/journal.pcbi.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Many evolving ecosystems have spatial structures that can be conceptualized as networks, with nodes representing individuals or homogeneous subpopulations and links the patterns of spread between them. Prior models of evolution on networks do not take ecological niche differences and eco-evolutionary interplay into account. Here, we combine a resource competition model with evolutionary graph theory to study how heterogeneous topological structure shapes evolutionary dynamics under global frequency-dependent ecological interactions. We find that the addition of ecological competition for resources can produce a reversal of roles between amplifier and suppressor networks for deleterious mutants entering the population. We show that this effect is a nonlinear function of ecological niche overlap and discuss intuition for the observed dynamics using simulations and analytical approximations. We use these theoretical results together with spatial representations from imaging data to show that, for ductal carcinoma, where tumor growth is highly spatially constrained, with cells confined to a tree-like network of ducts, the topological structure can lead to higher rates of deleterious mutant hitchhiking with metabolic driver mutations, compared to tumors characterized by different spatial topologies.
Collapse
Affiliation(s)
- Anush Devadhasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, E. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Laprise MA, Grgicak-Mannion A, VanLaerhoven SL. Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types. INSECTS 2024; 15:822. [PMID: 39452398 PMCID: PMC11508989 DOI: 10.3390/insects15100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor-Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (-), woods (-), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/-), roads (-), wheat/corn (-), and commercial (-) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (-) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (-), residential (+), distance to streams (+), waste (-), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features.
Collapse
Affiliation(s)
- Madison A. Laprise
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | | | | |
Collapse
|
19
|
Mony C, Vannier N, Burel F, Ernoult A, Vandenkoornhuyse P. The root microlandscape of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2024; 244:394-406. [PMID: 39169593 DOI: 10.1111/nph.20048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Understanding the drivers of assemblages of arbuscular mycorrhizal fungi (AMF) is essential to leverage the benefits of AMF for plant growth and health. Arbuscular mycorrhizal fungi are heterogeneously distributed in space even at small scale. We review the role of plant distribution in driving AMF assemblages (the passenger hypothesis), using a transposition of the conceptual framework of landscape ecology. Because rooting systems correspond to habitat patches with limited carrying capacity that differ in quality due to host-preference effects, we suggest considering plant communities as mosaics of AMF microhabitats. We review how predictions from landscape ecology apply to plant community effects on AMF, and the existing evidence that tests these predictions. Although many studies have been conducted on the effect of plant compositional heterogeneity on AMF assemblages, they mostly focused on the effect of plant richness, while only a few investigated the effect of configurational heterogeneity, plant connectivity or plant community temporal dynamics. We propose key predictions and future prospects to fill these gaps. Considering plant communities as landscapes extends the passenger hypothesis by including a spatially explicit dimension and its associated ecological processes and may help understand and manipulate AMF assemblages at small spatial scales.
Collapse
Affiliation(s)
- Cendrine Mony
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | - Nathan Vannier
- UMR 1349 IGEPP, INRAE Centre Bretagne, Domaine de la Motte, BP35327, 35653, Le Rheu Cedex, France
| | - Françoise Burel
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | - Aude Ernoult
- UMR 6553 ECOBIO, Université de Rennes, Avenue du Général Leclerc, 35043, Rennes Cedex, France
| | | |
Collapse
|
20
|
Holt JD, Schultz D, Nadell CD. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Curr Biol 2024; 34:4129-4142.e4. [PMID: 39163856 PMCID: PMC11686572 DOI: 10.1016/j.cub.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Collapse
Affiliation(s)
- Jacob D Holt
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
21
|
Shishikura Y, Ohta H. Emergence of vertical diversity under disturbance. Phys Rev E 2024; 110:034114. [PMID: 39425351 DOI: 10.1103/physreve.110.034114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/07/2024] [Indexed: 10/21/2024]
Abstract
We propose a statistical physics model of a neutral community, where each agent can represent identical plant species growing in the vertical direction with sunlight in the form of rich-get-richer competition. Disturbance added to this ecosystem, which makes an agent restart from the lowest growth level, is realized as a stochastic resetting. We show that in this model for sufficiently strong competition, vertical diversity characterized by a family of Hill numbers robustly emerges as a local maximum at intermediate disturbance.
Collapse
|
22
|
Huang Y, Mukherjee A, Schink S, Benites NC, Basan M. Evolution and stability of complex microbial communities driven by trade-offs. Mol Syst Biol 2024; 20:997-1005. [PMID: 38961275 PMCID: PMC11369148 DOI: 10.1038/s44320-024-00051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.
Collapse
Affiliation(s)
- Yanqing Huang
- Harvard Medical School, Department of Systems Biology, Boston, USA
| | - Avik Mukherjee
- Harvard Medical School, Department of Systems Biology, Boston, USA
| | - Severin Schink
- Harvard Medical School, Department of Systems Biology, Boston, USA
| | | | - Markus Basan
- Harvard Medical School, Department of Systems Biology, Boston, USA.
| |
Collapse
|
23
|
Poch P, Poulin E, Pérez MF, Peralta G, Hinojosa LF. Spatial patterns of congruence or mismatch between taxonomic, functional, and phylogenetic diversity and endemism of perennial flora along the aridity gradient of Chile. FRONTIERS IN PLANT SCIENCE 2024; 15:1418673. [PMID: 39280949 PMCID: PMC11392779 DOI: 10.3389/fpls.2024.1418673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024]
Abstract
Introduction Understanding the relationships between taxonomic, functional, and phylogenetic diversity and endemism across environmental gradients is essential for elucidating the eco-evolutionary mechanisms that shape local plant communities. Methods A database was compiled from field surveys, national herbarium records, and virtual records of perennial plant specimens collected in the aridity gradient of northern Chile, between 18 and 32°S. A large-scale dated phylogeny of available perennial plants was used, and 11 functional traits were selected to construct a dendrogram using the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) method for the species present in our database. We calculated spatial patterns of a-diversity, including taxonomic (TD), functional (FD), and phylogenetic (PD) diversity, as well as weighted (WE), functional (FE), and phylogenetic (PE) endemism. We used multiscale geographically weighted regression (MGWR) to identify spatial congruencies and discrepancies among these dimensions and to test different eco-evolutionary processes. Results The diversity indices TD, FD and PD showed similar geographic patterns (R2 > 0.93), with lower diversity observed in absolute desert regions. The pattern of weighted endemism (WE) showed a weak association with functional endemism (FE) and phylogenetic endemism (PE) (local R2 < 0.48). The regions with lower FD or PD than expected given the TD (i.e. FD WE and PE>WE), they are found in arid, high Andean and transitional zones, at different altitudes, which would indicate a greater presence of phylogenetic lineages and species with morpho-functional traits related to extreme environmental conditions and transitional biomes (arid-semiarid). Discussion These spatial discrepancies suggest different eco-evolutionary drivers between the dimensions of diversity and endemism (taxonomic, functional, and phylogenetic). Areas of high diversity and high endemism do not necessarily coincide, and both should be addressed by conservation efforts.
Collapse
Affiliation(s)
- Paola Poch
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - María Fernanda Pérez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gioconda Peralta
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Felipe Hinojosa
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| |
Collapse
|
|
24
|
Menges V, Rohovsky M, Rojas Feilke R, Menzel F. Species-specific behavioural responses to environmental variation as a potential species coexistence mechanism in ants. Proc Biol Sci 2024; 291:20240439. [PMID: 39192762 DOI: 10.1098/rspb.2024.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
A fundamental question of ecology is why species coexist in the same habitat. Coexistence can be enabled through niche differentiation, mediated by trait differentiation. Here, behaviour constitutes an often-overlooked set of traits. However, behaviours such as aggression and exploration drive intra- and interspecific competition, especially so in ants, where community structure is usually shaped by aggressive interactions. We studied behavioural variation in three ant species, which often co-occur in close proximity and occupy similar dominance ranks. We analysed how intra- and allospecific aggression, exploration and foraging activity vary under field conditions, namely with temperature and over time. Behaviours were assessed for 12 colonies per species, and four times each during several months. All behavioural traits consistently differed among colonies, but also varied over time and with temperature. These temperature-dependent and seasonal responses were highly species-specific. For example, foraging activity decreased at high temperatures in Formica rufibarbis, but not in Lasius niger; over time, it declined strongly in L. niger but much less in F. rufibarbis. Our results suggest that, owing to these species-specific responses, no species is always competitively superior. Thus, environmental and temporal variation effects a dynamic dominance hierarchy among the species, facilitating coexistence via the storage effect.
Collapse
Affiliation(s)
- Vanessa Menges
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Merle Rohovsky
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Raúl Rojas Feilke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15 , Mainz 55128, Germany
| |
Collapse
|
25
|
Szangolies L, Gallagher CA, Jeltsch F. Individual energetics scale up to community coexistence: Movement, metabolism and biodiversity dynamics in fragmented landscapes. J Anim Ecol 2024; 93:1065-1077. [PMID: 38932441 DOI: 10.1111/1365-2656.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Unravelling the intricate mechanisms that govern community coexistence remains a daunting challenge, particularly amidst ongoing environmental change. Individual physiology and metabolism are often studied to understand the response of individual animals to environmental change. However, this perspective is currently largely lacking in community ecology. We argue that the integration of individual metabolism into community theory can offer new insights into coexistence. We present the first individual-based metabolic community model for a terrestrial mammal community to simulate energy dynamics and home range behaviour in different environments. Using this model, we investigate how ecologically similar species coexist and maintain their energy balance under food competition. Only if individuals of different species are able to balance their incoming and outgoing energy over the long-term will they be able to coexist. After thoroughly testing and validating the model against real-world patterns such as of home range dynamics and field metabolic rates, we applied it as a case study to scenarios of habitat fragmentation - a widely discussed topic in biodiversity research. First, comparing single-species simulations with community simulations, we find that the effect of habitat fragmentation on populations is strongly context-dependent. While populations of species living alone in the landscape were mostly positively affected by fragmentation, the diversity of a community of species was highest under medium fragmentation scenarios. Under medium fragmentation, energy balance and reproductive investment were also most similar among species. We therefore suggest that similarity in energy balance among species promotes coexistence. We argue that energetics should be part of community ecology theory, as the relative energetic status and reproductive investment can reveal why and under what environmental conditions coexistence is likely to occur. As a result, landscapes can potentially be protected and designed to maximize coexistence. The metabolic community model presented here can be a promising tool to investigate other scenarios of environmental change or other species communities to further disentangle global change effects and preserve biodiversity.
Collapse
Affiliation(s)
- Leonna Szangolies
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
26
|
Lai HR, Bellingham PJ, McCarthy JK, Richardson SJ, Wiser SK, Stouffer DB. Detecting Nonadditive Biotic Interactions and Assessing Their Biological Relevance among Temperate Rainforest Trees. Am Nat 2024; 204:105-120. [PMID: 39008837 DOI: 10.1086/730807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AbstractInteractions between and within abiotic and biotic processes generate nonadditive density-dependent effects on species performance that can vary in strength or direction across environments. If ignored, nonadditivities can lead to inaccurate predictions of species responses to environmental and compositional changes. While there are increasing empirical efforts to test the constancy of pairwise biotic interactions along environmental and compositional gradients, few assess both simultaneously. Using a nationwide forest inventory that spans broad ambient temperature and moisture gradients throughout New Zealand, we address this gap by analyzing the diameter growth of six focal tree species as a function of neighbor densities and climate, as well as neighbor × climate and neighbor × neighbor statistical interactions. The most complex model featuring all interaction terms had the highest predictive accuracy. Compared with climate variables, biotic interactions typically had stronger effects on diameter growth, especially when subjected to nonadditivities from local climatic conditions and the density of intermediary species. Furthermore, statistically strong (or weak) nonadditivities could be biologically irrelevant (or significant) depending on whether a species pair typically interacted under average or more extreme conditions. Our study highlights the importance of considering both the statistical potential and the biological relevance of nonadditive biotic interactions when assessing species performance under global change.
Collapse
|
27
|
Ryser R, Chase JM, Gauzens B, Häussler J, Hirt MR, Rosenbaum B, Brose U. Landscape configuration can flip species-area relationships in dynamic meta-food-webs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230138. [PMID: 38913064 PMCID: PMC11391306 DOI: 10.1098/rstb.2023.0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities. Exploring the mechanisms by which landscape configurations interact with food-web dynamics in shaping metacommunities is important for our understanding of biodiversity. Here, we use a meta-food-web model to explore the role of landscape configuration in determining species richness and show that when habitat patches are interconnected by dispersal, more species can persist on smaller islands than predicted by classical theory. When patch sizes are spatially aggregated, this effect flattens the slope of the species-area relationship. Surprisingly, when landscapes have random patch-size distributions, the slope of the species-area relationships can even flip and become negative. This could be explained by higher biomass densities of lower trophic levels that then support species occupying higher trophic levels, which only persist on small and well-connected patches. This highlights the importance of simultaneously considering landscape configuration and local food-web dynamics to understand drivers of species-area relationships in metacommunities.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute for Computer Science, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Johanna Häussler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| |
Collapse
|
28
|
Bonte D, Keith S, Fronhofer EA. Species interactions and eco-evolutionary dynamics of dispersal: the diversity dependence of dispersal. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230125. [PMID: 38913054 PMCID: PMC11391317 DOI: 10.1098/rstb.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Dispersal plays a pivotal role in the eco-evolutionary dynamics of spatially structured populations, communities and ecosystems. As an individual-based trait, dispersal is subject to both plasticity and evolution. Its dependence on conditions and context is well understood within single-species metapopulations. However, species do not exist in isolation; they interact locally through various horizontal and vertical interactions. While the significance of species interactions is recognized for species coexistence and food web functioning, our understanding of their influence on regional dynamics, such as their impact on spatial dynamics in metacommunities and meta-food webs, remains limited. Building upon insights from behavioural and community ecology, we aim to elucidate biodiversity as both a driver and an outcome of connectivity. By synthesizing conceptual, theoretical and empirical contributions from global experts in the field, we seek to explore how a more mechanistic understanding of diversity-dispersal relationships influences the distribution of species in spatially and temporally changing environments. Our findings highlight the importance of explicitly considering interspecific interactions as drivers of dispersal, thus reshaping our understanding of fundamental dynamics including species coexistence and the emergent dynamics of metacommunities and meta-ecosystems. We envision that this initiative will pave the way for advanced forecasting approaches to understanding biodiversity dynamics under the pressures of global change. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35 , Gent B-9000, Belgium
| | - Sally Keith
- Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, UK
| | - Emanuel A Fronhofer
- ISEM, University of Montpellier, CNRS, IRD, EPHE , Montpellier 34095, France
| |
Collapse
|
29
|
Louhichi M, Khorchani T, Petretto M, Eifler D, Eifler M, Dadi K, Zaidi A, Karssene Y, Chammem M. Spatiotemporal Mechanisms of the Coexistence of Reintroduced Scimitar-Horned Oryx and Native Dorcas Gazelle in Sidi Toui National Park, Tunisia. Animals (Basel) 2024; 14:1475. [PMID: 38791692 PMCID: PMC11117359 DOI: 10.3390/ani14101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Examining the distribution patterns and spatiotemporal niche overlap of sympatric species is crucial for understanding core concepts in community ecology and for the effective management of multi-species habitats within shared landscapes. Using data from 26 camera-traps, recorded over two years (December 2020-November 2022), in Sidi Toui National Park (STNP), Tunisia, we investigate habitat use and activity patterns of the scimitar-horned oryx (n = 1865 captures) and dorcas gazelle (n = 1208 captures). Using information theory and multi-model inference methods, along with the Pianka index, we evaluated the habitat characteristics influencing species distribution and their spatial niche overlap. To delineate daily activity patterns, we applied kernel density estimation. Our findings indicate minimal spatial overlap and distinct environmental factors determining suitable habitats for each species. Furthermore, we found significant temporal niche overlaps, indicative of synchrony in daily activity patterns, with both species showing peak activity at dawn and dusk. Our results indicated that oryx and gazelle differ in at least one dimension of their ecological niche at the current density levels, which contributes to their long-term and stable coexistence in STNP.
Collapse
Affiliation(s)
- Marouane Louhichi
- Laboratoire d’Elevage et de Faune Sauvage, Institut des Régions Arides (IRA), Medenine 4119, Tunisia; (M.L.); (T.K.); (A.Z.); (Y.K.)
- Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia
| | - Touhami Khorchani
- Laboratoire d’Elevage et de Faune Sauvage, Institut des Régions Arides (IRA), Medenine 4119, Tunisia; (M.L.); (T.K.); (A.Z.); (Y.K.)
| | - Marie Petretto
- Marwell Wildlife, Colden Common, Winchester SO21 1JH, UK;
| | - Douglas Eifler
- Erell Institute, 2808 Meadow Drive, Lawrence, KS 66047, USA; (D.E.); (M.E.)
| | - Maria Eifler
- Erell Institute, 2808 Meadow Drive, Lawrence, KS 66047, USA; (D.E.); (M.E.)
| | - Kamel Dadi
- Laboratoire des Écosystèmes Pastoraux et Valorisation des Plantes Spontanées et des Microorganismes Associés, Institut des Régions Arides (IRA) de Medénine, Medenine 4119, Tunisia;
| | - Ali Zaidi
- Laboratoire d’Elevage et de Faune Sauvage, Institut des Régions Arides (IRA), Medenine 4119, Tunisia; (M.L.); (T.K.); (A.Z.); (Y.K.)
| | - Yamna Karssene
- Laboratoire d’Elevage et de Faune Sauvage, Institut des Régions Arides (IRA), Medenine 4119, Tunisia; (M.L.); (T.K.); (A.Z.); (Y.K.)
| | - Mohsen Chammem
- Laboratoire d’Elevage et de Faune Sauvage, Institut des Régions Arides (IRA), Medenine 4119, Tunisia; (M.L.); (T.K.); (A.Z.); (Y.K.)
| |
Collapse
|
30
|
Majer A, Skoracka A, Spaak J, Kuczyński L. Higher-order species interactions cause time-dependent niche and fitness differences: Experimental evidence in plant-feeding arthropods. Ecol Lett 2024; 27:e14428. [PMID: 38685715 DOI: 10.1111/ele.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.
Collapse
Affiliation(s)
- Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jürg Spaak
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
31
|
Noske JE, Lu J, Schaefer I, Maraun M, Scheu S, Chen T. Niche dimensions in soil oribatid mite community assembly under native and introduced tree species. Ecol Evol 2024; 14:e11431. [PMID: 38770121 PMCID: PMC11103279 DOI: 10.1002/ece3.11431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Forest soils are a critical component of terrestrial ecosystems and host a large number of animal decomposer species. One diverse and abundant decomposer taxon is oribatid mites (Acari: Oribatida), whose species composition varies with forest type and tree species composition. We used functional traits that indicate different niche dimensions, to infer assembly processes of oribatid mite communities in monocultures and mixed forests of native and introduced tree species. We found that coexisting species differed more in the resource-related niche dimension, i.e., reproductive mode and trophic guild, than in the morphological dimension, e.g., body length and width, sclerotization and concealability. These results suggest that both filtering and partitioning processes structure oribatid mite communities. In native European beech forests, but not in non-native Douglas fir forests, oribatid mites were mainly structured by filtering processes acting via traits related both to environmental tolerance and to resources. Furthermore, oribatid mite trait diversity, but not phylogenetic diversity, differed significantly between monocultures and mixed forests, demonstrating that multidimensional diversity indices provide additional information on soil biodiversity. Overall, the study provides evidence that traits representing different niche dimensions need to be considered for understanding assembly processes in soil animal communities and thereby soil biodiversity.
Collapse
Affiliation(s)
- Johanna Elisabeth Noske
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Jing‐Zhong Lu
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Ina Schaefer
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
- Senckenberg Biodiversity Climate Research CenterFrankfurt am MainGermany
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | - Mark Maraun
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| | - Stefan Scheu
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| | - Ting‐Wen Chen
- J. F. Blumenbach Institute of Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
32
|
Devadhasan A, Kolodny O, Carja O. Competition for resources can reshape the evolutionary properties of spatial structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589370. [PMID: 38659847 PMCID: PMC11042312 DOI: 10.1101/2024.04.13.589370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Many evolving ecosystems have spatial structures that can be conceptualized as networks, with nodes representing individuals or homogeneous subpopulations and links the patterns of interaction and replacement between them. Prior models of evolution on networks do not take ecological niche differences and eco-evolutionary interplay into account. Here, we combine a resource competition model with evolutionary graph theory to study how heterogeneous topological structure shapes evolutionary dynamics under global frequency-dependent ecological interactions. We find that the addition of ecological competition for resources can produce a reversal of roles between amplifier and suppressor networks for deleterious mutants entering the population. Moreover, we show that this effect is a non-linear function of ecological niche overlap and discuss intuition for the observed dynamics using simulations and analytical approximations.
Collapse
Affiliation(s)
- Anush Devadhasan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oren Kolodny
- Department of Ecology, Evolution, and Behavior, E. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Umarani MS, Wang D, O'Dwyer JP, D'Andrea R. A Spatial Signal of Niche Differentiation in Tropical Forests. Am Nat 2024; 203:445-457. [PMID: 38489774 DOI: 10.1086/729218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractExplaining diversity in tropical forests remains a challenge in community ecology. Theory tells us that species differences can stabilize communities by reducing competition, while species similarities can promote diversity by reducing fitness differences and thus prolonging the time to competitive exclusion. Combined, these processes may lead to clustering of species such that species are niche differentiated across clusters and share a niche within each cluster. Here, we characterize this partial niche differentiation in a tropical forest in Panama by measuring spatial clustering of woody plants and relating these clusters to local soil conditions. We find that species were spatially clustered and the clusters were associated with specific concentrations of soil nutrients, reflecting the existence of nutrient niches. Species were almost twice as likely to recruit in their own nutrient niche. A decision tree algorithm showed that local soil conditions correctly predicted the niche of the trees with up to 85% accuracy. Iron, zinc, phosphorus, manganese, and soil pH were among the best predictors of species clusters.
Collapse
|
34
|
Zou H, Wang W, Huang J, Li X, Ma M, Wu S, Zhao C. Soil Nitrogen and Flooding Intensity Determine the Trade-Off between Leaf and Root Traits of Riparian Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:978. [PMID: 38611507 PMCID: PMC11013260 DOI: 10.3390/plants13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The investigation into trade-offs among plant functional traits sheds light on how plants strategically balance growth and survival when facing environmental stress. This study sought to evaluate whether trade-offs observed at both community and individual species levels could indicate adaptive fitness across an intensity of flooding intensity. The study was conducted at 25 sampling sites spanning approximately 600 km along the riparian zone in the Three Gorges Reservoir area, China. The findings revealed that, along the flooding gradient, the overall riparian community did not exhibit significant trade-offs between leaf and root traits. Examining three broadly distributed dominant species (Cynodon dactylon, Xanthium strumarium, and Abutilon theophrasti), perennial plants showed pronounced trade-offs under low flooding intensity, while annuals exhibited trade-offs under moderate and low flooding intensity. The trade-offs were evident in traits related to nitrogen-carbon resources, such as specific leaf area, root tissue density, and photosynthetic rate. However, under strong flooding intensity, the relationship between leaf and root traits of the species studied was decoupled. Furthermore, the study identified a significant correlation between soil nitrogen and the trade-off traits under moderate and low flooding intensity. Integrating results from the CSR (Competitors, Stress-tolerators, Ruderals) strategy model, species niche breath analysis, and nitrogen-regulated trade-off, the study revealed that, in the face of high flooding intensity, perennial species (C. dactylon) adopts an S-strategy, demonstrating tolerance through a conservative resource allocation that decouples leaf-root coordination. Annual species (X. strumarium and A. theophrasti), on the other hand, exhibit niche specialization along the flooding gradient, employing distinct strategies (R- and C-strategy). As flooding stress diminishes and soil nitrogen level decreases, plant strategies tend to shift towards an R-strategy with a competition for reduced N resources. In conclusion, the study highlighted the pivotal roles of soil nitrogen and flooding intensity acting as the dual determinants of species growth and tolerance. These dynamics of growth-tolerance balance were evident in the diverse trade-offs between leaf and root traits of individual plant species with different life histories, underscoring the array of adaptive strategies employed by riparian plants across the flooding intensity gradient.
Collapse
Affiliation(s)
- Hang Zou
- The College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wanyu Wang
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinxia Huang
- The College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaohong Li
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Maohua Ma
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Shengjun Wu
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Cunfeng Zhao
- Chongqing Institute of Green Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
35
|
Omollo WO, Rabarijaona RN, Ranaivoson RM, Rakotoarinivo M, Barrett RL, Zhang Q, Lai YJ, Ye JF, Le CT, Antonelli A, Chen ZD, Liu B, Lu LM. Spatial heterogeneity of neo- and paleo-endemism for plants in Madagascar. Curr Biol 2024; 34:1271-1283.e4. [PMID: 38460512 DOI: 10.1016/j.cub.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Madagascar is a biogeographically unique island with a remarkably high level of endemism. However, endemic taxa in Madagascar are massively threatened due to unprecedented pressures from anthropogenic habitat modification and climate change. A comprehensive phylogeny-based biodiversity evaluation of the island remains lacking. Here, we identify hotspots of taxonomic and phylogenetic plant diversity and neo- and paleo-endemism by generating a novel dated tree of life for the island. The tree is based on unprecedented sampling of 3,950 species (33% of the total known species) and 1,621 genera (93% of the total known genera and 69% of endemic genera) of Malagasy vascular plants. We find that island-endemic genera are concentrated in multiple lineages combining high taxonomic and phylogenetic diversity. Integrating phylogenetic and geographic distribution data, our results reveal that taxon richness and endemism are concentrated in the northern, eastern, and southeastern humid forests. Paleo-endemism centers are concentrated in humid eastern and central regions, whereas neo-endemism centers are concentrated in the dry and spiny forests in western and southern Madagascar. Our statistical analysis of endemic genera in each vegetation region supports a higher proportion of ancient endemic genera in the east but a higher proportion of recent endemic genera in the south and west. Overlaying centers of phylogenetic endemism with protected areas, we identify conservation gaps concentrated in western and southern Madagascar. These gaps should be incorporated into conservation strategies to aid the protection of multiple facets of biodiversity and their benefits to the Malagasy people.
Collapse
Affiliation(s)
- Wyckliffe Omondi Omollo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Romer Narindra Rabarijaona
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rindra Manasoa Ranaivoson
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant Biology and Ecology, Faculty of Sciences, University of Antananarivo, Antananarivo 101, Madagascar
| | - Mijoro Rakotoarinivo
- Department of Plant Biology and Ecology, Faculty of Sciences, University of Antananarivo, Antananarivo 101, Madagascar
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia; School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Qiang Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Yang-Jun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jian-Fei Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Chi Toan Le
- Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc 15000, Vietnam
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE Richmond, Surrey, UK; Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, 41319 Gothenburg, Sweden; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Li-Min Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
36
|
Fung T, Pande J, Shnerb NM, O'Dwyer JP, Chisholm RA. Processes governing species richness in communities exposed to temporal environmental stochasticity: A review and synthesis of modelling approaches. Math Biosci 2024; 369:109131. [PMID: 38113973 DOI: 10.1016/j.mbs.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jayant Pande
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra 412115, India
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - James P O'Dwyer
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505, South Goodwin Avenue, Urbana, IL 61801, United States
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
37
|
Thonis A, Akçakaya HR. Experimental evidence that competition strength scales with ecological similarity: a case study using Anolis lizards. Oecologia 2024; 204:451-465. [PMID: 38244057 DOI: 10.1007/s00442-023-05507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Interspecific competition is widely considered a powerful process underlying species coexistence and ecological community structure. Although coexistence theory predicts stronger competition between more ecologically similar species, empirical support has largely relied on inferring competition from patterns of species co-occurrence. Coexistence theory also posits that species can only coexist when individuals compete more with conspecifics than with other species, however, few field studies-particularly in reptiles-have simultaneously estimated the strength of both intra- and interspecific competition among co-occurring species. Using an array of 12 experimental plots, we manipulated species presence and population size by plot of three native Anolis lizard species to empirically estimate the strength of competition on one anole species driven by two other species of varying ecological similarity. We observed that the strength of competition-as determined by relative growth rates and gravidity-was highly predictable and correlated to ecological similarity. Interspecific competition was strongest among species of highest ecological similarity, and intraspecific competition-induced by the addition or removal of conspecifics-was consistently the most intense. By employing direct experimental manipulations, our study provides an empirical investigation of the strength of competition as it relates to ecological similarity.
Collapse
Affiliation(s)
- Anna Thonis
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA
| |
Collapse
|
38
|
Bimler MD, Stouffer DB, Martyn TE, Mayfield MM. Plant interaction networks reveal the limits of our understanding of diversity maintenance. Ecol Lett 2024; 27:e14376. [PMID: 38361464 DOI: 10.1111/ele.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Species interactions are key drivers of biodiversity and ecosystem stability. Current theoretical frameworks for understanding the role of interactions make many assumptions which unfortunately, do not always hold in natural, diverse communities. This mismatch extends to annual plants, a common model system for studying coexistence, where interactions are typically averaged across environmental conditions and transitive competitive hierarchies are assumed to dominate. We quantify interaction networks for a community of annual wildflowers in Western Australia across a natural shade gradient at local scales. Whilst competition dominated, intraspecific and interspecific facilitation were widespread in all shade categories. Interaction strengths and directions varied substantially despite close spatial proximity and similar levels of local species richness, with most species interacting in different ways under different environmental conditions. Contrary to expectations, all networks were predominantly intransitive. These findings encourage us to rethink how we conceive of and categorize the mechanisms driving biodiversity in plant systems.
Collapse
Affiliation(s)
- Malyon D Bimler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Trace E Martyn
- Eastern Oregon Agriculture Research Center-Union Experiment Station, Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, USA
- Eastern Oregon Agriculture and Natural Resource Program, Oregon State University, Oregon, USA
| | - Margaret M Mayfield
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Díaz-Sierra R, Rietkerk M, Verwijmeren M, Baudena M. Facilitation and competition deconstructed: a mechanistic modelling approach to the stress gradient hypothesis applied to drylands. Sci Rep 2024; 14:2205. [PMID: 38272965 PMCID: PMC10810957 DOI: 10.1038/s41598-024-52447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Facilitative interactions among species are key in plant communities. While experimental tests support the Stress Gradient Hypothesis (SGH) as an association between facilitation and stress, whether the shape of net effects along stress gradients can be predicted is controversial, with no available mathematical modelling approaches. We proposed a novel test, using a modification of the R* model to study how negative and positive partial effects of plant interactions in drylands combine along two common stress gradients. We modelled different interactions: competition for water and light, amelioration of soil infiltration and/or grazing protection, obtaining that intensity and importance of facilitation did not generally increase along stress gradients, being dependent on the interaction type. While along the water stress gradient net interactions became more positive, reaching a maximum and then waning again, various outcomes were observed along the grazing gradient. Shape variety was mainly driven by the various shapes of the partial positive effects. Under resource stress, additive interaction effects can be expected, whereas when including grazing, the effects were non-additive. In the context of the SGH, deconstructing the effect of positive and negative interaction in a pairwise mechanistic models of drylands does not show a unique shape along stress gradients.
Collapse
Affiliation(s)
- Rubén Díaz-Sierra
- Mathematical and Fluid Physics Department, Faculty of Sciences, Universidad Nacional de Educación a Distancia, UNED, 28040, Madrid, Spain.
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
- Centre for Complex Systems Studies, 4th Floor Minnaert Building, Leuvenlaan 4, Utrecht, The Netherlands.
| | - Max Rietkerk
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Mart Verwijmeren
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mara Baudena
- Section Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- Centre for Complex Systems Studies, 4th Floor Minnaert Building, Leuvenlaan 4, Utrecht, The Netherlands
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Corso Fiume 4, 10133, Torino, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
40
|
Arduini I, Alessandrini V. The Novel Invader Salpichroa origanifolia Modifies the Soil Seed Bank of a Mediterranean Mesophile Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:226. [PMID: 38256778 PMCID: PMC10821032 DOI: 10.3390/plants13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The composition and structure of soil seed banks provide insight into the long-term implications of plant invasions on resident communities. The effect of Salpichroa origanifolia (Sa) on the seed bank of a coastal mesophile forest (Tuscany) was studied by growing Sa-rhizomes in soils from low and high invaded sites, in full sun and canopy shade. Sa growth patterns, and the composition, biomass, nitrogen, and phosphorus contents of seedlings which emerged from seed banks were determined. Seed bank abundance and richness were also determined from under and 2 m apart established Sa populations. Sa plants' leaf traits and biomass allocation changed in response to light conditions. The germination of seed bank seedlings was not affected or even promoted by Sa, while their biomass as well as N and P uptake were more than halved in both light conditions, leading to a progressive depletion of the forest seed bank. Richness was lower under established Sa populations. Sa seedlings exerted a greater suppression on residents than Sa adults, and these appeared more competitive against their own seedlings than on residents. Sa is an invader of concern for Mediterranean forests because of its adaptability to shaded conditions, the competitiveness of its seedlings, and its vegetative spread by means of rhizomes.
Collapse
Affiliation(s)
- Iduna Arduini
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | | |
Collapse
|
41
|
Hallett LM, Aoyama L, Barabás G, Gilbert B, Larios L, Shackelford N, Werner CM, Godoy O, Ladouceur ER, Lucero JE, Weiss-Lehman CP, Chase JM, Chu C, Harpole WS, Mayfield MM, Faist AM, Shoemaker LG. Restoration ecology through the lens of coexistence theory. Trends Ecol Evol 2023; 38:1085-1096. [PMID: 37468343 DOI: 10.1016/j.tree.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.
Collapse
Affiliation(s)
- Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA.
| | - Lina Aoyama
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA
| | - György Barabás
- Division of Ecological and Environmental Modeling (ECOMOD), Dept. IFM, Linköping University, SE-58183 Linköping, Sweden; Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Loralee Larios
- Department of Botany and Plant Sciences, University of California Riverside, CA 92521, USA
| | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chhaya M Werner
- University of Wyoming, Botany Department, Laramie, WY 82071, USA; Department of Environmental Science, Policy, & Sustainability, Southern Oregon University, Ashland, OR 97520, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, E-11510 Puerto Real, Spain
| | - Emma R Ladouceur
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Jacob E Lucero
- Department of Rangeland, Wildlife, and Fisheries Management, Texas A&M University, College Station, TX 77843, USA
| | | | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - W Stanley Harpole
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Margaret M Mayfield
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Akasha M Faist
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
42
|
Cronin JT, Goddard J, Krivchenia A, Shivaji R. Density-dependent within-patch movement behavior of two competing species. Ecol Evol 2023; 13:e10753. [PMID: 38020706 PMCID: PMC10659955 DOI: 10.1002/ece3.10753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures-with-distance were well described by a random-diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped-shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within-patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes.
Collapse
Affiliation(s)
- James T. Cronin
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Jerome Goddard
- Department of Mathematics and Computer ScienceAuburn University MontgomeryMontgomeryAlabamaUSA
| | - Aaron Krivchenia
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Ratnasingham Shivaji
- Department of Mathematics and StatisticsUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
43
|
Albert G, Gauzens B, Ryser R, Thébault E, Wang S, Brose U. Animal and plant space-use drive plant diversity-productivity relationships. Ecol Lett 2023; 26:1792-1802. [PMID: 37553981 DOI: 10.1111/ele.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity-productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.
Collapse
Affiliation(s)
- Georg Albert
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Remo Ryser
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Science (iEES), Paris, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
44
|
Yamamichi M, Letten AD, Schreiber SJ. Eco-evolutionary maintenance of diversity in fluctuating environments. Ecol Lett 2023; 26 Suppl 1:S152-S167. [PMID: 37840028 DOI: 10.1111/ele.14286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023]
Abstract
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Andrew D Letten
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
45
|
Miller ZR, Allesina S. Habitat Heterogeneity, Environmental Feedbacks, and Species Coexistence across Timescales. Am Nat 2023; 202:E53-E64. [PMID: 37531282 DOI: 10.1086/724821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractClassic ecological theory explains species coexistence in variable environments. While spatial variation is often treated as an intrinsic feature of a landscape, it may be shaped and even generated by the resident community. All species modify their local environment to some extent, driving changes that can feed back to affect the composition and coexistence of the community, potentially over timescales very different from population dynamics. We introduce a simple nested modeling framework for community dynamics in heterogeneous environments, including the possible evolution of heterogeneity over time due to community-environment feedbacks. We use this model to derive analytical conditions for species coexistence in environments where heterogeneity is either fixed or shaped by feedbacks. Among other results, our approach reveals how dispersal and environmental specialization interact to shape realized patterns of habitat association and demonstrates that environmental feedbacks can tune landscape conditions to allow the stable coexistence of any number of species. Our flexible modeling framework helps explain feedback dynamics that arise in a wide range of ecosystems and offers a generic platform for exploring the interplay between species and landscape diversity.
Collapse
|
46
|
Eisenhauer N, Hines J, Maestre FT, Rillig MC. Reconsidering functional redundancy in biodiversity research. NPJ BIODIVERSITY 2023; 2:9. [PMID: 39242717 PMCID: PMC11332098 DOI: 10.1038/s44185-023-00015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 09/09/2024]
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
47
|
Hämäläinen R, Kajanus MH, Forsman JT, Kivelä SM, Seppänen JT, Loukola OJ. Ecological and evolutionary consequences of selective interspecific information use. Ecol Lett 2023; 26:490-503. [PMID: 36849224 DOI: 10.1111/ele.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 03/01/2023]
Abstract
Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.
Collapse
Affiliation(s)
| | - Mira H Kajanus
- Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Sami M Kivelä
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
48
|
Daleo P, Alberti J, Chaneton EJ, Iribarne O, Tognetti PM, Bakker JD, Borer ET, Bruschetti M, MacDougall AS, Pascual J, Sankaran M, Seabloom EW, Wang S, Bagchi S, Brudvig LA, Catford JA, Dickman CR, Dickson TL, Donohue I, Eisenhauer N, Gruner DS, Haider S, Jentsch A, Knops JMH, Lekberg Y, McCulley RL, Moore JL, Mortensen B, Ohlert T, Pärtel M, Peri PL, Power SA, Risch AC, Rocca C, Smith NG, Stevens C, Tamme R, Veen GFC, Wilfahrt PA, Hautier Y. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nat Commun 2023; 14:1809. [PMID: 37002217 PMCID: PMC10066197 DOI: 10.1038/s41467-023-37395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.
Collapse
Affiliation(s)
- Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina.
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Enrique J Chaneton
- IFEVA-Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Av San Martín 4453 C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar Iribarne
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Pedro M Tognetti
- IFEVA-Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Av San Martín 4453 C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Martín Bruschetti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jesús Pascual
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Mahesh Sankaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, 560065, India
- School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Seabloom
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Jane A Catford
- Department of Geography, King's College London, 30 Aldwych, London, WC2B 4BG, UK
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chris R Dickman
- Desert Ecology Research Group, School of Life & Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Timothy L Dickson
- University of Nebraska at Omaha, Department of Biology, Omaha, NE, USA
| | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Anke Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth, 95447, Bayreuth, Germany
| | - Johannes M H Knops
- Department of Health & Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ylva Lekberg
- MPG Ranch and University of Montana, W.A. Franke College of Forestry and Conservation, Missoula, MT, 59812, USA
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Joslin L Moore
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Brent Mortensen
- Department of Biology, Benedictine College, Atchison, KS, USA
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA)- Universidad Nacional de la Patagonia Austral (UNPA) -CONICET. Río Gallegos, Santa Cruz, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Camila Rocca
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, PO Box 50, 6700, AB, Wageningen, The Netherlands
| | - Peter A Wilfahrt
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
49
|
Lyu S, Alexander JM. Compensatory responses of vital rates attenuate impacts of competition on population growth and promote coexistence. Ecol Lett 2023; 26:437-447. [PMID: 36708049 DOI: 10.1111/ele.14167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/29/2023]
Abstract
Competition is among the most important factors regulating plant population and community dynamics, but we know little about how different vital rates respond to competition and jointly determine population growth and species coexistence. We conducted a field experiment and parameterised integral projection models to model the population growth of 14 herbaceous plant species in the absence and presence of neighbours across an elevation gradient (284 interspecific pairs). We found that suppressed individual growth and seedling establishment contributed the most to competition-induced declines in population growth, although vital rate contributions varied greatly between species and with elevation. In contrast, size-specific survival and flowering probability and seed production were frequently enhanced under competition. These compensatory vital rate responses were nearly ubiquitous (occurred in 92% of species pairs) and significantly reduced niche overlap and stabilised coexistence. Our study highlights the importance of demographic processes for regulating population and community dynamics, which has often been neglected by classic coexistence theories.
Collapse
Affiliation(s)
- Shengman Lyu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jake M Alexander
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Siegel P, Baker KG, Low‐Décarie E, Geider RJ. Phytoplankton competition and resilience under fluctuating temperature. Ecol Evol 2023; 13:e9851. [PMID: 36950368 PMCID: PMC10025077 DOI: 10.1002/ece3.9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 03/21/2023] Open
Abstract
Environmental variability is an inherent feature of natural systems which complicates predictions of species interactions. Primarily, the complexity in predicting the response of organisms to environmental fluctuations is in part because species' responses to abiotic factors are non-linear, even in stable conditions. Temperature exerts a major control over phytoplankton growth and physiology, yet the influence of thermal fluctuations on growth and competition dynamics is largely unknown. To investigate the limits of coexistence in variable environments, stable mixed cultures with constant species abundance ratios of the marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, were exposed to different temperature fluctuation regimes (n = 17) under high and low nitrogen (N) conditions. Here we demonstrate that phytoplankton exhibit substantial resilience to temperature variability. The time required to observe a shift in the species abundance ratio decreased with increasing fluctuations, but coexistence of the two model species under high N conditions was disrupted only when amplitudes of temperature fluctuation were high (±8.2°C). N limitation caused the thermal amplitude for disruption of species coexistence to become lower (±5.9°C). Furthermore, once stable conditions were reinstated, the two species differed in their ability to recover from temperature fluctuations. Our findings suggest that despite the expectation of unequal effect of fluctuations on different competitors, cycles in environmental conditions may reduce the rate of species replacement when amplitudes remain below a certain threshold. Beyond these thresholds, competitive exclusion could, however, be accelerated, suggesting that aquatic heatwaves and N availability status are likely to lead to abrupt and unpredictable restructuring of phytoplankton community composition.
Collapse
Affiliation(s)
- Philipp Siegel
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| | - Kirralee G. Baker
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTasmaniaAustralia
| | - Etienne Low‐Décarie
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Biological Informatics Center of Expertise, Agriculture and Agrifoods Canada, Government of CanadaMontrealQuebecCanada
| | - Richard J. Geider
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| |
Collapse
|